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Abstract
Assume for a graph G = (V,E) and an initial configuration, where each node is blue or red, in
each discrete-time round all nodes simultaneously update their color to the most frequent color
in their neighborhood and a node keeps its color in case of a tie. We study the behavior of this
basic process, which is called majority model, on the Erdős–Rényi random graph Gn,p and regular
expanders. First we consider the behavior of the majority model on Gn,p with an initial random
configuration, where each node is blue independently with probability pb and red otherwise. It
is shown that in this setting the process goes through a phase transition at the connectivity
threshold, namely logn

n . Furthermore, we say a graph G is λ-expander if the second-largest
absolute eigenvalue of its adjacency matrix is λ. We prove that for a ∆-regular λ-expander graph
if λ/∆ is sufficiently small, then the majority model by starting from ( 1

2 − δ)n blue nodes (for an
arbitrarily small constant δ > 0) results in fully red configuration in sub-logarithmically many
rounds. Roughly speaking, this means the majority model is an “efficient” and “fast” density
classifier on regular expanders. As a by-product of our results, we show regular Ramanujan
graphs are asymptotically optimally immune, that is for an n-node ∆-regular Ramanujan graph
if the initial number of blue nodes is s ≤ βn, the number of blue nodes in the next round is at
most cs

∆ for some constants c, β > 0. This settles an open problem by Peleg [33].
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1 Introduction

A social network, the graph of relationships among a group of individuals, plays a fundamental
role as a medium for the spread of information, ideas, and influence among its members. For
example, social media such as Facebook, Twitter, and Instagram have served as a crucial tool
for communication and information disseminating in today’s life. Recently, studying different
social behaviors like how people form their opinion regarding a new product or an election or
how the information spreads through a social network have attracted a substantial amount
of attention. Many different processes, from bootstrap percolation [4] to rumor spreading [6],
have been introduced to model this sort of social phenomena.

A considerable amount of attention has been devoted to the study of the majority-based
models, like voter model, majority bootstrap percolation, and majority model. In the
majority bootstrap percolation for a given graph and an initial configuration where each node
is blue or red, in each round all blue nodes update their color to the most frequent color
in their neighborhood and red nodes stay unchanged. The main motivation behind the
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majority bootstrap percolation is to model monotone processes like rumor spreading, where a
red/blue node corresponds to an informed/uninformed individual and an informed individual
will always stay informed of the rumor. However, to analyze non-monotone processes like
the diffusion of two competing technologies over a social network or opinion forming in a
community, the majority model is considered where each node updates its color to the most
frequent color in its neighborhood and keeps it unchanged in case of a tie. The blue/red
color, for instance, could stand for positive/negative opinion regarding a reform proposal.

Let us first fix some notations and define the majority model formally. For a graph
G = (V,E) and a node v ∈ V , let N(v) := {u ∈ V : {v, u} ∈ E} be the neighborhood of v and
d(v) := |N(v)| be the degree of v. Furthermore, for a set S ⊆ V , we define NS(v) := N(v)∩S
and N(S) :=

⋃
v∈S N(v). For two node sets S, S′ ⊂ V , define e(S, S′) := |{(v, u) : v ∈ S, u ∈

S′, {v, u} ∈ E}|. We also write n for the number of nodes in a graph G = (V,E), i.e. |V |.
A configuration is a function C : V → {b, r}, where b and r represent blue and red. For

a set S ⊆ V , C|S = a means ∀v ∈ S, C(v) = a for color a ∈ {b, r}. For a given initial
configuration C0, assume ∀ t ≥ 1 and v ∈ V , Ct(v) is equal to the color that occurs most
frequently in v’s neighborhood in Ct−1, and in case of a tie v keeps its current color, i.e.
Ct(v) = Ct−1(v). This deterministic process is called the majority model. For a given initial
configuration C0, let B(t) and R(t) for t ≥ 0 denote the set of blue and red nodes in Ct.

Since for a graph G there are 2n possible configurations and the majority model is a
deterministic process, by starting from any initial configuration, the process must eventually
reach a cycle of configurations. The length of the cycle and the number of rounds the process
needs to reach it are respectively called the period and the consensus time of the process. 2n
is a trivial upper bound on both the period and the consensus time of the process. However,
Goles and Olivos [18] provided the tight upper bound of two on the period of the process, and
Poljak and Turzik [34] showed the consensus time is upper-bounded by O(n2), which is shown
to be tight up to some poly-logarithmic factor by Frischknecht, Keller, and Wattenhofer [13].

The majority model has been studied on different classes of graphs, like lattice [16, 36, 38,
15], infinite lattice [10], random regular graphs [17], and infinite trees [22], when the initial
configuration is random, meaning each node is independently blue with probability pb and
red otherwise (without loss of generality, we always assume pb ≤ 1/2). We are interested in
the behavior of the process when the underlying graph is the Erdős–Rényi random graph
Gn,p, where the node set is [n] = {1, · · · , n} and each edge is added with probability p

independently. It is worth to mention that several other dynamic processes also have been
studied on Gn,p, for instance rumor spreading by Fountoulakis, Huber, and Panagiotou [11],
bootstrap percolation by Coja-Oghlan, Feige, Krivelevich, and Reichman [7], and interacting
particle systems by Schoenebeck and Yu [35].

We prove that in the majority model with pb ≤ 1
2 −ω( 1√

np ) on Gn,p with (1 + ε)p∗ ≤ p for
any constant ε > 0 and p∗ = logn

n , the process gets fully red in constant number of rounds
asymptotically almost surely (for an n-node graph G we say an event happens asymptotically
almost surely (a.a.s.) if it happens with probability 1− o(1) as n tends to infinity). We also
argue the tightness of this result. This explains the experimental observations from [25].

Furthermore, it is shown that in the majority model on Gn,p with p ≤ (1 − ε)p∗ (for
any constant ε > 0) if pb = o(enp/n), then the process gets fully red but it does not for
pb = ω(enp/n) a.a.s.

Putting the two aforementioned results together implies that the process exhibits a
threshold behavior at p∗. More precisely, for p = (1 + ε)p∗, if the initial density of blue nodes
is slightly less than one half, namely 1

2 − ω(1/
√

logn), then the process gets fully red, but
for p = (1− ε)p∗, pb must be very close to zero, namely smaller than en(1−ε) logn

n /n = 1
nε , to
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guarantee that it gets fully red a.a.s. Even though the proofs of the above statements require
some effort, the main intuition behind this phase transition simply comes from the fact that
p∗ is the connectivity threshold for Gn,p, that is Gn,p is connected and disconnected a.a.s.
respectively for (1 + ε)p∗ ≤ p and p ≤ (1− ε)p∗.

For (1 + ε)p∗ ≤ p and pb ≤ 1
2 − ω( 1√

np ) we distinguish two cases of sparse, p ≤ nγ

n , and
dense, n

γ

n < p for some small constant γ > 0. We argue that in the sparse case a very close
neighborhood of each node includes only a constant number of cycles a.a.s., meaning it has a
tree-like structure. Building on this tree-like structure, we prove that after constantly many
rounds the probability of being blue for each node is so small that the union bound over all
nodes yields our desired result. For the dense case, we argue in the first round the number
of blue nodes decreases to n

c′ a.a.s. for a large constant c′. Then, relying on the high edge
density of the graph we show s ≤ n

c′ blue nodes can create at most s/n
γ
2 blue nodes in the

next round; thus the process gets fully red in constantly many rounds.
For p ≤ (1− ε)p∗ and pb = ω(enp/n), the idea is to show that there exist sufficiently many

constant-size components so that initially there is a fully blue and a fully red component
a.a.s., which guarantee the coexistence of both colors. For pb = o(enp/n), we argue the blue
density is small enough to show that in at most two rounds all nodes are red a.a.s.

So far we considered the random setting, but one might approach the model from an
extremal point of view, which brings up the very well-studied concept of dynamic monopoly.
For a graph G = (V,E) and the majority model a set D ⊆ V is a dynamic monopoly, or
shortly dynamo, when the following holds: if in some configuration all nodes in D are red
(similarly blue) then the process eventually gets fully red (resp. blue), regardless of the colors
of the other nodes. Though the concept of dynamo had been studied before, e.g. by Balogh
and Pete [3] and Schonmann [37], it was introduced formally by Kempe, Kleinberg, and
Tardos [23] and Peleg [31] independently and motivated from two different contexts. The
minimum size of a dynamo has been extensively studied on different graph classes, from
the d-dimensional lattice, motivated from the literature of statistical physics, by Flocchini,
Lodi, Luccio, Pagli, and Santoro [9], Balister, Bollobás, Johnson, and Walters [2], and Jeger
and Zehmakan [21] to planar graphs by Peleg [32]. As a notable example, although it had
been conjectured by Peleg [32] that the minimum size of a dynamo in any n-node graph is
in Ω(

√
n), surprisingly Berger [5] proved for any n ∈ N there is an n-node graph which has

a constant-size dynamo, meaning a constant number of red nodes is sufficient to make the
whole graph red. We study the minimum size of a dynamo in Gn,p, and prove it is larger
than ( 1

2 −
c√
np )n a.a.s. for some constant c > 0.

As we discussed, in Gn,p and above the connectivity threshold if pb is slightly less than
one half then the process reaches fully red configuration and the minimum size of a dynamo is
close to n/2 a.a.s. This raises the notorious and well-studied problem of density classification.
For a given graph G, in the density classification problem [14] the task is to find an updating
rule so that for whatever initial configuration, the process gets fully red if the number of
reds is more than blues initially, and fully blue otherwise. This is a very central problem
in the literature of cellular automata and distributed computing since it is a good test case
to measure the power of local computations in gathering global information. This problem
turned to be hard, in the sense that Land and Belew [24] proved such an updating rule does
not exist even when the underlying graph is a cycle. Mustafa and Pekec [29, 30] approached
the problem from a different angle and asked for which classes of graphs the majority model,
which is probably one of the most natural candidates, classifies the density, and they proved
that it is the case for graphs which have at least n/2 nodes of degree n− 1. These hardness
results however did not stop the quest for the best, although imperfect, solutions and different
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weaker variants of the problem have been suggested. A natural way of relaxing the problem
would be to require any configuration with less than ( 1

2 − δ)n blue nodes for some small
δ > 0 results in fully red configuration. What are the graphs for which the majority model
classifies the density for reasonably small values of δ? To address this question, we argue
that regularity and expansion are two determining factors.

Expanders are graphs which are highly connected; meaning to disconnect a large part
of the graph, one has to sever many edges. A standard algebraic way of characterizing the
expansion of a graph G is to consider the second-largest absolute eigenvalue of its adjacency
matrix, which is denoted by λ(G). For a ∆-regular graph G, λ(G) ≤ ∆ and smaller λ(G)
implies better expansion. We show that in the majority model on a ∆-regular graph G, any
starting configuration satisfying |B(0)| ≤ ( 1

2 − δ)n, for some fixed but arbitrarily small δ > 0,
results in fully red configuration in sub-logarithmically many rounds if λ(G)/∆ is sufficiently
small. In other words, if initially all nodes have the same color (which could correspond to
some information) and an adversary is allowed to corrupt the color of ( 1

2 − δ)n number of
nodes, there is a large class of graphs for which if the nodes simply apply the majority rule,
they all retrieve the original color in sub-logarithmically many rounds. Roughly speaking,
the majority model is an “efficient” and “fast” density classifier on regular expanders.

In a graph G = (V,E) and the majority model for two sets S, S′ ⊆ V , we say S controls
S′ when the following holds: if S is fully blue (similarly red) in some configuration C, S′
will be fully blue (resp. red) in the next configuration. The main idea of our results is that
in regular expander graphs the number of edges between any two node sets S, S′ is almost
completely determined by their cardinality. This simple fact implies the number of nodes
that a set can control is proportional to its size, meaning a small set of blue nodes cannot
make a big part of the graph blue. Applying this argument iteratively and some careful
computations lead into the above result on regular expanders. It seems expansion is not only
a sufficient condition for such a behavior but also some sort of a necessary condition since
otherwise there can exist a small node set S so that each node in S has at least half of its
neighbors inside S. Thus, if S is initially blue, it stays blue forever, regardless of other nodes.

Motivated from fault-local mending in distributed systems, where redundant copies of
data are kept and the majority rule is applied to overcome the damage caused by failures,
Peleg [33] defined the concept of immunity. An n-node graph G is (α, β)-immune if any node
set of size s ≤ βn can control at most αs nodes in the majority model. Immunity and density
classification are related in the sense that for an (α, β)-immune graph with 0 < α, β < 1,
|B(0)| ≤ βn results in fully red configuration in O(log1/α n) rounds. For a ∆-regular graph
and some constant β > 0 the best achievable α is c2

∆ for some constant c2 > 0 because s
nodes can occupy the full neighborhood of at least b s∆c arbitrary nodes. A ∆-regular graph
is called asymptotically optimally immune if it is ( c2

∆ , β)-immune for some constants c2, β > 0.
These graphs are interesting since they prevent a small number of malicious/failed processors
to take over a big fraction of the underlying graph. Peleg proved for any ∆ > c1 for some
constant c1 there exists an asymptotically optimally immune ∆-regular graph (actually he
left a logarithmic gap, which was closed by Gärtner and Zehmakan [17], recently). These
results are existential, but one might be interested in constructing asymptotically optimally
immune ∆-regular graphs. For ∆ ≥

√
n, Peleg established explicit construction of such

graphs by using symmetric block designs. He also asked “It would be interesting to construct
asymptotically optimally immune regular graphs of degrees smaller than

√
n ”. We settle

this problem exploiting a large family of Cayley graphs, called Ramanujan graphs.
In Section 2, we study the behavior of the majority model on the random graph Gn,p,

and then in Section 3 we present our results regarding regular expander graphs and density
classification. The uninterested reader might directly jump into Section 3 since the sections
are supposed to stand by their own.
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2 Erdős–Rényi Random Graph

In this section, we first study the behavior of the majority model on Gn,p with an initial
random configuration (where each node is independently blue with probability pb and red
otherwise) above the connectivity threshold in Theorem 3 and below it in Theorem 5. As a
corollary of these results it is easy to see that the process goes through a phase transition:
above the connectivity threshold if pb is slightly less than 1/2, the process gets fully red
but below it the value of pb must be very close to zero to guarantee that it gets fully red
a.a.s. Then in Theorem 6, we prove the minimum size of a dynamo in Gn,p is larger than
( 1

2 −
c√
np )n a.a.s. for some constant c > 0, that is ( 1

2 −
c√
np )n blue nodes cannot make the

whole graph blue no matter how they are placed in the graph.
Let us state two variants of the Chernoff bound which we will use several times later.

I Theorem 1 ([8]). Suppose x1, · · · , xn are independent Bernoulli random variables taking
values in {0, 1} and let X denote their sum, then

(i) P[(1 + ε′)E[X] ≤ X] ≤ e−
ε′2E[X]

3 and P[X ≤ (1− ε′)E[X]] ≤ e−
ε′2E[X]

2 for 0 ≤ ε′ ≤ 1

(ii) P[(1 + ε′)E[X] ≤ X] ≤ e−
ε′E[X]

3 for ε′ ≥ 1.
To prove Theorem 3, we need Lemma 2, which states in Gn,p the degree of each node is
concentrated around its expectation. This can be proven by simply applying the Chernoff
bound (for a formal proof see e.g. [20]).

I Lemma 2. In Gn,p if p ≥ (1 + ε) logn
n for some constant ε > 0, then for each node v

P[d(v) < np
c′′ ] = o( 1

n ) for some constant c′′ > 0 (as a function of ε).

The main idea behind the proof of Theorem 3 is to apply the fact that the edges of each
node are distributed randomly all over the graph.

I Theorem 3. In the majority model with pb ≤ 1
2 − ω( 1√

np ) on Gn,p with p ≥ (1 + ε) logn
n

for ε > 0, the process gets fully red in constant number of rounds a.a.s.

Proof. We divide the proof into two parts of dense, which is p ≥ nγ

n , and sparse, which is
p < nγ

n for a sufficiently small constant γ > 0.

Dense case. We first show that in one round a.a.s. the number of blue nodes decreases
to n/c′ for an arbitrarily large constant c′. Then, we prove n/c′ blue nodes disappear in
constant number of rounds, no matter how they are placed in the graph.

We argue that for an arbitrary node v, P[C1(v) = b] = o(1), which implies the expected
number of blue nodes in C1 is equal to o(n). By applying Markov’s inequality [8], the
number of blue nodes in C1 is less than n/c′ a.a.s. for an arbitrarily large constant c′. To
compute the probability that node v is blue in C1, consider an arbitrary labeling u1, · · · , ud(v)
of v’s neighbors and define Bernoulli random variable xi for 1 ≤ i ≤ d(v) to be 1 if and
only if C0(ui) = r. Assume random variable dr(v) denotes the number of red nodes in
v’s neighborhood in C0; clearly, E[dr(v)] =

∑d(v)
i=1 xi = d(v)(1 − pb). Let pb = 1/2 − δ for

δ = ω(1/√np) then by applying the Chernoff bound (Theorem 1 (i)) we have

P[C1(v) = b] ≤ P[dr(v) ≤ d(v)/2] ≤ P[dr(v) ≤ (1− δ)(1
2 + δ)d(v)] =

P[dr(v) ≤ (1− δ)E[dr(v)]] ≤ e−
δ2(1/2+δ)d(v)

2 .

ISAAC 2018
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Thus, for some positive constant c′′, we have P[C1(v) = b|d(v) ≥ np
c′′ ] ≤ e

− δ
2(1/2+δ)np

2c′′ = e−ω(1),
where we used δ = ω(1/√np). Now, by applying Lemma 2,

P[C1(v) = b] = P[C1(v) = b|d(v) ≥ np

c′′
] · P[d(v) ≥ np

c′′
]+

P[C1(v) = b|d(v) < np

c′′
] · P[d(v) < np

c′′
] ≤ e−ω(1) · 1 + 1 · o(1) = o(1).

Now, we prove any non-empty node set of size s ≤ n/c′ controls at most s/n
γ
2 nodes a.a.s.

This implies by starting from n/c′ blue nodes (regardless of how they are placed in the graph)
the process gets fully red after at most 2/γ rounds (notice that 2/γ is a constant). Let S be a
set of size s ≤ n/c′ and S′ be a set of size s′ = s/nγ/2. Since E[e(S′, V \ S)] = s′(n− s)p, by
applying the Chernoff bound (Theorem 1 (i)) and using p ≥ nγ

n , n−s ≥ n/2, and s′ = s/nγ/2

we have

P[e(S′, V \ S) ≤ (1− 1
2)E[e(S′, V \ S)]] ≤ e−

E[e(S′,V \S)]
8 = e−

s′(n−s)p
8 ≤ e−Θ(sn

γ
2 ) (1)

Similarly, since E[e(S′, S)] = s′sp again by applying the Chernoff bound (Theorem 1 (ii))

P[e(S′, S) ≥ (1 + ( n4s − 1))E[e(S′, S)]] ≤ e−( n4s−1) E[e(S′,S)]
3 = e−( n4s−1) s

′sp
3 ≤ e−Θ(sn

γ
2 ) (2)

Clearly, P[S controls S′] ≤ P[e(S′, V \ S) ≤ e(S′, S)] because if e(S′, V \ S) > e(S′, S)
then there is at least one node in S′ which has more than half of its neighbors in V \ S.
Furthermore, (1 + ( n4s − 1))E[e(S′, S)] = n

4ss
′sp = n

4 s
′p and by using (n− s) ≥ n/2 we have

(1− 1
2 )E[e(S′, V \ S)] = 1

2s
′(n− s)p ≥ n

4 s
′p. Thus by Equations 1 and 2, P[S controls S′] ≤

2e−Θ(snγ/2) = e−Θ(snγ/2) since s ≥ 1.
By the union bound, the probability that there exits a set S of size s ≤ n/c′ which

controls a set of size s/nγ/2 is bounded by

n/c′∑
s=1

(
n

s

)(
n

s/nγ/2

)
e−Θ(snγ/2) ≤

n/c′∑
s=1

n2se−Θ(snγ/2) ≤
n/c′∑
s=1

(n2e−Θ(nγ/2))s.

(n2e−Θ(nγ/2))s is maximized for s = 1 since n2e−Θ(nγ/2) < 1. Thus, the summation is
upper-bounded by n

c′n
2e−Θ(nγ/2) = o(1) which proves our claim.

Sparse case. Let us first present the following proposition, which roughly speaking states
that for small values of p, the close neighborhood of each node looks like a tree.

I Proposition 4. In Gn,p with p < nγ

n for some small constant γ > 0, a.a.s. there is no
node which is in two different cycles of size 3 or 4.

To prove Proposition 4, it suffices to show a.a.s. there exits no subgraph with 4 ≤ k ≤ 7
nodes and k + 1 edges. By the union bound, the probability of having such a subgraph is
upper-bounded by

∑7
k=4

(
n
k

)(
k(k−1)/2
k+1

)
pk+1 ≤

∑7
k=4 Θ(nk)n

(k+1)γ

nk+1 = o(1), where in the last
step we used the fact that γ is a sufficiently small constant (for instance γ < 1/8). This
finishes the proof of Proposition 4.

Now building on this tree-like structure and Lemma 2, we prove the probability that
an arbitrary node is blue after two rounds of the process is so small that the union bound
over all nodes implies the process is fully red a.a.s. Let v be an arbitrary node and label
its neighbors from u1 to ud(v). We want to upper-bound P[C2(v) = b]. For 1 ≤ i ≤ d(v)
let u1

i , · · · , u
d(ui)−1
i be the neighbors of ui except v. Define random variable Xi to be the
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number of red nodes among u1
i , · · · , u

d(ui)−1
i in C0. We say node ui is almost blue in C1 if

Xi ≤ d(ui)
2 (notice if a node is blue in C1, it is also almost blue, but not necessarily the other

way around). Now, we bound P[Xi ≤ d(ui)
2 ], which is the probability that ui is almost blue.

Since E[Xi] = (d(ui)− 1)(1− pb) for pb = 1
2 − δ and δ = ω( 1√

np ), by applying the Chernoff
bound (Theorem 1 (i)) we have

P[Xi ≤ d(ui)
2 ] ≤ P[Xi ≤ (1 − δ)(1

2 + δ)(d(ui) − 1)] = P[Xi ≤ (1 − δ)E[Xi]] ≤ e− δ2(1/2+δ)(d(ui)−1)
2 .

Thus for any large constant c′′, P[Xi ≤ d(ui)
2 |d(ui) ≥ np

c′′ ] ≤ e−
δ2(1/2+δ)(np

c′′
−1)

2 = o(1) by
δ = ω( 1√

np ). Now by applying Lemma 2, we have

pi := P[Xi ≤
d(ui)

2 ] = P[Xi ≤
d(ui)

2 |d(ui) ≥
np

c′′
] · P[d(ui) ≥

np

c′′
]+

P[Xi ≤
d(ui)

2 |d(ui) <
np

c′′
] · P[d(ui) <

np

c′′
] ≤ o(1) · 1 + 1 · o(1) ≤ δ′

for an arbitrarily small constant δ′ > 0.
Now, we bound the probability P[C2(v) = b]. Based on Proposition 4, a.a.s. every node,

including v, is in at most one cycle of length three, say with u1 and u2, and in at most
one cycle of length four, say with u3 and u4, and other uis share no neighbor except v (see
Figure 1). Let Y denote the number of nodes among u5, · · · , ud(v) which are almost blue in
C1. Then, P[C2(v) = b] ≤ P[Y ≥ d(v)

2 − 4] because for ui to be blue in C1 it must be almost
blue in C1 by definition and for v to be blue in C2 it needs at least d(v)

2 − 4 blue nodes among
u5, · · · , ud(v). Notice that being almost blue and being blue are pretty much the same except
being almost blue is not a function of the color of node v (we some sort of assume node v is
blue in C0 and still the impact of this assumption is small enough to let us get our desired
tail bound). This gives us the independence among pis for 4 ≤ i ≤ d(ui)− 1 (which we apply
in the next step) because the only neighbor they share is v. Since we upper-bounded pi by δ′,

P[C2(v) = b] ≤ P[Y ≥ d(v)
2 − 4] =

d(v)−4∑
j= d(v)

2 −4

(
d(v)− 4

j

)
δ′j(1− δ′)d(v)−4−j ≤ 2d(v)δ′

d(v)
2 −4

which is equal to (2
√
δ′)d(v)

δ′4 . Thus, P[C2(v) = b|d(v) ≥ np
c′′ ] ≤

(2
√
δ′)

np

c′′

δ′4 which is less than
e−2np by selecting δ′ sufficiently small. Furthermore, e−2np = o( 1

n ) by p ≥ (1 + ε) logn
n . Now

by Lemma 2,

P[C2(v) = b] = P[C2(v) = b|d(v) ≥ np

c′′
] · P[d(v) ≥ np

c′′
]+

P[C2(v) = b|d(v) < np

c′′
] · P[d(v) < np

c′′
] ≤ o( 1

n
) · 1 + 1 · o( 1

n
) = o( 1

n
).

The union bound implies a.a.s. there is no blue node in C2. J

Regarding the tightness of the result of Theorem 3, notice that it does not hold if we replace
ω( 1√

np ) with c√
np for any constant c. For p = 1, which corresponds to the complete graph, if

we color each node blue independently with probability pb = 1
2 −

c√
n
and red otherwise for

some constant c > 0, then by Central Limit Theorem [8] the probability that more than half
of the nodes are blue is a positive constant. This implies the process gets fully blue after one
round with some positive constant probability.
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v

u1 u2 u3 u4 u5 ui ud(v)

u1
i

u
d(ui)−1

i...

... ...

Figure 1 The neighborhood of node v.

I Theorem 5. In the majority model on Gn,p with p ≤ (1− ε) logn
n for ε > 0, a.a.s.

(i) pb = ω(enp/n) results in the coexistence of both colors
(ii) pb = o(enp/n) results in fully red configuration.

We present the proof of part (i). For part (ii), the idea is to show that all nodes distinguish
that the major color is red by looking at nodes in distance at most two when pb is sufficiently
small, namely pb = o(enp/n). The formal proof of part (ii) is given in the extended version
of the paper.

Proof. Notice that a blue/red isolated node never changes its color in majority model. Thus,
it suffices to show for Pb = ω(enp/n), a.a.s. there is a blue and a red isolated node in the
initial configuration. We discuss the blue case and the proof carries on analogously for red.

Let random variable X denote the number of blue isolated nodes in C0. Consider an
arbitrary labeling v1, · · · , vn on the nodes and define the Bernoulli random variable xi, for
1 ≤ i ≤ n, to be one if and only if node vi is isolated and blue in C0. Clearly, X =

∑n
i=1 xi

and P[xi = 1] = pb(1− p)n−1. Thus, by linearity of expectation E[X] = npb(1− p)n−1. By
applying the estimate 1− x ≥ e−x−x2 for 0 ≤ x ≤ 1/2, plugging in pb = ω(enp/n), and using
the fact that enp2 ≤ e

log2 n
n ≤ e, we have E[X] ≥ n ω( e

np

n ) e−np−np2 = ω(1). Now, we argue
that Var(X) = o(E[X]2), which then simply by applying Chebychev’s inequality [8] implies
P[X = 0] ≤ Var(X)/E[X]2 = o(1). Therefore, a.a.s. there exist a blue and a red isolated
node in C0 which result in the coexistence of both colors.

Var(X) = E[X2]− E[X]2 =
∑

1≤i,j≤n
E[xi · xj ]− E[X]2 =

n∑
i=1

E[x2
i ] +

∑
1≤i6=j≤n

E[xi · xj ]− E[X]2 = E[X] +
∑

1≤i6=j≤n
P[xi = 1 ∧ xj = 1]− E[X]2 =

E[X] + n(n− 1)(1− p)2n−3p2
b − E[X]2 = E[X] + E[X]2((1− 1

n
) 1
1− p − 1).

Since E[X] = ω(1), we have E[X] = o(E[X]2). Furthermore by using p = o(1) we have

(1− 1
n

) 1
1− p − 1 = p

1− p −
1
n
· 1

1− p = pn− 1
n(1− p) = o(1).

Putting both together we thus conclude that Var[X] = o(E[X]2). J

I Theorem 6. In Gn,p any dynamo is of size at least ( 1
2 −

c√
np )n for a large constant c a.a.s.

Proof. The main idea of the proof is similar to the dense case in Theorem 3. It suffices to
prove that a.a.s. a set of size s = ( 1

2 − δ)n for δ = c√
np cannot control a set of the same

size. By definition of controlling, this implies no set of size s or smaller can control a set
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of size s or larger; consequently, there is no dynamo of size s or smaller. We show that the
probability that an arbitrary node set of size s controls a set of the same size is so small that
the union bound over all possibilities yields our claim.

Let S, S′ be two node sets of size s. we want to bound the probability that S controls S′.
Since E[e(S′, S)] = s2p, by applying the Chernoff bound (Theorem 1 (i)) and δ2 = c2

np for a
sufficiently large constant c, we have

P[(1 + δ)E[e(S′, S)] ≤ e(S′, S)] ≤ e−
δ2E[e(S,S′)]

3 = e−
c2s2p

3np ≤ e−2n.

Similarly, since E[e(S′, V \ S)] = s(n− s)p,

P[e(S′, V \ S) ≤ (1− δ)E[e(S′, V \ S)]] ≤ e−
c2s(n−s)p

2np ≤ e−2n.

Furthermore,

(1+ δ)E[e(S′, S)] = (1+ δ)(1
2 − δ)

2n2p ≤ (1− δ)(1
2 + δ)(1

2 − δ)n
2p = (1− δ)E[e(S′, V \S)].

This implies P[e(S′, S) ≥ e(S′, V \S)] ≤ 2e−2n. Furthermore, P[S controls S′] ≤ P[e(S′, S) ≥
e(S′, V \ S)] because if e(S′, S) < e(S′, V \ S), then there is a node in S′ which shares more
than half of its neighbors with V \ S. Therefore, P[S controls S′] ≤ 2e−2n. By the union
bound, the probability that there exist sets S, S′ of size s such that S controls S′ is upper-
bounded by 22n2e−2n = o(1), where 22n is an upper bound on the number of possibilities of
choosing sets S and S′. J

3 Expanders

Roughly speaking, our main goal in this section is to show that the majority model is an
“efficient” and “fast” density classifier on regular expanders. Let us first state Lemma 7,
which is our main tool. Recall that for a graph G the second-largest absolute eigenvalue of
its adjacency matrix is denoted by λ(G) (to lighten the notation we simply write λ where G
is clear from the context).

I Lemma 7. (Lemma 2.3 in [19]) In a ∆-regular graph G = (V,E) for any two node sets
S, S′ ⊆ V , |e(S, S′)− |S||S

′|∆
n | ≤ λ

√
|S||S′|.

In the above lemma, the left-hand side is roughly the deviation between the number
of edges among S and S′ in G and the expected number of edges among S and S′ in the
random graph Gn,∆/n on the node set V . A small λ (i.e., good expansion) implies that this
deviation is small, so the graph is nearly random in this sense; in other words, the number
of edges between any two node sets is almost completely determined by their cardinality.
Intuitively, this implies in the majority model the number of blue nodes that a blue set can
create in the next round is proportional to its size. We phrase this argument more formally
in Lemma 8 and Lemma 9.

I Lemma 8. In the majority model and ∆-regular graph G, if |B(t)| ≤ ( 1
2 −

2λ
∆ )n then

|B(t+ 1)| ≤ n
4 .

Proof. For each node in B(t+ 1), the number of neighbors in B(t) is at least as large as the
number of neighbors in R(t), which implies e(B(t+ 1), R(t)) ≤ e(B(t+ 1), B(t)). Now, by
applying Lemma 7 to both sides of the inequality, we have

|B(t+ 1)||R(t)|∆
n

− λ
√
|B(t+ 1)||R(t)| ≤ |B(t+ 1)||B(t)|∆

n
+ λ
√
|B(t+ 1)||B(t)|.
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Dividing by
√
|B(t+ 1)| and re-arranging the terms give√

|B(t+ 1)|(|R(t)| − |B(t)|) ≤ λn

∆ (
√
|B(t)|+

√
|R(t)|).

Since |R(t)| − |B(t)| ≥ 4λ
∆ n and

√
|B(t)|+

√
|R(t)| ≤ 2

√
n, we have

|B(t+ 1)|16λ2n2

∆2 ≤ λ2n2

∆2 4n⇒ |B(t+ 1)| ≤ n

4 . J

I Lemma 9. In the majority model and ∆-regular graph G, |B(t)| ≤ n
4 implies |B(t+ 1)| ≤

16 λ
2

∆2 |B(t)|.

Proof. Since each node in B(t + 1) must have at least ∆/2 neighbors in B(t), we have
|B(t+1)|∆

2 ≤ e(B(t+ 1), B(t)). Applying Lemma 7 to the right side of the inequality gives

|B(t+ 1)|∆
2 ≤ |B(t+ 1)||B(t)|∆

n
+ λ

√
|B(t+ 1)||B(t)| ⇒

√
|B(t+ 1)|(1− 2|B(t)|

n
) ≤ 2λ

∆
√
|B(t)|.

Now, utilizing |B(t)|
n ≤ 1

4 and taking the square of both sides of the equation imply |B(t+1)| ≤
16 λ

2

∆2 |B(t)|. J

Putting Lemma 8 and Lemma 9 together immediately provides Theorem 10.

I Theorem 10. In the majority model and ∆-regular graph G, if |B(0)| ≤ ( 1
2 −

2λ
∆ )n then

the process gets fully red in O(log∆2/λ2 n) rounds.

I Corollary 11. In the majority model and ∆-regular graph G with λ(G) = o(∆), |B(0)| ≤
( 1

2−δ)n for an arbitrary constant δ > 0 results in fully red configuration in sub-logarithmically
many rounds.

So far we proved our desired density classification property of the majority model on regular
expanders. Now, we discuss that combining these results with some prior works yields some
very interesting propositions, in particular solving an open problem by Peleg [33].

The random ∆-regular graph G∆
n is the random graph with a uniform distribution over all

∆-regular graphs on n vertices, say [n]. It is known [12] that a.a.s. λ(G∆
n ) = O(

√
∆) for ∆ ≥ 3.

Therefore, Theorem 10 implies that in the majority model on G∆
n , if |B(0)| ≤ ( 1

2 −
c√
∆

)n for
some large constant c then the process gets fully red a.a.s. This result is already known by
Gärtner and Zehmakan [17], however with a much more involved proof.

Recall that a graph is (α, β)-immune if any node set of size s ≤ βn controls at most αs
nodes, and it is asymptotically optimally immune if it is ( c2

∆ , β)-immune for some constants
c2, β > 0. As argued in the introduction, by [33, 17] we know that for any ∆ > c1 for some
constant c1, there exists an asymptotically optimally immune ∆-regular graph. However, it
would be interesting to construct such graphs explicitly. For ∆ ≥

√
n, Peleg [33] established

explicit constructions by using structures for symmetric block designs, and he left the case
of ∆ <

√
n as an open problem. We settle this problem by exploiting a large family of

regular Cayley graphs, called Ramanujan graphs. A ∆-regular graph G is Ramanujan if
λ(G) =

√
2∆− 1. Ramanujan graphs are “optimal” expanders because Alon and Boppana [1]

proved that for a ∆-regular graph G, λ(G) ≥
√

2∆− 1 − o(1). Thus, Lemma 9 implies
that for any ∆-regular Ramanujan graph a node set of size s ≤ n

4 can control at most
16λ2

∆2 s = 16(2∆−1)
∆2 s ≤ 32

∆ s nodes. This means that any ∆-regular Ramanujan graph is
( 1

4 ,
32
∆ )-immune; i.e., it is asymptotically optimally immune.
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I Theorem 12. All regular Ramanujan graphs are asymptotically optimally immune.

Lubotzky, Phillips, and Sarnak [26] showed that arbitrarily large ∆-regular Ramanujan
graphs exist when ∆ − 1 is prime, and moreover they can be explicitly constructed (see
also [27, 28]). This result plus Theorem 12 answer the aforementioned question by Peleg.

Finally, as we argued regularity and expansion are sufficient properties for efficient density
classification, but a natural question arises: are they also necessary? Some certain level of
expansion seems to be needed for a graph to show such a density classification behavior
under the majority model because otherwise there can exist a relatively small subset S such
that each node in S has at least half of its neighbors in S; clearly, if S is fully blue initially,
it stays blue forever, even though all the remaining nodes are red. Regarding regularity, if
the graph is not regular but almost regular, that is the minimum degree and the maximum
degree differ by a constant factor, then the same proof ideas provide similar results. However,
large degree gaps can lead into the state where a small subset of nodes of large degrees
controls a large set of nodes of small degrees, which is in contrast with density classification.
All in all, this would be an interesting question to be addressed rigorously in future work.
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