
Variations of largest rectangle recognition amidst a

bichromatic point set∗

Ankush Acharyya1 Minati De2† Subhas C. Nandy1 Supantha Pandit1

1Indian Statistical Institute, Kolkata 700108, India
2Indian Institute of Science, Bangalore 560012, India

Abstract

Classical separability problem involving multi-color point sets is an important area of study in

computational geometry. In this paper, we study different separability problems for bichromatic

point set P = Pr ∪Pb on a plane, where Pr and Pb represent the set of n red points and m blue

points respectively, and the objective is to compute a monochromatic object of the desired type

and of maximum size. We propose in-place algorithms for computing (i) an arbitrarily oriented

monochromatic rectangle of maximum size in R2, and (ii) an axis-parallel monochromatic cuboid

of maximum size in R3. The time complexities of the algorithms for problems (i) and (ii) are

O(m(m+n)(m
√
n+m logm+n logn)) andO(m3√n+m2n logn), respectively. As a prerequisite,

we propose an in-place construction of the classic data structure the k-d tree, which was originally

invented by J. L. Bentley in 1975. Our in-place variant of the k-d tree for a set of n points in

Rk supports both orthogonal range reporting and counting query using O(1) extra workspace,

and these query time complexities are same as the classical complexities, i.e., O(n1−1/k+µ) and

O(n1−1/k), respectively, where µ is the output size of the reporting query. The construction

time of this data structure is O(n logn). Both the construction and query algorithms are non-

recursive in nature that do not need O(logn) size recursion stack compared to the previously

known construction algorithm for in-place k-d tree and query in it. We believe that this result

is of independent interest. We also propose an algorithm for the problem of computing an

arbitrarily oriented rectangle of maximum weight among a point set P = Pr ∪ Pb, where each

point in Pb (resp. Pr) is associated with a negative (resp. positive) real-valued weight that runs

in O(m2(n+m) log(n+m)) time using O(n) extra space.

Keywords: Bichromatic point set; obstacle-free rectangle recognition; orthogonal range counting;

in-place k-d tree; maximum weight rectangle recognition; space efficient algorithms.

1 Introduction

Given a bichromatic point set P = Pr ∪ Pb, where Pr is the set of n red points and Pb is the set

of m blue points, the basic separability problem is to find a separator S such that the points in

Pr and Pb lie in two different sides of S respectively. The motivation for studying this separability

∗A preliminary version of this work titled “Space-efficient Algorithms for Empty Space Recognition among a Point

Set in 2D and 3D” appeared in CCCG 2011.
†Research supported by DST INSPIRE Faculty Grant (DST-IFA-14-ENG-75).

1

ar
X

iv
:1

90
5.

07
12

4v
1

 [
cs

.C
G

]
 1

7
M

ay
 2

01
9

problem for a bichromatic point set stems from its various applications in facility location, VLSI

layout design, image analysis, data mining, computer graphics and other classification based real

life scenarios [19, 22, 23, 25, 26]. The bichromatic separability problem also has its application to

detect obstacle free separators. In the literature, different types of separators like hyperplane [30],

circle [36], rectangle [18, 25, 39], square [13, 38] has been studied to optimize the objective function

of the corresponding problem. In this paper, we focus on designing space-efficient algorithms for the

following problems:

P1 Computing an arbitrarily oriented monochromatic rectangle of maximum size (LMR) in R2,

where a rectangle U is said to be monochromatic if it contains points of only one color in the

proper interior of U , and the size of U is the number of points of that color inside or on the

boundary of the rectangle U .

P2 Computing an arbitrarily oriented rectangle of maximum weight (LWR) in R2, where each

point in the set Pb (resp Pr) is associated with negative (resp. positive) real-valued weight,

and the weight of a rectangle U is the sum of weights of all the points inside or on the boundary

of U .

P3 Computing a monochromatic axis parallel cuboid1 (LMC) of maximum size in R3.

A rectangle of arbitrary orientation in R2 is called red if it does not contain any blue point in its

interior2. The largest red rectangle (LRR) is a red rectangle of maximum size. Similarly, the largest

blue rectangle (LBR) is defined. The largest monochromatic rectangle (LMR) is either LRR or

LBR depending on which one is of maximum size. Here, the objective is to compute the LRR.

In R3, we similarly define the largest axis parallel red cuboid (LRC), i.e. a cuboid containing the

maximum number of red points and no blue point in its interior1. We use x(p) and y(p) to denote

the x- and y-coordinate of a point p ∈ P respectively.

Several variations of this problem are well studied in the literature. In the well-known maximum

empty rectangle (MER) problem, a set P of n points is given; the goal is to find a rectangle (axis

parallel/arbitrary orientation) of maximum area that does not contain any point of P in its interior

(see [1, 17, 33, 35] for MER of fixed orientation, and [16, 32] for MER of arbitrary orientation). For

fixed orientation version, the best-known algorithm runs in O(n log2 n) time and O(n) space [1]. For

arbitrary orientations version, the best-known algorithm runs in O(n3) time using O(n) space [16].

For the bichromatic version of the problem, Liu and Nediak [29] designed an algorithm for find-

ing an axis parallel LRR of maximum size in O(n2 log n + nm + m logm) time using O(n) space.

Backer and Keil [3] improved the time complexity to O((n + m) log3(n + m)) using O(n log n)

space adopting the divide-and-conquer approach of Aggarwal and Suri [1]. They also proposed

an O((n + m) log(m + n)) time algorithm for finding an axis-parallel red square of maximum size.

Recently, Bandyapadhyay and Banik [5] proposed an algorithm for finding the LRR in arbitrary ori-

entation using O(g(n,m) log(n+m)+n2) time and O(n2+m2) space, where g(n,m) ∈ O(m2(n+m))

and g(n,m) ∈ Ω(m(n+m)).

Other variations of the LRR problem, studied in the literature are as follows. For a given bichromatic

(red,blue) point set, Armaselu and Daescu [2] considered the problem of finding a rectangle of

maximum area containing all red points and minimum number of blue points. In R2, the axis-

parallel version of this problem can be solved in O(m logm + n) time and the arbitrary oriented

version requires O(m3 + n log n) time. In R3, the axis-aligned version of the problem can be solved

1a solid which has six rectangular faces at right angles to each other
2blue points may appear on the boundary

2

in O(m2(m+ n)) time. Eckstein et al. [25] considered the axis-parallel version of the LRR problem

in higher (d ≥ 3) dimensions. They showed that, if the dimension d is not fixed, the problem is

NP -hard. They presented an O(n2d+1) time algorithm for any fixed dimension d ≥ 3. Later, Backer

and Keil [4] improved the time bound of the problem to O(nd logd−2 n). Cortés et al. [18] considered

the problem of removing as few points as possible from the given bichromatic point set such that the

remaining points can be enclosed by two axis-parallel rectangles AR and AB (may or may not be

disjoint), where AR (resp. AB) contains all the remaining red (resp. blue) points. They solved this

problem in O(n2 log n) time using O(n) space. The problem of separating bichromatic point sets by

two disjoint axis-parallel rectangles such that each of the rectangles is monochromatic, is solved in

O(n log n) time by Moslehi and Bagheri [31] (if such a solution exists). If these two rectangles are of

arbitrary orientation then they solved the problem in O(n2 log n) time. Bitner et al. [10] studied the

problem of computing the minimum separating circle, which is the smallest circle containing all the

points of red color and as few points as possible of blue color in its interior. The proposed algorithm

runs in O(nm logm + n log n) time using O(n + m) space. They also presented an algorithm for

finding the largest separating circle in O(nm logm+k(n+m) log(n+m)) time using O(n+m) space,

where k is the number of separating circles containing the smallest possible number of points from

blue point set. The problem of covering a bichromatic point set with two disjoint monochromatic

disks has been studied by Cabello et al. [14], where the goal is to enclose as much points as possible

in each of the monochromatic disks. They solved the problem in O(n
11
3 polylog n) time. If the

covering objects are unit disks or unit squares, then it can be solved in O(n
8
3 log2 n) and O(n log n)

time respectively [13].

The weighted bichromatic problems are also studied in the literature. The smallest maximum-weight

circle for weighted points in the plane has been addressed by Bereg et al. [8]. For m negative weight

points and n positive weight points they solved the problem in O(n(n+m) log(n+m)) time using

linear space. For a weighted point set Barbay et al. [6] provided an O(n2) time algorithms to find

the maximum weight axis-parallel square.

Our Contribution

Given a bichromatic point set P = Pr ∪ Pb in a rectangular region A ⊆ R2, where Pr and Pb are

set of n red points and m blue points respectively, we design an in-place algorithm3 for finding

an arbitrarily oriented LMR of maximum size in O(m(n + m)(m
√
n + m logm + n log n)) time,

using O(1) extra workspace. We also show that the axis-parallel version of the LMR problem in

R3 (called the LMC problem) can be solved in an in-place manner in O(m3
√
n + m2n log n) time

using O(1) extra workspace. As a prerequisite of the above problems, we propose an algorithm

for constructing a k-d tree with a set of n points in Rk given in an array of size n in an in-place

manner such that the orthogonal range counting query can be performed using O(1) extra workspace.

The construction and query time of this data structure is O(n log n) and O(n1−1/k), respectively.

Finally, we show that if the points in Pr (resp. Pb) have positive (resp. negative) real-valued weight,

then a rectangle of arbitrary orientation with maximum weight (called LWR) can be computed in

O(m2(n+m) log(n+m)) time using O(n) space.

3An in-place algorithm is an algorithm where the input is given in an array, the execution of the algorithm is

performed using only O(1) extra workspace, and after the execution of the algorithm all the input elements are

present in the array.

3

2 In-place k-d tree

To perform the orthogonal range reporting query, Bentley [7] invented k-d tree in 1975. It is a

binary tree in which every node is a k-dimensional point. Every non-leaf node can be thought

of being associated with one of the k-dimensions of the corresponding point, with a hyperplane

perpendicular to that dimension’s axis, and implicitly this hyperplane splits the space into two half-

spaces. Points to the negative side of this splitting hyperplane are represented by the left subtree of

that node and points in the positive side of the hyperplane are represented by the right subtree4.

Depending on the level of a node going down the tree, the splitting dimension is chosen one after

another in a cyclic manner. Each node v of the tree is associated implicitly with a rectangular region

of space, called cell(v). The cell corresponding to the root of the tree is the entire Rk. A child’s cell

is contained within its parent’s cell, and it is determined by the splitting hyperplane stored at the

predecessor nodes.

Brönnimann et al. [12] mentioned an in-place version of the k-d tree. We note that their approach

for both constructing the data structure and querying in the data structure are recursive, and need

to remember the subarray and the cell in which the recursive call is invoked. As a result, there is

a hidden O(log n) space requirement for system stack. We present an alternate variant of in-place

k-d tree data structure that supports both reporting and counting query for orthogonal query range

with same query time as the classical one. The advantage of this in-place variant is that both

construction and query algorithms are non-recursive, and it takes only O(1) extra workspace during

the execution apart from the array containing the input points. The in-place organization of this

data structure is similar to the in-place min-max priority search tree proposed by De et al. [20].

2.1 Construction of in-place k-d tree

Let us consider that a set P of n points in Rk is given in an array P [1, . . . , n]. We propose an

in-place algorithm to construct the k-d tree T in the array P . Here, T is a binary tree of height

h = blog nc, such that the levels 0, 1, . . . , h− 1 are full and level h consists of κ = n− (2h− 1) nodes

which are aligned as far as possible to the left. At the end of the construction, the tree T is stored

implicitly in the given array P . In other words, we store the root of the tree in P [1], its left and

right children in P [2] and P [3], etc. This allows us to navigate parent(P [i]) which is at P [b i2c], and

left-child(P [i]) and right-child(P [i]), if they exist, which are at P [2i] and P [2i+ 1], respectively.

Note that there are 2i nodes in the level i 6= h of the tree T . As the number of leaf nodes in a full

tree of height h − i is 2h−i, so there are ki = bn−κ
2h−i c nodes at level i (0 < i < h) that are roots of

subtrees, each of size Ki
1 = 2h+1−i − 1. If ki = 2i, then all the subtrees at level i are full, and the

number of nodes in each subtree is 2h+1−i − 1. Otherwise, we have ki < 2i, and level i (0 < i < h)

consists of, from left to right,

• ki nodes which are roots of subtrees, each of size Ki
1 = 2h+1−i − 1,

• one node that is the root of a subtree of size Ki
2 = 2h−i − 1 + κ − ki · 2h−i, and

• 2i − ki − 1 nodes which are roots of subtrees, each of size Ki
3 = 2h−i − 1.

See Figure 1 for an illustration.

4For a hyperplane xi = c, its negative (resp. positive) side is the half-space xi < c (resp. xi > c), where xi is the

i-th coordinate of a k dimensional point (x1, x2, . . . , xk)

4

one node of size

2i − ki − 1 nodes,
each of size
2h−i − 1

2h−i − 1 + κ − ki2
h−i

ki nodes,
each of size
2h−i+1 − 1

(a)

• yellow color represents: roots at even level (x-valued partition)
• blue color represents: roots at odd level (y-valued partition)

le
ve
l
0

le
ve
l
1

le
ve
l
2

level i− 1

Blocks corresponding to level i

P
[2

i
]

P
[2

i
+
k i
K

i 1
]

P[
2i

+
k i
K

i 1
+

K
i 2]

ki = 4

le
ve
l
0

le
ve
l
1

le
ve
l
2

level i− 1

(ii) move the medians of each block to the beginning of that block and re-arrange

le
ve
l
0

le
ve
l
1

le
ve
l
2

level i− 1 level i

(i) tree constructed up to level i− 1

(iii) level i created

(b)

Figure 1: (a) k-d tree after constructing its (i−1)-th level (stripped), and (b) its array representation

up to i-th level

Here, we introduce the notion of block and block median. Assume that 0 < i < h. We refer to

the portion of the array P [(2i + (j − 1)Ki
1), . . . , (2i + jKi

1 − 1)] as block Bij , for j ≤ ki. The

portion of the array P [(2i + kiK
i
1), . . . , (2i + kiK

i
1 + Ki

2 − 1)] is referred to as block Biki+1, and

P [(2i + kiK
i
1 + Ki

2 + (j − 1)Ki
3), . . . (2i + kiK

i
1 + Ki

2 + jKi
3 − 1)] are referred to as blocks Bij , for

all j > ki + 1. For i = 0, we refer to the whole array P [1, . . . , n] as B0
1 . For i = h, we refer to

the array element P [2h + j] as block Bhj , where 1 ≤ j ≤ κ. For a block Bij (0 < i < h) of size Ki
1

(resp. Ki
3), we denote block median mi

j as a point in Bij whose (i mod k)-th coordinate value is

dK
i
1

2 e-th (resp. dK
i
3

2 e-th) smallest among all the points in Bij . If the size of Bij is Ki
2, then depending

on whether Ki
2 − (2h−i − 1) < 2h−i−1 − 1 or Ki

2 − (2h−i − 1) ≥ 2h−i−1 − 1, we refer the block

median mi
j as a point in Bij whose (i mod k)-th coordinate value is Ki

2− (2h−i−1− 1)-th or 2h−i-th

smallest among all the points in Bij . For block B0
1 , depending on whether n− (2h− 1) < 2h−1− 1 or

n− (2h − 1) ≥ 2h−1 − 1, we refer the block median m0
1 as a point in B0

1 whose 1st coordinate value

is n− (2h−1 − 1)-th or 2h-th smallest among all the points in B0
1 .

Our algorithm constructs the tree level by level. After constructing the (i− 1)-th level of the tree,

it maintains the following invariants:

Invariant 1. (i) The subarray P [1, . . . , 2i − 1] stores levels 0, 1, . . . , i− 1 of the tree.

(ii) Block Bij contains all the elements of the j-th leftmost subtree of level i, for j ∈ {1, . . . , 2i}
(j ∈ {1, . . . ,κ} when i = h).

At the first iteration of the algorithm, we find the block median m0
1 using the linear time in-place

median finding algorithm of Carlsson and Sundström [15], and swap it with P [1]. Next, we arrange

the subarray P [2, . . . , n] such that all the elements whose first coordinate value is greater than

m0
1 appear before all the elements whose first coordinate value is less than m0

1. We can do this

arrangement in linear time using O(1) extra space.

5

Note that after the first iteration, both the invariants are maintained.

Assuming that the tree is constructed up to level (i− 1), now, we construct the tree up to level i by

doing the following:

1. Find block median mi
j from each block Bij and swap it with the first location of block Bij .

Using the median finding algorithm of [15], this needs a total of O(n) time for all the blocks

in this (i-th) level.

2. Now depending on the median value mi
j we arrange the elements of each block Bij such that

all the elements having (i mod k)-th coordinate value greater than mi
j appears before all the

elements having (i mod k)-th coordinate value less than mi
j . Thus the block Bij splits into two

parts, named first half-block and second half-block. This step again needs time proportional to

the size of each block, and hence O(n) time in total.

3. Now, we need to move all mi
j stored at the first position of each block to the correct position

of level i of the tree. To do this we do the following. First, we move the last block median

mi
2i next to mi

2i−1 by two swaps; (i) swap mi
2i with the first element of the second half-block

of Bi2i−1, and (ii) swap mi
2i with the first element of the first half-block of Bi2i−1. Thus, after

this swapping step all the elements in the block Bi2i−1 that are less than mi
2i−1 will stay before

the elements greater than mi
2i−1. Now, we will move both the pair (mi

2i−1, mi
2i) just after

mi
2i−2. It can be shown that, for the move of each element of this pair, we need a pair of swaps

as explained above. Next, we will move mi
2i−2, mi

2i−1 and mi
2i by swapping (as mentioned

above) next to mi
2i−3. In this way, we will continue until all the block medians {mi

j |j ∈ 2i}
will become consecutively placed. Using O(1) space, this can be done in linear time5.

Step 3 ensures that both the invariants are maintained after this iteration.

At the end of h-th iteration, we have the tree T stored implicitly in the array P . The correctness

of this algorithm follows by observing that the invariants are correctly maintained. As there are

O(log n) iterations and each iteration takes O(n) time, in total the algorithm takes O(n log n) time.

Lemma 1. Given a set of n points in Rk in an array P , the in-place construction of k-d-tree takes

O(n log n) time and O(1) extra workspace.

2.2 Orthogonal range counting query in the in-place k-d tree

For the simplicity of explanation, we illustrate the range counting query for points in R2. We can

easily generalize it for points in Rk, for any fixed k. Given a rectangular range Q = [α, β] × [γ, δ]

as a query, here, the objective is to return a count of the number of elements in P that lie in the

rectangular range Q.

In the traditional model, to answer counting query in O(
√
n) time each node in pre-proceesed k-d

tree stores the subtree size. For our case, we cannot afford to store the subtree size along with each

node of the in-place k-d tree. However, if we have the information of the level ` of a node P [t],

then we can on-the-fly compute the subtree size as follows. Note that P [t] is r = t − (2` − 1)-th

left most node at `-th level of the tree T . Depending on whether r ≤ k`, r = k` + 1 or r ≥ k` + 2,

the subtree size of the node corresponding to P [t] is K`
1, K`

2 or K`
3. We want to remind the reader

5The reason is that, during this step of execution each element is moved backward from its present position in the

array at most once.

6

that k` = bn−κ
2h−` c, K`

1 = 2h+1−` − 1, K`
2 = 2h−` − 1 + κ − k` · 2h−` and K`

3 = 2h−` − 1, where

κ = n− (2h − 1).

On the other hand, the traditional query algorithm is a recursive algorithm that starts from the

root of the tree. At a node v, (i) if Q ∩ cell(v) = ∅, then it returns 0; (ii) else if cell(v) ⊆ Q,

then it returns the subtree size of v; (iii) otherwise, it recursively counts in the two children of v

and returns by adding these counts, accordingly. The main issue in implementing this algorithm

in the in-place model is that it needs O(log n) space for system stack to have the knowledge of the

corresponding cell of a node. To tackle this situation, we have a new geometric observation which

leads to a non-recursive algorithm in the in-place model.

At a node v, we can test whether the cells corresponding to both the children are intersecting the

query region Q or not, by checking whether the splitting plane stored at parent(v) is intersecting

the query region Q or not. If the splitting plane does not intersect, then the one of the child’s cell

that has non-empty intersection with Q, can be decided by checking in which side of the hyperplane

the region Q lies. This simple trick works because when we are at a node v, we know that the cell

corresponding to its parent has non-empty intersection with Q. The following observation plays a

crucial role here.

Observation 1. If the left (resp. right, bottom, and top) boundary of cell(v) intersects the query

region Q, then the left (resp. right, bottom, and top) boundary of cell(v′) corresponding to the left

(resp. right, left, right) child (v′) of node v also intersects the query region Q.

To decide whether cell(v) ⊆ Q, we do the following. Throughout the query algorithm, we keep

a four-tuple (L,R,B,U) each being able to store one coordinate value of the given input points.

Initially, all of them are set to NULL. Throughout the query algorithm, this four-tuple maintains

the following invariant:

Invariant 2. When we are at a node Current, the non-NULL or NULL value stored at L (resp.

R, B, and U) implies that the left (resp. right, bottom, and top) boundary of the cell(Current) is

intersecting or not intersecting the query region Q. More specifically, if the value stored at L (resp.

R, B, and U) is non-NULL6, then it represents the left (resp. right, bottom, and top) boundary of

the cell corresponding to the lowest level ancestor v of the node Current, such that left (resp. right,

bottom, and top) boundary of cell(v) intersects the query region Q.

At a node v, if all the entries in the four-tuple is non-NULL, then the cell(v) ⊆ Q. We present our

algorithm as a pseudocode in Algorithm 1. This is similar to the algorithm Explore in [20]. It

uses two variables Current and state that satisfies the following:

• Current is a node in T .

• state ∈ {0, 1, 2}.

• If state = 0, then either cell(Current) ⊆ Q or both the children of Current need to be processed

to compute cell(Current) ∩Q.

• If state = 1, then all elements of the set Q∩
(
{Current} ∪ Tleft-child(Current)

)
have been counted,

where Tleft-child(Current) is the left subtree of Current in the tree T .

• If state = 2, then all elements of the set Q ∩ TCurrent have been counted.

7

Update of the four-tuple (L,R, T,B) is done as follows. While searching with the query rectangle Q

and with state = 0, when Q is split by the split-line of the node and the search proceeds towards one

subtree of that node, we store the split-value (corresponding to the split-line) in the corresponding

variable of the four-tuple provided it is not set earlier (contains NULL value). During the back-

tracking, i.e, when state = 2, if the split-value of the current node matches with the corresponding

variable in the four-tuple, then the corresponding entity of the four-tuple is set to NULL. Now, if

backtracking reaches from left, we set state = 1. Since the right child of the current node needs to

be processed, we set the corresponding entity of four-tuple with the split-value stored at that node.

The correctness of the algorithm follows from maintaining the invariants and Observation 1. In the

worst case, we might have visited all the nodes whose corresponding cells overlap on the orthogonal

query rectangle Q. As the number of cells stabbed by Q can be shown to be O(
√
n) [9], we have the

following result.

Lemma 2. Given the in-place 2-d tree maintained in the array P of size n, the rectangular range

counting query can be performed in O(
√
n) time using O(1) extra workspace.

We can generalize, the above algorithm for points in Rk. The only difference is that we need 2k-tuple

instead of four-tuple. Assuming k is a fixed constant, we have the following:

Lemma 3. Given the in-place k-d tree maintained in the array P of size n, the orthogonal range

counting query can be performed in O(n1−1/k) time using O(1) extra workspace.

3 LMR problem in arbitrary orientation

In this section, we describe the method of identifying an arbitrarily oriented red rectangle of largest

size for a given bichromatic point set P = Pr ∪Pb in R2. The LRR problem was solved by Bandya-

padhyay and Banik [5], considering the blue points as obstacles, using the following observation:

Observation 2. [5] At least one side of a LRR must contain two points p, q such that p ∈ Pb and

q ∈ Pr ∪ Pb, and other three sides either contain at least one point of Pb, or is open (unbounded)

(see Figure 2).

(a) (b)

Figure 2: Example of LRR

6split-value of some node of the ancestor of Current

8

For the sake of formulation of our problem, let us have a general position assumption that no three

points are collinear. We will use A to denote the convex hull of the point set P .

Definition 1. A pair of points (p, q) is said to be a candidate pair if p ∈ Pb and q ∈ Pr ∪ Pb.

Definition 2. A rectangle with one of its boundaries defined by a candidate pair, and each of the

other three boundaries containing at least one point in Pb is referred to as a candidate LRR, or

cLRR in short.

We consider each candidate pair (p, q), and define a line `pq passing through p and q. We process

each side of `pq separately to compute all the cLRRs’ with (p, q) on one of its boundaries by sweeping

a line parallel to `pq among the points in P in that side of `pq, as stated below. After considering

all the candidate pairs in P , we report the LRR. We describe the method of processing the points

in P above7 `pq. A similar method works for processing the points in P below `pq.

3.1 Processing a candidate pair (p, q)

Without loss of generality, we consider `pq as the x-axis, and x(p) < x(q). Let P ′ be the array

containing the subset of P lying above the x-axis. Let P ′b and P ′r denote the blue and red point

set respectively in P ′, m′ = |P ′b| and n′ = |P ′r|. We sort the points of P ′b with respect to their

y-coordinates, and construct a range tree T with the red points in P ′r considering `pq as the x-axis.

Observe that each cLRR above `pq with (p, q) on its one side corresponds to a maximal empty

rectangle (MER) [21] among the points in P ′b whose bottom side is aligned with the x-axis and

containing (p, q). We sweep a horizontal line H in a bottom-up manner to identify all these cLRRs’.

During the sweep, we maintain an interval I = [α, β]. I is initialized by [xmin, xmax] at the beginning

of the sweep, where xmin and xmax are the points of intersection of the line `pq (the x-axis) with the

boundary of A. For each point θ ∈ P ′b encountered by the sweep line, if x(θ) 6∈ I, sweep proceeds

to process the next point. Otherwise, we have a cLRR with horizontal span [α, β], and the top

boundary containing θ8. Its size is determined in O(log n′) time by performing a rectangular range

counting query in T . Now,

• if x(θ) ∈ [x(p), x(q)] then the sweep stops.

• otherwise,

– if α ≤ x(θ) ≤ x(p) then α = x(θ) is set,

– if x(q) ≤ x(θ) ≤ β then β = x(θ) is set,

and the sweep continues. Finally, after considering all the points in Pb, the sweep stops. For a

detailed description of our proposed method, see Algorithm 2. A similar method is adopted for the

points below `pq.

Lemma 4. The above algorithm computes the LRR in O(m(m + n)(m log n + m logm + n log n))

time using O(n log n) extra space.

Proof. The space complexity follows from the space needed for maintaining the range tree T .

We now analyze the time complexity. For each candidate pair (p, q), (i) the preprocessing steps

7A point (α, β) is said to be above the line ax+ by + c = 0 if aα+ bβ + c > 0; otherwise the point (α, β) is below

the said line.
8Needless to say, its bottom boundary contains the points (p, q).

9

sorting of the points in P ′b, and constructing T with the points in P ′r) need O(n′ log n′ +m′ logm′)

time, and (ii) during the sweep, reporting the size of each cLRR needs O(log n′) time 9. Since,

O(m′) cLRR may be reported for the candidate pair (p, q), the total processing time for (p, q) is

O(m′ log n′ +m′ logm′ + n′ log n′) in the worst case. The result follows from the fact that we have

considered O(m(n+m)) candidate pairs, m′ = O(m) and n′ = O(n) in the worst case.

The same method is followed to compute the LBR. Finally, LMR is reported by comparing the size

of LRR and LBR. Lemma 4 says that both the time and space complexities of our proposed algo-

rithm for computing the LMR are an improvement over those of the algorithm of Bandyapadhyay

and Banik [5] for the same problem.

It needs to be mentioned that, we can implement the algorithm for the LRR problem in an in-place

manner by replacing range tree with the in-place implementation of 2-d tree as described in Section

2 for the range counting. Thus, the preprocessed data structure (the sorted array of Pb and the

2-d tree for Pr) can be stored in the input array P without any extra space. Using the results in

Lemmata 1 and 2, we have the following result.

Theorem 1. In the in-place setup, one can compute an LMR in O(m(m + n)(m
√
n + m logm +

n log n)) time using O(1) extra space.

4 LWR problem in arbitrary orientation

In this section, we consider a weighted variation of P1. Here each point in Pr is associated with a

non-zero positive weight and each point in Pb is associated with a non-zero negative weight. Our

goal is to report a rectangle LWR of arbitrary orientation such that the sum of weights of the points

inside that rectangle (including its boundary) is maximum among all possible rectangles in that

region. Unlike problem P1, here the optimum rectangle may contain points of both the colors.

Observation 3. At least one side of the LWR must contain two points p, q ∈ Pr, and other three

sides either contain a point of Pr or is open. A point p ∈ Pr may appear at a corner of the solution

rectangle LWR. In that case, p is considered to be present in both the adjacent sides of LWR.

We will consider all possible pairs of points (p, q) ∈ Pr and define a line `pq joining p, q. We process

each side of `pq separately to compute all the candidate LWR, denoted as cLWR, among the points

in P lying in that side of `pq. After considering all possible pairs of points, we report LWR. We

now describe the processing of the set of points P ′ ∈ P that lies above `pq.

4.1 Processing a point-pair (p, q)

As earlier, assume `pq to be the x-axis. Consider a rectangle R whose bottom side aligned with `pq

(see Figure 3); the top side passing through pθ, left and right sides are passing through pb and pc

respectively. We can measure the weight of the rectangle R as follows:

Let U = {ui, i = 1, 2, . . . , n} be the projection of all the points on `pq having y-coordinate (distance

from `pq) less than or equal to that of pθ. Each member ui is assigned an weight equal to the

weight of its corresponding point pi. Now, compute the cumulative sum of weights W (ui) at

9the time for the counting query for a rectangle in a range tree using fractional cascading.

10

pi+1

pi

`pq

vertical projections

Figure 3: Update of LWR

each projected point of U from left to right. Observe that the weight of the rectangle R is

equal to W (c)−W (α), where uα is the rightmost point in U to the left of pb.

Thus, in order to get a maximum weight rectangle with its top boundary passing through the point

pθ and having (p, q) on its bottom boundary, we need to search for an element in uα ∈ U having

x-coordinate less that min(x(pθ), x(p)) having minimum weight, and an element uβ ∈ U having

x-coordinate greater than max(x(pθ), x(q)) having maximum weight. The weight of the rectangle

with (p, q), pα, pθ, pβ on its bottom, left, top and right boundaries will be W (uβ)−W (uα).

We sweep a horizontal line (see Figure 3) among the points in P ′. During the sweep, we create

a projection ui of each point pi ∈ P ′ and assign its weight w(ui) = w(pi), and store them in a

dynamically maintained weight balanced leaf search binary tree T [37]. Its leaves correspond to the

projections of all points that are faced by the sweep line (see Figure 4). Each internal node u in

T maintains three pieces of information, namely EXCESS, MAX and MIN . MAX and MIN

store the maximum and minimum of W (ui) values stored in the subtree rooted at the node u of

T . The EXCESS field is initialized with “zero”. Each projected point uj at the leaf also stores

the cumulative sum of weights W (uj). During the sweep, when a new point pi ∈ P ′ is faced by the

sweep line, ui is inserted in T . Now, for all uj with x(uj) > x(ui), the cumulative sum of weights

needs to be updated as Ŵ (uj) = W (uj) + w(ui). We use EXCESS field to defer this update as

follows.

While tracing the search path to insert ui (= x(pi)) in T , if the search goes from a node v to its

left child, then we add w(ui) with the EXCESS field of the right child z of v. This is in

anticipation that while processing another point uj ∈ P ′ if the search goes through z, then the

EXCESS field of z will be propagated to the EXCESS field of its two children (setting the

EXCESS field of z to 0).

After the insertion of ui in T , we trace back up to the root of T and update the MAX and MIN

fields (if necessary) of each node on the search path. If the (weight-)balance condition at any node is

violated, a time linear in the size of the subtree rooted at that node is spent to rebuild that subtree

in the (weight-)balanced manner.

Now, if pi ∈ Pr, then we find the cLWR of maximum weight with (p, q) on its bottom boundary

and pi on its top boundary by identifying (i) a element uα ∈ T with W (uα) = min{W (u)|x(u) <

min(x(p), x(pi))} using the MIN fields of the nodes on the search path, and (ii) a point uβ ∈ T with

W (uβ) = max{W (u)|x(u) > max(x(q), x(pi))} using the MAX fields of the nodes on the search

path. As mentioned earlier, the weight of the rectangle on `pq with pα, pi, pβ ∈ Pr on its left, top,

and right sides respectively, is W (uβ) −W (uα). The iteration continues until all the points of P ′

11

search
path

Figure 4: Search Path in T

are considered by the sweep line.

Lemma 5. The cLWR of maximum weight with (p, q) on its one side can be computed in O((n +

m) log(n+m)) time.

Proof. Follows from the fact that the amortized insertion time of a point in T is O(log n) [37]. While

rebuilding, due to the violation of balance condition, the setting of EXCESS, MIN and MAX

fields of each node can also be done in O(|T |) time, and rebuilding of T is needed after at least

O(log n) updates [37].

The algorithm proposed above is not in-place. It uses a preprocessed data structure implemented

in an O(n) extra space. Lemma 5 and the fact that we need to consider `pq for each pair p, q ∈ Pr
suggest the following result:

Theorem 2. An LWR of arbitrary orientation for a set of weighted points can be computed in

O(m2(n+m) log(n+m)) time using O(n) workspace.

5 Computing largest axis-parallel monochromatic cuboid R3

We now propose an in-place algorithm for computing a monochromatic axis-parallel cuboid with

the maximum number of points. Here, the input is a set of bi-chromatic points P = Pr ∪ Pb inside

a 3D axis-parallel region A bounded by six axis-parallel planes, where Pr is the set of n red points

and Pb is the set of m blue points. The input points are given in an array, also called P . The

x, y, z coordinates of a point pi ∈ P are denoted by x(pi), y(pi) and z(pi) respectively, along with

its color information c(pi) = red/blue. A cuboid is said to be a candidate for LRC if its every face

either coincides with a face of A or passes through a blue point, and its interior does not contain

any blue point. Such a cuboid will be referred to as cLRC. The objective is to identify an LRC,

which is a cLRC containing the maximum number of red points. Similarly, a blue cuboid containing

the maximum number of blue points (LBC) can be defined. The LMC is either LRC or LBC

depending on whose number of points is more.

We compute all possible maximal empty cuboid [34] among the m blue points. Each one will be a

cLRC; we perform a range query to count the number of red points it contains. In our algorithm,

three types of cLRCs’ inside A are considered separately.

12

type-1: the cLRC with both top and bottom faces aligned with the top and bottom faces of A,

type-2: the cLRC whose top face is aligned with the top face of A, but bottom face passes through

a blue point in Pb, and

type-3: the cLRC whose top face passes through some blue point in Pb. The bottom face may pass

through another blue point in Pb or may coincide with the bottom face of A.

As a preprocessing, we first split the array P into two parts, namely Pr and Pb, such that Pr =

P [1, . . . , n] and Pb = P [n+ 1, . . . , n+m]. We construct an in-place 2-d tree T with the points in Pr

considering their (x, y) coordinates, which will be used for the range-counting query for the cLRCs’.

We also sort the points in Pb in decreasing order of their z-coordinates. Thus, the preprocessing

needs O(m logm+ n log n) time.

In [24, 27], it is proved that the number of maximal empty hyper-rectangles among a set of n points

in Rd is O(nd). In the following subsections, we will analyze the processing of these three types

of cLRCs’ in an in-place manner. The largest among the type-i cLRC will be referred to as type-i

LRC, for i = 1, 2, 3.

5.1 Computation of type-1 LRC

As both the top and bottom faces of the type-1 cLRCs’ are aligned with the top and bottom faces

of A, if we consider the projections of the points in Pb on the top face of A, then each maximal

empty axis-parallel rectangle (MER) on the top face of A will correspond to a type-1 cLRC. Thus,

the problem reduces to the problem of computing all the MERs’ using the array Pb in an in-place

manner, and for each MER, count the number of points of Pr inside the corresponding type-1 cLRC

using the 2-d tree T with the projection of points in Pr on the top face of A.

Lemma 6. The number of type-1 cLRC is O(m2) in the worst case and the one of maximum size

can be computed in O(m2
√
n+ n log n) time.

Proof. The first part of the result i.e the number of type-1 cLRC follows from [33]. (i) We can

generate all the MERs with bottom boundary passing through a point bi on the top face of A using

the method described in Section 3 in O(m) time, and (ii) for each MER, the number of projected

red points inside that MER can be obtained in O(
√
n) time using the 2-d tree T . The second part

in the result follows from the fact that T can be generated in O(n log n) time (see Section 2.1).

5.2 Computation of type-2 LRC

Now we describe the in-place method of computing the largest type-2 cLRC whose top face is aligned

with the top face of A, but bottom face passes through a point in Pb.

We will use p1, p2, . . . , pm to denote the points in Pb in decreasing order of their z-coordinates.

We consider each point pi ∈ Pb in order and compute LRC(pi), the largest type-2 red cuboid

whose bottom face passes through pi. Let Bi = {b1, b2, . . . , bi−1}, i < m be the set containing the

projection of all the blue points having z-coordinate larger than z(pi) on the plane H(pi). Similarly,

Ri = {r1, r2, . . .} are the projection of all the red points having z-coordinate larger than z(pi) on

the plane H(pi). Thus, LRC(pi) corresponds to a rectangle on the plane H(pi) that contains pi,

but no point of Bi in its interior, and has the maximum number of points of Ri.

13

As in the earlier section, we can partition the array P into two contiguous blocks Pb and Pr. The

block Pb contains all the blue points in decreasing order of their z-coordinates. The block Pr contains

all the red points. The blue points are processed in top-to-bottom order. Global counters LRC and

MAXr are maintained to store the LRC detected so far, and its size. While processing each point

pi ∈ Pb, let Bi denote the blue points with their z-coordinates greater than z(pi). We split Pr into

two parts. The left part contains an in-place 2-d tree Ti with all the red points having z-coordinates

greater than z(pi). The right part of Pr contains the red points with z-coordinates less than z(pi).

We can compute all the MERs using the set Bi as in Section 5.1. For each generated MER if it

contains pi in its interior, then we perform the range counting query in Ti to compute the number of

red points inside it. LRC and MAXb are updated, if necessary. Thus, we have the following result.

Lemma 7. The type-2 LRC can be computed in O(m3
√
n+mn log n) time.

Proof. The time complexity of processing each point pi ∈ Pb follows from Lemma 6. Since m blue

points are processed, the result follows.

5.3 Computation of type-3 LRC

Here also we use p1, . . . , pm to denote the points in Pb in decreasing order of their z-coordinates, and

the algorithm processes the members in Pb in this order. We now describe the phase of processing

of a point pi ∈ Pb. It involves generating all the type-3 cLRCs whose top face passes through pi;

their bottom face may pass through another blue point pj ∈ Pb or may coincide with the bottom

face of A. Consider the horizontal plane H(pi) passing through pi ∈ Pb and sweep it downwards

until it hits the bottom face of A. During this phase when the sweeping plane touches H(pj) (i.e.

hits a point pj ∈ Pb), the points inside these two horizontal planes H(pi) and H(pj) will participate

in computing the cLRCs with top and bottom faces passing through pi and pj , respectively. Let,

Bij = {bi, . . . , bj} be the projections of these blue points pi, . . . , pj (1 ≤ i < j ≤ n) on the plane

H(pi). Similarly, consider the projections Rij of the red points on the plane H(pi) those lie in

between the planes H(pi) and H(pj). Our objective is to determine a cLRC corresponding to an

MER on the plane H(pi) with the points in Bij as obstacles that contains the maximum number

of points in Rij .

In the phase of processing pi ∈ Pb, the points of P aboveH(pi) does not participate in this processing.

Those points of Pb (resp. Pr) are separately stored at the beginning of the array Pb (resp. Pr).

From now onwards, by Pb (resp. Pr) we will mean the blue (resp. red) points below H(pi).

We consider two mutually orthogonal axis-parallel lines x = x(pi) and y = y(pi) on the plane H(pi)

that partition H(pi) into four quadrants. The blue points that belong to the θ-th quadrant, are

denoted by P θb , and are stored consecutively in the array Pb[i+ 1, . . . ,m]. We use mθ = |P θb |. While

processing the point pj ∈ Pb during the sweep in this phase, we use Bθij to denote the projections

of the subset of points in P θb that lie between the planes H(pi) and H(pj), θ = 1, 2, 3, 4. The

members in Bθij are stored in the consecutive locations of the array P θb in decreasing order of their

z-coordinates. We maintain four index variables χθ, θ = 1, 2, 3, 4, where χθ indicates the last point

hit by the sweeping plane in the θ-th quadrant. Thus, pj ∈ Pb \ (∪4θ=1B
θ
ij), and is obtained by

comparing the z-coordinates of the points {Pb[χθ + 1], θ = 1, 2, 3, 4}. We will use Rij to denote the

projection of the points in Pr lying between H(pi) and H(pj). These are stored at the beginning of

the array Pr.

14

In each quadrant θ, we define the unique maximal closest stair STAIRθ around pi with a subset

of points of Bθij as in [21, 34]. The projection points of Bθij , that determine STAIRθ, are stored

at the beginning of the sub-array P θb in order of their y- coordinates10. Thus,
⋃4
θ=1 STAIRθ forms

an empty ortho-convex polygon OP on H(pi) (see Figure 5(a)). As a consequence, the problem of

finding a type-3 LRC, with top and bottom faces passing through pi and pj respectively, maps to

finding an MER inside this ortho-convex polygon that contains bj and maximum number of points

in the set Rij .

bi

STAIR1
STAIR2

STAIR3

STAIR4

(a)

A

bα

bβ

bµ

bi

bν

bj

(b)

Figure 5: (a) Empty ortho-convex polygon around pi (b) Extracting the region in OP for generating

MERs with top and bottom face passing through pi and pj

Thus we need to: (i) construct the in-place 2-d tree Tij with the points in Rij , (ii) compute all

maximal empty rectangles in OP that contains both bi and bj (see), (iii) for each generated maximal

empty rectangle (MER) perform the rectangular range counting query in Tij , and (iv) update OP

by inserting bj in the corresponding STAIR for processing the next blue point pj+1 ∈ Pb during this

phase. The tasks (i) and (iii) performed as mentioned in Sections 2.1 and 2.2 respectively. Task (ii)

is explained in Section 5.3.1 (also see Algorithm 3). Task (iv) is explained in Section 5.3.2 (also see

Algorithm 5).

5.3.1 Computation of MER(pi, pj)

Without loss of generality, assume that bj (projection of pj on the plane H(pi)) is in the first

quadrant. If bj is in some other quadrant, then the situation is similarly tackled.

If there exist any point in the STAIR1 which dominates bj , i.e., if there exist any blue point p in

STAIR1 such that x(p) < x(bj) and y(p) < y(bj), then no axis-parallel cLRC is possible whose

top boundary passes through pi and bottom boundary passes through pj . Therefore we assume

that bj is not dominated by any point in STAIR1. We now determine the subset of points in

STAIR1 ∪ STAIR2 that can appear in the north boundary of an MER containing both bi and bj .

Let STAIR1 = {bk, k = 1, 2 . . . , ν1} ⊆ B1
i . Let bα ∈ STAIR1 be such that y(bα) = max{bk ∈

STAIR1|y(bk) < y(bj)} (i.e., the y-coordinate of bα is maximum among all the points in STAIR1

whose y-coordinate is lesser than the y-coordinate of bj). Similarly, let bβ ∈ STAIR1 be such

that y(bβ) = min{bk ∈ STAIR1|x(bk) < x(bj)} (i.e., y-coordinate of bβ is minimum among all

10The remaining elements (Bθij \ STAIRθ are stored just after STAIRθ in a contiguous manner in P θb so that the

first unprocessed element in the quadrant θ is obtained at Pb[χθ + 1].

15

A

bi

bj
updated STAIR1

deleted from previous STAIR1

(a)

Qα β P [j]P [i]

STAIR1

Case1

Case2

STAIR1

α β
P [j]P [i]

(b)

Figure 6: (a) Update STAIR1 after processing bj w.r.t. bj and (b) corresponding array update

the points in STAIR1 whose x-coordinate is lesser than the x-coordinate of pj). We define Q =

{bα+1, bα+2, . . . , bβ−1} = {bk ∈ STAIR1|x(bk) > x(bj) and y(bk) > y(bj)} (see Figure 5(b)).

All the axis-parallel MERs in OP with north boundary passing through bk, k ∈ {α+1, α+2, . . . , β}
and containing pi in its proper interior will contain bj also. We draw the projections of bj and bβ on

STAIR2. Let these two points be µ and ν, respectively. If x(µ) = x(ν), then no point on STAIR2

can appear on the north boundary of a desired axis-parallel MER. But if x(µ) < x(ν), then all the

points p ∈ STAIR2 satisfying x(µ) < x(p) < x(ν) can appear on the north boundary of a desired

axis-parallel MER. In Figure 5(b), the set of points that can appear on the north boundary of an

MER are marked with empty dots. The method of computing an axis-parallel MER with a point

p ∈ STAIR1 ∪ STAIR2 on its north boundary is given in Algorithm 4.

5.3.2 Updating OP

After computing the set of axis-parallel MERs in OP containing both the projected points bi and

bj in its interior, instead of recomputing the whole ortho-convex polygon again to process the next

point pj+1 ∈ Pb, we update OP by inserting bj in the respective STAIR (see Figure 6(a)).

Without loss of generality, assume that bj lies in the first quadrant. After inserting bj in STAIR1,

none of the points in Q ∈ STAIR1 will participate in forming MER while processing points pk ∈ Pb
with z(pk) < z(pj). So, we need to remove the members in Q from STAIR1. This can be done

by using the algorithm for stable sorting [28], where the elements in Q will assume the value 1 of

the given (0, 1)-valued selection function f , and will stably move to the end of STAIR1. A simple

procedure for this task is given in [11] in the context of stably selecting a sorted subset. We tailored

that procedure for our purpose as follows:

We maintain two index variables α and β; α+1 and β−1 indicates the starting and ending positions

of the Q, respectively. Now, two cases may arise depending on whether |Q| = 0 or not.

|Q| 6= 0 : See Case 1 of Figure 6(b). Here, we need to remove Q from STAIR1 and appropriately

insert pj into the stair. We do this by the following way:

• First, by swapping bj and bα+1, we insert bj in the proper position.

• Now, we need to move out bα+1, . . . , bβ−1 from the STAIR1. This can be done by a

sequence of swap operations: swap(P [r], P [r − (β − α − 2)], starting from r = β until

16

r = ν1, where ν1 denotes the end of STAIR1.

• Finally, we set ν1 as ν1 − (β − α− 2).

|Q| = 0 : See Case 2 of Figure 6(b). Here, we need only to insert bj into the stair. We do this by

first swapping (P [ν1 + 1], P [j]) and then a sequence of swapping (P [r], P [r+ 1]) starting from

r = ν1 until r = β. Finally, we set ν1 as ν1 + 1.

Clearly, this updating OP needs O(|P 1
i |) time in the worst case.

After computing the largest type-3 axis-parallel LRC with pi on its top boundary, we need to sort

the points again with respect to their z-coordinates for the processing of pi+1.

Thus we have the following result:

Lemma 8. The time required for processing pi is O(m2 +C ′i
√
n+mn log n) in the worst case, where

C ′i is the number of type-3 axis-parallel LRCs with pi on its top boundary.

Proof. The worst case time required for computing MER(pi, pj) is O(|Pij |+Cij), where Pij denotes

the number of points inside the horizontal slab bounded by H(pi) and H(pj), and Cij denotes the

number of axis-parallel MERs containing both bi and bj inside OP with the projection of points

Bij on H(pi). In order to compute the largest type-3 axis-parallel LRC with pi on its top boundary,

we need to compute MER(bi, bj) for all j > i, C ′i =

n∑
j=i+1

Cij , and

n∑
j=i+1

|Pij | = O((m − i)2).

For each of the cuboid C ′i, the in-place counting query in the corresponding Tij requires
√
n time

(using Lemma 2). The last part of the time complexity follows due to the fact that, for every point

pj , j = i + 1, . . . ,m we need to construct the in-place 2d-tree. Also after the processing of each

pi ∈ Pb, the sorting step takes O(n log n) time.

Lemma 6, 7 and 8 lead to the following result.

Theorem 3. The worst case time complexity of our in-place algorithm for computing the axis-

parallel largest monochromatic cuboid (LMC) is O(m3
√
n + m2n log n), and it takes O(1) extra

space.

Acknowledgment:

The authors acknowledge the valuable constructive suggestions given by the reviewer regarding the

presentation of the paper.

References

[1] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty rectangle. In

Proceedings of the third annual symposium on Computational geometry, pages 278–290. ACM,

1987.

[2] B. Armaselu and O. Daescu. Maximum area rectangle separating red and blue points. In

Proceedings of the 28th Canadian Conference on Computational Geometry, pages 244–251, 2016.

17

[3] J. Backer and J. Mark Keil. The bichromatic square and rectangle problems. Technical report,

Technical Report 2009-01, University of Saskatchewan, 2009.

[4] J. Backer and J. Mark Keil. The mono-and bichromatic empty rectangle and square problems

in all dimensions. In Latin American Symposium on Theoretical Informatics, pages 14–25.

Springer, 2010.

[5] S. Bandyapadhyay and A. Banik. Polynomial time algorithms for bichromatic problems. In

Conference on Algorithms and Discrete Applied Mathematics, pages 12–23. Springer, 2017.

[6] J. Barbay, T. M. Chan, G. Navarro, and P. Pérez-Lantero. Maximum-weight planar boxes in

O(n2) time (and better). Information Processing Letters, 114(8):437–445, 2014.

[7] J. L. Bentley. Multidimensional binary search trees used for associative searching. Commun.

ACM, 18(9):509–517, 1975.

[8] S. Bereg, O. Daescu, M. Zivanic, and T. Rozario. Smallest maximum-weight circle for weighted

points in the plane. In International Conference on Computational Science and Its Applications,

pages 244–253. Springer, 2015.

[9] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Al-

gorithms and Applications. Springer-Verlag TELOS, Santa Clara, CA, USA, 3rd ed. edition,

2008.

[10] S. Bitner, Y. Cheung, and O. Daescu. Minimum separating circle for bichromatic points in the

plane. In Voronoi Diagrams in Science and Engineering (ISVD), 2010 International Symposium

on, pages 50–55. IEEE, 2010.

[11] P. Bose, A. Maheshwari, P. Morin, J. Morrison, M. Smid, and J. Vahrenhold. Space-efficient

geometric divide-and-conquer algorithms. Computational Geometry, 37(3):209–227, 2007.

[12] H. Brönnimann, T. M. Chan, and E. Y. Chen. Towards in-place geometric algorithms and

data structures. In Proceedings of the twentieth annual symposium on Computational geometry,

pages 239–246. ACM, 2004.

[13] S. Cabello, J. M. Dı́az-Báñez, C. Seara, J. A. Sellares, J. Urrutia, and I. Ventura. Covering

point sets with two disjoint disks or squares. Computational Geometry, 40(3):195–206, 2008.

[14] S. Cabello, J. M. Dı́az-Báñez, and P. Pérez-Lantero. Covering a bichromatic point set with two

disjoint monochromatic disks. Computational Geometry, 46(3):203–212, 2013.

[15] S. Carlsson and M. Sundström. Linear-time in-place selection in less than 3n comparisons.

In Algorithms and Computation, 6th International Symposium, ISAAC ’95, Cairns, Australia,

December 4-6, 1995, Proceedings, pages 244–253, 1995.

[16] J. Chaudhuri, S. C. Nandy, and S. Das. Largest empty rectangle among a point set. Journal

of algorithms, 46(1):54–78, 2003.

[17] B. Chazelle, R. L. Drysdale, and D. T. Lee. Computing the largest empty rectangle. SIAM

Journal on Computing, 15(1):300–315, 1986.

[18] C. Cortés, J. M. Dı́az-Báñez, P. Pérez-Lantero, C. Seara, J. Urrutia, and I. Ventura. Bichromatic

separability with two boxes: a general approach. Journal of Algorithms, 64(2-3):79–88, 2009.

18

[19] N. Cristianini and J. S. Taylor. An introduction to support vector machines and other kernel-

based learning methods. Cambridge university press, 2000.

[20] M. De, A. Maheshwari, S. C. Nandy, and M. Smid. An in-place min–max priority search tree.

Computational Geometry, 46(3):310–327, 2013.

[21] M. De and S. C. Nandy. Space-efficient Algorithms for Empty Space Recognition among a Point

Set in 2D and 3D. In CCCG, 2011.

[22] D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic discrepancy,

with applications to computer graphics and machine learning. journal of computer and system

sciences, 52(3):453–470, 1996.

[23] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley & Sons, 2012.

[24] A. Dumitrescu and M. Jiang. Maximal empty boxes amidst random points. Combinatorics,

Probability & Computing, 22(4):477–498, 2013.

[25] J. Eckstein, P. L. Hammer, Y. Liu, M. Nediak, and B. Simeone. The maximum box problem and

its application to data analysis. Computational Optimization and Applications, 23(3):285–298,

2002.

[26] J. Edmonds, J. Gryz, D. Liang, and R. J. Miller. Mining for empty spaces in large data sets.

Theoretical Computer Science, 296(3):435–452, 2003.

[27] H. Kaplan, N. Rubin, M. Sharir, and E. Verbin. Efficient colored orthogonal range counting.

SIAM Journal on Computing, 38(3):982–1011, 2008.

[28] J. Katajainen and T. Pasanen. Stable minimum space partitioning in linear time. BIT,

32(4):580–585, 1992.

[29] Y. Liu and M. Nediak. Planar case of the maximum box and related problems. In CCCG,

volume 3, pages 11–13, 2003.

[30] N. Megiddo. Linear-time algorithms for linear programming in Rˆ3 and related problems. SIAM

journal on computing, 12(4):759–776, 1983.

[31] Z. Moslehi and A. Bagheri. Separating bichromatic point sets by two disjoint isothetic rectan-

gles. Scientia Iranica. Transaction D, Computer Science & Engineering, Electrical, 23(3):1228,

2016.

[32] A. Mukhopadhyay and S. V. Rao. On computing a largest empty arbitrarily oriented rectangle.

Int. J. Comput. Geometry Appl., 13(3):257–271, 2003.

[33] A. Naamad, D. T. Lee, and W. L. Hsu. On the maximum empty rectangle problem. Discrete

Applied Mathematics, 8(3):267–277, 1984.

[34] S. C. Nandy and B. B. Bhattacharya. Maximal empty cuboids among points and blocks.

Computers & Mathematics with Applications, 36(3):11–20, 1998.

[35] M. Orlowski. A new algorithm for the largest empty rectangle problem. Algorithmica, 5(1-

4):65–73, 1990.

19

[36] J. O’Rourke, S. Rao Kosaraju, and N. Megiddo. Computing circular separability. Discrete &

Computational Geometry, 1(2):105–113, 1986.

[37] M. H. Overmars. The design of dynamic data structures, volume 156. Springer Science &

Business Media, 1983.

[38] F. Sheikhi, A. Mohades, M. de Berg, and M. Davoodi. Separating bichromatic point sets by

L-shapes. Computational Geometry, 48(9):673–687, 2015.

[39] M. van Kreveld, T. van Lankveld, and R. Veltkamp. Identifying well-covered minimal bounding

rectangles in 2D point data. In 25th European Workshop on Computational Geometry, pages

277–280, 2009.

20

Algorithm 1: RangeCounting
Input: The root p of T and a rectangular query range Q = [α, β]× [γ, δ].

Output: Count of all the points q in T that lies in Q.

1 Current = p; state = 0; Count = 0; level = 0; 4-Tuple=(L,R,U,B) = (NULL,NULL,NULL,NULL);

2 while Current 6= p or state 6= 2 do

3 if state = 0 then

4 if L 6= NULL
∧
R 6= NULL

∧
U 6= NULL

∧
B 6= NULL then

5 Count = Count + SubtreeSize(TCurrent) ;

6 if (level mod 2 = 0) then

7 L = val(Current);

8 if (val(Current) = R) then

9 R = NULL;

10 if (level mod 2 = 1) then

11 B = val(Current);

12 if (val(Current) = T) then

13 T = NULL;

14 if Current is the left-child of its parent then

15 state = 1;

16 else

17 state = 2;

18 Current = parent(Current); level = level − 1;

19 else

20 if (val(Current) lies in Q) then

21 Count = Count + 1;

22 if (Current has a left child)
∧

(full or a part of Q is in the left/bottom half-space of the splitting

hyperplane at Current) then

23 if the splitting hyperplane at Current intersects Q then

24 if (level mod 2 = 0 and R = NULL) then R = val(Current);

25 if (level mod 2 = 1 and T = NULL) then T = val(Current);

26 Current = left-child(Current); level = level + 1;

27 else

28 state = 1;

29 else

30 if state = 1 then

31 if (Current has a right child)
∧

(full or part of Q is in the right/top half-space of the splitting

hyperplane at Current) then

32 if the splitting hyperplane at Current intersects Q then

33 if (level mod 2 = 0 and L = NULL) then L = val(Current);

34 if (level mod 2 = 1 and B = NULL) then B = val(Current);

35 Current = right-child(Current); level = level + 1;

36 state = 0;

37 else

38 state = 2;

39 else

40 // state = 2 and Current 6= p

41 if (Current is the left-child of its parent)
∧

(the splitting hyperplane at Current intersects Q) then

42 state = 1;

43 if (level mod 2 = 0 and L = NULL) then L = val(Current);

44 if (level mod 2 = 1 and B = NULL) then B = val(Current);

45 Current = parent(Current); level = level − 1;

21

Algorithm 2: LRR-Premitive-Algorithm-candidate-pair-(p, q)

Input: An array P = Pb ∪ Pr of points above `pq; Pb is y-sorted blue points, and Pr corresponds to

the range tree T for the red points.

1 /* `pq is the line through the candidate pair (p, q) */

Output: LRR in P

2 α← xmin ; /* xmin is left-intersection point of the line `pq with boundary of A */

3 β ← xmax ; /* xmax is right-intersection point of the line `pq with boundary of A */

4 I ← [α, β];

5 size ← 0 ; /* number of red points in a rectangular range */

6 size(cLRR) ← 0 ; /* size of optimum cLRR */

7 for each point θ = (xθ, yθ) ∈ Pb encountered by H in order do /* H is the sweepline */

8 if xθ ∈ I then

9 define a cLRR with its bottom boundary by the candidate pair (p, q), top boundary at θ, left

and right boundaries at α and β respectively;

10 determine size of cLRR ; /* using rectangular range query in T */

11 if size > size(cLRR) then

12 size(cLRR) ← size;

13 if xθ ∈ [xp, xq] then

14 Stop;

15 if α ≤ xθ ≤ xp then

16 α← xθ;

17 if xq ≤ xθ ≤ β then

18 β ← xθ;

19 return size(cLRR);

Algorithm 3: TYPE-3 LRC(sizemax, C)

Input: The array Pr and Pb

Output: TYPE-3 LRC of maximum size

1 Sort the points in Pb in decreasing order of their z-coordinates;

2 for i← 1 to m do /* Compute MER(pi) */

3 Partition the points in Pb[i+ 1, i+ 2, . . . ,m] into P θb , θ = 1, 2, 3, 4;

4 P θb , θ ∈ {1, 2, 3, 4} are sorted in decreasing order of their z-coordinates;

5 m1,m2,m3,m4: index of the last point in each of P θb , θ ∈ {1, 2, 3, 4} respectively;

6 ν1,ν2,ν3,ν4: index of the last point in each of STAIRθ, θ ∈ {1, 2, 3, 4} respectively;

7 χ1, χ2, χ3, χ4: variables to indicate the next sweep line in P θb , θ ∈ {1, 2, 3, 4} respectively;

8 χ1, χ2, χ3, χ4 initialized with 1,m1 + 1,m2 + 1,m3 + 1 respectively;

9 count = i;

10 while count 6= m do

11 count = count+ 1;

12 z=minimum {z(Pb[χ1]), z(Pb[χ2]), z(Pb[χ3]), z(Pb[χ4])};
13 Let, minimum attains for Pb[χθ] and in quadrant θ;

14 Compute MAX MER(i, χθ, θ, Rmax) ; /* call Algorithm 4. */

15 if |Rmax| > sizemax then

16 sizemax = |Rmax|; C = Rmax;

17 Update Stairθ(χθ);

18 χθ = χθ + 1;

22

Algorithm 4: Compute MAX MER(i, j, θ, Rmax)

Input: STAIR1 = B[1, 2, . . . , ν1], STAIR2 = B[m1 + 1,m1 + 2, . . . , ν2], STAIR3 =

B[m2 + 1,m2 + 2, . . . , ν3], STAIR4 = B[m3 + 1,m3 + 2, . . . , ν4], where the array

B = Pb[i+ 1, . . .m]; mθ = number of points of B in θ-th quadrant;

Work-Area : M : location to compute the size of the axis-parallel MER containing pi, pj ; R: stores

the (north, south, east, west) sides of a rectangle ; /* bi: projection of pi */

Output: Rmax ; /* red rectangle containing maximum red points */

1 MAX size = 0;

2 α = index-of(minimum(y(B[k]))): ∀ k ∈ {m1 + 1, . . . , ν2} and y(B[k])) > y(B[j]);

3 β = index-of(maximum(y(B[k]))): ∀ k ∈ {m1 + 1, . . . , ν2} and x(B[k])) > x(B[j]); β = β + 1;

4 µ = index-of(minimum(y(B[k]))): ∀ k ∈ {m2 + 1, . . . , ν3} and y(B[k])) > y(B[j]);

5 ν = index-of(maximum(y(B[k]))): ∀ k ∈ {m2 + 1, . . . , ν3} and y(B[k])) < y(B[β]);

6 for k ← α to β do /* Call MER with the feasible points of STAIR1 as top boundary */

7 north = P [k]; east = P [k − 1];

8 θ = index-of(maximum(y(B[`]))): ∀ ` ∈ {m1 + 1, . . . , ν2} and y(B[`])) < y(B[k]));

9 ψ = index-of(maximum(x(B[`]))): ∀ ` ∈ {m3 + 1, . . . , ν4} and x(B[`])) < x(B[k]));

10 φ = index-of(maximum(y(B[`]))): ∀ ` ∈ {m2 + 1, . . . , ν3} and x(B[`])) < x(B[θ]);

11 φ′ = index-of(minimum(y(B[`]))): ∀ ` ∈ {m2 + 1, . . . , ν3} and y(B[`])) > y(B[ψ]);

12 if φ′ > φ then /* Only one MER is possible */

13 west = P [θ]; south = P [ψ]; R = (north, east, south, west);

14 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

15 if size > MAX size then MAX size ← size; Rmax ← R;

16 if φ′ ≤ φ then /* Multiple (≥ 2) MERs are possible */

17 south = P [ψ′];

18 for ` = ψ′ to ψ do

19 west = P [`]; R = (north, east, south, west); south = P [`];

20 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

21 if size > MAX size then MAX size ← size; Rmax ← R;

22 west = P [α]; R = (north, east, south, west);

23 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

24 if size > MAX size then MAX size ← size; Rmax ← R;

25 for k ← µ to ν do /* Call MER with the feasible points of STAIR2 as top boundary */

26 west = P [k − 1]; top = P [k]; east = P [θ′];

27 θ1 = index-of(maximum(y(B[`]))):∀ ` ∈ {θ . . . , ν1} and y(B[`]) < y(B[µ]);

28 ψ1 = index-of(maximum(x(B[`]))): ∀ ` ∈ {m2 + 1, . . . , ν3} and x(B[`])) > x(B[k − 1]));

29 φ1 = index-of(maximum(y(B[`]))): ∀ ` ∈ {m3 + 1, . . . , ν4} and x(B[`])) < x(B[θ1]);

30 φ2 = index-of(minimum(y(B[`]))): ∀ ` ∈ {m2 + 1, . . . , ν3} and y(B[`])) > y(B[ψ1]);

31 if φ2 > φ1 then /* Only one MER is possible */

32 east = P [θ1]; south = P [ψ1]; R = (north, east, south, west);

33 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

34 if size > MAX size then MAX size ← size; Rmax ← R;

35 if φ2 ≤ φ1 then /* Multiple MER is possible */

36 south = P [φ2];

37 for ` = φ2 to φ1 do

38 west = P [`]; R = (north, east, south, west); south = P [`];

39 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

40 if size > MAX size then MAX size ← size; Rmax ← R;

41 west = P [α1]; R = (north, east, south, west);

42 size =In-Place-Rectangular-Counting-Query-2d-Tree(Ti, R);

43 if size > MAX size then MAX size ← size; Rmax ← R;

23

Algorithm 5: Update Stair1(j)

Input: STAIR1 corresponding to pi, the projection bj

Output: updated STAIR1

1 α = index-of(maximum(y(bk)): ∀ k ∈ STAIR1 and y(bk) < y(bj);

2 β = index-of(minimumorangec(y(bk)): ∀ k ∈ STAIR1 and x(bk) < x(bj);

3 if (β − α) > 1 then

4 swap(P [j], P [α+ 1]);

5 k = β − α− 2;

6 for r ← β to ν1 do

7 swap(P [r], P [r − k]);

8 ν1 = ν1 − k;

9 else

10 swap(P [ν1 + 1], P [j]);

11 for r ← ν1 to β do

12 swap(P [r], P [r + 1]);

13 ν1 = ν1 + 1;

24

	1 Introduction
	2 In-place k-d tree
	2.1 Construction of in-place k-d tree
	2.2 Orthogonal range counting query in the in-place k-d tree

	3 LMR problem in arbitrary orientation
	3.1 Processing a candidate pair (p, q)

	4 LWR problem in arbitrary orientation
	4.1 Processing a point-pair (p, q)

	5 Computing largest axis-parallel monochromatic cuboid R3
	5.1 Computation of type-1 LRC
	5.2 Computation of type-2 LRC
	5.3 Computation of type-3 LRC
	5.3.1 Computation of MER(pi,pj)
	5.3.2 Updating OP

