
ar
X

iv
:1

60
2.

06
28

3v
2 

 [
cs

.D
S]

  2
3 

M
ar

 2
01

7

Sorting With Forbidden Intermediates

Carlo Comin1,2, Anthony Labarre1, Romeo Rizzi3, and Stéphane Vialette1
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Abstract. A wide range of applications, most notably in comparative
genomics, involve the computation of a shortest sorting sequence of op-
erations for a given permutation, where the set of allowed operations
is fixed beforehand. Such sequences are useful for instance when recon-
structing potential scenarios of evolution between species, or when trying
to assess their similarity. We revisit those problems by adding a new con-
straint on the sequences to be computed: they must avoid a given set of
forbidden intermediates, which correspond to species that cannot exist
because the mutations that would be involved in their creation are lethal.
We initiate this study by focusing on the case where the only mutations
that can occur are exchanges of any two elements in the permutations,
and give a polynomial time algorithm for solving that problem when the
permutation to sort is an involution.

key Guided Sorting, Lethal Mutations, Forbidden Vertices, Permutation Sorting,
Hypercube Graphs, st-Connectivity.

1 Introduction

Computing distances between permutations, or sequences of operations that
transform them into one another, are two generic problems that arise in a wide
range of applications, including comparative genomics [7], ranking [5], and in-
terconnection network design [16]. Those problems are well-known to reduce to
constrained sorting problems of the following form: given a permutation π and
a set S of allowed operations, find a sequence of elements from S that sorts π

and is as short as possible. In the context of comparative genomics, the sequence
to be reconstructed yields a possible scenario of evolution between the genomes
represented by π and the target identity permutation ι, where all permutations
obtained inbetween are successive descendants of π (and ancestors of ι). The
many possible choices that exist for S, as well as other constraints or cost func-
tions with which they can be combined, have given rise to a tremendous number
of variants whose algorithmic and mathematical aspects have now been stud-
ied for decades [7]. Specific issues that biologists feel need to be addressed to
improve the applicability of these results in a biological context include:
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1. the oversimplicity of the model (permutations do not take duplications into
account),

2. the rigid definition of allowed operations, which fails to capture the com-
plexity of evolution, and

3. the complexity of the resulting problems, where algorithmic hardness results
abound even for deceivingly simple problems.

A large body of work has been devoted to addressing those issues, namely by
proposing richer models for genomes, encompassing several operations with dif-
ferent weights [7]. Some approaches for increasing the reliability of rearrangement
methods by adding additional biologically motivated constraints have been in-
vestigated (for instance, Bergeron et al. [2] consider conserved intervals, Figeac
and Varré [8] restrict the set of allowed inversions and Bérard et al. [1] take
into account the number of inversions in the wanted scenario which commute
with all common intervals). However, another critical issue has apparently been
overlooked: to the best of our knowledge, no model takes into account the fact
that the solutions it produces may involve allele mutations that are lethal to the
organism on which they act. Lethals are usually a result of mutations in genes
that are essential to growth or development [10]; they have been known to occur
for more than a century [4], dating back to the works of Cuénot in 1905 who was
studying the inheritance of coat colour in mice. As a consequence, solutions that
may be perfectly valid from a mathematical point of view should nonetheless be
rejected on the grounds that some of the intermediate ancestors they produce
are nonviable and can therefore not have had any descendants. We revisit the
family of problems mentioned above by adding a natural constraint which, as
far as we know, has not been previously considered in this form (see e.g. [2, 8, 1]
for connected attempts): namely, the presence of a set of forbidden intermediate
permutations, which the sorting sequence that we seek must avoid. We refer to
this family of problems as guided sorting problems, since they take additional
guidance into account. In this paper, we focus our study on the case where only
exchanges (i.e., algebraic transpositions) are allowed; furthermore, we simplify
the problem by demanding that the solutions we seek be optimal in the sense
that no shorter sorting sequence of exchanges exists even when no intermediate
permutation is forbidden. We choose to focus on exchanges because of their con-
nection to the underlying disjoint cycle structure of permutations, which plays
an important role in many related sorting problems where a similar cycle-based
approach, using this time the ubiquitous breakpoint graph, has proved extremely
fruitful [15]. Therefore, we believe that progress on this particular variant will
be helpful when attempting to solve related variants based on more complex
operations.

1.1 Contribution

Our main contribution in this work is a polynomial time algorithm for solving
guided sorting by exchanges when the permutation to sort is an involution.
We show that, in that specific case, the space of all feasible sorting sequences ad-
mits a suitable description in terms of directed (s, t)-paths in hypercube graphs.



We achieve this result by reducing guided sorting to the problem of finding
directed (s, t)-paths that avoid a prescribed set F ⊆ V of forbidden vertices.
Our main contribution, therefore, consists in solving this latter problem in time
polynomial in just the encoding length of F , if G is constrained to be a hy-
percube graph; which is a novel algorithmic result that may be of independent
interest. Specific properties that will be described later on [11, 17] allow us to
avoid the full construction of that graph, which would lead to an exponential
time algorithm.

1.2 Related Works

We should mention that constrained variants of the (s, t)-connectivity problem
have been studied already to some extent. For instance, in the early ’70s, moti-
vated by some problems in the field of automatic software testing and validation,
Krause et al. [14] introduced the path avoiding forbidden pairs problem, namely,
that of finding a directed (s, t)-path in a graph G = (V,E) that contains at most
one vertex from each pair in a prescribed set P ⊆ V × V of forbidden pairs of
vertices. Gabow et al. [9] proved that the problem is NP-complete on DAGs. A
number of special cases were shown to admit polynomial time algorithms, e.g.
Yinnone [19] studied the problem in directed graphs under a skew-symmetry
condition. However, the involved techniques and the related results do not ex-
tend to our problem, for which we are aware of no previously known algorithm
that runs in time polynomial in just the encoding length of F .

A preliminary version of this article appeared in the proceedings of the 3rd In-
ternational Conference on Algorithms for Computational Biology (AlCoB 2016),
see [3]. Here, the previous results are improved and the presentation is extended:

(1) The time complexity of Algorithm 2 is improved by a factor of dS,T · n
(see Theorem 1 for the actual time bound).

(2) Subsection 3.5 is extended by presenting Algorithm 1 plus all the details
of its correctness and running time analysis.

(3) Subsection 3.6 is extended by including a detailed correctness and com-
plexity analysis of Algorithm 2.

(4) Fig. 1, Fig. 2 and Fig. 5 have been added to support some of the more
technical constructions with an illustration.

1.3 Organization

The remainder of the article is organized as follows. Section 2 provides some
background notions and notation on which the rest of this work relies. The
main contribution is offered in Section 3. In Subsection 3.1, the problem Hy-

stCon is formulated. The reduction from guided sorting for exchanges (and
adjacent exchanges) to Hy-stCon is offered in Subsection 3.2 (and 3.3, respec-
tively). The formal statement of our main algorithmic contribution is detailed
in Subsection 3.4. Next, Subsection 3.5 concerns the specific properties [11, 17]
that allow us to avoid the full construction of the hypercube search space. Sub-
section 3.6 presents the polynomial-time algorithm for solving Hy-stCon. In



Subsection 3.7, it is shown how to speed up the algorithm in the case in which
one is interested just in the decision task of Hy-stCon. The correctness analysis
of the main algorithm is carried on in Subsection 3.8, while the complexity is
analyzed in Subsection 3.9. We conclude in Section 4 with a discussion of several
open problems.

2 Background and Notation

We use the notation π = 〈π1 π2 · · · πk〉 when viewing permutations as sequences,
i.e. πi = π(i) for i ∈ [k] = {1, 2, . . . , k}. Our aim is to sort a given permutation
π, i.e. to transform it into the identity permutation ι = 〈1 2 · · · k〉, using
a predefined set of allowed operations specified as a generating set S of the
symmetric group Sk. We seek a sorting sequence that uses only elements from
S and:

1. avoids a given set F of forbidden permutations, i.e. no intermediary permu-
tation produced by applying the operations specified by the sorting sequence
belongs to F , and

2. is optimal, i.e. no shorter sorting sequence exists for π even if F = ∅.

We refer to the general problem of finding a sorting sequence under these con-
straints as guided sorting, and restrict in this paper the allowed operations
to exchanges of any two elements (i.e. algebraic transpositions). For instance,
let π = 〈2 3 1 4〉 and F = {〈1 3 2 4〉, 〈3 2 1 4〉}. Then 〈2 3 1 4〉 7→ 〈2 1 3 4〉 7→
〈1 2 3 4〉 is a valid solution since it is optimal and avoidsF , but neither 〈2 3 1 4〉 7→
〈4 3 1 2〉 7→ 〈4 3 2 1〉 7→ 〈4 2 3 1〉 7→ 〈1 2 3 4〉 nor 〈2 3 1 4〉 7→ 〈1 3 2 4〉 7→
〈1 2 3 4〉 can be accepted: the former is too long, and the latter does not avoid
F .

We use standard notions and notation from graph theory (see e.g. Diestel [6]
for undefined concepts), using {u, v} (resp. (u, v)) to denote the edge (resp. arc)
between vertices u and v of an undirected (resp. directed) graph G = (V,E). All
graphs we consider are simple: they contain neither loops nor parallel edges /
arcs. If F ⊆ V , a directed path p = v0v1 · · · vn avoids F when vi 6∈ F for every i.
If S ⊆ V and T ⊆ V , we say that p goes from S to T in G if v0 ∈ S and vn ∈ T .
When G is directed, we partition the neighbourhood N(u) of a vertex u into the
sets N out(u) = {v ∈ V | (u, v) ∈ E} and N in(u) = {v ∈ V | (v, u) ∈ E}. Some
of our graphs may be vertex-labelled, using any injective mapping ℓ : V → N.
For any n ∈ N, ℘n = ℘([n]) denotes the power set of [n]. The hypercube graph
on ground set [n], denoted by Hn, is the graph with vertex set ℘n and in which
the arc (U, V ) connects vertices U, V ⊆ [n] if there exists some q ∈ [n] such that
U = V \ {q}. If S, T ∈ ℘n and |S| ≤ |T |, then dS,T = |T | − |S| is the distance

between S and T . Finally, H
(i)
n denotes the family of all subsets of ℘n of size i.

3 Solving guided sorting For Involutions

The Cayley graph Γ (Sn, S) of Sn for a given generating set S of Sk contains
a vertex for each permutation in Sk and an edge between any two permuta-



tions that can be obtained from one another using one element from S. A näıve
approach for solving any variant of the guided sorting problem would build
the part of Γ (Sk, S) that is needed (i.e. without the elements of F), then run a
shortest path algorithm to compute an optimal sequence that avoids all elements
of F . This is highly impractical, since the size of Γ is exponential in k.

We describe in this section a polynomial time algorithm for the case where
S is the set of all exchanges and π is an involution, i.e. a permutation such
that for each 1 ≤ i ≤ |π|, either πi = i or there exists an index j such that
πi = j and πj = i. From our point of view, involutions reduce to collections of
disjoint pairs of elements that each need to be swapped by an exchange until
we obtain the identity permutation, and the only forbidden permutations that
could be produced by an optimal sorting sequence are involutions whose pairs
of unsorted elements all appear in π. Therefore, we can reformulate our guided
sorting problem in that setting as that of finding a directed (π, ι)-path in Hn

that avoids all vertices in F , where the permutation to sort π corresponds to the
top vertex [n] of Hn and the identity permutation ι corresponds to the bottom
vertex ∅ of Hn. We give more details on the reduction in Section 3.2.

3.1 Problem Formulation

We shall focus on the following problem from here on.

Problem: Hy-stCon.

Input: the size n ∈ N of the underlying ground set [n], a family of
forbidden vertices F ⊆ ℘n, a source set S ∈ ℘n and a target set T ∈ ℘n.

Decision-Task: Decide whether there exists a directed path p in Hn

that goes from source S to target T avoiding F ;
Search-Task: Compute a directed path p in Hn that goes from source
S to target T avoiding F , provided that at least one such path exists.

We examine in this section specific instances of guided sorting which can
be solved through a reduction to Hy-stCon. We say that permutations that may
occur in an optimal sorting sequence for a given permutation π are relevant, and
all others are irrelevant. The distinction will matter when sorting a particular
permutation since, as we shall see, the structure of π (however it is measured)
will have implications on that of relevant permutations and will allow us to
simplify the set of forbidden permutations by discarding irrelevant ones. For a
fixed set S of operations, we let RS(π) denote the set of permutations that are
relevant to π. Undefined terms and unproven properties of permutations below
are well-known, and details are in standard references, such as Knuth [13].

3.2 guided sorting For Exchanges

Recall that every permutation π in Sk decomposes in a single way into disjoint
cycles (up to the ordering of cycles and of elements within each cycle). This



decomposition corresponds to the cycle decomposition of the directed graph
G(π) = (V,A), where V = [k] and A = {(i, πi) | 1 ≤ i ≤ k}. The length of a
cycle of π is then simply the number of elements it contains, and the number of
cycles of π is denoted by c(π).

The Cayley distance of a permutation π is the length of an optimal sorting
sequence of exchanges for π, and its value is |π|−c(π). Therefore, when searching
for an optimal sorting sequence, we may restrict our attention to exchanges that
split a particular cycle into two smaller ones.

Let (π,F , S,K) be an instance of guided sorting such that S is the set
of all exchanges and where the permutation π to sort is an involution, i.e. a
permutation whose cycles have length at most two. It is customary to omit
cycles of length 1, and to write a permutation π = 〈π1 π2 · · · πk〉 with n cycles
of length 2 as c1c2 · · · cn. Since we are looking for an optimal sorting sequence,
we may assume that all permutations in F are relevant, which in this case means
that every permutation φ in F is an involution and its 2-cycles form a proper
subset of those of π. Our instance of guided sorting then translates to the
following instance of Hy-stCon:

– π 7→ [n] in the following way: ci 7→ i for 1 ≤ i ≤ n;
– each permutation φ in F is mapped onto a subset of [n] by replacing its

cycles with the indices obtained in the first step; let F ′ denote the collection
of subsets of [n] obtained by applying that mapping to each φ in F .

The resulting Hy-stCon instance is then 〈[n], ∅,F ′, n〉, and a solution to in-
stance (π,F , S,K) of guided sorting exists if and only if a solution to instance
〈[n], ∅,F ′, n〉 of Hy-stCon exists; the translation of the solution from the latter
formulation to the former is straightforward.

3.3 guided sorting For Adjacent Exchanges

Recall that an inversion in a permutation π in Sk is a pair (πi, πj) with 1 ≤ i <

j ≤ k and πi > πj . Let (π,F , S,K) be an instance of guided sorting where
S is the set of all adjacent exchanges, i.e. exchanges that act on consecutive
positions. It is well-known that in this case, any optimal sorting sequence for
π has length equal to the number of inversions of π, which means that in the
search for an optimal sorting sequence, we may restrict our attention to adjacent
exchanges that act on inversions that consist of adjacent elements.

Let us now assume that all n inversions of π are made of adjacent elements,
and denote π = i1i2 · · · in, where each ij is an inversion. Since we are looking
for an optimal sorting sequence, we may assume that all permutations in F are
relevant, which in this case means that all inversions of any permutation φ in F
form a proper subset of those of π. The reduction to Hy-stCon in that setting
is very similar to that given in the case of exchanges:

– π 7→ [n] in the following way: ij 7→ j for 1 ≤ j ≤ n;
– each permutation φ in F is mapped onto a subset of [n] by replacing its

inversions with the indices obtained in the first step; let F ′ be the collection
of subsets of [n] obtained by applying that mapping to each φ in F .



The resulting Hy-stCon instance is then 〈[n], ∅,F ′, n〉, and a solution to in-
stance (π,F , S,K) of guided sorting exists if and only if a solution to instance
〈[n], ∅,F ′, n〉 of Hy-stCon exists; the translation of the solution from the latter
formulation to the former is straightforward.

3.4 Main Result

In the rest of this section, we will show how to solve Hy-stCon in time poly-
nomial in |F| and n. The algorithm mainly consists in the continuous iteration
of two phases:

1. Double-BFS. This phase explores the outgoing neighbourhood of the source
S by a breadth-first search denoted by BFS↑ going from lower to higher levels
of Hn while avoiding the vertices in F . BFS↑ collects a certain (polynomially
bounded) amount of visited vertices. Symmetrically, the incoming neighbour-
hood of the target vertex T is also explored by another breadth-first search
BFS↓ going from higher to lower levels of Hn while avoiding the vertices in F ,
also collecting a certain (polynomially bounded) amount of visited vertices.

2. Compression. If a valid solution has not yet been determined, then a com-
pression technique is devised in order to shrink the size of the remaining
search space. This is possible thanks to some nice regularities of the search
space and to certain connectivity properties of hypercube graphs [11, 17].
This allows us to reduce the search space in a suitable way and, therefore,
to continue with the Double-BFS phase in order to keep the search towards
valid solutions going.

Our main contribution is summarized in the following theorem. We devote
the rest of this section to an in-depth description of the algorithms it mentions.

Theorem 1. Concerning the Hy-stCon problem, the following propositions
hold on any input 〈S, T,F , n〉, where dS,T is the distance between S and T .

1. There exists an algorithm for solving the Decision-Task of Hy-stCon

whose time complexity is:

O(min(
√

|F| dS,T n, |F|) |F|2 d3S,T n).

2. There exists an algorithm for solving the Search-Task of Hy-stCon whose
time complexity is:

O(min(
√

|F| dS,T n, |F|) |F|2 d3S,T n+ |F|5/2n3/2dS,T ).

3.5 On Vertex-Disjoint Paths in Hypercube Graphs

The proof of Theorem 1 relies on connectivity properties of hypercube graphs [11].
The next result, which proves the existence of a family of certain vertex-disjoint
paths in Hn that are called Lehman-Ron paths, will be particularly useful.



Theorem 2 (Lehman, Ron [17]). Given n,m ∈ N, let R ⊆ H
(r)
n and S ⊆

H
(s)
n with |R| = |S| = m and 0 ≤ r < s ≤ n. Assume there exists a bijection

ϕ : S → R such that ϕ(S) ⊂ S for every S ∈ S. Then, there exist m vertex-
disjoint directed paths in Hn whose union contains all subsets in S and R.

We call tuples 〈R,S, ϕ, n〉 that satisfy the hypotheses of Theorem 2 Lehman-
Ron tuples, and we refer to the quantity d = s − r as the distance between

R ⊆ H
(r)
n and S ⊆ H

(s)
n . Lehman and Ron [17] give an elementary inductive

proof of Theorem 2; also, they showed that Theorem 2 does not hold if one
requires that the disjoint chains exactly correspond to the given bijection ϕ.
Anyway, a careful and in-depth analysis of their proof, from the algorithmic
perspective, yields a polynomial time algorithm for computing all the Lehman-
Ron paths.

Theorem 3. There exists an algorithm for computing all the Lehman-Ron paths
within time O

(

m5/2n3/2d
)

on any Lehman-Ron input 〈R,S, ϕ, n〉 with |R| =
|S| = m, where d is the distance between R and S and n is the size of the
underlying ground set.

Now we provide all the details of the algorithm sketched above as well as a
proof of the time complexity stated in Theorem 3, in which Menger’s vertex-
connectivity theorem [6] and Hopcroft-Karp’s algorithm [12] for maximum car-
dinality matching in undirected bipartite graphs play a major role.

As mentioned, our proof of Theorem 1 relies on certain connectivity proper-
ties of hypercube graphs, and in particular the existence of a family of certain
vertex-disjoint paths in Hn that we call “Lehman-Ron paths”, which is guaran-
teed by Theorem 2.

Although Theorem 2 was initially proved and applied in the specific area of
testing monotonicity [11], it is of independent interest and related results could
be useful in the context of packet routing on the hypercube network. Lehman and
Ron provided an elegant inductive proof of that result [17]. In the present work,
we point out that a careful analysis of their proof allows us to “extract” a simple
recursive algorithm for computing all Lehman-Ron paths in polynomial time.
We now describe that algorithm, whose correctness follows from the arguments
used by Lehman and Ron in their original proof of Theorem 2 (see [17] for more
details). Its time complexity can be derived by taking into account Hopcroft-
Karp’s algorithm for computing maximum cardinality matchings in bipartite
graphs [12], and is analyzed in detail at the end of this section.

The algorithm that we are going to describe is named compute Lehman-Ron paths().
The intuition underlying it is simply to follow the structure of Lehman and Ron’s
proof of Theorem 2 and to analyze it from the algorithmic standpoint. Its pseu-
docode is given in Algorithm 1.

The algorithm takes as input a Lehman-Ron tuple 〈R,S, ϕ, n〉, and outputs a
family p1, p2, . . . , pm of Lehman-Ron paths joining R to S. Recall that Lehman-
Ron tuples satisfy the following properties:

1. the families of sets R ⊆ H
(r)
n and S ⊆ H

(s)
n are such that |S| = |R| = m,



Algorithm 1: computing Lehman-Ron’s paths.

Procedure compute Lehman-Ron paths(R,S , ϕ, n)
Input: a Lehman-Ron tuple 〈R,S , ϕ, n〉.
Output: a family of m vertex-disjoint directed paths p1, . . . , pm in Hn such

that R ∪ S ⊆
⋃m

i=1 pi.
1 if s = r + 1 then

2 return compute paths from bijection(S , ϕ, n);

3 m← |S|; // assume |S| = |R|
4 Q ← compute Q(S);
5 K ← compute auxiliary network(R,Q,S);
6 〈p′1, p

′
2, . . . , p

′
m〉 ← compute vertex disjoint paths(K);

7 〈Q′, ϕ′, ϕ′′〉 ← compute auxiliary bjcts(〈p′1, p
′
2, . . . , p

′
m〉,m)

8 〈p′′1 , p
′′
2 , . . . , p

′′
m〉 ← compute Lehman-Ron paths(R,Q′, (ϕ′)−1, n);

9 〈p1, p2, . . . , pm〉 ← extend paths(〈p′′1 , p
′′
2 , . . . , p

′′
m〉,Q

′, ϕ′′,m);
10 return 〈p1, p2, . . . , pm〉;

2. r, s and n ∈ N are such that 0 ≤ r < s ≤ n, and
3. ϕ : S → R is a bijection such that ∀ S ∈ S : ϕ(S) ⊂ S.

As a base case of the algorithm, if s = r + 1 (line 1), then the sought family
of directed paths p1, p2, . . . , pm is simply a set of m pairwise vertex-disjoint arcs
oriented from S to R, which are already given by the input bijection ϕ (line 2).

We now focus on the general case s > r+1. To begin with, we introduce the
following proposition, which was already implicit in [17] and which is actually a
straightforward consequence of Theorem 2.

Proposition 1. [17] Given n,m ∈ N, consider two families of sets R ⊆ H
(r)
n

and S ⊆ H
(s)
n where |R| = |S| = m and 0 ≤ r < s ≤ n. Let Q (resp. P) be the

set of vertices in H
(s−1)
n (resp. H

(r+1)
n ) that lie on any directed path from some

vertex in R to some vertex in S.
Then, |Q| ≥ m and |P| ≥ m.

The algorithm first computes the setQ of all vertices inH
(s−1)
n that lie on any

directed path from some vertex inR to some vertex in S. This step is encoded by
compute Q() (line 4). The algorithm then invokes (at line 5) a procedure called
compute auxiliary network(), which constructs a directed auxiliary network
K = (VK, AK) which will be useful in the following steps and is defined by:

– VK = {s, t}∪R∪Q∪S, where s (resp. t) is an auxiliary source (resp. target)
vertex, i.e. {s, t} ∩ (R∪Q ∪ S) = ∅;

– AK is defined as follows:
• the source vertex s is joined to every vertex in R;
• for each R ∈ R and Q ∈ Q, R is joined to Q if and only if R ⊂ Q;
• similarly, for each Q ∈ Q and S ∈ S, Q is joined to S if and only if
Q ⊂ S;



s1 s2 s3 s4 s5

q1 q2 q3 q4 q5

r1 r2 r3 r4 r5

t

s

S

Q

R

m = 5

ϕ

ϕ ϕ ϕ ϕ ϕ

Fig. 1: The auxiliary network K = (VK, AK) and bijection ϕ.

• finally, every vertex in S is joined to t.

Fig. 1 shows an example of an auxiliary network.
We remark that, as shown in [17], the following proposition holds on K.

Proposition 2. [17] The minimum (s, t)-vertex-separator of K has size m.

As a corollary, and by applying Menger’s vertex-connectivity theorem (which
is recalled below), the existence of m internally-vertex-disjoint directed (s, t)-
paths, denoted p′1, p

′
2, . . . , p

′
m, is thus guaranteed.

Theorem 4 (Menger [6]). Let G = (V,A) be a directed graph, and let u and
v be nonadjacent vertices in V . Then the maximum number of internally-vertex-
disjoint directed (u, v)-paths in G equals the minimum number of vertices from
V \ {u, v} whose deletion destroys all directed (u, v)-paths in G.

How to compute p
′

1
, p

′

2
, . . . , p

′

m
We argue that it is possible to compute

efficiently the family of directed paths p′1, p
′
2, . . . , p

′
m in K by finding a maxi-

mum cardinality matching in an auxiliary, undirected bipartite graph K′. This
reduction is performed by compute vertex disjoint paths() at line 6. The
undirected graph K′ = (VK′ , EK′) is obtained from the directed graph K as fol-
lows: first, the set family Q gets split into two (disjoint) twin set families Q(in)

and Q(out),i.e. Q(in) = {Q(in) | Q ∈ Q} and Q(out) = {Q(out) | Q ∈ Q} where
Q(in) ∩ Q(out) = ∅ and |Q(in)| = |Q(out)| = |Q|. Thus, the vertex set of K′ is:

VK′ = R∪Q(in) ∪ Q(out) ∪ S.

The edge set EK′ is obtained as follows:



s1 s2 s3 s4 s5

q
(out)

1 q
(out)

2 q
(out)

3 q
(out)

4 q
(out)

5

q
(in)

1 q
(in)

2 q
(in)

3 q
(in)

4 q
(in)

5

r1 r2 r3 r4 r5

S

Q(out)

Q(in)

R

Fig. 2: The undirected bipartite graph K′ = (VK′ , EK′) and a perfect matching
M (thick edges).

– for each R ∈ R and Q ∈ Q, R is joined to Q(in) if and only if R ⊂ Q;
– similarly, for each Q ∈ Q and S ∈ S, Q(out) is joined to S if and only if

Q ⊂ S;
– finally, Q(in) is joined to Q(out) for every Q ∈ Q.

Fig. 1 shows an example of K′. The next proposition derives some useful
properties of K′.

Proposition 3. The graph K′ = (VK′ , EK′), as defined above, is bipartite and
it admits a perfect matching.

Proof. The bipartiteness of K′ follows from the bipartition (R∪Q(out),Q(in) ∪
S). To see that K′ admits a perfect matching, recall that, by Proposition 2
and by Theorem 4, there exist m internally-vertex-disjoint directed (s, t)-paths
p′1, p

′
2, . . . , p

′
m in K. Then, for every i ∈ [m], let p′i = sRiQiSit for some Ri ∈

R, Qi ∈ Q, Si ∈ S. Finally, let us define Q̂ = Q \ {Q | ∃ i ∈ [m] s.t. p′i =
sRiQSit}. At this point, let us consider the following matchingM of K′:

M =
{

{Ri, Q
(in)
i }, {Q

(out)
i , Si} | ∃ i ∈ [m] s.t. p′i = sRiQiSit

}

∪
{

{Q(in), Q(out)} | Q ∈ Q̂}
}

.

Since m = |R| = |S| and p′1, p
′
2, . . . , p

′
m are internally-vertex-disjoint, it follows

thatM is a perfect matching of K′.

We are in position to show how to compute p′1, p
′
2, . . . , p

′
m based onK. Firstly, the

procedure compute vertex disjoint paths() constructs K′ as explained above
and computes a maximum cardinality matching M of K′ (e.g. with Hopcroft-
Karp’s algorithm [12]), which is perfect by Proposition 3. Therefore, the following
property holds: for every Q ∈ Q, there exists R ∈ R such that {R,Q(in)} ∈ M



if and only if there exists S ∈ S such that {Q(out), S} ∈ M. We can then
proceed as follows: for each Ri ∈ R, the algorithm finds Qi ∈ Q such that

{Ri, Q
(in)
i } ∈ M and then it finds Si ∈ S such that {Q

(out)
i , Si} ∈ M. Then,

compute vertex disjoint paths() returns the family of paths p′1, p
′
2, . . . , p

′
m

defined as: p′i = sRiQiSit for every i ∈ [m]. Since M is a perfect matching of
K′, the paths p′1, p

′
2, . . . , p

′
m are internally-vertex-disjoint.

Let Q′ = {Q | ∃ i ∈ [m] s.t. p′i = sRiQSit}. Once we have computed
p′1, p

′
2, . . ., p

′
m, we can deduce two bijections that will be helpful in obtaining

the wanted paths:
ϕ′ : R→ Q′ and ϕ′′ : Q′ → S.

The first bijection is defined for any R ∈ R as ϕ′(R) = Q (where Q ∈ Q′)
provided there exists some p′i joining R to Q; similarly, the second bijection is
defined for anyQ ∈ Q′ as ϕ′′(Q) = S (where S ∈ S) provided there exists some p′i
joining Q to S. These bijections are computed by compute auxiliary bjcts()

at line 7.
At this point, since the distance between R and Q′ equals s− 1, a recursive

call to compute Lehman-Ron paths() on input 〈R,Q′, (ϕ′)−1, n〉 yields, at line 8,
a family of Lehman-Ron paths p′′1 , p

′′
2 , . . . , p

′′
m joining R to Q′.

Indeed, we argue that it is possible to construct, starting from p′′1 , p
′′
2 , . . . , p

′′
m,

the sought family of Lehman-Ron paths p1, p2, . . . , pm that joinR to S. Actually,
this can be done just by taking into account the bijection ϕ′′: since ϕ′′ joins Q′

to S, it suffices to perform the following steps in practice:

1. consider the last vertex Qi of p
′′
i (i.e. the unique vertex Qi ∈ Q′ such that

Qi ∈ p′′i ∩Q
′);

2. let Si = ϕ′′(Qi);
3. concatenate Si at the end of p′′i (i.e. pi = p′′i Si).

This construction is performed by the extend paths() procedure at line 9. Since
p′′1 , p

′′
2 , . . . , p

′′
m are vertex-disjoint and ϕ′′ : Q′ → S is a bijection, p1, p2, . . . , pm

is the sought family of Lehman-Ron paths joining R to S.

Complexity Analysis (Proof of Theorem 3) We now turn to the time
complexity analysis of Algorithm 1, going through each line in detail.

– line 2: compute paths from bijection() (line 2) takes time at most O(m),
which corresponds to the time needed to inspect the input bijection ϕ.

– line 4: compute Q() takes time at most O(mn): for each S ∈ S, the procedure
inspects the predecessors N in(S), and the time bound follows from the fact
that |S| = m and |N in(S)| ≤ n.

– line 5: we argue that |VK| = O(mn) and |AK| = O(m2n). Indeed, recall
that |R| = |S| = m by hypothesis; and since every vertex of S has at
most n neighbours in Q, we have |Q| ≤ mn. This in turn implies that
|VK| ≤ 2 + 2m + mn; moreover, each of the m vertices in R has at most
mn neighbours, which all lie in Q. Therefore, |AK| ≤ 2m+m2n+mn, and
the procedure compute auxiliary network() takes time at most O(|VK|+
|AK|) = O(m2n).



Algorithm 2: Solving the Hy-stCon problem.

Procedure solve Hy-stCon(S,T,F , n)
Input: an instance 〈S, T,F , n〉 of Hy-stCon.
Output: a pair 〈YES, p〉 where the path p is a solution to Hy-stCon if such

a path exists, NO otherwise.
1 dS,T ← |T | − |S|; // let dS,T be the distance between S and T

2 S ← {S}; ℓ↑ ← 0; // init the frontier S and its level counter ℓ↑
3 T ← {T}; ℓ↓ ← 0; // init the frontier T and its level counter ℓ↓
4 while TRUE do

5 〈S ,T , ℓ↑, ℓ↓〉 ← double-bfs phase(S ,T ,F , ℓ↑, ℓ↓, dS,T , n);
6 if S = ∅ OR T = ∅ OR (ℓ↑ + ℓ↓ = dS,T AND S ∩ T = ∅) then

7 return NO ;

8 if ℓ↑ + ℓ↓ = dS,T AND S ∩ T 6= ∅ then
9 p← reconstruct path(S ,T , n);

10 return 〈YES, p〉;

11 returned val← compression phase(S ,T ,F , ℓ↑, ℓ↓, dS,T , n);
12 if returned val = 〈YES, p〉 then return p;
13 else T ← returned val;

– line 6: compute vertex disjoint paths() takes time at most O
(

m5/2n3/2
)

.
Indeed, let us consider the auxiliary (undirected) bipartite graph K′ =
(VK′ , EK′) defined above. Since |VK| = O(mn) and |AK| = O(m2n), we
have |VK′ | = O(mn) and |EK′ | = O(m2n) by construction. A maximum
cardinality matching M of K′ can be computed with Hopcroft-Karp’s al-
gorithm [12] within time O(

√

|VK′ | |EK′ |) = O(m5/2n3/2), which yields the
claimed time bound.

– finally, lines 7 (compute auxiliary bjcts()) and 9 (extend paths()) take
time at most O(m).

To obtain the total time complexity of compute Lehman-Ron paths(), it is
sufficient to observe that the depth of the recursion stack (originating from line 8)
equals the distance d = s − r between the families of sets that were originally
given as input, R and S, and that the most expensive computation at each step
of the recursion is clearly the maximum cardinality matching computation that
is performed on the auxiliary bipartite graph K′. Therefore, we conclude that the
worst-case time complexity of compute Lehman-Ron paths() is O

(

m5/2n3/2d
)

.

3.6 A Polynomial Time Algorithm For Solving Hy-stCon

We now describe a polynomial time algorithm for solving Hy-stCon, called
solve Hy-stCon(), which takes as input an instance 〈S, T,F , n〉 ofHy-stCon,
and returns a pair 〈YES, p〉 where p is a directed path in Hn that goes from
source S to target T avoiding F if such a path exists (otherwise, the algorithm
simply returns NO). Algorithm 2 shows the pseudocode for that procedure. The



Algorithm 3: Breadth-First-Search phases.

Procedure double-bfs phase(S , T ,F , ℓ↑, ℓ↓, dS,T , n)
1 〈S∗, ℓ∗↑〉 ← bfs phase(S ,F , ℓ↑, ℓ↓, out, dS,T , n); // BFS↑

2 〈T ∗, ℓ∗↓〉 ← bfs phase(T ,F , ℓ↓, ℓ
∗
↑, in, dS,T , n); // BFS↓

3 return 〈S∗, T ∗, ℓ∗↑, ℓ
∗
↓〉;

SubProcedure bfs phase(X ,F , ℓx, ℓy, drt, dS,T , n)
1 while 1 ≤ |X | ≤ |F| dS,T AND ℓx + ℓy < dS,T do

2 X ← next step bfs(X ,F , drt, n);
3 ℓx ← ℓx + 1;

4 return 〈X , ℓx〉;

SubProcedure next step bfs(X ,F , drt, n)
1 X ′ ← ∅;
2 foreach v ∈ X do

3 X ′ ← X ′ ∪Ndrt(v) \ F ; // Ndrt is Nin if drt = in, otherwise it is Nout

4 return X ′;

rationale at the base of solve Hy-stCon() consists in the continuous iteration
of two major phases: double-bfs phase() (line 5) and compression phase()

(line 11). Throughout computation, both phases alternate repeatedly until a final
state of termination is eventually reached (either at line 7, line 10 or line 12).
At that point, the algorithm either returns a pair 〈YES, p〉 where p is the sought
directed path, or a negative response NO instead. We now describe both phases
in more detail, and give the corresponding pseudocode.

Breadth-First Search phases The first search BFS↑ starts from the source vertex
S and moves upward, from lower to higher levels of Hn. Meanwhile, it collects
a certain (polynomially bounded) amount of vertices that do not lie in F . In
particular, at the end of any BFS↑ phase, the number of collected vertices will
always lie between |F| dS,T + 1 and |F| dS,T n (see line 1 of bfs phase()). The
set S of vertices collected at the end of BFS↑ is called the (source) frontier of
BFS↑. All vertices within S have the same cardinality, i.e. |X1| = |X2| for every
X1, X2 ∈ S. Also, the procedure keeps track of the highest level of depth ℓ↑ that
is reached during BFS↑. Thus, ℓ↑ corresponds to the distance between the source
vertex S and the current frontier S, formally, ℓ↑ = |X | − |S| for every X ∈ S.
Since at the beginning of the computation BFS↑ starts from the source vertex S,
solve Hy-stCon() initializes S to {S} and ℓ↑ to 0 at line 2.

Similarly, the second search BFS↓ starts from the target vertex T and moves
downward, from higher to lower levels of Hn, also collecting a certain (polyno-
mially bounded) amount of vertices that do not lie in F . As in the previous case,
this amount will always lie between |F| dS,T + 1 and |F| dS,T n. The set T of
vertices collected at the end of BFS↓ is called the (target) frontier of BFS↓. All
vertices within T have the same cardinality. Also, the procedure keeps track of
the lowest level of depth ℓ↓ that BFS↓ has reached. Thus, ℓ↓ corresponds to the



distance between the target vertex T and the frontier T , so that ℓ↓ = |T | − |X |
for everyX ∈ T . Since at the beginning of the computation, BFS↓ starts from the
target vertex T , solve Hy-stCon() initializes T = {T } and ℓ↓ = 0 at line 3.
Fig. 3 provides an illustration of the behaviour of double-bfs phase().

In summary, after any round of double-bfs phase(), we are left with two
(possibly empty) frontier sets S and T . In Algorithm 2, whenever S = ∅ or T = ∅
holds at line 6, then at least one frontier set could not proceed one level further
in Hn while avoiding F , and thus the procedure halts by returning NO at line 7.
Similarly, whenever ℓ↑+ℓ↓ = dS,T and S∩T = ∅ holds at line 6, the computation
halts by returning NO at line 7 — the underlying intuition being that S and T
have finally reached one another’s level of depth without intersecting each other,
which means that Hn contains no directed path from S to T that avoids F .

1, 2, 3

1,2 1, 3 2,3

1 2 3

∅

Fig. 3: A double bfs phase() on H3 that starts from S = ∅ and T = {1, 2, 3}.
The forbidden vertices are F = {{2}, {3}, {1, 2}, {2, 3}}, while the edges explored
by BFS↑ and BFS↓ are (∅, {1}) and ({1, 2, 3}, {1, 3}) (respectively).

On the other hand, if both ℓ↑ + ℓ↓ = dS,T and S ∩ T 6= ∅ hold at line 8, then
we can prove that for every S′ ∈ S, there exists at least one directed path in Hn

that goes from the source S to S′ avoiding F . Similarly, for every T ′ ∈ T , there
exists at least one directed path in Hn that goes from T ′ to target T avoiding F .
Therefore, whenever S ∩ T 6= ∅, the algorithm is in the right position to recon-
struct a directed path p in Hn that goes from source S to S ∩T and from S ∩T
to target T avoiding F (line 9). In practice, the reconstruction can be imple-
mented by maintaining a map throughout the computation, which associates to
every vertex v (possibly visited during the BFSs) the parent vertex, parent(v),
which led to discover v first. As soon as p gets constructed, solve Hy-stCon()

returns 〈YES, p〉 at line 10, and the computation halts.

Compression Phase After double-bfs phase() has completed, the procedure
solve Hy-stCon() also needs to handle the case where S, T 6= ∅ and ℓ↓+ ℓ↑ <

dS,T . The phase that starts at that point is named compression phase() (see
Algorithm 4). This procedure takes as input a tuple 〈S, T ,F , ℓ↑, ℓ↓, dS,T , n〉,
where S and T are the current frontier sets. Recall that |T | > |F| dS,T holds



Algorithm 4: Compression phase.

Procedure compression phase(S ,T ,F , ℓ↑, ℓ↓, dS,T , n)
1 T ′ ← ∅;
2 while TRUE do

3 G ← construct bipartite graph(S , T , n);
4 M← compute max matching(G, |F|+ 1);
5 if |M| > |F| then
6 MS ← {X ∈ S | ∃Y ∈ T s.t (X,Y ) ∈ M};
7 MT ← {Y ∈ T | ∃X ∈ S s.t. (X,Y ) ∈M};
8 {p1, . . . , p|M|} ← compute Lehman-Ron paths(MS ,MT ,M, n);

9 p← reconstruct path(S ,T , {pi}
|M|
i=1 , n);

10 return 〈YES, p〉;

11 X ← compute min vertex cover(G,M);
12 XS ← X ∩ S ; XT ← X ∩ T ;
13 T ′ ← T ′ ∪ XT ;
14 〈S ,T , ℓ↑, ℓ↓〉 ← double-bfs phase(XS , T ,F , ℓ↑, ℓ↓, dS,T , n);
15 if S = ∅ OR (ℓ↓ + ℓ↑ = dS,T AND S ∩ T = ∅ ) then

16 return T ′;

17 if ℓ↑ + ℓ↓ = dS,T AND S ∩ T 6= ∅ then
18 p← reconstruct path(S ,T , n);
19 return 〈YES, p〉;

due to line 1 of bfs phase(). Also, F ⊆ ℘n is the set of forbidden vertices;
ℓ↑ is the level counter of S and ℓ↓ is that of T ; finally dS,T is the distance
between the source S and the target T , and n is the size of the ground set. The
output returned by compression phase() is either a path p going from source
S to target T avoiding F or a subset T ′ ⊂ T such that the following two basic
properties hold:

(1) |T ′| ≤ |F| dS,T , and (2) if p is any directed path in Hn going from S to
T avoiding F , then p goes from S to T ′.

This frontier set T ′ is dubbed the compression of T . The underlying rationale
goes as follows. On one hand, because of (1), it is possible to keep the search
going on by applying yet another round of double-bfs phase() on input S
and T ′ (in fact, the size of T has been compressed down to |T ′| ≤ |F| dS,T ,
thus matching the threshold condition “|X | ≤ |F| dS,T” checked at line 1 of
bfs phase()). On the other hand, because of (2), it is indeed sufficient to seek
for a directed path in Hn that goes from S to T ′ avoiding F , namely, the search
can actually forget about T \T ′ because it leads to a dead end. We now describe
compression phase() in more details, and give a graphical summary in Fig. 4.
The procedure repeatedly builds an undirected bipartite graph G = (VG , EG),
where VG = S ∪ T and every vertex U ∈ S is adjacent to a vertex V ∈ T if
and only if U ⊂ V . It then uses the procedure compute max matching() to find
a matching M of size |M| = min(m∗, |F| + 1), where m∗ denotes the size of
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Fig. 4: The frontier sets of the compression phase().

a maximum cardinality matching of G. Notice that the following holds due to
line 1 of bfs phase():

|VG | = |S|+ |T | ≤ 2 |F| dS,T n,

thus, we have the following bound on the size of its edge set:

|EG | ≤ |VG |
2 ≤ 4 |F|2 d2S,T n2.

The fact is that, given that we are content with a cardinality matching of size
at most k = |F|+1, it is worth applying the following recursive self-reduction(G, k)
(Algorithm 5), on input (G, |F|+ 1), in order to shrink the upper bound on the
size of |EG | from |VG |2 down to |VG | · |F|: at line 1, M ← ∅ is initialized to
the empty set. At line 2, if k = 0, the empty matching M = ∅ is returned.
Then, at line 3, let v̂ ∈ V be some vertex having maximum degree δ(v̂) in G.
If δ(v̂) < k at line 4, the Hopcroft-Karp’s algorithm [12] is invoked at line 5
to compute a matching M of G such that |M| = min(m∗, k), where m∗ is
the maximum cardinality of any matching in G. In practice, this step can be
implemented in the same manner as a maximum cardinality matching proce-
dure, e.g. as Hopcroft-Karp’s algorithm [12], although with the following basic
variation: if the size of the augmenting matchingM eventually reaches the cut-
off value k, then compute max matching() returns M and halts (i.e. even if
m∗ > k). Otherwise, δ(v̂) ≥ k holds at line 6. So, at line 7, let G′ be the graph
obtained from G by removing v̂ and all of its adjacent edges; next, it is in-
voked self-reduction(G′, k − 1) at line 8, recursively; and, then, the returned
matching is assigned to M′. Since δ(v̂) ≥ k, there must be at least one edge
{u, v̂} ∈ EG such that u is not matched in M′, therefore, {u, v̂} is added to
M′; and the corresponding matching is assigned to M, at line 9. Finally, M



Algorithm 5: Self-Reduction for computingM.

Procedure self-reduction(G, k)
1 M← ∅;
2 if k = 0 then returnM;
3 v̂ ← pick one vertex v̂ ∈ V having maximum degree δ(v̂) in G;
4 if δ(v̂) < k then

5 M← compute a matchingM of G s.t. |M| = min(m∗, k), with the
Hopcroft-Karp’s algorithm [12];

6 if δ(v̂) ≥ k then

7 G′ ← remove v̂ from G; and call the resulting graph G′;
8 M′ ← self-reduction(G′, k − 1);
9 M← there must be at least one edge {u, v̂} ∈ EG such that u is not

matched inM′, therefore, add {u, v̂} toM′; and assign the resulting
matching toM;

10 returnM;

is returned at line 10. In so doing, as shown in Lemma 12, the complexity of
compute max matching(), at line 4 of compression phase() (Algorithm 4), is
going to improve by a factor n · dS,T .

The course of the next actions depends on |M|:

1. If |M| = |F| + 1, then the procedure relies on Theorem 3 to compute a
family p1, p2, . . . , p|M| of |M| vertex-disjoint directed paths in Hn that go
from S to T . In order to do that, the procedure considers the subsetMS ⊆ S
(resp. MT ⊆ T ) of all vertices in S (resp. in T ) that are incident to some
edge inM (lines 6 and 7). Notice that the matchingM can be viewed as a
bijection betweenMS andMT . Then, the algorithm underlying Theorem 3
gets invoked on input 〈MS ,MT ,M, n〉 (line 8). Once all the Lehman-Ron
paths p1, p2, . . . , p|M| have been found, it is then possible to reconstruct the
sought directed path p in Hn that goes from source S to target T avoiding
F (line 9). In fact, since |M| > |F| by hypothesis, and since p1, p2, . . . , p|M|

are distinct and pairwise vertex-disjoint, there must exist at least one path
pi that goes from S to T avoiding F . It is therefore sufficient to find such
a path pi = v0v1 · · · vk by direct inspection. At that point, it is possible to
reconstruct a path p going from S to v0 (because v0 ∈ S), as well as a path
going from vk to T (because vk ∈ T ). As already mentioned, in practice, the
reconstruction can be implemented by maintaining a map that associates to
every vertex v (eventually visited during the BFSs) the parent vertex that
had led to discover v first. Then, 〈YES, p〉 is returned at line 10.

2. If |M| ≤ |F|, then the compression phase() aims to compress the size of T
down to |T ′| ≤ |F| dS,T as follows. Notice that in this caseM is a maximum
cardinality matching of G, because |M| ≤ |F|. So, the algorithm computes
a minimum cardinality vertex-cover X of G at line 11, whose size is |M| by
König’s theorem [6]. The algorithm then proceeds at line 12 by considering



the set XS = X ∩ S (resp. XT = X ∩ T ) of all vertices that lie both in the
vertex-cover X and in the frontier set S (resp. T ). Here, it is crucial to notice
that both |XS | ≤ |F| and |XT | ≤ |F| hold, because |X | = |M| ≤ |F|. The
fact that, since X is a vertex-cover of G, any directed path in Hn that goes
from S to T must go either from XS to T or from S \ XS to XT plays a
pivotal role. Stated otherwise, there exists no directed path in Hn that goes
from S \ XS to T \ XT , simply because X is a vertex cover of G. At that
point, the compression T ′ gets enriched with XT at line 13.
Then, compression phase() seeks a directed path in Hn that eventually
goes from XS to T . This is done at line 14 by running double-bfs phase()

on 〈XS , T ,F , ℓ↑, ℓ↓, dS,T , n〉. Since |XS | ≤ |F|, that execution results into
an update of both the frontier set S and of its level counter ℓ↑. Let S(i+1)

be the updated value of S and let ℓ
(i+1)
↑ be that of ℓ↑. Note that, since

|T | > |F| dS,T holds as a pre-condition of compression phase(), neither T
nor ℓ↓ are ever updated at line 14. Upon completion of this supplementary

double-bfs phase(), if S(i+1) = ∅ or both ℓ
(i+1)
↑ + ℓ↓ = dS,T and S(i+1) ∩

T = ∅ at line 15, then T ′ is returned at line 16 of compression phase().

Otherwise, if ℓ
(i+1)
↑ + ℓ↓ = dS,T and S(i+1) ∩ T 6= ∅ at line 17, the sought

directed path p in Hn that goes from source S to target T avoiding F can be
reconstructed from S(i+1) and T at line 18, so that compression phase()

returns 〈YES, p〉 and halts soon after at line 19.

Otherwise, if S(i+1) 6= ∅ and ℓ
(i+1)
↑ + ℓ↓ < dS,T , the next iteration will run

on the novel frontier set S(i+1) and its updated level counter ℓ
(i+1)
↑ . It is not

difficult to prove that each iteration increases ℓ↑ by at least one unit, so that
the while-loop at line 2 of compression phase() can be iterated at most
dS,T times overall. In particular, this fact implies that |T ′| ≤ |F| dS,T always
holds at line 16 of compression phase().

Fig. 4 illustrates the family of all frontier sets considered throughout com-
pression phase(), where the following notation is assumed: maxi is the total
number of iterations of the while-loop at line 2 of compression phase(), X (i)

is the vertex-cover computed at the ith iteration of line 11, X
(i)
S and X

(i)
T are the

sets computed at the ith iteration of line 12, and S(i) is the frontier set computed
at the ith iteration of line 14. The compression of T (possibly returned at line 16)

is T ′ =
⋃maxi

i=1 X
(i)
T .

3.7 A Remark On Decision Versus Search

Algorithm 2 tackles the Search-Task of Hy-stCon. If we merely want to an-
swer the Decision-Task instead, we can simplify the algorithm by immediately
returning YES if |M| > |F| at line 5 of compression phase(). This is because in
that case, Theorem 2 guarantees the existence of a family of |M| > |F| vertex-
disjoint paths in Hn that go from the current source frontier S to the target
frontier T , which suffices to conclude that at least one of those paths avoids F .



This simplification improves the time complexity of our algorithm for solving
the Decision-Task by a polynomial factor over that for the Search-Task.

3.8 Correctness Analysis of Algorithm 2

The present subsection aims to show that the procedure solve Hy-stCon() is
correct. A formal statement of that is provided in the next theorem.

Theorem 5. Let I = 〈S, T,F , n〉 be any instance of Hy-stCon. Given I as
input, the procedure solve Hy-stCon() halts within a finite number of steps.
Moreover, it returns as output a directed path p in Hn that goes from source S

to target T avoiding F , provided that at least one such path exists; otherwise,
the output is simply NO.

We are going to show a sequence of results that shall ultimately lead us to
prove Theorem 5. Hereafter, it is assumed that 〈S, T,F , n〉 is an instance (of Hy-

stCon) given as input to the solve Hy-stCon() procedure. Lemmas 1 to 3
below show that procedures double-bfs phase() and compression phase(),
which are called by solve Hy-stCon(), halt within a finite number of steps.

Lemma 1. Any invocation of double-bfs phase() halts within a finite number
of steps. In particular, the while-loop at line 1 of the bfs phase() iterates at
most dS,T times.

Proof. Consider the while-loop at line 1 of bfs phase(). At each iteration of
line 3, the level counter ℓx gets incremented. Notice that this is the only line at
which ℓx may be modified, and also notice that ℓy is never modified. Therefore,
ℓx + ℓy can only increase and not decrease. Since the while-loop at line 1 of
bfs phase() halts as soon as ℓx + ℓy = dS,T , the thesis follows.

Lemma 2. Each iteration of the while-loop at line 2 of compression phase()

increases ℓ↑ + ℓ↓ by at least one unit, either until ℓ↑ + ℓ↓ = dS,T or until the
procedure halts by reaching either line 10, line 16 or line 19.

Proof. Consider any iteration of the while-loop at line 2 of compression

phase(). Let G be the bipartite graph computed at line 3, and let M be the
matching of G computed at line 4. If |M| > |F|, then line 10 gets executed, so
the procedure halts within a finite number of steps by virtue of our discussion
in Section 3.5. Otherwise |M| ≤ |F|. Recall that, since |M| ≤ |F|, thenM is a
maximum matching of G; also recall that XS = X ∩ S where X is a minimum
vertex cover of G (line 12). Since |X | = |M|, then |XS | ≤ |X | = |M| ≤ |F|.
Moreover, since |M| ≤ |F|, double-bfs phase() gets invoked at line 14 on
input 〈XS , T ,F , ℓ↓, ℓ↑, dS,T , n〉 and halts within a finite number of steps by
Lemma 1. Let us analyze its behavior with respect to XS . If XS = ∅, then
double-bfs phase() returns an empty frontier set S as output, which leads to
the termination of compression phase() at line 16. Moreover, if ℓ↑+ ℓ↓ = dS,T ,
then compression phase() halts either at line 16 or at line 19. Otherwise, we



must have 1 ≤ |XS | ≤ |F| and ℓ↑ + ℓ↓ < dS,T , in that case the condition for
entering the while-loop at line 1 of the bfs phase() is satisfied; therefore, at
line 3 of bfs phase(), the level counter ℓ↑ gets incremented. This implies the
thesis.

Lemma 3. Any invocation of compression phase() halts within a finite num-
ber of steps. In particular, the while-loop at line 2 of the compression phase()

iterates at most dS,T times.

Proof. Firstly, recall Lemma 2. Then, notice that as soon as ℓ↑ + ℓ↓ = dS,T the
compression phase() then halts either at line 16 (if S ∩T = ∅) or at line 19 (if
S∩T 6= ∅). This implies that the while-loop at line 2 of compression phase()

iterates at most dS,T times.

We now prove some useful properties of compression phase() and solve Hy-

stCon().

Lemma 4. The following invariant is maintained at each line of solve Hy-

stCon() and at each line of compression phase(). For every S′ ∈ S there
exists a directed path in Hn that goes from S to S′ avoiding F ; similarly, for
every T ′ ∈ T there is a directed path in Hn that goes from T ′ to T avoiding F .

Proof. At the beginning of the procedure S = {S} and T = {T }, so the thesis
holds. At each subsequent step, the only way in which a novel vertex can be
added either to S or T is by invoking the double bfs phase(), which preserves
connectivity and avoids F by construction at line 3 of next step bfs().

Lemma 5. Assume that any invocation of compression phase() halts by re-
turning 〈YES, p〉. Then p is a directed path in Hn that goes from source S to
target T avoiding F .

Proof. If compression phase() returns p as output, then the last iteration of
the while-loop at line 2 must reach either line 10 or line 19:

1. Assume that line 10 is reached at the last iteration. Then, during that iter-
ation, the matchingM (computed at line 4 on input G) has size |M| > |F|.
Recall that G is a bipartite graph on bipartition (S, T ). LetMS (resp.MT

be the subset of all vertices in S (resp. T ) that belong to some edge inM.
Then, by Theorem 2, there exist |M| vertex-disjoint directed paths in Hn,
say p1, p2, . . . , p|M|, whose union contains all the vertices in MS and MT .
Since |M| > |F|, at least one of those paths — say, pi = v0 · · · vk — must
avoid F . By Proposition 4, the procedure reconstruct path() (invoked at
line 9) is able to compute a directed path pS,v0 in Hn that goes from S to v0
avoiding F (because v0 ∈ S, being the first step of pi), and it is also able to
compute a directed path pvk,T that goes from vk to T avoiding F (because
vk ∈ T , being the last step of pi). Let p = pS,v0pipvk,T be the directed path
obtained by concatenation. compression phase() then returns p at line 10.



2. Assume that line 19 is reached at the last iteration. Then, at that iter-
ation, the condition checked at line 17 of compression phase() must be
satisfied; that is, we have ℓ↑ + ℓ↓ = dS,T and S ∩ T 6= ∅. Let X be an arbi-
trary vertex in S ∩ T . By Lemma 4, there exists at least one directed path
pS,X in Hn that goes from S to X avoiding F (because X ∈ S); similarly,
there exists at least one directed path pX,T in Hn that goes from X to T

avoiding F (because X ∈ T ). Therefore, during that iteration, the proce-
dure reconstruct path() (invoked at line 18) is able to compute a path
p = pS,XpX,T that goes from S to X , and then from X to T , which is the
result returned by compression phase() at line 19.

The following result shows two useful properties of the frontier set returned
by compression phase(), for which we will need additional notation. Denote
by maxi be the number of times that the while-loop at line 2 gets iterated
throughout the whole execution of the compression phase().

Also, let us introduce the following notation, for each index i ∈ [maxi]:

– let X (i) be the vertex cover that is computed during the i-th iteration of
line 11;

– let X
(i)
S and X

(i)
T be the sets computed during the i-th iteration of line 12;

– let S(i) be the novel frontier set that is computed during the i-th iteration
of line 14;

Moreover, we assume the notation S(0) = S, so that X
(i)
S = S(i−1)∩X (i) holds for

each iteration i ∈ [maxi]. Notice that, since |T | > |F| dS,T holds by hypothesis,
then T is not modified, at line 14, by the invocation of double-bfs phase().
Indeed, T is never modified throughout the compression phase(). Nevertheless,
a novel set T ′ ⊂ T gets constructed and possibly returned.

Proposition 4. Assume that the procedure compression phase() is invoked
on input 〈S, T ,F , ℓ↑, ℓ↓, dS,T , n〉, where |T | > |F| dS,T is required to hold as a
pre-condition. Also, assume that the procedure halts at line 16, returning a novel
frontier set T ′ ⊂ T . Then, the following properties hold:

1. |T ′| ≤ |F| dS,T ;
2. if p is any directed path in Hn that goes from S to T avoiding F , then p

goes from S to T ′.

Proof. Firstly notice that, if an invocation of the compression phase() halts
at line 16 by returning a novel frontier set T ′ ⊂ T , this means that neither
line 10 nor line 19 are ever reached throughout that invocation. In particular
this implies that, at each iteration i of the while-loop at line 2, the maximum
matchingM(i) (computed at line 4) has size |M(i)| ≤ |F|; this fact is assumed
throughout the whole proof.

1. Proof of (1). At each iteration i ∈ [maxi], the minimum vertex cover X (i)

has size:
|X (i)| = |M(i)| ≤ |F|.



Since X
(i)
T = X (i) ∩ T at line 12, then |X

(i)
T | ≤ |X

(i)| ≤ |F|. Moreover, recall
that T ′ gets enriched by X (i) at each iteration of line 13, so that the following
holds at the termination of the compression phase():

T ′ =

maxi
⋃

i=1

X
(i)
T .

Also recall that, by Lemma 3, the while-loop at line 2 can be iterated at
most dS,T times, so that maxi ≤ dS,T . Therefore, when compression phase()

terminates, we have |T ′| ≤ |F| dS,T .
2. Proof of (2). In order to prove (2), we exhibit a number of invariants which

hold for each iteration of the while-loop at line 2 of compression phase().
In what follows, we assume that the procedure compression phase() gets
invoked on input 〈S, T ,F , ℓ↑, ℓ↓, dS,T , n〉, and that S(0) = S holds by nota-
tional convention.

Lemma 6. Let i ∈ [maxi] be any iteration of the while-loop at line 2
of compression phase(). Let p be any directed path in Hn that goes from

S(i−1) to T . Then p goes either from X
(i)
S to T or from S(i−1) \ X

(i)
S to

X
(i)
T . In other words, there exists no directed path in Hn that goes from

S(i−1) \ X
(i)
S to T \ X

(i)
T .

Proof. Recall that X (i) is a vertex cover of the bipartite graph defined as
G(i) = ((S(i−1), T ),⊂), which is constructed during the i-th iteration of

line 3 within the procedure compression phase(). Also, X
(i)
S = X (i) ∩

S(i−1) and X
(i)
T = X (i) ∩ T , so that the existence of any directed path

in Hn going from S(i−1) \ X
(i)
S to T \ X

(i)
T would imply the existence

of some edge of G(i) that would be uncovered by X (i), contradicting the
fact that X (i) is vertex cover of G(i).

Fig. 5 illustrates the intuition underlying Lemma 6.
Lemma 7. Let i ∈ [maxi] be any iteration of the while-loop at line 2
of compression phase(). Let U be any subset of S(i−1) and let V be
any subset of T . Let p be any directed path in Hn that goes from U to
V . Then p goes from S to V in Hn.

Proof. Induction on i ∈ [maxi].
• Base Case. If i = 1, recall that S(0) = S. Then U ⊆ S, which implies
the base case.
• Inductive Step. Let us assume, by induction hypothesis, that the
claim holds for some i ∈ [maxi−1] and let us prove it for i + 1.
So, let U ⊆ S(i), and let p by any directed path in Hn that goes
from U to V . Recall that S(i) is the frontier set that is returned
by an invocation of double-bfs phase() on input X

(i)
S , at the i-th

iteration of line 14, within compression phase(). This amounts to
saying that all vertices in S(i) have been discovered by a BFS starting
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Fig. 5: The undirected bipartite graph G(i) = ((S(i−1), T ),⊂), and vertex cover

X (i) = (X
(i)
S , X

(i)
T ) (doubly-circular nodes).

from X
(i)
S . Recall that X

(i)
S = X (i) ∩ S(i−1) so that X

(i)
S ⊆ S(i−1).

Therefore, p is indeed a directed path in Hn that goes from S(i−1)

to V in Hn. By induction hypothesis, the thesis follows.

Lemma 8. Let i ∈ [maxi] be any index of iteration of the while-loop

at line 2 of compression phase(). Let p be a directed path in Hn that

goes from S to T avoiding F . Then, p goes either from X
(i)
S to T or

from S to
⋃i

j=1 X
(j)
T .

Proof. Induction on i ∈ [maxi].

• Base Case. If i = 1, recall that S(0) = S. Then, by Lemma 6, we

have that p either goes from X
(1)
S to T or from S \X

(1)
S to X

(1)
T . If p

goes from S \ X
(1)
S to X

(1)
T , then clearly p goes from S to X

(1)
T . This

implies the base case.
• Inductive Step. Let us assume, by induction hypothesis, that the
claim holds for some i ∈ [maxi−1], and let us prove it for i + 1.

By induction hypothesis, p either goes from X
(i)
S to T or from S to

⋃i
j=1 X

(j)
T in Hn.

If p goes from X
(i)
S to T avoiding F in Hn, then p must go from S(i)

to T : in fact, recall that S(i) is the frontier set that is returned by



the invocation of double-bfs phase() on input X
(i)
S , at line 14 of

the compression phase().
If p goes from S(i) to T then, by Lemma 6, we also have that p goes

either from X
(i+1)
S to T or from S(i) \ X

(i+1)
S to X

(i+1)
T in Hn.

If p goes from S(i) \ X
(i+1)
S to X

(i+1)
T , then p goes from S to X

(i+1)
T

by Lemma 7.

Since p either goes from X
(i+1)
S to T , or from S to X

(i+1)
T , or from S

to
⋃i

j=1 X
(j)
T in Hn, we have that p either goes from X

(i+1)
S to T , or

from S to
⋃i+1

j=1 X
(j)
T in Hn, thus concluding the induction and the

proof of Lemma 8.

We now have everything we need to prove (2). Let i = maxi be the last
iteration of the while-loop at line 2 of compression phase(). Moreover,
assume that p is a directed path in Hn that goes from S to T avoiding F .

By Lemma 8, p either goes from X
(maxi)
S to T or from S to

⋃maxi

i=1 X
(i)
T .

We argue that p cannot go from X
(maxi)
S to T in Hn. In fact, any such

path must first visit S(maxi) in order to reach T . Then, it is sufficient to
show that there exists no path that goes from S(maxi) to T . Recall that
maxi is the last iteration of the while-loop at line 2, and by hypothesis
the compression phase() halts by returning T ′ at line 16. Therefore, at

line 15, it must hold that S(maxi) = ∅ or that both ℓ
(maxi)
↓ + ℓ↑ = dS,T and

S(maxi) ∩ T = ∅. Thus, there exists no directed path in Hn that goes from
S(maxi) to T .
Since p does not go from X

(maxi)
S to T , it must go from S to

⋃maxi

i=1 X
(i)
T

instead; and since T ′ =
⋃maxi

i=1 X
(i)
T , p must therefore go from S to T ′, which

concludes the proof of (2).

Now that we have established the correctness of the procedures it uses, we
go back to establishing the correctness of solve Hy-stCon().

Lemma 9. Each iteration of the while-loop at line 4 of solve Hy-stCon()

increases ℓ↑ + ℓ↓ by at least one unit; until ℓ↑ + ℓ↓ = dS,T or until the procedure
halts by reaching either line 7, line 10 or line 12.

Proof. Induction on the index i of iteration of the while-loop at line 4.

– Base Case. Consider the first iteration of the while-loop at line 4. We
have S = {S}, T = {T }, and ℓ↑ = ℓ↓ = 0. Therefore, if dS,T = 0, then
the procedure halts immediately, either at line 7 (if S 6= T ) or at line 10 (if
S = T ). If dS,T > 0, then a first execution of double-bfs phase() is invoked
at line 5, which halts after a finite number of steps by Lemma 1. Notice
that the condition for entering the while-loop at line 1 of bfs phase() is
satisfied, so ℓ↑ + ℓ↓ gets incremented at line 3 of bfs phase().

– Inductive Step. Assume that at the i-th iteration of the while-loop at
line 4, we have ℓ↑ + ℓ↓ < dS,T . Furthermore, assume that none of the con-
ditions checked by solve Hy-stCon() at line 6, line 8 and line 12 are



satisfied. Then, the procedure does not halt at i-th iteration. Recall that
double-bfs phase(), which is invoked at line 5, halts within finite time by
Lemma 1; also, recall that compression phase(), which is invoked at line 11,
halts within finite time by Lemma 3. Thus, at the end of the i-th iteration,
line 13 gets finally executed. At line 13, the current frontier T gets replaced
by the value T ′, previously returned by compression phase() at line 11.
Notice that |T ′| ≤ |F| dS,T holds by Proposition 4. The (i + 1)-th iteration
of the while-loop at line 4 starts at this point. Then, at line 5, another
round of double-bfs phase() is executed. If T 6= ∅ and ℓ↑ + ℓ↓ < dS,T , the
condition for entering the while-loop at line 1 of bfs phase() is satisfied,
so that ℓ↑ + ℓ↓ gets incremented at line 3. If T = ∅ or ℓ↑ + ℓ↓ = dS,T , then
the procedure halts at line 7. This implies that the invariant is maintained
for each iteration i.

Proposition 5. The procedure solve Hy-stCon() halts within a finite number
of steps. In particular, the while-loop at line 4 iterates at most dS,T times.

Proof. Recall the statement of Lemma 9. As soon as ℓ↑ + ℓ↓ = dS,T , then
solve Hy-stCon() halts either at line 7 (if S ∩ T = ∅) or at line 10 (if
S ∩ T 6= ∅). In particular, this implies that the while-loop at line 4 of the
solve Hy-stCon() can be iterated at most dS,T times.

Proposition 6. Assume that solve Hy-stCon() halts by returning the pair
〈YES, p〉. Then p is a directed path in Hn that goes from S to T avoiding F .

Proof. Observe that solve Hy-stCon() can return 〈YES, p〉 as output only at
line 10 or at line 12. In the latter case, p gets constructed at line 11 by invoking
compression phase(), so the thesis follows by Lemma 5. Otherwise, assume
that p is returned at line 10. Therefore, at the last iteration of line 8, it must
hold that S ∩ T 6= ∅. Then, let X ∈ S ∩ T . By Lemma 4 there exists a directed
path pS,X in Hn that goes from S to X avoiding F (because X ∈ S), and there
exists another directed path pX,T in Hn that goes from X to T avoiding F
(because X ∈ T ). Therefore, reconstruct path() at line 9, is able to compute
a directed path p = pS,XpX,T in Hn that goes from S to T avoiding F , which
gets returned at line 12.

Lemma 10. The following invariant is maintained at each line of solve Hy-

stCon(). If p is any directed path in Hn that goes from S to T avoiding F ,
then p goes from S to T .

Proof. Induction on the index i of iteration of the while-loop at line 2.

– Base Case. Before entering the first iteration, since S = {S} and T = {T },
the thesis holds.

– Inductive Step. Assume that the thesis holds at the end of the i-th iteration.
So, let S(i) and T (i) be the frontier sets at the end of the i-th iteration.
When i = 0, just recall that S(0) = {S} and T (0) = {T }. Now, at the



beginning of the (i + 1)-th iteration, in particular at line 5 of solve Hy-

stCon(), let S and T be the frontier sets returned by the invocation of
double-bfs phase(). If p is any directed path in Hn that goes from S to
T avoiding F , then p goes from S(i) to T (i) by induction hypothesis. It is
not difficult to see that if p goes from S(i) to T (i) avoiding F , then p must
go from S to T as well: at this point, the reader can check that this is a
direct consequence of double-bfs phase()’s construction. If the (i + 1)-th
iteration doesn’t halt, then the compression phase() at line 11 gets invoked.
Then, let T ′ be the value returned by compression phase() at line 11. By
Proposition 4, if p is a directed path in Hn that goes from S to T avoiding
F , then p goes from S to T ′. Thus, it is indeed correct to update T by T ′ at
line 13 of solve Hy-stCon(). This implies that the thesis holds for each
iteration of the while-loop at line 2, until termination.

Proposition 7. Assume that solve Hy-stCon() halts by returning NO. Then
there is no directed path in Hn that goes from S to T avoiding F .

Proof. Since solve Hy-stCon() returns NO, the condition checked at line 6
must be satisfied: if S = ∅ or T = ∅, then there exists no directed path in Hn

that goes from S to T ; similarly, if ℓ↑ + ℓ↓ = dS,T and S ∩ T = ∅, then there
exists no directed path in Hn that goes from S to T . By Lemma 10, there exists
no directed path in Hn that goes from S to T avoiding F .

Theorem 5 follows, at this point, from Propositions 5 to 7.

3.9 Complexity Analysis

We now analyze the time complexity of solve Hy-stCon(), starting with that
of the procedures it relies on.

Lemma 11. The double-bfs phase() always halts within O(|F| d2S,T n) time.

Proof. It is sufficient to prove that bfs phase() always halts withinO(|F| d2S,T n)
time. Recall that, by Lemma 1, the while-loop at line 1 of bfs phase() iterates
at most dS,T times. At each iteration, next step bfs() gets invoked on some
input set X ∈ ℘n and flag variable drt ∈ {in, out} (see line 2 of bfs phase()).

We argue that each of these invocations takes at most O(|F| dS,T n) time.
Assume that N drt is N in when drt = in, and that it is N out otherwise. Then,
each invocation of next step bfs() takes O(|X | maxv∈X {|N

drt(v)|}) time, be-
cause it involves visiting N drt(v) for each v ∈ X ; still, in order to enter the
while-loop at line 1 of bfs phase(), we must have |X | ≤ |F| dS,T , and more-
over we have |N drt(v)| = O(n) for every v ∈ X . Since the total number of
iterations is bounded above by dS,T , the bound follows.

Lemma 12. Assume that compression phase() gets invoked at line 11 of the
procedure solve Hy-stCon(). If compression phase() halts without ever exe-
cuting the procedure compute Lehman-Ron paths() at line 8, then it halts within



the following time bound:

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n

)

(1)

Otherwise, if compression phase() executes compute Lehman-Ron paths() at
line 8, then it halts within the following time bound:

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n+ |F|5/2n3/2dS,T

)

(2)

Proof. We start with some preliminary observations that will be useful in proving
time bounds (1) and (2). Let us assume that compression phase() is invoked
on the following input 〈S, T ,F , ℓ↑, ℓ↓, dS,T , n〉 at line 11 of solve Hy-stCon().
We argue that the following bounds hold on the size of S and T :

|S| ≤ |F| dS,T n and |T | ≤ |F| dS,T n. (3)

In fact, notice that S and T were computed during a previous invocation of
double-bfs phase(), at line 5 of solve Hy-stCon(). Therefore, it suffices
to consider the set X which is computed by passing through the while-loop

at line 1 of bfs phase(). The condition for entering that while-loop requires
|X | ≤ |F| dS,T . Therefore, as soon as bfs phase() exits that while-loop, we
must have |X | ≤ |F| dS,T n. This implies the bounds specified by (3).

Consider the bipartite graph G = (VG , EG) = ((S, T ),⊂), which is con-
structed at line 3 of compression phase(). Since we have:

|VG | = |S|+ |T | ≤ 2 |F| dS,T n,

we also have the following bound on the size of its edge set:

|EG | ≤ |VG |
2 ≤ 4 |F|2 d2S,T n2.

We can now proceed with the proof of the two time bounds.

1. In the case where compute Lehman-Ron paths() never gets executed, recall
that, at line 4, the compression phase() computes a matchingM of G such
that |M| = min(m∗, |F|+1), where m∗ is the size of a maximum cardinality
matching of G. At this point, the self-reduction(G, |F|+1) (Algorithm 5),
allows us to shrink the upper bound on the size of |EG | from |VG |2 down to:

|VG | · |F| ≤ 2 |F|2 dS,T n.

The total overhead introduced by self-reduction() is only O(|VG |+ |EG |),
because there are at most |VG | recursive calls, each one inspecting the neigh-
bourhood of some node of G. So,M is computed within the following time
bound tM:

tM = O
(

min(
√

|VG |, |F|) |EG |
)

= O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 dS,T n

)



At this point, let us observe that the time complexity of compute min vertex cover(),
which is invoked at line 11 of compression phase(), is bounded above by
the time complexity of computing M at line 4. Also, by Lemma 11, the
time complexity of the double-bfs phase(), which is invoked at line 14 of
compression phase(), is bounded above by the same quantity.
If compute Lehman-Ron paths() never gets executed at line 8, then during
each iteration of the while-loop at line 2 of compression phase(), the
most expensive task is that of computing the matchingM at line 4. Recall
that, according to Lemma 3, the while-loop at line 2 iterates at most dS,T
times. We conclude that, in this case, the compression phase() halts within
the following time bound:

tM dS,T = O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n

)

.

2. In the case where compute Lehman-Ron paths() gets executed, which hap-
pens whenever |M| = |F| + 1, we must now take its time complexity into
account, which we analyze below.
First, consider the set MS computed at line 6 of compression phase().
The following bound holds on its size:

|MS | = |M| = |F|+ 1.

The same bound holds for the setMT ⊆ T which is computed at line 7 —
namely: |MT | = |M| = |F| + 1. By Theorem 3, provided that we consider
the parameter m = |M| = O(|F|), invoking compute Lehman-Ron paths()

on input 〈MS ,MT ,M, n〉 takes time at most tLR, where:

tLR = O
(

m5/2n3/2dS,T

)

= O
(

|F|5/2n3/2dS,T

)

.

Recall that, by Lemma 3, the while-loop at line 2 iterates at most dS,T
times. At each of such iterations, a brand new matching M gets com-
puted at line 4. Finally, at the very last of such iterations, provided that
|M| > |F|, then the procedure compute Lehman-Ron paths() is invoked at
line 8. Therefore, we conclude that whenever compression phase() executes
compute Lehman-Ron paths() at line 8, then it halts within the following
time bound:

tM dS,T + tLR =

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n+ |F|5/2n3/2dS,T

)

Proposition 8. The Decision-Task of Hy-stCon can be solved within the
following time bound on any input 〈S, T,F , n〉:

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d3S,T n

)

.



Proof. Let us consider the procedure solve Hy-stCon() of Algorithm 2. By
Proposition 5, the while-loop at line 4 iterates at most dS,T times. At each it-
eration, double-bfs phase() is invoked at line 5, and compression phase() is
invoked soon after at line 11. By Lemma 11, the most expensive one between the
two procedures is clearly compression phase(). Recall that, if we are content
with solving the Decision-Task of Hy-stCon, then the compression phase()

can be implemented so that it always halts without ever executing the proce-
dure compute Lehman-Ron paths() at line 8. Therefore, by Lemma 12, each
invocation of compression phase() takes time at most

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n

)

.

Since we have at most dS,T of such invocations, then the thesis follows.

Proposition 9. The Search-Task of Hy-stCon can be solved within the fol-
lowing time bound on any input 〈S, T,F , n〉:

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d3S,T n+ |F|5/2n3/2dS,T

)

.

Proof. Let us consider the procedure solve Hy-stCon() of Algorithm 2. By
Proposition 5, the while-loop at line 4 iterates at most dS,T times. At each
iteration, double-bfs phase() is invoked at line 5, and compression phase()

is invoked shortly after at line 11. By Lemma 11, the most expensive step be-
tween the two is clearly the compression phase(). Recall that, if we aim to
solve the Search-Task of Hy-stCon, then the compression phase() possi-
bly executes the compute Lehman-Ron paths() procedure at line 8. Neverthe-
less, whenever compression phase() executes compute Lehman-Ron paths() at
line 8, then the procedure solve Hy-stCon() halts shortly after at line 12. This
means that the only invocation of compression phase() that possibly executes
compute Lehman-Ron paths() is the very last invocation. Then, each invoca-
tion of compression phase(), except the very last one, halts within the follow-
ing time bound by Lemma 12: O

(

min
(√

|F| dS,T n, |F|
)

|F|2 d2S,T n
)

. Since the
very last invocation of compression phase() possibly executes the procedure
compute Lehman-Ron paths() at line 8, the following time bound holds on the
last invocation of compression phase() by Lemma 12:

O

(

min
(
√

|F| dS,T n, |F|
)

|F|2 d2S,T n+ |F|5/2n3/2dS,T

)

.

Since there are at most dS,T invocations of the compression phase(), the thesis
follows.

4 Conclusion

With the intention of integrating more biologically relevant constraints into clas-
sical genome rearrangement problems, we introduced in this paper the guided



sorting problem. We broadly define it as the problem of transforming two
genomes into one another using as few operations as possible from a given fixed
set of allowed operations while avoiding a set of nonviable genomes. We gave a
polynomial time algorithm for solving this problem in the case where genomes
are represented by permutations, under the assumptions that 1) permutations
can only be modified by exchanging any two elements, 2) the sequence to seek
must be optimal, and 3) the permutation to sort is an involution.

Many questions remain open, most notably that of the computational com-
plexity of the guided sorting problem, whether under assumptions (1) and (2)
or in a more general setting (i.e., using structures other than permutations, op-
erations other than exchanges, or allowing sequences to be “as short as possible”
instead of optimal). One could also investigate “implicit” representations for the
set of forbidden intermediate permutations, e.g. all permutations that avoid a
given (set of) pattern(s), or that belong to a specific conjugacy class. Aside from
complexity issues, future work shall also focus on extending the approach we
proposed to other families of instances of the guided sorting problem, and
identifying other tractable (or intractable) cases or variants of it; for instance,
we plan to extend our algorithmic results to the family of graphs satisfying the
shadow-matching [18] condition.
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