Structure and enumeration results of matchable Lucas cubes

Xu Wang, Xuxu Zhao and Haiyuan Yao*
College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, PR China

Abstract

A lucasene is a hexagon chain that is similar to a fibonaccene, an L-fence is a poset the Hasse diagram of which is isomorphic to the directed inner dual graph of the corresponding lucasene. A new class of cubes, which named after matchable Lucas cubes according to the number of its vertices (or elements), are a series of directed or undirected Hasse diagrams of filter lattices of L-fences. The basic properties and several classes of polynomials, e.g. rank generating functions, cube polynomials and degree sequence polynomials, of matchable Lucas cubes are obtained. Some special conclusions on binomial coefficients and Lucas triangle are given.

Key words: Z-transformation digraph, finite distributive lattice, matchable Lucas cube, rank generating function, (maximal or disjoint) cube polynomial, degree (or indegree) spectrum polynomial

2010 AMS Subj. Class.: 11B39, 05C70, 06D05, 06A07

1 Introduction

The Z-transformation graph (also called resonance graph) is introduced independently by Gründler [10], Zhang et al. [37, Randić [26] and Fournier [7], and widely studied by Zhang and Zhang [44, 45], Kalvažar et al. [15, 16, 17, Lam and Zhang [20, Zhang et al. [38, 40, 42] and Žigert Pleteršek 47, 48]. Recently, Zhang et al. 41] introduced the concept of matchable distributive lattice and got some consequences on matchable distributive lattices, Yao and Zhang [34] obtained some results on non-matchable distributive lattices with a cut-element.

The Fibonacci cubes $\Gamma_{n} 12$ are defined by Hsu, and Klavžar and Žigert Pleteršek [16] found that the Fibonacci cubes are the resonance graphs of fibonaccenes. The Lucas cubes or Lucas lattices Λ_{n}, 24, 35] are defined similarly. In addition, the rank gererating functions [25], the cube polynomials [18, 28], the maximal cube polynomials [23], the disjoint cube polynomials [9, 27] and the degree sequence polynomials [14] of Fibonacci and Lucas cubes are studied. And Klavžar have a survey [13] on Fibonacci cubes. In addition, Yao and Zhang [34] obtained the matchabilities of Fibonacci and Lucas cubes.

The structure of this paper is as follows. The main concept in the paper, matchable Lucas cube, is introduced by lucasene and L-fence. The basic properties of matchable Lucas cubes are obtained. In addition, the rank generating functions, the cube polynomials, the maximal cube polynomials, the disjoint cube polynomials, the degree spectrum polynomials and the indegree (or outdegree) spectrum polynomials are considered. And the relation between rank generating functions and Chebyshev polynomials, and the relation between (maximal) cube (or indegree sequence) polynomials and Lucas triangle are found.

[^0]
2 Preliminaries

A set P equipped with a binary relation \leq satisfying reflexivity, antisymmetry and transitivity is said to be a partially ordered set (poset for short). Given any poset P, the dual P^{*} of P is formed by defining $x \leq y$ to hold in P^{*} if and only if $y \leq x$ holds in P. A subposet S of P is a chain if any two elements of S are comparable, and denoted by \mathbf{n} if $|S|=n$ 3. Let $x \prec y$ denote y covers x in P, i.e. $x<y$ and $x \leq z<y$ implies $z=x$. For $x \in P, \uparrow x=\{y \in P \mid x \leq y\}$ and $\downarrow x=\{z \in P \mid z \leq x\}$. The subset S of the poset P is called convex if $a, b \in S, c \in P$, and $a \leq c \leq b$ imply that $c \in S$. Let P be a poset and $F \subseteq P$. The subposet F is a filter if, whenever $x \in F, y \in P$ and $x \leq y$, we have $y \in F$ 3]. The set of all filters of a poset P is denoted by $\mathcal{F}(P)$, and carries the usual anti-inclusion order, forms a finite distributive lattice [3, 31] called filter lattice. For a finite lattice L, we denote by $\hat{0}_{L}$ (resp. $\hat{1}_{L}$) the minimum (resp. maximum) element in L.

The symmetric difference of two finite sets A and B is defined as $A \oplus B:=(A \cup B) \backslash(A \cap B)$. If M is a perfect matching of a graph and C is an M-alternating cycle of the graph, then the symmetric difference of M and edge-set $E(C)$ is another perfect matching of the graph, which is simply denoted by $M \oplus C$. Let G be a plane bipartite graph with a perfect matching, and the vertices of G are colored properly black and white such that the two ends of every edge receive different colors. An M-alternating cycle of G is said to be proper, if every edge of the cycle belonging to M goes from white end-vertex to black end-vertex by the clockwise orientation of the cycle; otherwise improper [43]. An inner face of a graph is called a cell if its boundary is a cycle, and we will say that the cycle is a cell too.

For some concepts and notations not explained in the paper, refer to [3, 8, 31] for poset and lattice, [1, 11] for graph theory.

Zhang and Zhang [45] extended the concept of Z-transformation graph of a hexagonal system to plane bipartite graphs.

Definition 2.1 ([45]) Let G be a plane bipartite graph. The Z-transformation graph $Z(G)$ is defined on $\mathcal{M}(G): M_{1}, M_{2} \in \mathcal{M}(G)$ are joined by an edge if and only if $M_{1} \oplus M_{2}$ is a cell of G. And Z-transformation digraph $\vec{Z}(G)$ is the orientation of $Z(G)$: an edge $M_{1} M_{2}$ of $Z(G)$ is oriented from M_{1} to M_{2} if $M_{1} \oplus M_{2}$ form a proper M_{1}-alternating (thus improper M_{2}-alternating) cell.

Let G be a bipartite graph, from Theorem 4.1.1 in [21], we have that G is elementary if and only if G is connected and every edge of G lies in a perfect matching of G. Let G be a plane bipartite graph with a perfect matching, a binary relation \leq on $\mathcal{M}(G)$ is defined as: for $M_{1}, M_{2} \in \mathcal{M}(G), M_{1} \leq M_{2}$ if and only if $\vec{Z}(G)$ has a directed path from M_{2} to M_{1} [45]. In addition, Lam and Zhang [20] established the relationship between finite distributive lattices and Z-transformation directed graphs.

Theorem $2.1([20])$ If G is a plane elementary bipartite graph, then $\mathcal{M}(G):=(\mathcal{M}(G), \leq)$ is a finite distributive lattice and its Hasse diagram is isomorphic to $\vec{Z}(G)$.

Recently, Zhang et al. 41 introduced the concept of matchable distributive lattice by Theorem 2.1.
Definition 2.2 ([41]) A finite distributive lattice L is matchable if there is a plane weakly elementary bipartite graph G such that $L \cong \mathcal{M}(G)$; otherwise it is non-matchable.

The Lucas numbers is defined as follows: $L_{0}=2, L_{1}=1$ and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$. The generating function of L_{n} is

$$
\sum_{n=0}^{\infty} L_{n} x^{n}=\frac{2-x}{1-x-x^{2}}
$$

The Lucas triangle [19] Y (or see A029635 in [29]) is shown in Table 1, and the entry in the n-th row and k-th column of Lucas triangle is given by

$$
Y(n, k)=\binom{n}{k}+\binom{n-1}{k-1}=Y(n-1, k-1)+Y(n-1, k)
$$

where $0 \leq k \leq n$ and $\binom{-1}{-1}=1$.
Table 1: The first six rows of Lucas triangle Y

2					
1	2				
1	3	2			
1	4	5	2		
1	5	9	7	2	
1	6	14	16	9	2

It is similar to Fibonacci numbers with binomial coefficients that Lucas numbers are given by Lucas triangle [19]. That is for $n \geq 0$,

$$
\sum_{k \geq 0} Y(n-k, k)=L_{n}
$$

Let G be a 2-connected outerplanar bipartite graph. Let $P(G)$ denote the poset of G determined from the directed inner dual graph of G 41]. Moreover, Zhang et al. 41] proved the follow Theorem 2.2,

Theorem 2.2 ([41]) Let G be a 2-connected outerplanar bipartite graph, and let $P(G)$ be the poset of G,

$$
\mathcal{M}(G) \cong \mathcal{F}(P(G))
$$

Let L be a lattice and I is a interval of L, Day [4] introduced a double structure $L[I]:=(L \backslash I) \cup(I \square \mathbf{2})$ and defined $x \leq y$ in $L[I]$ if and only if one of the following hold:
(1) $x, y \in L \backslash I$ and $x \leq y$ in L;
(2) $x=(a, i), y \in L \backslash I$ and $a \leq y$ in L;
(3) $x \in L \backslash I, y=(b, j)$ and $x \leq b$ in L;
(4) $x=(a, i), y=(b, j)$ and $a \leq b$ in L and $i \leq j$ in 2.

We denote the distributive lattice $L[K]$ by $L \boxplus K$ [32] if L is a finite distributive lattice and interval K is a cutting (sublattice) [32] of L, i.e. if $L=\downarrow \hat{1}_{K} \cup \uparrow \hat{0}_{K}$ [5, 6]. Let P be a poset and $x \in P$. Let $P-x:=P \backslash\{x\}$ and $P * x:=P \backslash(\uparrow x \cup \downarrow x)$. Wang et al. obtained a decomposition for filter lattice.

Theorem $2.3([\mathbf{3 2}])$ If P is a poset and $x \in P$, then

$$
\mathcal{F}(P)=\mathcal{F}(P-x) \boxplus \mathcal{F}(P * x)
$$

Let $\left[x^{n}\right] g(x)$ denote the coefficient of x^{n} in the power series expansion of $g(x)$ [33]. A perfectly obvious property of this symbol, which we will use repeatedly, is $\left[x^{n}\right]\left\{x^{m} g(x)\right\}=\left[x^{n-m}\right] g(x)$.

3 Matchable Lucas cubes

3.1 Lucasenes

Definition 3.1 A lucasene is a hexagonal chain in which no three hexagons are linearly attached other than exactly three hexagons are linearly attached at one end.

Figure 1: Two lucasenes with directed inner dual graph and two L-fences corresponding to them

Definition 3.2 An L-fence Ξ_{n} is a poset the Hasse diagram of which is isomorphic to the directed inner dual graph of lucasene with n hexagons.

By Theorems 2.1 and 2.2, Theorem 3.1 is obvious.
Theorem 3.1 The Z-transformation directed graph of lucasene with n hexagons is isomorphic to the Hasse diagram of the filter lattice of Ξ_{n}.

It is similar to [31, Exercise $1.35(\mathrm{e})$] that $\left|\mathcal{F}\left(\Xi_{n}\right)\right|=L_{n}$ for $n \geq 2$, therefore the matchable Lucas distributive lattices and the matchable Lucas cubes are introduced.

Definition 3.3 The filter lattice $\mathcal{F}\left(\Xi_{n}\right)$ of L-fence Ξ_{n} is called the n-th matchable Lucas distributive lattice, denoted by Ω_{n}; and its undirected Hasse diagram is called the n-th matchable Lucas cube, denoted by Ω_{n} too.

For convenience, the (directed) Hasse diagram of $\mathcal{F}\left(\Xi_{n}\right)$ is denoted by Ω_{n} too, and let $\left|\Omega_{0}\right|=1$. The first eight matchable Lucas cubes are shown in Figure 2,

Figure 2: The first eight matchable Lucas cubes $\Omega_{0}, \Omega_{1}, \ldots, \Omega_{7}$

The structures of matchable Lucas cubes can be given as follows, as shown in Figures 3 and 4 .

Theorem 3.2 Let Ω_{n} be the n-th matchable Lucas cube. For $n \geq 4$,

$$
\Omega_{n} \cong \Omega_{n-1} \boxplus \Omega_{n-2} \cong\left(\Omega_{n-2} \boxplus \Omega_{n-2}\right) \boxplus \Omega_{n-3} ;
$$

or for $n \geq 3$,

$$
\Omega_{n} \cong \Gamma_{n-1} \boxplus \Gamma_{n-3} \cong\left(\Gamma_{n-2}^{*} \boxplus \Gamma_{n-3}\right) \boxplus \Gamma_{n-3}
$$

Proof By Theorem [2.3, for poset Ξ_{n} as shown in Figure 1(b), we have for $n \geq 4$,

$$
\begin{aligned}
\mathcal{F}\left(\Xi_{n}\right) & =\mathcal{F}\left(\Xi_{n}-x_{n}\right) \boxplus \mathcal{F}\left(\Xi_{n} * x_{n}\right)=\mathcal{F}\left(\Xi_{n-1}\right) \boxplus \mathcal{F}\left(\Xi_{n-2}\right) \\
& =\left(\mathcal{F}\left(\left(\Xi_{n}-x_{n}\right)-x_{n-1}\right) \boxplus \mathcal{F}\left(\left(\Xi_{n}-x_{n}\right) * x_{n-1}\right)\right) \boxplus \mathcal{F}\left(\Xi_{n} * x_{n}\right)=\left(\mathcal{F}\left(\Xi_{n-2}\right) \boxplus \mathcal{F}\left(\Xi_{n-2}\right)\right) \boxplus \mathcal{F}\left(\Xi_{n-3}\right)
\end{aligned}
$$

by Theorem 2.2] combining $Z_{n-1}=\Xi_{n}-x_{1}=\Xi_{n}-x_{2}$ [25, 31], the directed inner dual graph of fibonaccene with n hexagons and Z_{n} are isomorphic [34, and Fibonacci cubes are the resonance graphs of fibonaccences [16], we also have for $n \geq 3$,

$$
\begin{aligned}
\mathcal{F}\left(\Xi_{n}\right) & =\mathcal{F}\left(\Xi_{n}-x_{1}\right) \boxplus \mathcal{F}\left(\Xi_{n} * x_{1}\right)=\mathcal{F}\left(Z_{n-1}\right) \boxplus \mathcal{F}\left(Z_{n-3}\right) \\
& =\left(\left(\mathcal{F}\left(\left(\Xi_{n}-x_{1}\right)-x_{2}\right) \boxplus \mathcal{F}\left(\left(\Xi_{n}-x_{1}\right) * x_{2}\right)\right)\right) \boxplus \mathcal{F}\left(\Xi_{n} * x_{1}\right)=\left(\mathcal{F}\left(Z_{n-2}\right)^{*} \boxplus \mathcal{F}\left(Z_{n-3}\right)\right) \boxplus \mathcal{F}\left(Z_{n-3}\right) .
\end{aligned}
$$

Therefore the structures of matchable Lucas cubes are obtained.

Figure 3: The structure of Ω_{n} for $n \geq 4$

Figure 4: The structure of Ω_{n} given by Γ_{n}

Proposition 3.3 The both height and diameter of Ω_{n} are $n+1$ [39], and thus the radius is $\left\lfloor\frac{n+2}{2}\right\rfloor$. In addition, Ω_{n} is non-Eulerian and has a Hamiltonian path [46].

3.2 Rank generating functions

Let $r_{n, k}:=r_{k}\left(\Omega_{n}\right)$ denote the number of elements of rank k in Ω_{n}, and let $R_{n}(x):=R\left(\Omega_{n}, x\right)=\sum_{k \geq 0} r_{n, k} x^{k}$ be the rank generating function of Ω_{n} [31, P291]. The first few of $R_{n}(x)$ is listed.

$$
\begin{aligned}
& R_{0}(x)=1 \\
& R_{1}(x)=1+x \\
& R_{2}(x)=1+x+x^{2} \\
& R_{3}(x)=1+x+x^{2}+x^{3} \\
& R_{4}(x)=1+x+2 x^{2}+2 x^{3}+x^{4} \\
& R_{5}(x)=1+2 x+2 x^{2}+3 x^{3}+2 x^{4}+x^{5}
\end{aligned}
$$

It is obvious that $R_{n}(x)$ is always a polynomial with degree n. By Corollary 4.2 in [32] and Theorem 3.2, we have Propositions 3.4 and 3.5

Proposition 3.4 For $n \geq 3$,

$$
R_{n}(x)=R\left(\Gamma_{n-1}, x\right)+x^{3} R\left(\Gamma_{n-3}, x\right),
$$

where $R\left(\Gamma_{n}, x\right)$ is the rank generating function of Γ_{n} [25, 31].
Proposition 3.5 For $n \geq 4$

$$
R_{n}(x)= \begin{cases}x R_{n-1}(x)+R_{n-2}(x), & \text { if } 2 \nmid n, \\ R_{n-1}(x)+x^{2} R_{n-2}(x), & \text { if } 2 \mid n .\end{cases}
$$

In other words, for $m \geq 2$,

$$
\left\{\begin{array}{l}
R_{2 m}(x)=R_{2 m-1}(x)+x^{2} R_{2 m-2}(x), \\
R_{2 m+1}(x)=x R_{2 m}(x)+R_{2 m-1}(x) .
\end{array}\right.
$$

Let $A_{m}(x)=R_{2 m}(x)$ and let $B_{m}(x)=R_{2 m+1}(x)$. For $m \geq 2$, we have

$$
\left\{\begin{array}{l}
A_{m}(x)=B_{m-1}(x)+x^{2} A_{m-1}(x) \\
B_{m}(x)=x A_{m}(x)+B_{m-1}(x)
\end{array}\right.
$$

Note that $R_{2}(1)=3$ and $R_{3}(1)=4$, by Proposition [3.5, thus for $n \geq 2, R_{n}(1)=L_{n}$; for $m \geq 1$, $A_{m}(1)=L_{2 m}$ and $B_{m}(1)=L_{2 m+1}$. In addition, we have the recurrence relations of $A_{m}(x)$ and $B_{m}(x)$.
Proposition 3.6 Let $A_{m}(x)=R_{2 m}(x)$ and let $B_{m}(x)=R_{2 m+1}(x)$. For $m \geq 3$,

$$
\left\{\begin{array}{l}
A_{m}(x)=\left(1+x+x^{2}\right) A_{m-1}(x)-x^{2} A_{m-2}(x) \\
B_{m}(x)=\left(1+x+x^{2}\right) B_{m-1}(x)-x^{2} B_{m-2}(x)
\end{array}\right.
$$

Proof By Proposition 3.5 for $m \geq 3$,

$$
\begin{aligned}
A_{m}(x) & =B_{m-1}(x)+x^{2} A_{m-1}(x) \\
& =x A_{m-1}(x)+B_{m-2}(x)+x^{2} A_{m-1}(x) \\
& =\left(x+x^{2}\right) A_{m-1}(x)+A_{m-1}(x)-x^{2} A_{m-2}(x) \\
& =\left(1+x+x^{2}\right) A_{m-1}(x)-x^{2} A_{m-2}(x) .
\end{aligned}
$$

Likewise, the recurrence relation of $B_{m}(x)$ can be obtained.

Considering $A_{m}(x)$ and $B_{m}(x)$ with $x=1$ in Proposition 3.6 we see a trivial result on L_{n} : for $n \geq$ $4, L_{n}=3 L_{n-2}-L_{n-4}$. And we get the generating functions of $A_{m}(x)$ and $B_{m}(x)$ by Proposition 3.6, respectively.
Theorem 3.7 The generating functions of $A_{m}(x)$ and $B_{m}(x)$ are

$$
\sum_{m \geq 0} A_{m}(x) z^{m}=\frac{1-x z^{2}}{1-\left(1+x+x^{2}\right) z+x^{2} z^{2}}
$$

and

$$
\sum_{m \geq 0} B_{m}(x) z^{m}=\frac{1+x^{3} z}{1-\left(1+x+x^{2}\right) z+x^{2} z^{2}}+x
$$

respectively.
Proof By Proposition 3.6

$$
\begin{aligned}
\sum_{m \geq 0} A_{m}(x) z^{m} & =\sum_{m \geq 3} A_{m}(x) z^{m}+A_{2}(x) z^{2}+A_{1}(x) z+A_{0}(x) \\
& =\sum_{m \geq 3}\left(\left(1+x+x^{2}\right) A_{m-1}(x)-x^{2} A_{m-2}(x)\right) z^{m}+A_{2}(x) z^{2}+A_{1}(x) z+A_{0}(x) \\
& =\left(1+x+x^{2}\right) z \sum_{m \geq 2} A_{m}(x) z^{m}-x^{2} z^{2} \sum_{m \geq 1} A_{m}(x) z^{m}+A_{2}(x) z^{2}+A_{1}(x) z+A_{0}(x) \\
& =\left(1+x+x^{2}\right) z \sum_{m \geq 0} A_{m}(x) z^{m}-x^{2} z^{2} \sum_{m \geq 0} A_{m}(x) z^{m}+1-x z^{2}
\end{aligned}
$$

The generating function of B_{m} can be proved similarly.
It should be pointed out that $A_{m}(x)$ and $B_{m}(x)$ could be given by Chebyshev polynomials. Chebyshev polynomials $U_{n}(x)$ [22, 33] of the second kind are defined as following: $U_{0}(x)=1, U_{1}(x)=2 x$ and $U_{n}(x)=$ $2 x U_{n-1}(x)-U_{n-2}(x)$ for $n \geq 2$. And the generating function of $U_{m}(x)$ is

$$
\sum_{n=0}^{\infty} U_{n}(x) y^{n}=\frac{1}{1-2 x y+y^{2}}
$$

Theorem 3.8 For $m \geq 1$,

$$
A_{m}(x)=x^{m-2}(1+x) U_{m}\left(\frac{1+x+x^{2}}{2 x}\right)-x^{m-2}\left(1+x+x^{2}\right) U_{m-1}\left(\frac{1+x+x^{2}}{2 x}\right)
$$

and

$$
B_{m}(x)=x^{m} U_{m}\left(\frac{1+x+x^{2}}{2 x}\right)+x^{m+2} U_{m-1}\left(\frac{1+x+x^{2}}{2 x}\right)
$$

Proof Combining the generating function of $U_{m}(x)$ and Theorem 3.7,

$$
\begin{aligned}
A_{m}(x) & =\left[z^{m}\right] \frac{1-x z^{2}}{1-\left(1+x+x^{2}\right) z+x^{2} z^{2}} \\
& =\left[z^{m}\right] \frac{1-x z^{2}}{1-2 \frac{1+x+x^{2}}{2 x}(x z)+(x z)^{2}} \\
& =\left[z^{m}\right] \frac{1}{1-2 \frac{1+x+x^{2}}{2 x}(x z)+(x z)^{2}}-x\left[z^{m-2}\right] \frac{1}{1-2 \frac{1+x+x^{2}}{2 x}(x z)+(x z)^{2}} \\
& =x^{m} U_{m}\left(\frac{1+x+x^{2}}{2 x}\right)-x^{m-1} U_{m-2}\left(\frac{1+x+x^{2}}{2 x}\right) \\
& =x^{m-2}(1+x) U_{m}\left(\frac{1+x+x^{2}}{2 x}\right)-x^{m-2}\left(1+x+x^{2}\right) U_{m-1}\left(\frac{1+x+x^{2}}{2 x}\right)
\end{aligned}
$$

Thus $B_{m}(x)$ is obtained by $B_{m}(x)=A_{m+1}(x)-x^{2} A_{m}(x)$ and a tedious calculations.

Let $\binom{n ; 3}{k}$ [2] denote the coefficient of x^{k} in $\left(1+x+x^{2}\right)^{n}$, namely

$$
\binom{n ; 3}{k}=\sum_{j=0}^{\lfloor k / 2\rfloor}\binom{n}{k-j}\binom{k-j}{j}
$$

and see sequence A027907 in [29]. Using Kronecker delta function δ, we have the coefficient $r_{n, k}$.
Theorem 3.9 For $m \geq 0$,

$$
r_{2 m, k}=\sum_{j=0}^{\lfloor m / 2\rfloor}\left(\binom{m-j}{j}\binom{m-2 j ; 3}{k-2 j}+\binom{m-j-1}{j-1}\binom{m-2 j ; 3}{k-2 j+1}\right)(-1)^{j}
$$

and

$$
r_{2 m+1, k}=\delta_{m 0} \delta_{k 1}+\sum_{j=0}^{\lfloor m / 2\rfloor}\left(\binom{m-j}{j}\binom{m-2 j ; 3}{k-2 j}+\binom{m-j-1}{j}\binom{m-2 j-1 ; 3}{k-2 j-3}\right)(-1)^{j}
$$

Proof Consider the polynomials $g_{n}(x)$ defined by

$$
\sum_{n \geq 0} g_{n}(x) z^{n}=\frac{1}{1-\left(1+x+x^{2}\right) z+x^{2} z^{2}}
$$

such that

$$
g_{n}(x)=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n-j}{j} x^{2 j}\left(1+x+x^{2}\right)^{n-2 j}(-1)^{j}
$$

In addition, the coefficient of x^{k} in $g_{n}(x)$ can be given by

$$
\left[x^{k}\right] g_{n}(x)=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n-j}{j}\left[x^{k-2 j}\right]\left(1+x+x^{2}\right)^{n-2 j}(-1)^{j}=\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n-j}{j}\binom{n-2 j ; 3}{k-2 j}(-1)^{j}
$$

Then, since $A_{m}(x)=g_{m}(x)-x g_{m}(x)$, we have

$$
\begin{aligned}
r_{2 m, k} & =\left[x^{k}\right] A_{m}(x)=\left[x^{k}\right] g_{m}(x)-\left[x^{k-1}\right] g_{m-2}(x) \\
& =\sum_{j=0}^{\lfloor m / 2\rfloor}\binom{m-j}{j}\binom{m-2 j ; 3}{k-2 j}(-1)^{j}-\sum_{j=0}^{\lfloor m / 2-1\rfloor}\binom{m-2-j}{j}\binom{m-2-2 j ; 3}{k-2 j-1}(-1)^{j} \\
& =\sum_{j=0}^{\lfloor m / 2\rfloor}\binom{m-j}{j}\binom{m-2 j ; 3}{k-2 j}(-1)^{j}+\sum_{j=1}^{\lfloor m / 2\rfloor}\binom{m-j-1}{j-1}\binom{m-2 j ; 3}{k-2 j+1}(-1)^{j} \\
& =\sum_{j=0}^{\lfloor m / 2\rfloor}\left(\binom{m-j}{j}\binom{m-2 j ; 3}{k-2 j}+\binom{m-j-1}{j-1}\binom{m-2 j ; 3}{k-2 j+1}\right)(-1)^{j} .
\end{aligned}
$$

Thus, $r_{2 m+1, k}$ is obtained from $B_{m}(x)=x+g_{m}(x)+x^{3} g_{m-1}(x)$ in the same way.
The generating function of $R_{n}(x)$ is also a straightforward consequence of Theorem 3.7.
Theorem 3.10 The generating function of $R_{n}(x)$ is

$$
\sum_{n \geq 0} R_{n}(x) y^{n}=\frac{1+y+x^{3} y^{3}-x y^{4}}{1-\left(1+x+x^{2}\right) y^{2}+x^{2} y^{4}}+x y
$$

Proof By the definition of $A_{m}(x)$ and $B_{m}(x)$,

$$
\begin{aligned}
\sum_{n \geq 0} R_{n}(x) y^{n} & =\sum_{m \geq 0} A_{m}(x) y^{2 m}+\sum_{m \geq 0} B_{m}(x) y^{2 m+1} \\
& =\sum_{m \geq 0} A_{m}(x) y^{2 m}+y \sum_{m \geq 0} B_{m}(x) y^{2 m} \\
& =\frac{1-x y^{4}}{1-\left(1+x+x^{2}\right) y^{2}+x^{2} y^{4}}+y \frac{1+x^{3} y^{2}}{1-\left(1+x+x^{2}\right) y^{2}+x^{2} y^{4}}+x y \\
& =\frac{1+y+x^{3} y^{3}-x y^{4}}{1-\left(1+x+x^{2}\right) y^{2}+x^{2} y^{4}}+x y
\end{aligned}
$$

The proof is completed.

Remark: Since the thoughts and methods used in the following five subsections are exactly the same as those used in Subsection 3.2 we choose to list only the results and omit the proof process.

3.3 Cube polynomials

Let $q_{n, k}:=q_{k}\left(\Omega_{n}\right)$ denote the number of k-dimensional induced hypercubes of Ω_{n}, and let $q_{n, k}=0$ if no k-dimensional induced hypercubes of Ω_{n} exists. Since, for $n \geq 2$, the initial values and the recurrence relation are same as in [18, Section 5] and [28] for $q=1$, the results of $q_{n, k}$ are same as $c_{k}\left(\Lambda_{n}\right)$ in [18, Section 5] and $h_{n, k ; 1}$ in 28.

Proposition 3.11 The dimension of the maximum induced hypercube of Ω_{n} is $\left\lfloor\frac{n}{2}\right\rfloor$.
Moreover, the number is equal to the number of maximum in-degree (or out-degree) of Ω_{n} or the number of maximum anti-chain in Ξ_{n}.

Lemma 3.12 ([32]) Let L be a finite distributive lattice. If K is a cutting of L, then

$$
q_{k}(L \boxplus K)=q_{k}(L)+q_{k}(K)+q_{k-1}(K) .
$$

It is evident that the recurrence relation of $q_{n, k}$ follows from Lemma 3.12.
Proposition 3.13 For $n \geq 4$,

$$
q_{n, k}=q_{n-1, k}+q_{n-2, k}+q_{n-2, k-1} .
$$

By induction, it is not difficult to show that the number of the maximum induced hypercubes of Ω_{n} is

$$
q_{n,\left\lfloor\frac{n}{2}\right\rfloor}= \begin{cases}2, & \text { if } 2 \mid n, \\ n, & \text { if } 2 \nmid n .\end{cases}
$$

Moreover, the number of vertices, edges, 4-cycles and 3-dimensional cubes of Ω_{n} is expressed.
Theorem 3.14 The first four of $q_{n, k}$ is obtained.
(1) For $n \geq 2$,

$$
q_{n, 0}=L_{n}
$$

and

$$
q_{n, 1}=n F_{n-1}
$$

(2) For $n \geq 4$,

$$
q_{n, 2}=\frac{1}{5} n F_{n-3}+\frac{1}{10}(n-3) n L_{n-2}
$$

(3) For $n \geq 6$,

$$
q_{n, 3}=\frac{2}{25} n F_{n-5}+\frac{1}{25}(n-5) n L_{n-4}+\frac{1}{30}\left(n^{2}-9 n+20\right) n F_{n-3} .
$$

Let

$$
Q_{n}(x)=\sum_{k \geq 0} q_{n, k} x^{k}
$$

be the cube polynomial of Ω_{n}. We list the first few of $Q_{n}(x)$ as follows.

$$
\begin{aligned}
& Q_{0}(x)=1 \\
& Q_{1}(x)=2+x \\
& Q_{2}(x)=3+2 x \\
& Q_{3}(x)=4+3 x \\
& Q_{4}(x)=7+8 x+2 x^{2} \\
& Q_{5}(x)=11+15 x+5 x^{2}
\end{aligned}
$$

It is easy to show the recurrence relation of $Q_{n}(x)$ from Proposition 3.15,
Proposition 3.15 For $n \geq 4$,

$$
Q_{n}(x)=Q_{n-1}(x)+(1+x) Q_{n-2}(x)
$$

From Proposition 3.15 again, a result on $Q_{n}(x)$ is obtained easily.
Theorem 3.16 For $n \geq 2$,

$$
Q_{n}(x)=\left(\frac{1+\sqrt{5+4 x}}{2}\right)^{n}+\left(\frac{1-\sqrt{5+4 x}}{2}\right)^{n}
$$

Proposition 3.17 For $n \geq 2$, the root of $Q_{n}(x)$ is

$$
x_{n, k}=-\frac{5+\tan ^{2} \frac{(2 k-1) \pi}{2 n}}{4}
$$

where $k=1,2, \ldots,\lfloor n / 2\rfloor$.
Since the roots of a polynomial are all negative reals is log-concave and a positive log-concave sequence is unimodal [2, 30, 33], the follow corollary is immediate.

Corollary 3.18 For all $n \geq 2$, the sequences of coefficients of $Q_{n}(x)$ is log-concave and unimodal.
The Jacobsthal-Lucas numbers J_{n} (see A014551 in [29]) are defined by the recurrence relation: $J_{0}=2$, $J_{1}=1$ and $J_{n}=J_{n-1}+2 J_{n-2}$ for $n \geq 2$. By Proposition 3.15, the relation of between $Q_{n}(x)$ and L_{n} or J_{n} is immediate. For $n \geq 2, Q_{n}(0)=L_{n}$ and $Q_{n}(1)=J_{n}$. In addition, the generating function of $Q_{n}(x)$ is proved.

Theorem 3.19 The generating function of $Q_{n}(x)$

$$
\sum_{n \geq 0} Q_{n}(x) y^{n}=\frac{2-y}{1-y-(x+1) y^{2}}+(1+x) y-1
$$

The cube polynomial can be deduced from the generating function of $Q_{n}(x)$.
Proposition 3.20 For $n \geq 2$,

$$
Q_{n}(x)=\sum_{j \geq 0} Y(n-j, j)(1+x)^{j}=\sum_{j \geq 0}\left(\binom{n-j}{j}+\binom{n-j-1}{j-1}\right)(1+x)^{j}
$$

The number of induced k-dimensional cubes of Ω_{n} is follows immediately.
Corollary 3.21 For $n \geq 2$,

$$
q_{n, k}=\sum_{j=k}^{\lfloor n / 2\rfloor} Y(n-j, j)\binom{j}{k}=\sum_{j=k}^{\lfloor n / 2\rfloor}\left(\binom{n-j}{j}+\binom{n-j-1}{j-1}\right)\binom{j}{k} .
$$

Remark: In Klavžar and Mollard [18], $n-a-1$ is printed incorrectly as $n-a+1$ in Theorem 3.2 and $n-i-1$ as $n-i+1$ in Corollary 3.3.

By Corollary 3.21 and

$$
F_{n}=\sum_{j=0}^{\lfloor(n-1) / 2\rfloor}\binom{n-j-1}{j}=\sum_{j=1}^{\lfloor(n+1) / 2\rfloor}\binom{n-j}{j-1}
$$

we obtained again Part (1) of Theorem 3.14
As a consequence of Corollary 4.10 in [32], it is clear that the follow corollary.
Corollary 3.22 For $n \geq 2$,

$$
\begin{aligned}
& \sum_{k \geq 0} \sum_{j=k}^{\lfloor n / 2\rfloor}\left(\binom{n-j}{j}+\binom{n-j-1}{j-1}\right)\binom{j}{k}(-1)^{k}=1 . \\
& \sum_{k \geq 0} \sum_{j=k}^{\lfloor n / 2\rfloor}\left(\binom{n-j}{j}+\binom{n-j-1}{j-1}\right)\binom{j}{k} k(-1)^{k}=n .
\end{aligned}
$$

Using Kronecker delta function again, we give another generating function.
Theorem 3.23 For $k \geq 1$ is fixed, the generating function of $q_{n, k}$ is

$$
\sum_{n \geq 0} q_{n, k} y^{n}=\frac{(2-y) y^{2 k}}{\left(1-y-y^{2}\right)^{k+1}}+y \delta_{k 1}
$$

3.4 Maximal cube polynomials

Let $h_{n, k}:=h_{k}\left(\Omega_{n}\right)$ be the number of maximal k-dimensional cubes in Ω_{n}, let $h_{n, k}=0$ if no maximal k dimensional induced cube of Ω_{n} exists, and let $H_{n}(x)=\sum_{k \geq 0} h_{n, k} x^{k}$ be the maximal cube polynomial of Ω_{n}. Observe that although the recurrence relation is same as that of $g_{n, k}$ in [23], the initial values are different, our results are different from those in [23].

Combining $\Omega_{n-1} \subset \Omega_{n}$, Theorem 3.2 and Figure 3 indicate that the recurrence relation of $h_{n, k}$.
Proposition 3.24 For $n \geq 4$,

$$
h_{n, k}=h_{n-2, k-1}+h_{n-3, k-1} .
$$

We list the first few of $H_{n}(x)$ as follows.

$$
\begin{aligned}
& H_{0}(x)=1 \\
& H_{1}(x)=x \\
& H_{2}(x)=2 x \\
& H_{3}(x)=3 x \\
& H_{4}(x)=x+2 x^{2} \\
& H_{5}(x)=5 x^{2}
\end{aligned}
$$

And, from Proposition 3.24 the recurrence relation of $H_{n}(x)$ is given easily.
Proposition 3.25 For $n \geq 5$,

$$
H_{n}(x)=x H_{n-2}(x)+x H_{n-3}(x) .
$$

The ($1,2,3$)-Padovan numbers p_{n}^{\prime} is defined as: $p_{0}^{\prime}=1, p_{1}^{\prime}=2, p_{2}^{\prime}=3$ and $p_{n}^{\prime}=p_{n-2}^{\prime}+p_{n-3}^{\prime}$ for $n \geq 3$. It is not difficult to verify that for $n \geq 1, H_{n}(1)=p_{n-1}^{\prime}$.

Furthermore, we obtain the generating functions of $H_{n}(x)$ and p_{n}^{\prime} by Proposition 3.25 ,
Theorem 3.26 The generating function of $H_{n}(x)$ is

$$
\sum_{n=0}^{\infty} H_{n}(x) y^{n}=\frac{2+y}{1-x y^{2}(1+y)}-(1-x) y-1
$$

and the generating function of p_{n}^{\prime} is

$$
\sum_{n=0}^{\infty} p_{n}^{\prime} y^{n}=\frac{1+2 y+2 y^{2}}{1-y^{2}-y^{3}}
$$

Expanding the right side of $\sum_{n \geq 0} H_{n}(x) y^{n}$ into formal power series, we have result of $h_{n, k}$ by Lucas triangle.

Proposition 3.27 For $n \geq 2$,

$$
h_{n, k}=\binom{k}{3 k-n}+\binom{k+1}{3 k-n+1}=Y(k+1,3 k+1-n) .
$$

From another point of view, using Kronecker delta function, we get directly the generating function of $h_{n, k}$.

Proposition 3.28 For $k \geq 1$,

$$
\sum_{n \geq 0} h_{n, k} y^{n}=\left(y^{2}(1+y)\right)^{k}(2+y)+y \delta_{k 1}
$$

And by Proposition 3.27 the number of terms of $H_{n}(x)$ is determined easily.
Proposition 3.29 Let $n=6 m+b$ and $0 \leq b \leq 5$. The number of terms of $H_{n}(x)$ is

$$
\begin{cases}m+2, & \text { if } b=4 \\ m+1, & \text { otherwise }\end{cases}
$$

3.5 Disjoint cube polynomials

Let $s_{n, k}:=s_{k}\left(\Omega_{n}\right)$ denote the maximum number of disjoint k-dimensional cubes in Ω_{n}. Let $s_{n, k}=0$ if no k-dimensional induced hypercubes of Ω_{n} exists. And let $S_{n}(x)=\sum_{k \geq 0} s_{n, k} x^{k}$ be the disjoint cube polynomial.

Let

$$
\theta_{n}= \begin{cases}0, & \text { if } 3 \mid n \\ 1, & \text { otherwise }\end{cases}
$$

And let

$$
\eta_{n}= \begin{cases}-1, & \text { if } n=0 \\ 1, & \text { if } n=1 \\ 0, & \text { otherwise }\end{cases}
$$

Combining Theorem 3.2 and Figure 3, using θ_{n} and η_{n}, we obtain the recurrence relation of $s_{n, k}$ similar to $q_{k}(n)$ in [9]. The results in [9, 27] are only on Fibonacci cubes, and there is no recurrence relations and generating functions in [27.

Proposition 3.30 For $n \geq 0$,

$$
s_{n, 0}=\left\lceil\frac{L_{n}}{2}\right\rceil=\frac{L_{n}+\theta_{n}}{2}
$$

and

$$
s_{n, 1}=\left\lfloor\frac{q_{n, 0}}{2}\right\rfloor=\frac{L_{n}-\theta_{n}}{2}+\eta_{n}
$$

More general, for $n \geq 4$ and $k \geq 2$,

$$
s_{n, k}=s_{n-2, k-1}+s_{n-3, k}
$$

We have the maximum number of maximum disjoint cubes by Propositions 3.11 and 3.30
Corollary 3.31 The maximum number of maximum disjoint cubes is 1 ($2 \mid n$) or $2(2 \nmid n)$ for $n \geq 2$.
The first few of $S_{n}(x)$ is listed as follows.

$$
\begin{aligned}
& S_{0}(x)=1 \\
& S_{1}(x)=1+x \\
& S_{2}(x)=2+x \\
& S_{3}(x)=2+2 x \\
& S_{4}(x)=4+3 x+x^{2} \\
& S_{5}(x)=6+5 x+2 x^{2}
\end{aligned}
$$

Note that $2 \mid L_{3 m}($ for $m \geq 0)$, we have Theorem 3.32 immediately by Proposition 3.30,
Theorem 3.32 For $n \geq 4$,

$$
S_{n}(x)=x S_{n-2}(x)+S_{n-3}(x)+\frac{L_{n-2}-\theta_{n}}{2} x-\eta_{n-3} x+\frac{L_{n}-L_{n-3}}{2}
$$

Combining Theorem 3.32 and the generating functions of L_{n}, θ_{n} and η_{n}, the generating function of $S_{n}(x)$ can be obtained by a tedious calculations.

Theorem 3.33 The generating function of $S_{n}(x)$ is

$$
\sum_{n \geq 0} S_{n}(x) y^{n}=\frac{1-(3-x) y^{3}+(2-x) y^{6}+x y^{8}}{\left(1-y-y^{2}\right)\left(1-y^{3}\right)\left(1-x y^{2}-y^{3}\right)}+x y
$$

By the generating function of $\theta_{n}(x)$, we obtain $\sum_{n \geq 0} s_{n, 1} y^{n}$; moreover, we have the following theorem.
Theorem 3.34 For $k \geq 1$ is a fixed integer, the generating function of $s_{n, k}$ is

$$
\sum_{n \geq 0} s_{n, k} y^{n}=\frac{1}{2}\left(\frac{y^{2}}{1-y^{3}}\right)^{k-1}\left(\frac{y+2 y^{2}}{1-y-y^{2}}-\frac{y+y^{2}}{1-y^{3}}\right)+y \delta_{k 1}
$$

3.6 Degree sequences polynomials

Let $d_{n, k}:=d_{k}\left(\Omega_{n}\right)$ denote the number of vertices of degree k in Ω_{n}, i.e. $d_{n, k}=\left|\left\{v \in V\left(\Omega_{n}\right) \mid \operatorname{deg}_{\Omega_{n}}(v)=k\right\}\right|$, and let $d_{n, k}=0$ if no vertex of degree k in Ω_{n} exists. In fact, although the recurrence relation is same as that of $\ell_{n, k}$ in [14], the initial values are different, thus our results are different from those in [14]. The following proposition can be shown by inducing on $\left|V\left(\Omega_{n}\right)\right|$.

Proposition 3.35 The minimum and maximum degree of Ω_{n} are $\delta\left(\Omega_{n}\right)=\left\lfloor\frac{n+1}{3}\right\rfloor$ and $\Delta\left(\Omega_{n}\right)=n-1$ ($n \geq 3$), respectively. Thus, the both connectivity and edge connectivity of Ω_{n} is $\left\lfloor\frac{n+1}{3}\right\rfloor$ [36].

Moreover, for $m \geq 1$,

$$
d_{n, \delta\left(\Omega_{n}\right)}= \begin{cases}\frac{m(m+3)}{2}, & \text { if } n=3 m-1 \\ m+1, & \text { if } n=3 m \\ 1, & \text { if } n=3 m+1\end{cases}
$$

And for $n \geq 5, d_{n, \Delta\left(\Omega_{n}\right)}=2$.
By the convex expansion for finite distributive lattices in [32], we have a lemma on degree.
Lemma 3.36 ([32]) Let L be a finite distributive lattice. If K is a cutting of L, then

$$
d_{k}((L \boxplus K) \boxplus K)=d_{k}(L \boxplus K)+d_{k-2}(K) .
$$

Combining Theorem 3.2 and Lemma 3.36, we get the relation of Ω_{n} and Γ_{n} on degree.
Proposition 3.37 For $n \geq 3$,

$$
d_{n, k}=d_{k}\left(\Gamma_{n-1}\right)+d_{k-2}\left(\Gamma_{n-3}\right)
$$

Lemma 3.38 ([14]) The number of vertices of degree k of Γ_{n} is

$$
d_{k}\left(\Gamma_{n}\right)=\sum_{j=0}^{k}\binom{n-2 j}{k-j}\binom{j+1}{n-k-j+1}
$$

Hence, a formula of $d_{n, k}$ follows immediately.
Proposition 3.39 For $n \geq 2$, the number of vertices of degree k of Ω_{n} is

$$
d_{n, k}=\sum_{j=0}^{k}\binom{j+1}{n-k-j}\left(\binom{n-2 j-1}{k-j}+\binom{n-2 j-3}{k-j-2}\right)
$$

On the other hand, we have the recurrence relation of $d_{n, k}$ illustrated in Figure 5 ,

Figure 5: Illustrating the recurrence relation of $d_{n, k}$

Proposition 3.40 For $n \geq 5$,

$$
d_{n, k}=d_{n-2, k-1}+d_{n-1, k-1}-d_{n-3, k-2}+d_{n-3, k-1}
$$

Let

$$
D_{n}(x)=\sum_{k \geq 0} d_{n, k} x^{k}
$$

be the degree sequence polynomial of Ω_{n} and we list the first few of $D_{n}(x)$.

$$
\begin{aligned}
& D_{0}(x)=1 \\
& D_{1}(x)=2 x \\
& D_{2}(x)=2 x+x^{2} \\
& D_{3}(x)=2 x+2 x^{2} \\
& D_{4}(x)=x+3 x^{2}+3 x^{3} \\
& D_{5}(x)=5 x^{2}+4 x^{3}+2 x^{4}
\end{aligned}
$$

In addition, the recurrence relation of $D_{n}(x)$ is a straightforward consequence.
Proposition 3.41 For $n \geq 5$,

$$
D_{n}(x)=x D_{n-1}(x)+x D_{n-2}(x)+\left(x-x^{2}\right) D_{n-3}(x)
$$

Therefore, the generating function of $D_{n}(x)$ is obtained.
Theorem 3.42 The generating function of $D_{n}(x)$ is given by

$$
\sum_{n \geq 0} D_{n}(x) y^{n}=\frac{(1-x y+y)\left(1+x^{2} y^{2}\right)}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}+(2 x-1) y
$$

Similar to [14, from Theorem 3.42, using the expansion

$$
\frac{x^{n}}{(1-x)^{n+1}}=\sum_{j \geq n}\binom{j}{n} x^{j},
$$

we give a proof of Proposition 3.39

Proof (of Proposition 3.39) Consider the formal power series expansion of

$$
f(x, y)=\frac{1}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}
$$

we obtain

$$
\left[x^{k}\right]\left[y^{n}\right] f(x, y)=\sum_{j=0}^{k}\binom{n-2 j}{k-j}\binom{j}{n-k-j}
$$

Note that

$$
\frac{1+y-x y}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}=f(x, y)+y f(x, y)-x y f(x, y)
$$

we have

$$
\begin{aligned}
& {\left[x^{k}\right]\left[y^{n}\right] \frac{1+y-x y}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}} \\
& =\left[x^{k}\right]\left[y^{n}\right] F(x, y)+\left[x^{k}\right]\left[y^{n-1}\right] F(x, y)-\left[x^{k-1}\right]\left[y^{n-1}\right] F(x, y) \\
& =\sum_{j=0}^{k}\binom{n-2 j}{k-j}\binom{j}{n-k-j}-\sum_{j=0}^{k}\binom{n-2 j-1}{k-j-1}\binom{j}{n-k-j}+\sum_{j=0}^{k}\binom{n-2 j-1}{k-j}\binom{j}{n-k-j-1} \\
& =\sum_{j=0}^{k}\binom{n-2 j-1}{k-j}\binom{j}{n-k-j}+\sum_{j=0}^{k}\binom{n-2 j-1}{k-j}\binom{j}{n-k-j-1} \\
& =\sum_{j=0}^{k}\binom{n-2 j-1}{k-j}\binom{j+1}{n-k-j} .
\end{aligned}
$$

In addition, we have

$$
\left[x^{k}\right]\left[y^{n}\right] \frac{(1+y-x y) x^{2} y^{2}}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}=\left[x^{k-2}\right]\left[y^{n-2}\right] \frac{1+y-x y}{(1-x y)\left(1-x y^{2}\right)-x y^{3}}=\sum_{j=0}^{k-2}\binom{n-2 j-3}{k-j-2}\binom{j+1}{n-k-j}
$$

Hence, Proposition 3.39 holds for $n \geq 2$.
And since $d_{n, k}>0$ for $k \in\left\{\left\lfloor\frac{n+1}{3}\right\rfloor, \ldots, n-1\right\}$, the following corollary holds.
Corollary 3.43 The degree spectrum of Ω_{n} is continuous.

3.7 Indegree and outdegree sequence polynomial

Let $d_{n, k}^{-}$denote the number of vertices of indegree k in Ω_{n}, or the number of anti-chains with exactly k elements in Ξ_{n}, or the number of elements covered exactly by k elements in $\mathcal{F}\left(\Xi_{n}\right)$. From the structure of Ω_{n} as shown in Figure 3 and Theorem 4.7 [32], it is not difficult to obtain the recurrence relation of $d_{n, k}^{-}$.

Proposition 3.44 For $n \geq 0, d_{n, 0}^{-}=1$; and for $n \geq 4, k \geq 1$,

$$
d_{n, k}^{-}=d_{n-1, k}^{-}+d_{n-2, k-1}^{-}
$$

Moreover, we have the following corollary.
Corollary 3.45 For $k \geq 0$ and $n \geq 2 k+3$,

$$
d_{n, k}^{-}=\sum_{j=0}^{k} d_{n-2 j-1, k-j}^{-}
$$

Let

$$
D_{n}^{-}(x)=\sum_{k=0}^{\left\lfloor\frac{n}{2}\right\rfloor} d_{n, k}^{-} x^{k}
$$

be the indegree sequence polynomial of Ω_{n} and list the first few of $D_{n}^{-}(x)$ as follows.

$$
\begin{aligned}
& D_{0}^{-}(x)=1 \\
& D_{1}^{-}(x)=1+x \\
& D_{2}^{-}(x)=1+2 x \\
& D_{3}^{-}(x)=1+3 x \\
& D_{4}^{-}(x)=1+4 x+2 x^{2} \\
& D_{5}^{-}(x)=1+5 x+5 x^{2}
\end{aligned}
$$

It follows that the recurrence relation of $D_{n}^{-}(x)$ from Proposition 3.44.
Proposition 3.46 For $n \geq 4$,

$$
D_{n}^{-}(x)=D_{n-1}^{-}(x)+x D_{n-2}^{-}(x)
$$

On the other hand, we have two propositions on the cube polynomials.
Proposition 3.47 By the relation of degree and edge in a graph,

$$
\left.\frac{\partial D_{n}(x)}{\partial x}\right|_{x=1}=\left.2 \frac{\partial D_{n}^{-}(x)}{\partial x}\right|_{x=1}=2 q_{n, 1} .
$$

Proposition 3.48 ([32]) For $n \geq 0$,

$$
D_{n}^{-}(x)=Q_{n}(x-1) .
$$

Combining Proposition 3.48 and results on cube polynomials, it is obvious that 3.49 3.54 hold.
Theorem 3.49 The generating function of $D_{n}^{-}(x)$ is

$$
\sum_{n \geq 0} D_{n}^{-}(x) y^{n}=\frac{2-y}{1-y-x y^{2}}+x y-1 .
$$

Proposition 3.50 For $n \geq 2$,

$$
d_{n, k}^{-}=Y(n-k, k)=\binom{n-k}{k}+\binom{n-k-1}{k-1} .
$$

Corollary 3.51 The maximum indegree of Ω_{n} is $\lfloor n / 2\rfloor$, and the indegree spectrum of Ω_{n} is continuous.
We can obtain another formula on $D_{n}^{-}(x)$ by Proposition 3.46]
Proposition 3.52 For $n \geq 1$,

$$
D_{n}^{-}(x)=\left(\frac{1+\sqrt{1+4 x}}{2}\right)^{n}+\left(\frac{1-\sqrt{1+4 x}}{2}\right)^{n}
$$

Theorem 3.53 The roots of $D_{n}^{-}(x)$ is

$$
x=-\frac{1+\tan ^{2} \frac{(2 k-1) \pi}{2 n}}{4},
$$

for $n \geq 2$, where $1 \leq k \leq n$.

Corollary 3.54 For all $n \geq 2$, the sequences of coefficients of $D_{n}^{-}(x)$ is log-concave and unimodal.
We also obtain another generating function of $d_{n, k}^{-}$.
Theorem 3.55 For $k \geq 1$ is fixed, the generating function of $d_{n, k}^{-}$is

$$
\sum_{n \geq 0} d_{n, k}^{-} y^{n}=\frac{y^{2 k}(2-y)}{(1-y)^{k+1}}+y \delta_{k 1}
$$

The results on outdegree are exactly same as indegree [32, thus they are not listed here.

4 Summary

By the consequences on Λ_{n} [41, We have the following relation of the matchable Lucas cube Ω_{n} and the Lucas cube Λ_{n} for $n \geq 2$.

Theorem 4.1 The number of induced cubes of Λ_{n} and Ω_{n} is same, but structure is different. In other word, for $m \geq 1, \Lambda_{2 m}$ can be orientated as the Hasse digram of a finite distributive lattice that is not isomorphic to $\Omega_{2 m}$, but $\Lambda_{2 m+1}$ can not be a Hasse digram of a finite distributive lattice.

Acknowledgments

The authors are grateful to the referees for their careful reading and many valuable suggestions.

References

[1] Bondy J. A., and Murty U. S. R. Graph Theory, vol. 244 of Graduate Texts in Mathematics. SpringerVerlag, London, 2008.
[2] Comtet L. Advanced Combinatorics: The art of finite and infinite expansions, enlarged ed. D. Reidel Publishing Company, Dordrecht, 1974.
[3] Davey B. A., and Priestley H. A. Introduction to Lattices and Order, 2nd ed. Cambridge University Press, Cambridge, 2002.
[4] Day A. A simple solution to the word problem for lattices. Canad Math Bull 13, 2 (1970), 253-254.
[5] Day A. Doubling constructions in lattice theory. Canad. J. Math. 44, 2 (1992), 252-269.
[6] Day A., Gaskill H., and Poguntke W. Distributive lattices with finite projective covers. Pacific Journal of Mathematics 81, 1 (1979), 45-59.
[7] Fournier J. Combinatorics of perfect matchings in plane bipartite graphs and application to tilings. Theoretical Computer Science 303, 2 (2003), 333 - 351. Tilings of the Plane.
[8] Grätzer G. Lattice Theory: Foundation. Birkhäuser, Basel, 2011.
[9] Gravier S., Mollard M., Špacapan S., and Zemljič S. S. On disjoint hypercubes in Fibonacci cubes. Discrete Appl Math 190-191 (2015), 50 - 55.
[10] Gründler W. Signifikante elektronenstrukturen fur benzenoide kohlenwasserstoffe, wiss. Z. Univ. Halle 31 (1982), 97-116.
[11] Harary F. Graph Theory. Addison-Wesley Pulishing Company, Inc., Reading, 1969.
[12] Hsu W. J. Fibonacci cubes-a new interconnection topology. IEEE Trans Parallel Distrib Syst 4, 1 (Jan. 1993), 3-12.
[13] Klavžar S. Structure of Fibonacci cubes: a survey. J Combin Optim 25, 4 (2013), 505-522.
[14] Klavžar S., Mollard M., and Petkovšek M. The degree sequence of Fibonacci and Lucas cubes. Discrete Math 311, 14 (2011), 1310 - 1322.
[15] Klavžar S., Vesel A., and Žigert Pleteršek P. On resonance graphs of catacondensed hexagonal graphs: Structure, coding, and Hamiltonian path algorithm. MATCH Commun Math Comput Chem 49 (2003), 99-116.
[16] Klavžar S., and Žigert Pleteršek P. Fibonacci cubes are the resonance graphs of fibonaccences. Fibonacci Quarterly 43 (2005), 269-276.
[17] Klavžar S., Žigert Pleteršek P., and Brinkmann G. Resonance graphs of catacondensed even ring systems are median. Discrete Math 253, 13 (2002), 35-43. Combinatorics and Algorithms.
[18] Klavžar S., and Mollard M. Cube polynomial of Fibonacci and Lucas cubes. Acta Appl Math 117, 1 (2012), 93-105.
[19] Koshy T. Fibonacci and Lucas numbers with applications. New York, NY: Wiley, 2001.
[20] Lam P. C. B., and Zhang H. A distributive lattice on the set of perfect matchings of a plane bipartite graph. Order 20 (2003), 13-29.
[21] Lovász L., and Plummer M. D. Matching Theory. North-Holland, Amsterdam, 1986.
[22] Mason J. C., and Handscomb D. C. Chebyshev polynomials. CRC Press, 2002.
[23] Mollard M. Maximal hypercubes in Fibonacci and Lucas cubes. Discrete Appl Math 160, 16 (2012), $2479-2483$.
[24] Munarini E., Cippo C. P., and Zagaglia Salvi N. On the Lucas cubes. Fibonacci Quarterly 39, 1 (2001), 12-21.
[25] Munarini E., and Zagaglia Salvi N. On the rank polynomial of the lattice of order ideals of fences and crowns. Discrete Math 259, 1 (2002), 163-177.
[26] Randić M. Resonance in catacondensed benzenoid hydrocarbons. International journal of quantum chemistry 63, 2 (1997), 585-600.
[27] Saygı E., and Eğecioğlu O. Counting disjoint hypercubes in Fibonacci cubes. Discrete Appl Math 215 (2016), 231 - 237.
[28] Saygı E., and Eğecioğlu Ö. q-counting hypercubes in Lucas cubes. Turkish Journal of Mathematics 42, 1 (2018), 190-203.
[29] Sloane N. J. A. On-line encyclopedia of integer sequences. http://oeis.org/, 2019.
[30] Stanley R. P. Logconcave and unimodal sequences in algebra, combinatorics, and geometry. Annals of the New York Academy of Sciences 576, 1 (1989), 500-535.
[31] Stanley R. P. Enumerative Combinatorics: Volume 1, 2nd ed., vol. 49 of Cambridge studies in advanced mathematics. Cambridge University Press, Cambridge, 2011.
[32] Wang X., Zhao X., and Yao H. Convex expansion for finite distributive lattices with applications. arXiv: 1810.06762 (2018).
[33] Wilf H. S. Generatingfunctionology, second ed. Academic Press, Inc., San Diego, 1994.
[34] Yao H., and Zhang H. Non-matchable distributive lattices. Discrete Math 338, 3 (2015), 122-132.
[35] Zagaglia Salvi N. The Lucas lattice. In The 2001 International Parallel and Distributed Processing Symposium (2001), H. R. Arabnia, Ed., vol. 2, IEEE, pp. 719-721.
[36] Zhang F., Guo X., and Chen R. The connectivity of Z-transformation graph of perfect matchings of hexagonal systems. Acta Math Appl Sin (English Ser) 4, 2 (1988), 131-135.
[37] Zhang F., Guo X., and Chen R. Z-transformation graphs of perfect matchings of hexagonal systems. Discrete Math 72, 1 (1988), 405-415.
[38] Zhang H. Z-transformation graphs of perfect matchings of plane bipartite graphs: a survey. MATCH Commun Math Comput Chem 56, 3 (2006), 457-476.
[39] Zhang H., Lam P. C. B., and Shiu W. C. Resonance graphs and a binary coding for the 1-factors of benzenoid systems. SIAM J Discrete Math 22, 3 (2008), 971-984.
[40] Zhang H., Ou L., and Yao H. Fibonacci-like cubes as Z-transformation graphs. Discrete Math 309 (2009), 1284-1293.
[41] Zhang H., Yang D., and Yao H. Decomposition theorem on matchable distributive lattices. Discrete Appl Math 166 (2014), 239-248.
[42] Zhang H., Zha R., and Yao H. Z-transformation graphs of maximum matchings of plane bipartite graphs. Discrete Appl Math 134, 1-3 (2004), 339-350.
[43] Zhang H., and Zhang F. The rotation graphs of perfect matchings of plane bipartite graphs. Discrete Appl Math 73, 1 (1997), 5-12.
[44] Zhang H., and Zhang F. Block graphs of Z-transformation graphs of perfect matchings of plane elementary bipartite graphs. Ars Combin 53 (1999), 309-314.
[45] Zhang H., and Zhang F. Total Z-transformation graphs of perfect matching of plane bipartite graphs. Electron Notes Discrete Math 5 (2000), 317-320.
[46] Zhang H., Zhao L., and Yao H. The Z-transformation graph for an outerplane bipartite graph has a Hamilton path. Appl Math Lett 17, 8 (2004), 897-901.
[47] Žigert Pleteršek P. Resonance graphs of kinky benzenoid systems are daisy cubes. arXiv: 1710.07501 (2017).
[48] Žigert Pleteršek P., and Berlic M. Resonance graphs of armchair nanotubes cyclic polypyrenes and amalgams of Lucas cubes. MATCH Commun. Math. Comput. Chem 70 (2013), 533-543.

[^0]: * Corresponding author.

