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Structure and enumeration results of matchable Lucas cubes
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Abstract

A lucasene is a hexagon chain that is similar to a fibonaccene, an L-fence is a poset the Hasse diagram

of which is isomorphic to the directed inner dual graph of the corresponding lucasene. A new class of

cubes, which named after matchable Lucas cubes according to the number of its vertices (or elements),

are a series of directed or undirected Hasse diagrams of filter lattices of L-fences. The basic properties

and several classes of polynomials, e.g. rank generating functions, cube polynomials and degree sequence

polynomials, of matchable Lucas cubes are obtained. Some special conclusions on binomial coefficients

and Lucas triangle are given.

Key words: Z-transformation digraph, finite distributive lattice, matchable Lucas cube, rank gen-

erating function, (maximal or disjoint) cube polynomial, degree (or indegree) spectrum polynomial

2010 AMS Subj. Class.: 11B39, 05C70, 06D05, 06A07

1 Introduction

The Z-transformation graph (also called resonance graph) is introduced independently by Gründler [10],

Zhang et al. [37], Randić [26] and Fournier [7], and widely studied by Zhang and Zhang [44, 45], Kalvažar et

al. [15, 16, 17], Lam and Zhang [20], Zhang et al. [38, 40, 42] and Žigert Pleteršek [47, 48]. Recently, Zhang

et al. [41] introduced the concept of matchable distributive lattice and got some consequences on matchable

distributive lattices, Yao and Zhang [34] obtained some results on non-matchable distributive lattices with a

cut-element.

The Fibonacci cubes Γn [12] are defined by Hsu, and Klavžar and Žigert Pleteršek [16] found that the

Fibonacci cubes are the resonance graphs of fibonaccenes. The Lucas cubes or Lucas lattices Λn [24, 35] are

defined similarly. In addition, the rank gererating functions [25], the cube polynomials [18, 28], the maximal

cube polynomials [23], the disjoint cube polynomials [9, 27] and the degree sequence polynomials [14] of

Fibonacci and Lucas cubes are studied. And Klavžar have a survey [13] on Fibonacci cubes. In addition,

Yao and Zhang [34] obtained the matchabilities of Fibonacci and Lucas cubes.

The structure of this paper is as follows. The main concept in the paper, matchable Lucas cube, is intro-

duced by lucasene and L-fence. The basic properties of matchable Lucas cubes are obtained. In addition, the

rank generating functions, the cube polynomials, the maximal cube polynomials, the disjoint cube polynomi-

als, the degree spectrum polynomials and the indegree (or outdegree) spectrum polynomials are considered.

And the relation between rank generating functions and Chebyshev polynomials, and the relation between

(maximal) cube (or indegree sequence) polynomials and Lucas triangle are found.

∗Corresponding author.
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2 Preliminaries

A set P equipped with a binary relation ≤ satisfying reflexivity, antisymmetry and transitivity is said to be

a partially ordered set (poset for short). Given any poset P , the dual P ∗ of P is formed by defining x ≤ y

to hold in P ∗ if and only if y ≤ x holds in P . A subposet S of P is a chain if any two elements of S are

comparable, and denoted by n if |S| = n [3]. Let x ≺ y denote y covers x in P , i.e. x < y and x ≤ z < y

implies z = x. For x ∈ P , ↑ x = { y ∈ P | x ≤ y } and ↓ x = { z ∈ P | z ≤ x }. The subset S of the poset P is

called convex if a, b ∈ S, c ∈ P , and a ≤ c ≤ b imply that c ∈ S. Let P be a poset and F ⊆ P . The subposet

F is a filter if, whenever x ∈ F , y ∈ P and x ≤ y, we have y ∈ F [3]. The set of all filters of a poset P is

denoted by F(P ), and carries the usual anti-inclusion order, forms a finite distributive lattice [3, 31] called

filter lattice. For a finite lattice L, we denote by 0̂L (resp. 1̂L) the minimum (resp. maximum) element in L.

The symmetric difference of two finite sets A and B is defined as A ⊕ B := (A ∪ B) \ (A ∩ B). If M is

a perfect matching of a graph and C is an M -alternating cycle of the graph, then the symmetric difference

of M and edge-set E(C) is another perfect matching of the graph, which is simply denoted by M ⊕ C. Let

G be a plane bipartite graph with a perfect matching, and the vertices of G are colored properly black and

white such that the two ends of every edge receive different colors. An M -alternating cycle of G is said to

be proper, if every edge of the cycle belonging to M goes from white end-vertex to black end-vertex by the

clockwise orientation of the cycle; otherwise improper [43]. An inner face of a graph is called a cell if its

boundary is a cycle, and we will say that the cycle is a cell too.

For some concepts and notations not explained in the paper, refer to [3, 8, 31] for poset and lattice, [1, 11]

for graph theory.

Zhang and Zhang [45] extended the concept of Z-transformation graph of a hexagonal system to plane

bipartite graphs.

Definition 2.1 ([45]) Let G be a plane bipartite graph. The Z-transformation graph Z(G) is defined on

M(G): M1,M2 ∈ M(G) are joined by an edge if and only if M1 ⊕M2 is a cell of G. And Z-transformation

digraph ~Z(G) is the orientation of Z(G): an edge M1M2 of Z(G) is oriented from M1 to M2 if M1 ⊕ M2

form a proper M1-alternating (thus improper M2-alternating) cell.

Let G be a bipartite graph, from Theorem 4.1.1 in [21], we have that G is elementary if and only if G

is connected and every edge of G lies in a perfect matching of G. Let G be a plane bipartite graph with a

perfect matching, a binary relation ≤ on M(G) is defined as: for M1,M2 ∈ M(G), M1 ≤ M2 if and only if
~Z(G) has a directed path from M2 to M1 [45]. In addition, Lam and Zhang [20] established the relationship

between finite distributive lattices and Z-transformation directed graphs.

Theorem 2.1 ([20]) If G is a plane elementary bipartite graph, then M(G) := (M(G),≤) is a finite dis-

tributive lattice and its Hasse diagram is isomorphic to ~Z(G).

Recently, Zhang et al. [41] introduced the concept of matchable distributive lattice by Theorem 2.1.

Definition 2.2 ([41]) A finite distributive lattice L is matchable if there is a plane weakly elementary bi-

partite graph G such that L ∼= M(G); otherwise it is non-matchable.

The Lucas numbers is defined as follows: L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2. The

generating function of Ln is
∞
∑

n=0

Lnx
n =

2− x

1− x− x2
.
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The Lucas triangle [19] Y (or see A029635 in [29]) is shown in Table 1, and the entry in the n-th row and

k-th column of Lucas triangle is given by

Y (n, k) =

(

n

k

)

+

(

n− 1

k − 1

)

= Y (n− 1, k − 1) + Y (n− 1, k),

where 0 ≤ k ≤ n and
(

−1
−1

)

= 1.

Table 1: The first six rows of Lucas triangle Y

2

1 2

1 3 2

1 4 5 2

1 5 9 7 2

1 6 14 16 9 2

It is similar to Fibonacci numbers with binomial coefficients that Lucas numbers are given by Lucas

triangle [19]. That is for n ≥ 0,
∑

k≥0

Y (n− k, k) = Ln.

Let G be a 2-connected outerplanar bipartite graph. Let P (G) denote the poset of G determined from

the directed inner dual graph of G [41]. Moreover, Zhang et al. [41] proved the follow Theorem 2.2.

Theorem 2.2 ([41]) Let G be a 2-connected outerplanar bipartite graph, and let P (G) be the poset of G,

M(G) ∼= F(P (G)).

Let L be a lattice and I is a interval of L, Day [4] introduced a double structure L[I] := (L \ I) ∪ (I � 2)

and defined x ≤ y in L[I] if and only if one of the following hold:

(1) x, y ∈ L \ I and x ≤ y in L;

(2) x = (a, i), y ∈ L \ I and a ≤ y in L;

(3) x ∈ L \ I, y = (b, j) and x ≤ b in L;

(4) x = (a, i), y = (b, j) and a ≤ b in L and i ≤ j in 2.

We denote the distributive lattice L[K] by L⊞K [32] if L is a finite distributive lattice and interval K is a

cutting (sublattice) [32] of L, i.e. if L = ↓ 1̂K ∪↑ 0̂K [5, 6]. Let P be a poset and x ∈ P . Let P −x := P \ {x}
and P ∗ x := P \ (↑ x ∪ ↓ x). Wang et al. obtained a decomposition for filter lattice.

Theorem 2.3 ([32]) If P is a poset and x ∈ P , then

F(P ) = F(P − x)⊞ F(P ∗ x).

Let [xn]g(x) denote the coefficient of xn in the power series expansion of g(x) [33]. A perfectly obvious

property of this symbol, which we will use repeatedly, is [xn]{xmg(x)} = [xn−m]g(x).
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3 Matchable Lucas cubes

3.1 Lucasenes

Definition 3.1 A lucasene is a hexagonal chain in which no three hexagons are linearly attached other than

exactly three hexagons are linearly attached at one end.

. . . . . .

. . . . . .

(a) Two lucasenes and its directed inner dual graph

x1

x2

x3

xn−1

xn

. . . . . .

x1

x2

x3 xn−1

xn
. . . . . .

(b) Two L-fences corresponding to 1(a)

Figure 1: Two lucasenes with directed inner dual graph and two L-fences corresponding to them

Definition 3.2 An L-fence Ξn is a poset the Hasse diagram of which is isomorphic to the directed inner

dual graph of lucasene with n hexagons.

By Theorems 2.1 and 2.2, Theorem 3.1 is obvious.

Theorem 3.1 The Z-transformation directed graph of lucasene with n hexagons is isomorphic to the Hasse

diagram of the filter lattice of Ξn.

It is similar to [31, Exercise 1.35(e)] that |F(Ξn)| = Ln for n ≥ 2, therefore the matchable Lucas

distributive lattices and the matchable Lucas cubes are introduced.

Definition 3.3 The filter lattice F(Ξn) of L-fence Ξn is called the n-th matchable Lucas distributive lattice,

denoted by Ωn; and its undirected Hasse diagram is called the n-th matchable Lucas cube, denoted by Ωn too.

For convenience, the (directed) Hasse diagram of F(Ξn) is denoted by Ωn too, and let |Ω0| = 1. The first

eight matchable Lucas cubes are shown in Figure 2.

Figure 2: The first eight matchable Lucas cubes Ω0, Ω1, . . . , Ω7

The structures of matchable Lucas cubes can be given as follows, as shown in Figures 3 and 4.
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Theorem 3.2 Let Ωn be the n-th matchable Lucas cube. For n ≥ 4,

Ωn
∼= Ωn−1 ⊞ Ωn−2

∼= (Ωn−2 ⊞ Ωn−2)⊞ Ωn−3;

or for n ≥ 3,

Ωn
∼= Γn−1 ⊞ Γn−3

∼= (Γ∗
n−2 ⊞ Γn−3)⊞ Γn−3.

Proof By Theorem 2.3, for poset Ξn as shown in Figure 1(b), we have for n ≥ 4,

F(Ξn) = F(Ξn − xn)⊞ F(Ξn ∗ xn) = F(Ξn−1)⊞ F(Ξn−2)

= (F((Ξn − xn)− xn−1)⊞ F((Ξn − xn) ∗ xn−1))⊞ F(Ξn ∗ xn) = (F(Ξn−2)⊞ F(Ξn−2))⊞ F(Ξn−3);

by Theorem 2.2, combining Zn−1 = Ξn − x1 = Ξn − x2 [25, 31], the directed inner dual graph of fibonaccene

with n hexagons and Zn are isomorphic [34], and Fibonacci cubes are the resonance graphs of fibonaccences

[16], we also have for n ≥ 3,

F(Ξn) = F(Ξn − x1)⊞ F(Ξn ∗ x1) = F(Zn−1)⊞ F(Zn−3)

= ((F((Ξn − x1)− x2)⊞ F((Ξn − x1) ∗ x2)))⊞ F(Ξn ∗ x1) = (F(Zn−2)
∗
⊞ F(Zn−3))⊞ F(Zn−3).

Therefore the structures of matchable Lucas cubes are obtained. �

Ωn−1Ωn−2

Ωn−2

Ωn−3

Ωn−3

Ωn−3

(a) 2 | n

Ωn−1 Ωn−2

Ωn−2

Ωn−3

Ωn−3

Ωn−3

(b) 2 ∤ n

Figure 3: The structure of Ωn for n ≥ 4

Γn−1

Γ∗
n−2

Γn−3

Γn−3

Γn−3

Γ∗
n−4

Γ∗
n−4

Γ∗
n−4

Γ∗
n−4

Figure 4: The structure of Ωn given by Γn

Proposition 3.3 The both height and diameter of Ωn are n + 1 [39], and thus the radius is ⌊n+2
2 ⌋. In

addition, Ωn is non-Eulerian and has a Hamiltonian path [46].
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3.2 Rank generating functions

Let rn,k := rk(Ωn) denote the number of elements of rank k in Ωn, and let Rn(x) := R(Ωn, x) =
∑

k≥0 rn,kx
k

be the rank generating function of Ωn [31, P291]. The first few of Rn(x) is listed.

R0(x) = 1

R1(x) = 1 + x

R2(x) = 1 + x+ x2

R3(x) = 1 + x+ x2 + x3

R4(x) = 1 + x+ 2x2 + 2x3 + x4

R5(x) = 1 + 2x+ 2x2 + 3x3 + 2x4 + x5

It is obvious that Rn(x) is always a polynomial with degree n. By Corollary 4.2 in [32] and Theorem 3.2,

we have Propositions 3.4 and 3.5.

Proposition 3.4 For n ≥ 3,

Rn(x) = R(Γn−1, x) + x3R(Γn−3, x),

where R(Γn, x) is the rank generating function of Γn [25, 31].

Proposition 3.5 For n ≥ 4

Rn(x) =







xRn−1(x) +Rn−2(x), if 2 ∤ n,

Rn−1(x) + x2Rn−2(x), if 2 | n.

In other words, for m ≥ 2,






R2m(x) = R2m−1(x) + x2R2m−2(x),

R2m+1(x) = xR2m(x) +R2m−1(x).

Let Am(x) = R2m(x) and let Bm(x) = R2m+1(x). For m ≥ 2, we have






Am(x) = Bm−1(x) + x2Am−1(x),

Bm(x) = xAm(x) +Bm−1(x).

Note that R2(1) = 3 and R3(1) = 4, by Proposition 3.5, thus for n ≥ 2, Rn(1) = Ln; for m ≥ 1,

Am(1) = L2m and Bm(1) = L2m+1. In addition, we have the recurrence relations of Am(x) and Bm(x).

Proposition 3.6 Let Am(x) = R2m(x) and let Bm(x) = R2m+1(x). For m ≥ 3,






Am(x) = (1 + x+ x2)Am−1(x) − x2Am−2(x),

Bm(x) = (1 + x+ x2)Bm−1(x)− x2Bm−2(x).

Proof By Proposition 3.5, for m ≥ 3,

Am(x) = Bm−1(x) + x2Am−1(x)

= xAm−1(x) +Bm−2(x) + x2Am−1(x)

= (x+ x2)Am−1(x) +Am−1(x)− x2Am−2(x)

= (1 + x+ x2)Am−1(x) − x2Am−2(x).

Likewise, the recurrence relation of Bm(x) can be obtained. �
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Considering Am(x) and Bm(x) with x = 1 in Proposition 3.6, we see a trivial result on Ln: for n ≥
4, Ln = 3Ln−2 − Ln−4. And we get the generating functions of Am(x) and Bm(x) by Proposition 3.6,

respectively.

Theorem 3.7 The generating functions of Am(x) and Bm(x) are

∑

m≥0

Am(x)zm =
1− xz2

1− (1 + x+ x2)z + x2z2

and
∑

m≥0

Bm(x)zm =
1 + x3z

1− (1 + x+ x2)z + x2z2
+ x,

respectively.

Proof By Proposition 3.6,
∑

m≥0

Am(x)zm =
∑

m≥3

Am(x)zm +A2(x)z
2 +A1(x)z +A0(x)

=
∑

m≥3

((1 + x+ x2)Am−1(x) − x2Am−2(x))z
m +A2(x)z

2 +A1(x)z +A0(x)

= (1 + x+ x2)z
∑

m≥2

Am(x)zm − x2z2
∑

m≥1

Am(x)zm +A2(x)z
2 +A1(x)z +A0(x)

= (1 + x+ x2)z
∑

m≥0

Am(x)zm − x2z2
∑

m≥0

Am(x)zm + 1− xz2

The generating function of Bm can be proved similarly. �

It should be pointed out that Am(x) and Bm(x) could be given by Chebyshev polynomials. Chebyshev

polynomials Un(x) [22, 33] of the second kind are defined as following: U0(x) = 1, U1(x) = 2x and Un(x) =

2xUn−1(x) − Un−2(x) for n ≥ 2. And the generating function of Um(x) is

∞
∑

n=0

Un(x)y
n =

1

1− 2xy + y2
.

Theorem 3.8 For m ≥ 1,

Am(x) = xm−2(1 + x)Um

(

1 + x+ x2

2x

)

− xm−2(1 + x+ x2)Um−1

(

1 + x+ x2

2x

)

,

and

Bm(x) = xmUm

(

1 + x+ x2

2x

)

+ xm+2Um−1

(

1 + x+ x2

2x

)

.

Proof Combining the generating function of Um(x) and Theorem 3.7,

Am(x) = [zm]
1− xz2

1− (1 + x+ x2)z + x2z2

= [zm]
1− xz2

1− 2 1+x+x2

2x (xz) + (xz)2

= [zm]
1

1− 2 1+x+x2

2x (xz) + (xz)2
− x[zm−2]

1

1− 2 1+x+x2

2x (xz) + (xz)2

= xmUm

(

1 + x+ x2

2x

)

− xm−1Um−2

(

1 + x+ x2

2x

)

= xm−2(1 + x)Um

(

1 + x+ x2

2x

)

− xm−2(1 + x+ x2)Um−1

(

1 + x+ x2

2x

)

.

Thus Bm(x) is obtained by Bm(x) = Am+1(x) − x2Am(x) and a tedious calculations. �
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Let
(

n;3
k

)

[2] denote the coefficient of xk in (1 + x+ x2)n, namely

(

n; 3

k

)

=

⌊k/2⌋
∑

j=0

(

n

k − j

)(

k − j

j

)

,

and see sequence A027907 in [29]. Using Kronecker delta function δ, we have the coefficient rn,k.

Theorem 3.9 For m ≥ 0,

r2m,k =

⌊m/2⌋
∑

j=0

((

m− j

j

)(

m− 2j; 3

k − 2j

)

+

(

m− j − 1

j − 1

)(

m− 2j; 3

k − 2j + 1

))

(−1)j ,

and

r2m+1,k = δm0δk1 +

⌊m/2⌋
∑

j=0

((

m− j

j

)(

m− 2j; 3

k − 2j

)

+

(

m− j − 1

j

)(

m− 2j − 1; 3

k − 2j − 3

))

(−1)j.

Proof Consider the polynomials gn(x) defined by

∑

n≥0

gn(x)z
n =

1

1− (1 + x+ x2)z + x2z2

such that

gn(x) =

⌊n/2⌋
∑

j=0

(

n− j

j

)

x2j(1 + x+ x2)n−2j(−1)j .

In addition, the coefficient of xk in gn(x) can be given by

[xk]gn(x) =

⌊n/2⌋
∑

j=0

(

n− j

j

)

[xk−2j ](1 + x+ x2)n−2j(−1)j =

⌊n/2⌋
∑

j=0

(

n− j

j

)(

n− 2j; 3

k − 2j

)

(−1)j.

Then, since Am(x) = gm(x)− xgm(x), we have

r2m,k = [xk]Am(x) = [xk]gm(x) − [xk−1]gm−2(x)

=

⌊m/2⌋
∑

j=0

(

m− j

j

)(

m− 2j; 3

k − 2j

)

(−1)j −
⌊m/2−1⌋
∑

j=0

(

m− 2− j

j

)(

m− 2− 2j; 3

k − 2j − 1

)

(−1)j

=

⌊m/2⌋
∑

j=0

(

m− j

j

)(

m− 2j; 3

k − 2j

)

(−1)j +

⌊m/2⌋
∑

j=1

(

m− j − 1

j − 1

)(

m− 2j; 3

k − 2j + 1

)

(−1)j

=

⌊m/2⌋
∑

j=0

((

m− j

j

)(

m− 2j; 3

k − 2j

)

+

(

m− j − 1

j − 1

)(

m− 2j; 3

k − 2j + 1

))

(−1)j.

Thus, r2m+1,k is obtained from Bm(x) = x+ gm(x) + x3gm−1(x) in the same way. �

The generating function of Rn(x) is also a straightforward consequence of Theorem 3.7.

Theorem 3.10 The generating function of Rn(x) is

∑

n≥0

Rn(x)y
n =

1 + y + x3y3 − xy4

1− (1 + x+ x2)y2 + x2y4
+ xy.
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Proof By the definition of Am(x) and Bm(x),

∑

n≥0

Rn(x)y
n =

∑

m≥0

Am(x)y2m +
∑

m≥0

Bm(x)y2m+1

=
∑

m≥0

Am(x)y2m + y
∑

m≥0

Bm(x)y2m

=
1− xy4

1− (1 + x+ x2)y2 + x2y4
+ y

1 + x3y2

1− (1 + x+ x2)y2 + x2y4
+ xy

=
1 + y + x3y3 − xy4

1− (1 + x+ x2)y2 + x2y4
+ xy.

The proof is completed. �

Remark: Since the thoughts and methods used in the following five subsections are exactly the same as

those used in Subsection 3.2, we choose to list only the results and omit the proof process.

3.3 Cube polynomials

Let qn,k := qk(Ωn) denote the number of k-dimensional induced hypercubes of Ωn, and let qn,k = 0 if no

k-dimensional induced hypercubes of Ωn exists. Since, for n ≥ 2, the initial values and the recurrence relation

are same as in [18, Section 5] and [28] for q = 1, the results of qn,k are same as ck(Λn) in [18, Section 5] and

hn,k;1 in [28].

Proposition 3.11 The dimension of the maximum induced hypercube of Ωn is ⌊n
2 ⌋.

Moreover, the number is equal to the number of maximum in-degree (or out-degree) of Ωn or the number

of maximum anti-chain in Ξn.

Lemma 3.12 ([32]) Let L be a finite distributive lattice. If K is a cutting of L, then

qk(L⊞K) = qk(L) + qk(K) + qk−1(K).

It is evident that the recurrence relation of qn,k follows from Lemma 3.12 .

Proposition 3.13 For n ≥ 4,

qn,k = qn−1,k + qn−2,k + qn−2,k−1.

By induction, it is not difficult to show that the number of the maximum induced hypercubes of Ωn is

qn,⌊n

2
⌋ =







2, if 2 | n,
n, if 2 ∤ n.

Moreover, the number of vertices, edges, 4-cycles and 3-dimensional cubes of Ωn is expressed.

Theorem 3.14 The first four of qn,k is obtained.

(1) For n ≥ 2,

qn,0 = Ln,

and

qn,1 = nFn−1;

9



(2) For n ≥ 4,

qn,2 =
1

5
nFn−3 +

1

10
(n− 3)nLn−2;

(3) For n ≥ 6,

qn,3 =
2

25
nFn−5 +

1

25
(n− 5)nLn−4 +

1

30
(n2 − 9n+ 20)nFn−3.

Let

Qn(x) =
∑

k≥0

qn,kx
k

be the cube polynomial of Ωn. We list the first few of Qn(x) as follows.

Q0(x) = 1

Q1(x) = 2 + x

Q2(x) = 3 + 2x

Q3(x) = 4 + 3x

Q4(x) = 7 + 8x+ 2x2

Q5(x) = 11 + 15x+ 5x2

It is easy to show the recurrence relation of Qn(x) from Proposition 3.15.

Proposition 3.15 For n ≥ 4,

Qn(x) = Qn−1(x) + (1 + x)Qn−2(x).

From Proposition 3.15 again, a result on Qn(x) is obtained easily.

Theorem 3.16 For n ≥ 2,

Qn(x) =

(

1 +
√
5 + 4x

2

)n

+

(

1−
√
5 + 4x

2

)n

.

Proposition 3.17 For n ≥ 2, the root of Qn(x) is

xn,k = −5 + tan2 (2k−1)π
2n

4
,

where k = 1, 2, . . . , ⌊n/2⌋.

Since the roots of a polynomial are all negative reals is log-concave and a positive log-concave sequence

is unimodal [2, 30, 33], the follow corollary is immediate.

Corollary 3.18 For all n ≥ 2, the sequences of coefficients of Qn(x) is log-concave and unimodal.

The Jacobsthal-Lucas numbers Jn (see A014551 in [29]) are defined by the recurrence relation: J0 = 2,

J1 = 1 and Jn = Jn−1 + 2Jn−2 for n ≥ 2. By Proposition 3.15, the relation of between Qn(x) and Ln or

Jn is immediate. For n ≥ 2, Qn(0) = Ln and Qn(1) = Jn. In addition, the generating function of Qn(x) is

proved.

Theorem 3.19 The generating function of Qn(x)

∑

n≥0

Qn(x)y
n =

2− y

1− y − (x+ 1)y2
+ (1 + x)y − 1.

10



The cube polynomial can be deduced from the generating function of Qn(x).

Proposition 3.20 For n ≥ 2,

Qn(x) =
∑

j≥0

Y (n− j, j)(1 + x)j =
∑

j≥0

((

n− j

j

)

+

(

n− j − 1

j − 1

))

(1 + x)j .

The number of induced k-dimensional cubes of Ωn is follows immediately.

Corollary 3.21 For n ≥ 2,

qn,k =

⌊n/2⌋
∑

j=k

Y (n− j, j)

(

j

k

)

=

⌊n/2⌋
∑

j=k

((

n− j

j

)

+

(

n− j − 1

j − 1

))(

j

k

)

.

Remark: In Klavžar and Mollard [18], n− a− 1 is printed incorrectly as n− a+ 1 in Theorem 3.2 and

n− i− 1 as n− i+ 1 in Corollary 3.3.

By Corollary 3.21 and

Fn =

⌊(n−1)/2⌋
∑

j=0

(

n− j − 1

j

)

=

⌊(n+1)/2⌋
∑

j=1

(

n− j

j − 1

)

,

we obtained again Part (1) of Theorem 3.14.

As a consequence of Corollary 4.10 in [32], it is clear that the follow corollary.

Corollary 3.22 For n ≥ 2,

∑

k≥0

⌊n/2⌋
∑

j=k

((

n− j

j

)

+

(

n− j − 1

j − 1

))(

j

k

)

(−1)k = 1.

∑

k≥0

⌊n/2⌋
∑

j=k

((

n− j

j

)

+

(

n− j − 1

j − 1

))(

j

k

)

k(−1)k = n.

Using Kronecker delta function again, we give another generating function.

Theorem 3.23 For k ≥ 1 is fixed, the generating function of qn,k is

∑

n≥0

qn,ky
n =

(2− y)y2k

(1− y − y2)k+1
+ yδk1.

3.4 Maximal cube polynomials

Let hn,k := hk(Ωn) be the number of maximal k-dimensional cubes in Ωn, let hn,k = 0 if no maximal k-

dimensional induced cube of Ωn exists, and let Hn(x) =
∑

k≥0 hn,kx
k be the maximal cube polynomial of Ωn.

Observe that although the recurrence relation is same as that of gn,k in [23], the initial values are different,

our results are different from those in [23].

Combining Ωn−1 ⊂ Ωn, Theorem 3.2 and Figure 3 indicate that the recurrence relation of hn,k.

Proposition 3.24 For n ≥ 4,

hn,k = hn−2,k−1 + hn−3,k−1.

11



We list the first few of Hn(x) as follows.

H0(x) = 1

H1(x) = x

H2(x) = 2x

H3(x) = 3x

H4(x) = x+ 2x2

H5(x) = 5x2

And, from Proposition 3.24, the recurrence relation of Hn(x) is given easily.

Proposition 3.25 For n ≥ 5,

Hn(x) = xHn−2(x) + xHn−3(x).

The (1, 2, 3)-Padovan numbers p′n is defined as: p′0 = 1, p′1 = 2, p′2 = 3 and p′n = p′n−2 + p′n−3 for n ≥ 3.

It is not difficult to verify that for n ≥ 1, Hn(1) = p′n−1.

Furthermore, we obtain the generating functions of Hn(x) and p′n by Proposition 3.25.

Theorem 3.26 The generating function of Hn(x) is

∞
∑

n=0

Hn(x)y
n =

2 + y

1− xy2(1 + y)
− (1− x)y − 1;

and the generating function of p′n is
∞
∑

n=0

p′ny
n =

1 + 2y + 2y2

1− y2 − y3
.

Expanding the right side of
∑

n≥0 Hn(x)y
n into formal power series, we have result of hn,k by Lucas

triangle.

Proposition 3.27 For n ≥ 2,

hn,k =

(

k

3k − n

)

+

(

k + 1

3k − n+ 1

)

= Y (k + 1, 3k + 1− n).

From another point of view, using Kronecker delta function, we get directly the generating function of

hn,k.

Proposition 3.28 For k ≥ 1,

∑

n≥0

hn,ky
n =

(

y2(1 + y)
)k
(2 + y) + yδk1

And by Proposition 3.27, the number of terms of Hn(x) is determined easily.

Proposition 3.29 Let n = 6m+ b and 0 ≤ b ≤ 5. The number of terms of Hn(x) is







m+ 2, if b = 4;

m+ 1, otherwise.

12



3.5 Disjoint cube polynomials

Let sn,k := sk(Ωn) denote the maximum number of disjoint k-dimensional cubes in Ωn. Let sn,k = 0 if

no k-dimensional induced hypercubes of Ωn exists. And let Sn(x) =
∑

k≥0 sn,kx
k be the disjoint cube

polynomial.

Let

θn =







0, if 3 | n,
1, otherwise.

And let

ηn =



















−1, if n = 0,

1, if n = 1,

0, otherwise.

Combining Theorem 3.2 and Figure 3, using θn and ηn, we obtain the recurrence relation of sn,k similar

to qk(n) in [9]. The results in [9, 27] are only on Fibonacci cubes, and there is no recurrence relations and

generating functions in [27].

Proposition 3.30 For n ≥ 0,

sn,0 =

⌈

Ln

2

⌉

=
Ln + θn

2
,

and

sn,1 =
⌊qn,0

2

⌋

=
Ln − θn

2
+ ηn.

More general, for n ≥ 4 and k ≥ 2,

sn,k = sn−2,k−1 + sn−3,k.

We have the maximum number of maximum disjoint cubes by Propositions 3.11 and 3.30.

Corollary 3.31 The maximum number of maximum disjoint cubes is 1 (2 | n) or 2 (2 ∤ n) for n ≥ 2.

The first few of Sn(x) is listed as follows.

S0(x) = 1

S1(x) = 1 + x

S2(x) = 2 + x

S3(x) = 2 + 2x

S4(x) = 4 + 3x+ x2

S5(x) = 6 + 5x+ 2x2

Note that 2 | L3m (for m ≥ 0), we have Theorem 3.32 immediately by Proposition 3.30.

Theorem 3.32 For n ≥ 4,

Sn(x) = xSn−2(x) + Sn−3(x) +
Ln−2 − θn

2
x− ηn−3x+

Ln − Ln−3

2
.

Combining Theorem 3.32 and the generating functions of Ln, θn and ηn, the generating function of Sn(x)

can be obtained by a tedious calculations.
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Theorem 3.33 The generating function of Sn(x) is

∑

n≥0

Sn(x)y
n =

1− (3− x)y3 + (2− x)y6 + xy8

(1− y − y2)(1 − y3)(1− xy2 − y3)
+ xy.

By the generating function of θn(x), we obtain
∑

n≥0 sn,1y
n; moreover, we have the following theorem.

Theorem 3.34 For k ≥ 1 is a fixed integer, the generating function of sn,k is

∑

n≥0

sn,ky
n =

1

2

(

y2

1− y3

)k−1 (
y + 2y2

1− y − y2
− y + y2

1− y3

)

+ yδk1.

3.6 Degree sequences polynomials

Let dn,k := dk(Ωn) denote the number of vertices of degree k in Ωn, i.e. dn,k = |{ v ∈ V (Ωn) | degΩn

(v) = k }|,
and let dn,k = 0 if no vertex of degree k in Ωn exists. In fact, although the recurrence relation is same as that

of ℓn,k in [14], the initial values are different, thus our results are different from those in [14]. The following

proposition can be shown by inducing on |V (Ωn)|.

Proposition 3.35 The minimum and maximum degree of Ωn are δ(Ωn) = ⌊n+1
3 ⌋ and ∆(Ωn) = n − 1

(n ≥ 3), respectively. Thus, the both connectivity and edge connectivity of Ωn is ⌊n+1
3 ⌋ [36].

Moreover, for m ≥ 1,

dn,δ(Ωn) =



















m(m+3)
2 , if n = 3m− 1;

m+ 1, if n = 3m;

1, if n = 3m+ 1.

And for n ≥ 5, dn,∆(Ωn) = 2.

By the convex expansion for finite distributive lattices in [32], we have a lemma on degree.

Lemma 3.36 ([32]) Let L be a finite distributive lattice. If K is a cutting of L, then

dk((L ⊞K)⊞K) = dk(L ⊞K) + dk−2(K).

Combining Theorem 3.2 and Lemma 3.36, we get the relation of Ωn and Γn on degree.

Proposition 3.37 For n ≥ 3,

dn,k = dk(Γn−1) + dk−2(Γn−3).

Lemma 3.38 ([14]) The number of vertices of degree k of Γn is

dk(Γn) =
k

∑

j=0

(

n− 2j

k − j

)(

j + 1

n− k − j + 1

)

.

Hence, a formula of dn,k follows immediately.

Proposition 3.39 For n ≥ 2, the number of vertices of degree k of Ωn is

dn,k =

k
∑

j=0

(

j + 1

n− k − j

)((

n− 2j − 1

k − j

)

+

(

n− 2j − 3

k − j − 2

))

.

On the other hand, we have the recurrence relation of dn,k illustrated in Figure 5.
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Ωn−3

Ωn−2

Ωn

Figure 5: Illustrating the recurrence relation of dn,k

Proposition 3.40 For n ≥ 5,

dn,k = dn−2,k−1 + dn−1,k−1 − dn−3,k−2 + dn−3,k−1.

Let

Dn(x) =
∑

k≥0

dn,kx
k

be the degree sequence polynomial of Ωn and we list the first few of Dn(x).

D0(x) = 1

D1(x) = 2x

D2(x) = 2x+ x2

D3(x) = 2x+ 2x2

D4(x) = x+ 3x2 + 3x3

D5(x) = 5x2 + 4x3 + 2x4

In addition, the recurrence relation of Dn(x) is a straightforward consequence.

Proposition 3.41 For n ≥ 5,

Dn(x) = xDn−1(x) + xDn−2(x) + (x− x2)Dn−3(x).

Therefore, the generating function of Dn(x) is obtained.

Theorem 3.42 The generating function of Dn(x) is given by

∑

n≥0

Dn(x)y
n =

(1− xy + y)(1 + x2y2)

(1− xy)(1 − xy2)− xy3
+ (2x− 1)y.

Similar to [14], from Theorem 3.42, using the expansion

xn

(1− x)n+1
=

∑

j≥n

(

j

n

)

xj ,

we give a proof of Proposition 3.39.
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Proof (of Proposition 3.39) Consider the formal power series expansion of

f(x, y) =
1

(1− xy)(1 − xy2)− xy3
,

we obtain

[xk][yn]f(x, y) =

k
∑

j=0

(

n− 2j

k − j

)(

j

n− k − j

)

.

Note that
1 + y − xy

(1− xy)(1 − xy2)− xy3
= f(x, y) + yf(x, y)− xyf(x, y),

we have

[xk][yn]
1 + y − xy

(1− xy)(1 − xy2)− xy3

= [xk][yn]F (x, y) + [xk][yn−1]F (x, y)− [xk−1][yn−1]F (x, y)

=

k
∑

j=0

(

n− 2j

k − j

)(

j

n− k − j

)

−
k

∑

j=0

(

n− 2j − 1

k − j − 1

)(

j

n− k − j

)

+

k
∑

j=0

(

n− 2j − 1

k − j

)(

j

n− k − j − 1

)

=

k
∑

j=0

(

n− 2j − 1

k − j

)(

j

n− k − j

)

+

k
∑

j=0

(

n− 2j − 1

k − j

)(

j

n− k − j − 1

)

=

k
∑

j=0

(

n− 2j − 1

k − j

)(

j + 1

n− k − j

)

.

In addition, we have

[xk][yn]
(1 + y − xy)x2y2

(1− xy)(1− xy2)− xy3
= [xk−2][yn−2]

1 + y − xy

(1− xy)(1 − xy2)− xy3
=

k−2
∑

j=0

(

n− 2j − 3

k − j − 2

)(

j + 1

n− k − j

)

.

Hence, Proposition 3.39 holds for n ≥ 2. �

And since dn,k > 0 for k ∈ {⌊n+1
3 ⌋, . . . , n− 1}, the following corollary holds.

Corollary 3.43 The degree spectrum of Ωn is continuous.

3.7 Indegree and outdegree sequence polynomial

Let d−n,k denote the number of vertices of indegree k in Ωn, or the number of anti-chains with exactly k

elements in Ξn, or the number of elements covered exactly by k elements in F(Ξn). From the structure of

Ωn as shown in Figure 3 and Theorem 4.7 [32], it is not difficult to obtain the recurrence relation of d−n,k.

Proposition 3.44 For n ≥ 0, d−n,0 = 1; and for n ≥ 4, k ≥ 1,

d−n,k = d−n−1,k + d−n−2,k−1.

Moreover, we have the following corollary.

Corollary 3.45 For k ≥ 0 and n ≥ 2k + 3,

d−n,k =
k

∑

j=0

d−n−2j−1,k−j .
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Let

D−
n (x) =

⌊n

2
⌋

∑

k=0

d−n,kx
k

be the indegree sequence polynomial of Ωn and list the first few of D−
n (x) as follows.

D−
0 (x) = 1

D−
1 (x) = 1 + x

D−
2 (x) = 1 + 2x

D−
3 (x) = 1 + 3x

D−
4 (x) = 1 + 4x+ 2x2

D−
5 (x) = 1 + 5x+ 5x2

It follows that the recurrence relation of D−
n (x) from Proposition 3.44.

Proposition 3.46 For n ≥ 4,

D−
n (x) = D−

n−1(x) + xD−
n−2(x)

On the other hand, we have two propositions on the cube polynomials.

Proposition 3.47 By the relation of degree and edge in a graph,

∂Dn(x)

∂x

∣

∣

∣

∣

x=1

= 2
∂D−

n (x)

∂x

∣

∣

∣

∣

x=1

= 2qn,1.

Proposition 3.48 ([32]) For n ≥ 0,

D−
n (x) = Qn(x− 1).

Combining Proposition 3.48 and results on cube polynomials, it is obvious that 3.49–3.54 hold.

Theorem 3.49 The generating function of D−
n (x) is

∑

n≥0

D−
n (x)y

n =
2− y

1− y − xy2
+ xy − 1.

Proposition 3.50 For n ≥ 2,

d−n,k = Y (n− k, k) =

(

n− k

k

)

+

(

n− k − 1

k − 1

)

.

Corollary 3.51 The maximum indegree of Ωn is ⌊n/2⌋, and the indegree spectrum of Ωn is continuous.

We can obtain another formula on D−
n (x) by Proposition 3.46.

Proposition 3.52 For n ≥ 1,

D−
n (x) =

(

1 +
√
1 + 4x

2

)n

+

(

1−
√
1 + 4x

2

)n

Theorem 3.53 The roots of D−
n (x) is

x = −1 + tan2 (2k−1)π
2n

4
,

for n ≥ 2, where 1 ≤ k ≤ n.
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Corollary 3.54 For all n ≥ 2, the sequences of coefficients of D−
n (x) is log-concave and unimodal.

We also obtain another generating function of d−n,k.

Theorem 3.55 For k ≥ 1 is fixed, the generating function of d−n,k is

∑

n≥0

d−n,ky
n =

y2k(2− y)

(1− y)k+1
+ yδk1.

The results on outdegree are exactly same as indegree [32], thus they are not listed here.

4 Summary

By the consequences on Λn [41], We have the following relation of the matchable Lucas cube Ωn and the

Lucas cube Λn for n ≥ 2.

Theorem 4.1 The number of induced cubes of Λn and Ωn is same, but structure is different. In other word,

for m ≥ 1, Λ2m can be orientated as the Hasse digram of a finite distributive lattice that is not isomorphic

to Ω2m, but Λ2m+1 can not be a Hasse digram of a finite distributive lattice.
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[9] Gravier S., Mollard M., Špacapan S., and Zemljič S. S. On disjoint hypercubes in Fibonacci cubes.

Discrete Appl Math 190-191 (2015), 50 – 55.

18



[10] Gründler W. Signifikante elektronenstrukturen fur benzenoide kohlenwasserstoffe, wiss. Z. Univ. Halle

31 (1982), 97–116.

[11] Harary F. Graph Theory. Addison-Wesley Pulishing Company, Inc., Reading, 1969.

[12] Hsu W. J. Fibonacci cubes-a new interconnection topology. IEEE Trans Parallel Distrib Syst 4, 1 (Jan.

1993), 3–12.
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[17] Klavžar S., Žigert Pleteršek P., and Brinkmann G. Resonance graphs of catacondensed even ring systems

are median. Discrete Math 253, 13 (2002), 35–43. Combinatorics and Algorithms.
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