N

N

A theoretical and experimental study of a new algorithm
for minimum cost flow in dynamic graphs
Mathilde Vernet, Maciej Drozdowski, Yoann Pigné, Eric Sanlaville

» To cite this version:

Mathilde Vernet, Maciej Drozdowski, Yoann Pigné, Eric Sanlaville. A theoretical and experimental
study of a new algorithm for minimum cost flow in dynamic graphs. Discrete Applied Mathematics,
2021, 296, pp.213-216. 10.1016/j.dam.2019.12.012 . hal-02430162

HAL Id: hal-02430162
https://hal.science/hal-02430162

Submitted on 12 Mar 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02430162
https://hal.archives-ouvertes.fr

A Theoretical and Experimental Study of a
New Algorithm for Minimum Cost Flow in
Dynamic Graphs

Mathilde Vernet Maciej Drozdowski Yoann Pigné
Eric Sanlaville

Abstract

This work focuses on the minimum cost flow problem in dynamic
graphs. The model here proposed does not have travel time nor stor-
age but all other parameters are time-dependent. The most popular
method to solve this kind of problem uses the time-expanded graph but
due to the large size of this graph, this solution technique is not man-
ageable on a long time horizon. We propose a new approach that does
not use the time-expanded graph. Our algorithm is based on the com-
putation of successive shortest paths on static graphs, which are much
smaller compared to the time-expanded graph. It has a significantly
better computational complexity. Our method was implemented using
the GraphStream library and experiments showed that it is also much
faster than the classical method in practice.

1 Introduction

Graphs model interactions between entities, and are widely used in real world
applications. Unfortunately static graphs are not always appropriate when
time is an issue. We want our graphs to be able to represent a system
whose entities’ interactions may evolve with time. For instance, transporta-
tion networks can change over time when roads are blocked for a certain
amount of time. Communication networks and social networks are not con-
stant over time because the represented relations vary. A molecular structure

may evolve when its environment (temperature or pressure) changes. This is
a reason to study dynamic graphs and graph problems in a dynamic context.

Dynamic graphs are an extension of graphs where there is dynamicity on
vertex and/or arc sets: they are modified over time. Vertices and arcs can
appear or disappear. Weights on vertices or arcs can also be time-dependent.

The time dimension in flow networks opened a new area of modeling.
Since the pioneer works of Ford and Fulkerson (1958, 1962), the method
mainly used to solve a flow problem on a dynamic graph consists in building
the time-expanded graph. It allows the direct use of algorithms developed
for the static case. This method has a major drawback: the time and space
complexity is large. We present a new method using the Successive Shortest
Path (SSP) algorithm of smaller complexity to solve the minimum cost flow
problem in a specific dynamic context. Our method outperforms theoretically
and experimentally an algorithm using the time-expanded graph.

Further organization of the paper is the following: Section 2 presents an
overview of works done on dynamic graphs both from modeling and algo-
rithmic point of view, and in particular works on minimum cost flow in a
dynamic context. The model used and the problem studied are introduced
in Section 3. Section 4 describes our method, and experimental results are
presented in Section 5. Concluding remarks are given in Section 6.

2 State of the art

The literature on dynamic graphs has been very prolific these last years. This
section focuses on the first seminal works on dynamic graphs and then on
papers dealing with flow problems on dynamic graphs.

2.1 Graphs and Temporal Dynamicity

Dynamic graphs have been extensively studied for decades by different com-
munities producing works on many application domains, with various models
and terminologies. The consequence is that several formalisms and many dif-
ferent models can be found in the literature. Models differ with respect to
which parameters change (vertices, arcs, weights) and how they change (con-
tinuously and discretely). For a complete overview, see Holme (2015).
Holme (2015) uses the term of temporal networks. He lists different do-
mains and systems that can be modeled using temporal networks such as

communication, transportation or biological networks. Different ways used
to represent and study temporal networks and their structure are described.

Casteigts et al. (2012) propose the term of time-varying graphs (TVG).
They define different concepts that can be found in dynamic graphs, such as
journeys (time-respecting paths). They detail three different points of view
on graph evolution. The first one is the edge-centric evolution where the
presence of each edge is defined as a union of time intervals. The second
point of view is the vertex-centric evolution where, for each vertex, the set
of its neighbors at a specific time is defined. The last point of view is the
graph-centric evolution where the dynamic graph is seen as a sequence of
static graphs. Casteigts et al. (2012) also describe classes of TVGs based on
the graph structure or on the properties of the graph. They propose ways
to build graphs with the given properties. Note that our paper chooses the
graph centric evolution point of view.

Michail (2016) uses the term temporal graphs. His work presents proper-
ties about the graph structure and works that were done on graph problems
applied to a dynamic context.

In all the works considered so far, time takes discrete values but it can
also be considered as continuous values (Anderson et al., 1982). In this case
however, discretization is necessary to solve optimization problems.

Different optimization problems have been studied on dynamic graphs.
Many papers consider the shortest path problem, see for instance (Xuan
et al., 2003), especially with applications to large-scale road traffic networks
(Nannicini et al., 2010). The minimum spanning tree (Huang et al., 2015)
and the traveling salesman problem (Michail and Spirakis, 2016) have also
been investigated. Due to their practical importance, flows have also been
widely studied.

2.2 Flows in dynamic graphs
2.2.1 Dynamic Flows

Skutella (2009) gives important definitions and major results obtained in the
research on dynamic flows.

Flows in dynamic graphs can be defined on different dynamic graph mod-
els. Figure 1 shows all possible models depending on the different parameters,
whether they are defined or not, time-varying or not.

Furthermore, different flow problems can be addressed. The maximum

flow problem, as in the static case, aims at sending as much flow as possi-
ble through the graph respecting the constraints of the graph and the time
horizon. In the dynamic case, the minimum cost flow problem minimizes arc
travel costs and storage costs. Another flow problem, specific to the dynamic
case, and widely studied, is the quickest flow problem where the goal is to
send a fixed amount of flow through the graph minimizing the latest arrival
at the sink.

Flows in dynamic graphs have been studied since the 1950s beginning
with the works of Ford and Fulkerson (1958, 1962). In their models, a time
dimension is added to the graphs but all parameters are constant over time.
The flows are defined over time using travel time that is added on arcs. The
same kind of models is used by Wilkinson (1971); Hoppe and Tardos (1994,
2000).

Minieka (1973) is the first to work on a model where parameters are not
constant over time. In his work, arcs capacities and arcs travel times are
time-dependent.

Baumann and Kéhler (2007) propose a model where the arc capacity is
constant over time but the arc travel time depends on the flow over this arc.
They give approximation results for the earliest arrival flow problem (also
known as universal maximum flow problem), where the flow arriving at the
sink at each time step must be maximum.

Most works use the time-expanded graph to solve their problems. The
time-expanded graph is a static graph in which each vertex corresponds to
a vertex of the dynamic graph at one specific time step. It carries the same
information as the dynamic graph (more details about the time-expanded
graph are given in Section 3.3). Halpern (1979) is the first to propose a new
method that does not use the time-expanded graph. It is inspired by (Ford
and Fulkerson, 1956). In the case of a highly dynamic graph, the author
himself admits that this method might not be as efficient as using the time-
expanded graph. Akrida et al. (2019) propose a model in which each arc
has a set of labels indicating the time steps of availability of the arc. The
arc capacity is constant in all the time steps of arc availability. Storage is
allowed and a constant storage capacity is defined. The case when storage
is unlimited is also studied. They define a temporal cut and prove that the
maximum temporal flow is equal to the minimal temporal cut. The authors
describe a simplified time-expanded graph (STEG) which size is linear on the
input size of the dynamic graph unlike the time-expanded graph used in the
literature to solve such problems. In their paper, the authors also address the

4

Capacities Arc Costs Travel Time Storage Storage Costs

None
None None None
Constant Constant
Constant Constant Constant
Time-dependent Time-dependent
Time-dependent Time-dependent Time-dependent

Figure 1: All possible models of dynamic networks for flows.

problem of expected maximum temporal flow where the labels of presence
are randomly chosen for a fixed subset of edges in the graph.

Some works consider time to be continuous rather than discrete. There-
fore, flow is seen as a continuous function of time. Anderson et al. (1982), or
more recently Hashemi and Nasrabadi (2012), work on dynamic graphs with
continuous time but solving the problem implies a discretization of time. In
the following, we focus on the discrete case.

2.2.2 Dynamic Minimum Cost Flow Algorithms

The minimum cost flow problem over time is NP-hard (Skutella, 2009) when
the number of time steps 7' is a parameter and the capacity, travel time and
costs either change at a finite subset of time steps or do not change at all.
If these parameters are allowed to change at each time step, then the size
of the data is linear in T" and not logarithmic in 7T". Therefore, the problem,
solved by an algorithm polynomial in 7', is polynomial. Indeed, the classical
algorithms on the time-expanded graph are polynomial in the number of
vertices n, the number of arcs m and the number of time steps T'. However,
most works addressing this problem present either a pseudo-polynomial time
algorithm or an approximation algorithm. Note that many theoretical studies
on minimum cost flow problem in a dynamic context were carried on, but
most of them do not offer computational experiments to validate their results.

Many works are conducted on models with constant parameters, while
time dimension is present through travel time, usually also constant. Orlin
(1984) works on the minimum cost flow problem with an infinite time hori-
zon. No supplies, demands, sources or sinks are defined in this model. Arc
travel times are constant over time, arc costs are defined as convex functions
of flow. A polynomial time algorithm is described to solve the problem on
this infinite model. Fleischer and Skutella (2003) work on a model with con-

stant parameters. They define a condensed time-expanded graph where it is
not necessary to copy every vertex for every time step, under some conditions
on arc travel time, or by rounding up the travel time. The authors propose
an approximation algorithm to solve the minimum cost flow problem. Ros-
tami and Ebrahimnejad (2014) work on a similar model and also propose
an approximation algorithm. Klinz and Woeginger (2004) work on a model
with constant parameters and infinite storage. They address the minimum
cost flow problem and present two variants of this problem. First, the mini-
mum cost maximum dynamic flow problem where the number of flow units
to send is fixed to the maximum flow on this graph under the time horizon
T. The second is the minimum cost quickest flow problem where the end
of the time horizon T is fixed to the minimum time such that the defined
amount of flow can be sent. They define a class of graphs for which a greedy
algorithm optimally solves the minimum cost flow problem. Lin and Jaillet
(2015) work on the quickest flow problem on a graph with constant param-
eters and propose a method to solve their problem using a minimum cost
flow. A recent work, conducted by Grande et al. (2018), proposes a column
generation method to solve the minimum cost flow problem. They work on a
model with constant parameters, without storage, with multiple sources and
sinks. Computational experiments are also presented.

The minimum cost flow problem is also studied on models with time-
varying parameters. Cai et al. (2001) propose an algorithm based on SSP.
They design a shortest dynamic path algorithm with complexity O(n-m-T?).
Note that this complexity can be achieved by the Bellman-Ford algorithm
on the time-expanded graph. Miller-Hooks and Patterson (2004) work on a
dynamic model where arc capacities and arc travel times are time-dependent.
Infinite storage is allowed on vertices. Supplies and demands are not defined
globally for the whole period the graph is studied on, but they are defined
at each time step. Their goal is to solve the time-dependent quickest flow
problem. In order to achieve this, they define the time-dependent minimum
time dynamic flow problem, which is a minimum cost flow problem where the
arc cost is the arc travel time. An optimal solution to this problem gives an
optimal solution to the quickest flow problem. Their method does not use the
time-expanded graph and has complexity O(U-n?-T?) where U is the number
of flow units to send. Using the successive shortest path algorithm, with
Dijkstra algorithm used at each iteration, on the time-expanded graph would
take O(U-T-(m+n-log(n-T'))). Parpalea and Ciurea (2011) give an algorithm
to obtain the maximum flow of minimum cost on graphs where capacities and

travel times are time-dependent and storage on vertices is forbidden. Their
algorithm, based on successive shortest paths, and first described in (Ahuja
et al., 1993), works on the time-expanded graph. Nasrabadi and Hashemi
(2010) work on a very general model where arc capacities, arc costs, arc travel
time, storage capacities, storage costs and vertex supplies and demands are
time-dependent. They solve the associated minimum cost flow problem. Note
that the successive shortest path algorithm can be used directly on the time-
expanded graph in this case and it has complexity O(B - n? - T?) where B
is an upper bound on the total supply. However, they propose an algorithm
based on the successive shortest path algorithm on a compact residual graph
that has complexity O(B -n-T - (n+T)), which is strictly better. Hashemi
and Nasrabadi (2012) also work on a model with continuous time and solve
the minimum cost flow problem through discretization.

3 Problem Description

3.1 Definitions

We work on dynamic graphs that evolve through time in a discrete way.
The graphs, with n vertices and m arcs, are defined on a set of time steps
T ={1,...,T}, where T is called the time horizon. The dynamic graph G
is defined as a succession of static graphs: G = (Gg)ge7, Where Gy, called
t-graph, is the graph at time step 6.

We assume a flow network model without travel time. Flow units travel
instantaneously from a vertex to its neighbors. Storage on vertices is not
allowed. A flow unit arriving at a vertex has to leave this vertex immediately
and is not allowed to “wait” on it before going to a neighbor. Arc capacities,
noted u, are time-dependent and supposed integers. The capacity of arc ij
at time 6 is noted wugy(ij). Arc costs, noted ¢, are also time-dependent and
supposed integers. The cost for one unit of flow to go through arc ij at time ¢
is noted cy(ij). Without loss of generality, vertices and arcs are present over
all the time steps in 7. Their accessibility is determined by arc capacities.
If an arc capacity is 0, this arc cannot be used to transfer flow units. If every
incoming arc of a vertex has 0 capacity, then this vertex is unreachable.

We consider the minimum cost flow problem. A source and a sink are
defined in our graphs. The source, as well as the sink, is supposed unique but
it is always possible to model several sources and sinks with a unique source

Figure 2: Dynamic Graph over 3 time steps. Each time step is represented.
On arc ij, couple (u(ij);c(ij)) represents arc ij capacity and cost, respec-
tively. 4 flow units have to be sent on this graph.

and a unique sink. The source has a supply that needs to be evacuated to
the sink before the end of the time horizon at the minimum possible cost.
This global supply is defined for the whole set 7 and not for each time
step separately. The global supply is what makes this problem relevant to
our model. Indeed, a supply defined at each time step implies solving the
problem independently at each time step. In our model, the minimum cost
flow at each time step does not give a solution for the minimum cost flow on
7. In order to get the optimum solution, we might need to skip a few time
steps that are too expensive (see example in Section 3.2).

3.2 Example

Figure 2 presents the evolution of a dynamic graph over 3 time steps (T =
{1,2,3}). Vertex 1 is the source, vertex 4 is the sink. We have to send 4 flow
units through this graph. The optimum solution here is to send 1 unit in G,
on path (1,2,4) at cost 2, 1 unit in Gy on path (1,2,3,4) at cost 3 and 2
units in G3 on path (1,2,3,4) at cost 4. The minimum cost flow of value 4
has cost 9. The optimum solution avoids Gb.

Remark that, in the same graph, a flow of value 4 cannot be achieved in
any of the t-graphs. The maximum flow in GGy has value 3 and costs 9. The
maximum flow in G5 has value 2 and costs 9. The maximum flow in G5 has
value 3 and costs 8. The minimum cost flow on the whole set 7 cannot be
deduced from the minimum cost flow in each t-graph.

3.3 Classical Method

The most popular method to solve flow problems on dynamic graphs involves
building the time-expanded graph. The time-expanded graph, noted GEXP,
gives a static representation of a dynamic graph without loss of information.
The time-expanded version of a dynamic graph G = (Gy)ger has a vertex for
each vertex of G at each time step 6. An arc is added in GFX” from vertex
ip (corresponding to vertex i of G at time 6) to vertex jg,s (corresponding
vertex j of G at time 0 + ¢) if there exists an arc from ¢ to j in G at time
step 6 having travel time 0. In our specific case, there are no travel times.
Therefore 6 = 0.

The time-expanded graph is a static graph, therefore, it can be used di-
rectly to solve the optimization problems with classical algorithms developed
for static graphs (Minieka, 1973; Parpalea and Ciurea, 2011). The solution
obtained can be easily transformed into a solution of the dynamic graph.
The major issue with this method is the increased size of the instance.

To solve the minimum cost flow problem on a dynamic graph, we can
build the time-expanded graph, add a supersource with outgoing arcs to the
sources of the graph at each time step and a supersink with incoming arcs
from the sinks of the graph at each time step. This time-expanded graph has
exactly T"-n+ 2 vertices and T-m + 2 - T arcs. Figure 3 represents the time-
expanded graph for our model corresponding to the example from Figure 2.
The dynamic graph has 4 vertices, 5 arcs, 3 time steps. The corresponding
time-expanded graph is a static graph with 14 vertices, 21 arcs, and carries
the same information as the dynamic graph.

The Successive Shortest Path algorithm (SSP) described by Ahuja et al.
(1993) has complexity O(U - (m + n -log(n))). It uses Dijsktra’s algorithm
to solve the shortest path problem, hence the part m + n - log(n) in the
complexity. In the general case, U is the maximum supply. When considering
a unique source, U is the source supply.

Because of the higher number of vertices and arcs of the time-expanded
graph, applying SSP on this graph would have complexity O(U - T - (m +n -
log(n - T))). Let us name this method Time-Ezpanded SSP.

The simple question addressed in this paper is: can we achieve a better
complexity?

Figure 3: Time-expanded graph of the dynamic graph given in Figure 2.
We add a supersource O connected to the source of each t-graph G; and a
supersink D connected to the sink of each t-graph G;. The new arcs all have
infinite capacity and null cost.

3.4 Applications

As stated earlier, the objective of this paper is to provide a general result
on the complexity of finding a minimum cost flow on a dynamic network.
Though our time-varying network model and the related minimum cost flow
problem may seem basic, they have many practical applications.

Since our model associates no travel durations on the arcs, a common
denominator of the applications is the lack of travel time, or travel time
negligible compared to the network dynamics. This is indeed the case in
communication networks, in logistic networks or in power grids.

In the first case, transporting large amount of data is a major issue, and
graph models and their classical algorithms have been used for many years,
see for instance the book by Bertsekas et al. (1992), or the one edited by
Koster and Mutioz (2009). More specifically, let us look at the problem of
sending a large amount of data to a server. This data is partitioned into
smaller units (packets), but cannot be stored on intermediate nodes for the
lack of storage resources. A single packet travel time is short compared
to the whole file transfer time. The capacity of each part of the network
depends on what is allowed by the network provider. The transfer cost is
also defined by the provider and both can be modified over time depending

10

on the provider’s needs and possibilities. The optimal way to transfer the
data can be computed thanks to our model. Notice that this generic scenario
applies to scientific data transfers in wide area networks, content streaming,
peer to peer networks or sensor networks.

Let us consider logistic networks. Whatever the transportation mode,
the links are subject to changes (capacity, availability) because of new or
disappearing maritime lines, road works, railway schedule changes, to name
just a few. Financial costs may also vary (e.g., tolls according to the season,
or fuel prices). These changes, however, do not appear that frequently and
may also be anticipated, so that it rarely happens during a transportation
(specially for long time horizon and appropriate time step). Moreover, inter-
mediate storage might be too costly and should often be avoided. Démare
et al. (2017), for instance, present a model to simulate traffic of goods along
the Seine valley.

In deregulated electricity markets, electric energy is sold and bought in
day-ahead markets with hourly intervals (Weron, 2014). Then, the energy
transfers in the grid are known one day in advance. However, some con-
tractors may under-contract (i.e. contract too little energy) and in order to
keep grid stable the shortage of energy must be delivered from alternative
sources on a short notice from the transmission system operator. Thus, the
network is dynamic because the grid lines free capacity changes hourly, costs
of the energy also change over day, travel time is immaterial, storage (in the
network itself) is impossible. A minimum cost flow according to our model
can construct a minimum cost balancing plan for the grid.

4 New Approach: Dynamic SSP

4.1 Presentation

Solving the minimum cost flow problem with the time-expanded graph as
presented in Section 3.3 might not be very efficient. That is the reason we
propose a method that does not use the time-expanded graph. Our method,
which we named Dynamic SSP (DSSP), adapts the SSP algorithm. It uses
the fact that in the dynamic graph, the t-graphs are independent because
there is no travel time and storage is forbidden. A major feature is that, even
though all t-graphs are considered, a complete minimum cost flow computa-
tion is not performed on each of them.

11

The classical SSP algorithm is based on successive searches of shortest
paths in the residual graph with Dijkstra algorithm and successive updates
of the residual graph. It is pseudo-polynomial but quite efficient in practice.
Furthermore, it presents some nice features that are useful in this paper
setting:

e Starting from the null flow, it increases at each iteration the value of

the obtained flow. And these successive flows are of minimum cost for
each of their values (amount of flow sent from source to sink).

It computes shortest paths on the residual graph, considering the re-
duced costs associated to the current flow. From the optimality of the
successive flows, one directly deduce that the reduced costs are non
negative, which allows to use Dijkstra’s algorithm.

A potential 7(7) is associated to each vertex i and updated at each
iteration, as such: (i) = m(¢) — d(i), where d(i) is the distance from
the source to vertex ¢ given by Dijkstra’s algorithm. The reduced cost
c(ij) of arc ij is computed as such: &(ij) = ¢(ij) + 7(j) — w(i) where
c(ij) is the unit cost of arc ij. For more details, see (Ahuja et al.,
1993).

Another key feature implied by this optimality is that the successive
shortest paths have non-decreasing unit costs (the cost to send one
unit of flow along that path). This comes directly from the reduced
cost definition. This condition is used below to prove the optimality of
our algorithm.

In our version, we compute one iteration of SSP on one t-graph at each
iteration of our algorithm. As there is no travel time on arcs or storage on
vertices, the t-graphs can be treated independently.

It works as such:

1.

Execute the Dijkstra algorithm using the cost as arc length on each
t-graph Gy, 0 € T.

Sort those T' shortest paths according to their costs.

Let 0 be the time step which has the shortest path from the source to
the sink.

12

4. Update current flow and the residual graph Gg: reduced costs, vertex
potentials and capacities.

5. If there are flow units left to be sent, execute Dijkstra on the residual
graph G using the reduced cost as arc length, insert the obtained path
among the others using its real cost (if the maximum flow value is
reached on Gy, set the associated real cost to co) and go back to step
3.

6. Return the current flow.

Step 1 initializes the algorithm by finding, in each static t-graph Gy,
the shortest path from the source to the sink using the standard Dijkstra
algorithm.

In step 2, the shortest paths found in the previous step are sorted using
a binary search tree.

Step 3 is the first iteration step. The best shortest path and its corre-
sponding time step @ are easily retrieved thanks to the tree.

In step 4, the updating procedure from SSP is done on the static graph
G where the best shortest path was. As much flow as possible is sent on this
path. The residual graph of Gy is updated as in standard SSP, see (Ahuja
et al., 1993).

In step 5, Dijkstra is executed on the residual t-graph that was just up-
dated at the previous step using the reduced costs, provided that the current
flow value is lower than U. Then this new path is inserted in the tree using its
real cost. If no new path can be found on this graph, it means the maximum
flow on Gy is reached and no extra flow can be sent at this time step. In this
case, the cost of the shortest path for this time step is set to co so Gz can
never be selected again. This step is the last iteration step.

Step 6 is reached when the current flow equals U, and it is returned.

4.2 Example

Let us look at the execution of Dynamic SSP on the example in Figure 2.
Figure 4 shows the evolution of the residual graph during the execution of
the algorithm and gives the values of reduced costs and vertex potentials.
Step 1 is the initialization phase in which a shortest path is found using
Dijkstra in each t-graph. Those shortest paths appear in bold in Figure 4a.

13

(d) End of the third iteration

Figure 4: Evolution of the residual graph during execution of Dynamic SSP
on example from Figure 2. On arc ij, triple (u(ij);¢(ij);c(ij)) represents,
respectively, the capacity of arc 7, the reduced cost of arc 75 and the original
cost of arc ij. On vertex i, \; represents the potential of vertex 7. On
each residual t-graph, the shortest path given by the Dijkstra algorithm is
represented by bold arcs. 14

Figure 5: Minimum Cost Flow on the example from Figure 2. On arc 17,
couple (f(ij)/u(ij);c(ij)) represents the flow on arc ij over the capacity of
arc ij and the cost of arc ij respectively. Bold arcs are the ones where flow
is sent (where f(ij) # 0).

In each iteration of the algorithm, a shortest path is chosen. In the first
iteration, the real cost of the shortest path for the first t-graph is 2. The real
cost of the shortest path for the second t-graph is 4 and the real cost of the
shortest path for the third t-graph is 2. We can choose either the first or the
third t-graph. In this example, the first t-graph was arbitrarily chosen. As
the capacity of this path is 1, we send 1 flow unit through this path at cost 2
and we update this t-graph. The algorithm is not finished because we want
to send 4 flow units, so we compute another Dijkstra on the first t-graph in
order to know the next shortest path in this graph. The state of the residual
graph at this point of the algorithm is shown in Figure 4b.

In the second iteration, the real cost of the shortest path for the first
t-graph is 3, the real cost of the shortest path for the second t-graph is 4
and the real cost of the shortest path for the third t-graph is 2. The shortest
one is the one in the last t-graph, with a capacity 2. Two flow units are sent
through this path at cost 4. We update this t-graph. The algorithm is not
finished because we still have 1 flow unit to send, so we compute another
Dijkstra on the last t-graph in order to know the next shortest path in this
graph. The state of the residual graph at this point of the algorithm is shown
in Figure 4c.

In the third iteration, the real cost of the shortest path for the first t-
graph is 3, the real cost of the shortest path for the second t-graph is 4 and
the real cost of the shortest path for the third t-graph is 4. The shortest one
is the one in the first t-graph, with a capacity 1. The last flow unit is sent
through this path at cost 3. We update this t-graph. We have sent the 4

15

flow units we wanted to send so we do not compute another Dijkstra on the
first t-graph. The state of the residual graph at this point of the algorithm
is shown in Figure 4d.

We sent 2 units at the first time step, one at cost 2 and one at cost 3,
and 2 at the last time step at cost 2 for each unit. The units were sent for a
total cost 9. The minimum cost flow is presented in Figure 5 in bold.

4.3 Correctness

Theorem 1. The algorithm terminates in a finite number of iterations bounded
by U, the obtained flow has the fixed value U and its total cost is the minimum
total cost.

Proof. Remember that the capacities and unit costs are supposed to be in-
tegers.

Assume that U is reachable (otherwise, the algorithm can easily be mod-
ified to detect it).

At each iteration, a shortest path in the residual network is considered
(steps 1 and 5). According to the properties of the SSP algorithm, their
residual capacities are integer and positive, and the resulting successive flows
are also integer. At each iteration, one of these paths is chosen, and the total
flow value is increased by at least one. The algorithm may stop in two cases.
In the first case, the maximum flow value has been reached for all t-graphs,
it means that the fixed total flow value U targeted is unreachable (larger
than the sum of all maximum flow values). This case is discarded by the
hypotheses. In the second case (step 6), U is reached. Hence the algorithm
terminates in a finite number of iterations bounded by U.

Let us consider some optimal flow f* = (ff,....fs,..., fr) where f;
is the flow on t-graph Gy, and some flow f = (f1,..., fg,..., fr) obtained
by the algorithm. Both flows have the same value U. For each flow, this
value can be decomposed according to the flow amounts for each t-graph.
Hence we can write the associated vectors v* = (v,...,v},...,v}) and v =
(v1,...,0p,...,vp), called flow value vectors, where v; and vy are the values
of flows f; and fy respectively. Note that as f* is globally optimal, each f;
is optimal for Gy and the value v;. Hence it is possible to consider that each
of these flows is obtained by SSP.

Suppose first that f* and f have the same flow value vector (v* = v, that
is, V 0, v, = vg). From the remark above, f and f* are identical on each

16

Cost A
for Gg

> Value

Ve Ve

Figure 6: Chart showing the cost of the flow on a graph Gy depending on
the value of this flow.

t-graph, and f is optimal.

Suppose now that there exists some 6 such that v; > vy. Hence there
exists some #' such that vy < vg. Figure 6 illustrates the flow values and
their costs considered in the following. Consider executing SSP on Gy. The

successive unit costs of the computed paths are ¢; < ... < ¢ < ... < ¢y,
where ¢; is the last unit cost for f and ¢; is the last unit cost for f*. In the
same manner, the successive unit costs for Gy are ¢; < ... < ¢, < ... <,

where ¢}, is the last unit cost for f* and ¢ is the last unit cost for f.
Suppose first that ¢ = j. As v; > vy, it follows that DSSP do not use the
full capacity of the associated path. This is only possible if this path is used
during the last iteration of DSSP (when U is reached). Hence ¢} < ¢;, so
¢, < ¢j. Now suppose ¢ < j. The path of unit cost ¢;+1 is never used by
DSSP, this means ¢;+; > ¢, hence ¢; > ¢;41 > ¢ > ¢,.. So in both cases
c¢j > ¢, It is possible to remove one unit of flow from f; and to add this flow
unit to fy. The resulting flow for the dynamic graph is of non-increasing
cost, so it is still optimal.

This swapping operation can be performed until the vectors v* and v are
equal, thus f is of minimum cost and the result is proved. O

4.4 Complexity

Theorem 2. The algorithm Dynamic SSP has worst case complezity O((U +
T)- (m+n-log(n)+log(T))).

Proof. In order to efficiently select the cheapest path at each iteration, a tree
structure is used to store the paths according to their real costs.

17

The initialization phase (steps 1 and 2) executes Dijkstra algorithm on T
graphs with n vertices and m arcs. Therefore it needs O(T" - (m+n -log(n)))
time. It is then necessary, at step 2, to sort the T" paths according to their
real costs, this is done in O(T - log(T)).

In one iteration (steps 3 to 5), the cheapest path is selected using the costs
of T' paths and this is done in constant time. Updating the residual t-graph
Gy at step 4 is done in O(n + m). Dijkstra algorithm on the t-graph G at
step 5 is done in O(m +n -log(n)). The new path computed is then inserted
at the right place in the structure in O(log(T")). In total, the complexity of
one iteration is O(m + n - log(n) + log(T")).

At each iteration, the flow is increased by at least 1 unit, so the number
of iterations is bounded by U, which is the source supply. The worst case
complexity of the whole algorithm is O((U+T)-(m+n-log(n)+log(T))). O

It should be noted that the worst case complexity of Dynamic SSP is
better by an order of magnitude than the worst case complexity of SSP on
the time-expanded graph.

5 Numerical Tests

In order to evaluate the algorithm we propose, we implemented it using the
GraphStream Java library! (Dutot et al., 2007).

The machine used for this experiment has an Intel Core 64 bits processor
with 8 cores, 4 MB cache size, 2 GHz frequency and 96 GB of RAM. The
OpenJDK 1.8 Runtime Environment is used.

5.1 Experiment Setting
5.1.1 Graph Generation

We implemented a dynamic network generator using the GraphStream Ran-
dom Euclidean Generator (to build graphs also known as random geometric
graphs). This class of graphs is appropriate when, for instance, arc existence
is linked to relative spatial positions of the vertices.

The vertices are placed randomly in a finite space [0, 1] x [0, 1] and are con-
nected by a randomly directed arc if their distance is below a given threshold

Thttp: //grahpstream-project.org

18

Capacity Vectors | Cost Vectors
main 0 0
max 100 100
mnc 10 10
Pinc 0.25 0.25
dec 10 10
Ddec 0.25 0.25

Table 1: Parameters used to generate capacity vectors and cost vectors

th. There is a direct relation between the threshold and the graph density.
The source and sink vertices are designated as the vertices which are the
closest to a given position.

Once the graph arc set is built, a capacity vector and a cost vector of
size T are randomly generated for each arc. Both vectors are generated by
a random process using the same six parameters: min, max, inc, Pi., dec,
Paec- The first value in time, of the cost or capacity, is randomly chosen
between min and max, and for each time step, the value is increased by inc
with a probability p;,. or is decreased by dec with a probability pge.. The
values cannot go beyond [min, mazx] range.

The graphs are generated with th = 0.08, which corresponds to 1% den-
sity approximately. The source and sink are positioned at (0.25;0.75) and
(0.75;0.25) respectively. The parameters used to generate the capacity vec-
tors and cost vectors are given in Table 1. The idea is to have significant
dynamicity but also to avoid ending up with a sequence of independent t-
graphs. We want to test the algorithm on a more realistic setup where each
t-graph evolves from the previous one.

The parameters we chose allow capacities to be null.

5.1.2 Source Supply

The source supply, in other words the amount of flow to send in the network,
needs to be determined. Our choice is to send an amount corresponding to
approximately 80% of the maximum flow that can be expected in such a
graph.

To determine this amount, experiments were run where a certain number
of graphs were built the way explained previously, with one time step. On
those graphs, the maximum flow was computed. The median value obtained

19

gave the maximum flow value that can be expected on one time step which
was multiplied by T to get the maximum flow that can be expected on the
whole graph. As our t-graphs are independent and built in the same way,
the maximum flow for 7' time steps is close to T times the maximum flow
for one time-step. We then kept 80% of this value.

Therefore, the supply grows linearly with 7" and experiments showed that
it also grows linearly with n.

5.1.3 Algorithm Tests

One run of an experiment consists in generating a random dynamic graph
and the corresponding time-expanded graph then computing the minimum
cost flow using respectively the Dynamic SSP and Time-Expanded SSP. The
goal is to compare the time necessary to compute the minimum cost flow
in both cases depending on the parameters of the graph. For each set of
parameters, 15 runs of the experiment were done. A regression function
is computed using the median computation time values. The theoretical

behavior defines the form of the function. The regression is evaluated using
S (i—:)?
Z?:1(yi*37)2 ’
of data values, y; is the i*" data value, 9; is the i predicted value according
to the regression function and 7 is the mean data value.

the R? value computed as such R? =1 — where k is the number

5.2 Run Time Dependence on T
5.2.1 Experiment

For the first experiment, we fix every parameter but 7. The number of
vertices n is fixed to 500. T takes values in {10; 50; 100; 200; 300; 400; 500;
600; 700; 800; 900; 1000}.

Time-Expanded SSP has worst case complexity O(U-T'-(m~+n-log(n-T))),
U being the source supply. In our experiment setting, U is linear in T', n is
fixed, and as th is also fixed, then m is constant. So the complexity becomes
O(T? - log(T)).

Dynamic SSP has worst case complexity O((U + T') - (m + n - log(n) +
log(7))). T is the only parameter that is not constant, so the complexity
becomes O(T - log(T)).

The complexity ratio between the Time-Expanded and the Dynamic SSP
is T'.

20

—— Regression Function: T2 /og,(T)
200001 m Median
A Mean
A
< 15000
(]
£
}_
c
-2 10000 -
3
(9}
(]
X
58]
5000 A
0 -
0 200 400 600 800 1000

T (number of time steps)

Figure 7: Time-Expanded SSP computation time depending on 7', expressed
in seconds.

5.2.2 Results

Figure 7 presents the mean and median values of the Time-Expanded SSP
computation time depending on T. A regression function of the form 77 -
log(T) is also represented. The R? value of the regression is 0.99. While the
computation is almost instantaneous for 10 time steps, it takes up to 20000
seconds (almost 6 hours) for 1000 time steps.

Figure 8 presents the mean and median values of the Dynamic SSP com-
putation time depending on 7. A regression function of the form 7" - log(7T)
is also represented and its R? value is 0.99. The computation time goes from
no more than 1 second (for 10 time steps) to less than 20 seconds (for 1000
time steps).

Figure 9 presents the computation time ratio between the Time-Expanded
and the Dynamic SSP depending on 7. The mean and median values are
shown as well as a linear regression function. The regression R? value is 0.94.

5.2.3 Discussion

In Figures 7, 8 and 9, the R? values give a strong confidence that the re-
gression function fits the data obtained. It confirms the theoretical behavior

21

16 1 —— Regression Function: T/log,(T) A

B Median . A
14 A

A Mean

12 A

10 A

Execution Time (s)
[e0]

0 200 400 600 800 1000
T (number of time steps)

Figure 8: Dynamic SSP computation time depending on T, expressed in
seconds.

—— Regression Function: T !
12007 m Median u

A Mean]
1000 A

800 1
600 -

400 A

0 200 400 600 800 1000
T (number of time steps)

Figure 9: Computation time ratio vs 7.

22

and the fact that the order of average complexity is the same as the order of
worst case one.

Dynamic SSP has a better complexity than Time-Expanded SSP. This
experiment shows that it is also much more efficient in practice. We can
compare the Time-Expanded and the Dynamic SSP computation time (see
Figure 9). We observe that it is about 600 times faster with 500 time steps
and over 1000 times faster with 1000 time steps.

5.3 Run Time Dependence on n
5.3.1 Experiment

For the second experiment, 7" is fixed to 100 and n takes values in {500; 700;
900; 1000; 1100; 1300; 1500; 1700; 1900; 2000}.

Time-Expanded SSP has worst case complexity O(U-T'-(m+n-log(n-T))).
In the experiment setting, U is linear in n, m is in the order of n? and T is
constant. The complexity becomes O(n?).

Dynamic SSP has complexity O((U + T') - (m + n - log(n) + log(7"))).
The parameters are defined as previously explained, so the complexity also
becomes O(n?).

In this case, the complexity ratio between the Time-Expanded and the
Dynamic SSP is constant over n.

5.3.2 Results

Figure 10 presents the mean and median values of the Time-Expanded SSP
computation time depending on n. A regression function of the form n? is
also represented and its R? value is 0.98. For 500 vertices, the computation is
almost instantaneous. For 2000 vertices, it takes up to 120000 seconds (over
33 hours).

Figure 11 presents the mean and median values of the Dynamic SSP
computation time depending on n as well as a regression function of the form
n®. The regression R? value is 0.98. The computation is almost instantaneous
for 500 vertices and takes over 700 seconds (less than 12 minutes) for 2000
vertices.

Figure 12 presents the computation time ratio between the Time-Expanded
and the Dynamic SSP depending on n. The mean and median values and a

23

—— Regression Function: n3 u
100000 M Median
A Mean
- 80000 A
(0]
S
i= 60000 A
C
o
o 40000 -
(]
X
w
20000 A
0 -

600 800 1000 1200 1400 1600 1800 2000
n (number of nodes)

Figure 10: Time-Expanded SSP computation time depending on n, expressed
in seconds.

regression function are shown. The regression function is a constant equal to
around 157 which is exactly the mean value.

5.3.3 Discussion

The regression functions in Figures 10, 11, 12 fit the data obtained during
the experiment, as indicated by the R? values. In this specific case, for the
ratio regression, the R? value is irrelevant because a constant regression will
always give a null R2. The predicted behavior is confirmed by the experiment
results. There again, the experimental results fit the worst case complexity.

In this case where every parameter but n (and m) is fixed, the worst-
case complexity of Dynamic SSP is equivalent to the one of Time-Expanded
SSP. In practice, Dynamic SSP is much faster. The computation time ratio
between the Time-Expanded and the Dynamic SSP is constant in theory
and in practice, as shown in Figure 12. This ratio is about 157, which shows
that Dynamic SSP is in practice much faster on the random graphs built.
This ratio was found during the first experiment described in Section 5.2 (see
Figure 9 where 7" = 100 and n = 500 fixed). This second experiment shows
it does not depend on n.

24

7004 — Regression Function: n3

B Median
6001 A Mean

500 A
400 1

300 A

Execution Time (s)

200 A

100 ~

600 800 1000 1200 1400 1600 1800 2000
n (number of nodes)

Figure 11: Dynamic SSP computation time depending on n, expressed in
seconds.

—— Regression Function: constant
200 A B Median
A Mean

180 A
160 ™ z - n "

A A m § b] A
140 A
120 A

600 800 1000 1200 1400 1600 1800 2000
n (number of nodes)

Figure 12: Computation time ratio vs n, constant ~ 157.

25

6 Conclusion

In this paper, we considered the minimum cost flow problem on dynamic
graphs. The most popular method to solve this problem is to expand the
graph and then use a regular static algorithm on it. The obvious advantage
of this method is that the standard algorithm can be used. On the down side,
the algorithm runs on a much bigger graph. Even though it is polynomial in
n, m and T, this method cannot manage large graphs in practice.

We presented Dynamic SSP, a new algorithm working on dynamic graphs
without travel time or storage. Dynamic SSP adapts the SSP algorithm for
this context. We improved significantly the theoretical complexity compared
to the standard method.

This paper did not consider multi-source and multi-sink case. However,
it can be treated by adding a supersource and a supersink implying a mod-
ification in the algorithm that consists in maintaining the current supplies
and demands throughout the algorithm’s execution. Such a modification is
out of scope of this paper.

We ran experiments in which n, then T', varied. In both cases, Dynamic
SSP computes the minimum cost flow much faster than Time-Expanded SSP,
i.e. the classical SSP algorithm applied to the time-expanded graph. Thanks
to the new method, it is possible to solve much larger dynamic flow problems
in practice.

Acknowledgment

The project is co-financed by the Furopean Union with the European re-
gional development fund (ERDF) and by the Normandie Regional Council
(CLASSE2 project). The French-Polish collaboration is possible thanks to
the Polonium Project 37819RB.

The authors would like to thank the anonymous reviewers for their useful
comments.

References

Ahuja, R. K., Magnanti, T. L., Orlin, J. B., 1993. Network flows: theory,
algorithms, and applications.

26

Akrida, E. C., Czyzowicz, J., Gasieniec, L., Kuszner, t.., Spirakis, P. G., 2019.
Temporal flows in temporal networks. Journal of Computer and System
Sciences 103, 46 — 60.

Anderson, E. J., Nash, P., Philpott, A. B., 1982. A class of continuous net-
work flow problems. Mathematics of Operations Research 7 (4), 501-514.

Baumann, N., Kohler, E., 2007. Approximating earliest arrival flows with
flow-dependent transit times. Discrete Applied Mathematics 155 (2), 161—
171.

Bertsekas, D. P., Gallager, R. G., Humblet, P., 1992. Data networks. Vol. 2.
Prentice-Hall International New Jersey.

Cai, X., Sha, D., Wong, C., 2001. Time-varying minimum cost flow problem:s.
European Journal of Operational Research 131 (2), 352 — 374, artificial
Intelligence on Transportation Systems and Science.

Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N., 2012. Time-
varying graphs and dynamic networks. International Journal of Parallel,
Emergent and Distributed Systems 27 (5), 387-408.

Démare, T., Bertelle, C., Dutot, A., Lévéque, L., 2017. Modeling logistic sys-
tems with an agent-based model and dynamic graphs. Journal of Transport
Geography 62, 51 — 65.

Dutot, A., Guinand, F., Olivier, D., Pigné, Y., 2007. Graphstream: A tool
for bridging the gap between complex systems and dynamic graphs. In:
Emergent Properties in Natural and Artificial Complex Systems. Satel-

lite Conference within the 4th European Conference on Complex Systems
(ECCS’2007).

Fleischer, L., Skutella, M., 2003. Minimum cost flows over time without in-
termediate storage. In: Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, pp. 66-75.

Ford, L. R., Fulkerson, D. R., 1956. Maximal flow through a network. Cana-
dian journal of Mathematics 8 (3), 399-404.

27

Ford, L. R., Fulkerson, D. R., 1958. Constructing maximal dynamic flows
from static flows. Operations Research 6 (3), 419-433.

Ford, L. R., Fulkerson, D. R., 1962. Flows in networks. Princeton University
Press.

Grande, E., Nicosia, G., Pacifici, A., Roselli, V., 2018. An exact algorithm
for a multicommodity min-cost flow over time problem. Electronic Notes
in Discrete Mathematics 64, 125-134.

Halpern, J., 1979. A generalized dynamic flows problem. Networks 9 (2),
133-167.

Hashemi, S. M., Nasrabadi, E., 2012. On solving continuous-time dynamic
network flows. Journal of Global Optimization, 1-28.

Holme, P., 2015. Modern temporal network theory: a colloquium. The Eu-
ropean Physical Journal B 88 (9), 234.

Hoppe, B., Tardos, E., 1994. Polynomial time algorithms for some evacuation
problems. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms. Vol. 94. pp. 433-441.

Hoppe, B., Tardos, E., 2000. The quickest transshipment problem. Mathe-
matics of Operations Research 25 (1), 36-62.

Huang, S., Fu, A. W.-C., Liu, R., 2015. Minimum spanning trees in tem-
poral graphs. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, pp. 419-430.

Klinz, B., Woeginger, G. J., 2004. Minimum-cost dynamic flows: The series-
parallel case. Networks 43 (3), 153-162.

Koster, A., Munoz, X., 2009. Graphs and algorithms in communication
networks: studies in broadband, optical, wireless and ad hoc networks.
Springer Science & Business Media.

Lin, M., Jaillet, P., 2015. On the quickest flow problem in dynamic networks:
a parametric min-cost flow approach. In: Proceedings of the Twenty-Sixth
Annual ACM-STAM Symposium on Discrete Algorithms. Society for In-
dustrial and Applied Mathematics, pp. 1343-1356.

28

Michail, O., 2016. An introduction to temporal graphs: An algorithmic per-
spective. Internet Mathematics 12 (4), 239-280.

Michail, O., Spirakis, P. G., 2016. Traveling salesman problems in temporal
graphs. Theoretical Computer Science 634, 1-23.

Miller-Hooks, E., Patterson, S. S., 2004. On solving quickest time problems
in time-dependent, dynamic networks. Journal of Mathematical Modelling
and Algorithms 3 (1), 39-71.

Minieka, E., 1973. Maximal, lexicographic, and dynamic network flows. Op-
erations Research 21 (2), 517-527.

Nannicini, G., Baptiste, P., Barbier, G., Krob, D., Liberti, L., 2010. Fast
paths in large-scale dynamic road networks. Computational Optimization
and Applications 45 (1), 143-158.

Nasrabadi, E., Hashemi, S. M., 2010. Minimum cost time-varying network
flow problems. Optimization Methods & Software 25 (3), 429-447.

Orlin, J. B., 1984. Minimum convex cost dynamic network flows. Mathemat-
ics of Operations Research 9 (2), 190-207.

Parpalea, M., Ciurea, E., 2011. The quickest maximum dynamic flow of min-

imum cost. International Journal of Applied Mathematics and Informatics
3 (5), 266-274.

Rostami, R., Ebrahimnejad, A., 2014. An approximation algorithm for dis-
crete minimum cost flows over time problem. International Journal of Op-
erational Research 20 (2), 226-239.

Skutella, M., 2009. An introduction to network flows over time. In: Research
Trends in Combinatorial Optimization. Springer, pp. 451-482.

Weron, R., 2014. Electricity price forecasting: A review of the state-of-the-
art with a look into the future. International Journal of Forecasting 30 (4),
1030-1081.

Wilkinson, W. L., 1971. An algorithm for universal maximal dynamic flows
in a network. Operations Research 19 (7), 1602-1612.

29

Xuan, B. B., Ferreira, A., Jarry, A., 2003. Computing shortest, fastest, and
foremost journeys in dynamic networks. International Journal of Founda-
tions of Computer Science 14 (02), 267-285.

30

