
Maximum cuts in edge-colored graphsI

Luerbio Fariaa, Sulamita Kleinb, Ignasi Sauc,d, Uéverton S. Souzae,
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Abstract

The input of the Maximum Colored Cut problem consists of a graph
G = (V,E) with an edge-coloring c : E → {1, 2, 3, . . . , p} and a positive
integer k, and the question is whether G has a nontrivial edge cut using at
least k colors. The Colorful Cut problem has the same input but asks for
a nontrivial edge cut using all p colors. Unlike what happens for the classical
Maximum Cut problem, we prove that both problems are NP-complete even
on complete, planar, or bounded treewidth graphs. Furthermore, we prove
that Colorful Cut is NP-complete even when each color class induces a
clique of size at most 3, but is trivially solvable when each color induces a
K2. On the positive side, we prove that Maximum Colored Cut is fixed-
parameter tractable when parameterized by either k or p, by constructing a
cubic kernel in both cases.
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1. Introduction

Given an edge-colored graph G and an edge-set property Π, in maximum
(minimum) colored/labeled Π problems we are asked to find a subset of edges
satisfying property Π with respect to G that uses the maximum (minimum)
number of colors/labels. These problems have a lot of applications and have
been widely studied in recent years:

• when Π is the property of being a spanning tree of the input graph
G, the Maximum (Minimum) Colored Spanning Tree problems
have been studied in [5, 6, 7, 9, 20, 21, 28];

• when Π is the property of being a path between two designated vertices
of the input graph G, the Maximum (Minimum) Colored Path
problems have been studied in [6, 8, 20, 30];

• when Π is the property of being a perfect matching of the input graph
G, the Maximum (Minimum) Perfect Matching problems have
been studied in [17, 22];

• when Π is the property of being a Hamiltonian cycle of the input graph
G, the Minimum Colored Hamiltonian Cycle problem has been
studied in [17];

• when Π is the property of being a edge dominating set of the input
graph G, the Minimum Colored Edge Domination Set problem
has been studied in [17];

In this work, we focus our studies on the complexity analysis of colored
problems where Π is the property of being an edge cut of the input graph
G. More precisely, let G = (V,E) be a simple graph with an edge coloring
c : E → {1, 2, . . . , p}, not necessarily proper. Given a proper subset S ⊂ V ,
we define the edge cut ∂S as the subset of E where the edges have one
endpoint in S and the other in V \ S. We represent by c(∂S) the set of
colors that appear in ∂S, i.e., c(∂S) = {c(e) | e ∈ ∂S}. The problem of
finding a subset S ⊂ V such that |c(∂S)| ≤ |c(∂T )| for every T ⊂ V is called
Minimum Colored Cut, and its decision version is stated as follows.
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Minimum Colored Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that |c(∂S)| ≤ k?

Associated with Minimum Colored Cut we have the Minimum Col-
ored (s, t)-Cut problem, in which we are asked to find an edge cut that
separates a given pair s, t of vertices using as few colors as possible.

Minimum Colored (s, t)-Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p}, a pair s, t of vertices of G, and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that s ∈ S, t /∈ S and
|c(∂S)| ≤ k?

Analogously, the problem of finding a subset S ⊂ V such that |c(∂S)| ≥
|c(∂T )| for every T ⊂ V is called Maximum Colored Cut, and its decision
version is stated as follows.

Maximum Colored Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} and an integer k > 0.
Question: Is there a proper subset S ⊂ V such that |c(∂S)| ≥ k?

Note that the classical (simple) Maximum Cut problem [18] is the par-
ticular case of Maximum Colored Cut when c : E → N is an injective
function. Therefore, for the Maximum Colored Cut problem we are in-
terested in analyzing its complexity on graph classes C for which Maximum
Cut is solvable in polynomial time.

In addition, we are also interested in the complexity of determining if the
input graph has a subset S ⊂ V such that |c(∂S)| = p, i.e., if there is an
edge cut ∂S using all the colors; we call this problem Colorful Cut.

Colorful Cut
Instance: A graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p}.
Question: Is there a proper subset S ⊂ V such that |c(∂S)| = p?

Complexity issues related to Minimum Colored (s, t)-Cut and Min-
imum Colored Cut have been widely investigated in recent years (cf. [1,
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4, 10, 11, 17, 27, 29, 30, 31, 32]).
Given an edge-colored graph G, the span of a color of G is the number of

connected components of the subgraph induced by the edges of this color.
When the span of each color equals one, Minimum Colored Cut is

equivalent to Minimum Cut in Hypergraphs, since each color class can
be seen as a hyperedge. Therefore, it can be solved in polynomial time be-
cause, as observed in [24], the hypergraph cut function is symmetric and
submodular (cf. [23, 24]). Coudert et al. [10] showed that Minimum Col-
ored Cut can be solved in polynomial time when the number of edges of
each color is bounded by a given constant, but Minimum Colored (s, t)-
Cut is NP-hard even when each color contains at most two edges. Blin
et al. [1] presented a randomized algorithm that returns an optimal colored
cut of G with probability at least (|V |2k)−1, where k is the maximum span
of G. Sevaral approximation and hardness results for Minimum Colored
(s, t)-Cut are presented in [27, 29, 30, 32]. Zhang and Fu [31] showed that
Minimum Colored (s, t)-Cut is NP-hard even if the maximum length of
any path is equal to two; and when restricted to disjoint-path graphs, Min-
imum Colored (s, t)-Cut can be solved in polynomial time if the number
of edges of each color is at most two. Regarding the parameterized com-
plexity of Minimum Colored (s, t)-Cut, Fellows et al. [17] showed that
the problem is W[2]-hard when parameterized by the number of colors of the
solution, and W[1]-hard when parameterized by the number of edges of the
solution. Coudert et al. [11] showed that Minimum Colored Cut can be
solved in time 2k · nO(1), where k is the number of colors with span larger
than one.

The main goal of this work is to present a complexity analysis of Maxi-
mum Colored Cut, which, to the best of our knowledge, was missing in the
literature. As Colorful Cut is a particular case of Maximum Colored
Cut, our hardness results deal with Colorful Cut, while the tractable
cases will be presented for Maximum Colored Cut.

The remainder of the article is organized as follows. In Section 2 we
provide several NP-completeness results for restricted versions of Colorful
Cut, and in Section 3 we present cubic kernels for Maximum Colored Cut
parameterized either by p or by k. We use standard graph-theoretic notation;
see [13] for any undefined notation. For the basic definitions of parameter-
ized complexity, such as fixed-parameter tractability, W[2]-hardness, para-
NP-hardness, or (polynomial) kernelization, we refer the reader to [12, 14].
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2. NP-completeness results for Colorful Cut

Hadlock [19] proved that (simple) Maximum Cut is polynomial-time
solvable on planar graphs. In this section we prove, among other results,
the NP-completeness of Colorful Cut on a particular subclass of planar
graphs. We start with general planar graphs, and then we discuss how the
construction can be modified to get stronger hardness results.

Theorem 1. Colorful Cut is NP-complete on planar graphs.

Proof. Let I = (U,C) be an instance of 3-sat. We construct in polynomial
time a planar instance G = (V,E) with an edge coloring c such that I =
(U,C) is satisfiable if and only if (G, c) has an edge cut using all colors of c.

With each clause cj = (x ∨ y ∨ z) ∈ C we associate a K3 where each
edge is labeled by a literal of cj together with its occurrence in C, obtaining
a graph G′ with m connected components (see Figure 1(a)), each of them
associated with a clause of C. Starting with G′, we construct a multigraph
G equipped with a coloring c, for short Gc, where each literal in a clause of
C is associated with a colored (multi)edge as follows:

• For each pair {xji , xik}, where the integers j and k represent occurrences
of the literals xi and xi in the clauses of C, respectively, create a color
denoted by Sj,ki .

• The edge labeled with xji in G′ is replaced with parallel edges colored
with Sj,ki in Gc for all k. Analogously, the edge labeled by xi

k in G′ is
replaced with parallel edges in Gc colored with Sj,ki for all j.

Figure 1 illustrates the graphs G′ and Gc associated with an instance I.
Without loss of generality, we may assume that all variables have both

positive and negative literals in I (if not, the clauses containing such variables
are trivially satisfiable and can be removed). From a truth assignment AI
of I, we can construct a colorful cut of Gc as follows. For each clause cj
of C, pick arbitrarily one edge {v, w} corresponding to a true literal of C.
Then, put v and w in the same part of the partition, leaving the remaining
vertex of the clause in the other part. This procedure gives a cut using all
colors. Indeed, for each true literal xji , there is at least one false literal xi

k

that places the color Sj,ki in the cut.
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(a)

(b)

Figure 1: Graphs G′ and Gc associated with (x1∨x2∨x3) ∧(x1∨x2∨x3)∧ (x1∨x2∨x3).

Figure 2: Edge cut associated with the instance (x1∨x2∨x3)∧(x1∨x2∨x3)∧(x1∨x2∨x3)
with truth assignment x1 = x2 = x3 = 1.

Figure 2 illustrates a colorful cut for the multigraph Gc associated with
the instance of Figure 1, considering the truth assignment AI = x1 = x2 =
x3 = 1 as previously described.

Conversely, suppose that Gc has a colorful cut. Without loss of generality,
we may assume that each K3 has a cut edge Indeed, as the cut has all the
colors of the edge coloring, if there is some K3 in a part of the partition, we
can choose any vertex of this clique and place this vertex in the other part,
without prejudice, because all the colors are still in the cut. Beginning with
this cut, we construct a truth assignment AI that satisfies I, putting xi = 1
if at least one of the edges associated with some xji is inside a part of the
partition, and xi = 0 otherwise. Note that this assignment is well-defined:
there is no pair of literals {xji , xik} such that the edges corresponding to both
literals are inside a part of the partition, otherwise the color Sj,ki is missing
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and the cut does not contain all colors. Besides that, each K3 has the edges
corresponding to some literal inside a part of the partition, which defines a
truth assignment for I.

Finally, we can transform Gc into a simple graph replacing each edge
{v, w} colored with Sj,ki by a path {v, x, y, w} such that c({x, y}) = Sj,ki and
the remaining edges of this path receive new different colors.

Figure 3 illustrates the simple graph H obtained from Gc, where the new
colors are labeled with numbers. It is not difficult to see that the multigraph
Gc has a colorful cut if and only if the associated graph H has a colorful cut.
�

Figure 3: Graph H associated with Gc.

Figure 4 illustrates a colorful cut of H.

Figure 4: Colorful cut of H.

Several NP-hard problems, such as (simple) Maximum Cut, are polynomial-
time solvable on bounded treewidth graphs [3]. An important class of graphs
that belong to the intersection of planar graphs and graphs of bounded
treewidth is the class of K4-minor-free graphs [2, 15].
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A graph G is called series-parallel if it can be obtained from a K2 by
applying a sequence of operations, where each operation is either to duplicate
an edge (i.e., replace an edge with two parallel edges) or to subdivide an edge
(i.e., replace an edge with a path of length two). A graph G is K4-minor free if
and only if each 2-connected component of G is a series-parallel graph [2, 15].

K4-minor-free graphs are planar because K5 and K3,3 have K4 as a minor.
In addition, K4-minor-free graphs are the graphs with treewidth two [2].

We can modify the graph obtained in the construction presented in the
proof of Theorem 1 in order to obtain the following corollary.

Corollary 2. Colorful Cut remains NP-complete even when the input
graph G satisfies simultaneously the following properties:

1. G is K4-minor-free.

2. G is connected.

3. G has maximum degree three.

4. Each color class of G contains at most two edges.

Proof. Let H be an instance of Colorful Cut constructed as described
in the proof of Theorem 1. First observe that each connected component
of H (clause gadget) can be obtained from a K2 by either duplicating an
edge or subdividing an edge. Therefore, each connected component of H is
series-parallel.

In order to make the graph H be connected and with bounded degree
just create a binary tree T with m leaves and add edges by connecting a
vertex with maximum degree of each gadget clause of H to a distinct leaf of
T . Assigning a new distinct color for each edge previously created, it holds
that H is K4-minor-free and each color class of H contains at most two edges
(as in the proof of Theorem 1). Finally, each vertex v of degree 4 can be
replaced by a P3 where each pedant vertex is neighbor of two vertices that
were adjacent to v and came from the same edge in G′ (the edges of these
P3’s also get new colors).

As the set of edges that we add in the graph induces a tree having a new
color for each edge, it is easy to see that the modified graph has a colorful
cut if and only if the original graph has a colorful cut. �

Clearly, every bipartite graph has a colorful cut. Thus, it is natural to
ask about the complexity of the problem on graphs with small odd cycle
transversal.
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Corollary 3. Colorful Cut remains NP-complete even when the input
graph G has odd cycle transversal number one.

Proof. It is enough to pick a vertex of each gadget of (G, c), constructed as
described in the proof of Theorem 1, and identify them into a single vertex.

�

Note that Maximum Cut is trivial on complete graphs, and that it is
polynomial time solvable on cographs [3]. By adding a new vertex and edges
colored with a new color, we can construct a hard instance in order to show
the NP-completeness of Colorful Cut on complete graphs.

Theorem 4. Colorful Cut is NP-complete on complete graphs.

Proof. Given an instance (G, c) of Colorful Cut, we create another
instance (G′, c′) such that G′ is a clique as follows. Start from (G, c), add
all the missing edges to G, add a new vertex v adjacent to all the vertices of
G, add give to the edges in E(G′) \ E(G) the same color, different from the
colors appearing in E(G). Clearly, this new color appears in all the maximum
colored cuts of G′, and therefore (G′, c′) has a colorful cut if and only if (G, c)
has one. �

Note that if each color class of a graph G induces a K2, then G has a
colorful cut if and only if G is bipartite, which can be decided in polynomial
time. The next result shows that this is best possible, in the sense that
Colorful Cut is NP-complete when each color class induces either a K2

or a K3.

Theorem 5. Colorful Cut is NP-complete when each color class induces
a clique of size at most three.

Proof. For this proof we use a reduction from Not All Equal 3-sat
(nae 3-sat), which is NP-complete [25]. Let I = (U,C) be an instance of
nae 3-sat such that U = {u1, u2, . . . , un} and C = {c1, c2, . . . , cm}.

The construction of an instance (G, c) is given by the following procedure:

• For each clause cj = (x, y, z) ∈ C, construct a clique {(x)j, (y)j, (z)j}
with all the edges colored with color j.

• For each variable ui ∈ U , add two new vertices ai and bi to V , such
that ai is only adjacent to all positive occurrences of ui, and bi is only
adjacent to all negative occurrences of the same variable.
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• For each variable ui ∈ U , add an edge joining the vertices (in the
clause cliques) corresponding to the first positive occurrence and the
first negative occurrence of ui.

• Excluding the edges of the clause cliques, all other edges are colored
with new different integers strictly greater than m.

Figure 5 illustrates the instance (G, c) of Colorful Cut associated with
an instance I = (U,C) of Not All Equal 3-sat.

Figure 5: Graph associated with the formula (u1∨u2∨u3)∧ (u1∨u2∨u3)∧ (u1∨u2∨u3).

At this point, it is not difficult to see that I = (U,C) is a satisfiable
instance of nae 3-sat if and only if (G, c) has a colorful cut. Indeed, suppose
first that I = (U,C) is a satisfiable instance of nae 3-sat, and let η be a
truth assignment of U that satisfies I. A colorful cut ∂S in Gc is obtained
as follows: if ui = 1, then put all its positive occurrences together with bi
in S, and put all its negative occurrences together with ai in V \ S. By
construction, all the colors greater than m are in the cut ∂S. Furthermore,
each of the colors j ≤ m is in the cut because in each clause there is always
a true and a false occurrence.

Conversely, suppose that (G, c) contains a colorful cut ∂S. All the clause
cliques have vertices in different parts of the partition, because the colors j
with 1 ≤ j ≤ m only appear in those clique edges. Thus we can produce
a truth assignment η by setting to true to those literals corresponding to
the clique vertices {xj, yj, zj} that belong to S, and by setting to false oth-
erwise. This is a consistent truth assignment because the edge joining the
first positive and negative occurrences of the variable ui (if any) must be a
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cut edge, that is, its exclusive color must be in the cut, which means that
those occurrences must be in different parts of the partition, thus having
opposite truth assignments. As all positive occurrences of ui are adjacent
to the vertex ai and those edges have pairwise different colors presented in
the cut, it forces all positive occurrences of ui to be in the same part of the
partition, receiving the same truth assignment. Analogously, we can prove
that all negative occurrences of ui must be in the same part of the partition,
getting the same truth assignment.

Figure 6 illustrates the colorful cut of (G, c) from the nae 3-sat instance
I = (U,C) with U = {u1, u2, u3} and C = {(u1∨u2∨u3), (u1∨u2∨u3), (u1∨
u2 ∨ u3)}, satisfying the truth assignment u1 = u2 = u3 = 1. �

Figure 6: Colorful cut of Gc = (V,E, f) from Figure 5 corresponding to the truth assign-
ment u1 = u2 = u3 = 1.

3. Polynomial kernelization of Maximum Colored Cut

From the results presented in Section 2 it follows that Maximum Col-
ored Cut is para-NP-hard (see [12, 14]) parameterized by any of these
parameters: treewidth, neighborhood diversity, genus, degeneracy, odd cycle
transversal number, p− k, and several combinations of such parameters. In
contrast to these results, next we show the fixed-parameter tractability of
Maximum Colored Cut when parameterized by either k or p, by means
of the existence of a polynomial kernel.
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Theorem 6. Maximum Colored Cut admits a cubic kernel parameter-
ized by the number of colors.

Proof. First recall that a cut of a graph G is a bipartite subgraph of G.
The following claim is an easy fact.

Claim 1. Let H = (V1, V2, E) be a bipartite graph having β edges and no
isolated vertices. The maximum number of edges having endpoints in the
same part that can be added to H is 2

(
β
2

)
, corresponding to the case where

E induces a matching.

Now, suppose that λ is the maximum number of colors in a cut of G =
(V,E) and let S ⊂ V be a set such that |c(∂S)| = λ. Forming a bipartite
graph H by selecting exactly one edge of each color class in [S, V \ S], by
Claim 1 it follows that any color class that is not in H has at most 2

(
λ
2

)
edges, otherwise λ would not be maximum. Let Ei ⊆ E be the set of edges
colored with color i. As λ ≤ p, if |Ei| > 2

(
p
2

)
, then color i appears in any

maximum colored cut. Such a property gives us the following reduction rule:

? If for some color i, |Ei| > 2
(
p
2

)
, decrease by one the number of colors

and replace G by G[E \ Ei].

The exhaustive application of Rule ? yields a kernel of size O(p3). �

Before our last result, we need the following lemma.

Lemma 7. Any simple graph G = (V,E) with an edge coloring c : E →
{1, 2, . . . , p} has an edge cut ∂S such that |c(∂S)| ≥ p

2
.

Proof. Let G′ be an uncolored graph obtained from G by keeping one
arbitrary edge from each color. Then the lemma follows by applying to G′

the well-known property that any graph with at least m edges contains a
bipartite subgraph with at least m

2
edges [16]. �

Corollary 8. Maximum Colored Cut admits a cubic kernel parameter-
ized by the cost of the solution.

Proof. If k ≥ p/2, by Lemma 7 we conclude that we are dealing with a
Yes-instance. Otherwise, k < p/2, and applying Rule ? exhaustively yields
a kernel of size O(k3). �
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[11] D. Coudert, S. Pérennes, H. Rivano, and M.-E. Voge. Combinatorial
optimization in networks with shared risk link groups. Discrete Mathe-
matics and Theoretical Computer Science, 18(3), 2016.

13



[12] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized Algorithms.
Springer, 2015.

[13] R. Diestel. Graph Theory, volume 173. Springer-Verlag, 4th edition,
2010.

[14] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Com-
plexity. Texts in Computer Science. Springer, 2013.

[15] R. J. Duffin. Topology of series-parallel networks. Journal of Mathe-
matical Analysis and Applications, 10(2):303–318, 1965.
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