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Abstract

A set S of vertices of graph G is a defensive alliance of G if for every v ∈ S, it holds

|N [v] ∩ S| ≥ |N [v] − S|. An alliance S is called global if it is also a dominating set.

In this paper, we determine the exact values of the global defensive alliance number of

lexicographic products of path and cycles.
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1 Introduction

We consider only finite, simple, and undirected graphs. Given a graph G = (V,E), open

neighborhood and the closed neighborhood of a v ∈ V are denoted by N(v), N [v], respectively.

Given a set S ⊆ V , the subgraph of G induced by S is denoted by G[S]. If v ∈ S and

|N [v]∩S| ≥ |N [v]−S|, then v is said to be defended in S. We say that S is a defensive alliance

if all vertices of S are defended. Note that if v is defended in S, then |S ∩ N(v)| ≥ ⌊d(v)
2
⌋.

The set S is a dominating set of G if every vertex of G belongs to S or has a neighbor is S.

A defensive alliance is global (GDA) if it is also a dominating set of the graph. The minimum

cardinality of a global defensive alliance of G is its global defensive alliance number and is

denoted by γa(G).

The lexicographic product of graphs G1 = (V1, E1) and G2 = (V2, E2) is the graph G =

(V,E) = G1 ◦ G2 such that V = V1 × V2 and E = {(u1, u2)(v1, v2) : (u1v1 ∈ E1) or (u1 = v1
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and u2v2 ∈ E2)}. Given a graph F = G1 ◦ G2 where the orders of G1 and G2 are n and

m, respectively, it is clear that F contains n disjoint copies of G2, which will be denoted by

G2
1, G

2
2, . . . , G

2
n. Furthermore, for a set S ⊆ V (G), we will denote by Si the set S ∩ V (G2

i ) for

i ∈ {1, . . . , n} and si = |Si|.

In this work, we present formulas that allow one determining the global defensive alliance

number of a graph F = G1 ◦ G2 where G1 and G2 are cycles or paths within a constant

number of operations. In Section 2, we present a general characterization of γa(G
1 ◦ G2) for

G1 ∈ {Pn, Cn}, n ≥ 3, and any graph G2 6≃ Km. Such characterization will be useful for the

proposed solution presented in next sections. Section 3 contains useful properties of minimum

global defensive alliances of the lexicographic product of paths and cycles. In Section 4.1, we

present the formulas for n ≤ 7 while the solution for n ≥ 8 is given in Section 4.2. In Section 5,

we explore the homogenous bevavior of γa(G
1 ◦G2), when the orders of G1 and G2 change,

for obtaining more structural results. The conclusions are in Section 6. We finish this section

presenting related works.

The definition of alliances in graphs first appeard in [9]. Since then many variatons appeared.

The most extensively studied are defensive alliances [9, 8, 13, 19, 21], offensive alliances [7, 12,

18] and powerful or dual alliances [2, 3, 22]. A more generalized concept of alliance is represented

by k-alliances [1, 15, 16, 17, 19], and Dourado et al. presented a new definition of alliances,

namely, (f, g)-alliances [6], that generalizes previous concepts. In [23], Yero and Rodŕıguez-

Velázquez published a summary of the major results obtained concerning defensive alliances

up through 2013.

Since the decision problems of computing the minimum cardinality of these concepts for

general graphs are NP-complete [4, 11, 14], several studies of alliances in graphs have been

developed in graph classes and product of graphs; these advances are described in detail in

[23, 10].

Haynes, Hedetniemi and Henning [9] determined the cardinality of the minimum set that

can constitute a global defensive alliance for several classes of graphs and presented some limits

on the minimum GDA in cubic, bipartite graphs and trees.

The initial studies of defensive alliances in Cartesian products were done by Brigham, Dut-

ton and Hedetniemi in [2], and several parameters were also presented in [1, 19, 20] for Cartesian

products of graphs for k-alliances. Following this trend, there is also the work by Chang et

al. in 2012 [5], which presented some upper bounds for Cartesian products between paths

and cycles. In 2013, Yero and Rodŕıguez-Velázquez [24] obtained closed formulas for the GDA

number for several classes of Cartesian products of graphs.

2 Characterization of γa(G
1 ◦G2) for G1 ∈ {Cn, Pn}

In this section, we present a characterization of γa(G
1 ◦ G2) for G1 ∈ {Pn, Cn}, n ≥ 3, and

any graph G2 6≃ Km. Let S be a GDA of F = G1 ◦ G2. The spectrum of S in F , spe(S, F ),

is a sequence obtained in the following way. If G2 = Cm and there is Si = 0, we assume that
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Sn = 0: if Si 6= 0 for 2 ≤ i ≤ n− 1, then spe(S, F ) = (n); otherwise let i ≥ 3 be the minimum

number such that Si = 0. If Si+1 = 0, then k1 = i; otherwise k1 = i − 1. In both cases,

spe(S, F ) = (k1)spe(S
′, F ′) where S ′ = S ∩V (F ′) and F ′ = F − (V (G2

1)∪ . . .∪V (G2
k1
)). When

there is no doubt about which is the graph F , we can use spe(S) to represent the spectrum of

S in F .

We say that a sequence w = (k1, . . . , kt) is feasible for G1 ◦ G2 for G1 ∈ {Cn, Pn} and

G2 6≃ Km if there is a GDA S of G1 ◦G2 whose spectrum is w. We denote max(w) = max
i∈t

{ki}

and say that w is an n-sequence if ki
1≤i≤t

= n. Observe that we can see w as a t-partition

(V1, . . . , Vt) of V (F ) where each part is associated with an element ki and F [Vi] ≃ Pki ◦G
2. We

call each such subgraph by a section of F . If G1 ≃ Pn and Fi is a section for i ∈ {1, t}, then

we say that Fi is an external section; otherwise it is an internal section.

Given elements ki and kj of a sequence w = (k1, . . . , kt) for j > i, the sequence formed by

the elements that are between ki and kj in w will be denoted by wi+1,j−1 = (ki+1, . . . , kj−1), the

sequence formed by the elements that preceed ki by w1,i−1 = (k1, . . . , ki−1), and the sequence

formed by the elements that succeed kj by wj+1,t = (kj+1, . . . , kt). The concatenation of se-

quences w and w′ will be denoted by ww′. If all elements of w are equal, then we can write

w = ([t]k1). This definition allows one to write w = ([t1]k1, . . . , [tp]kp), which means that, for

1 ≤ i ≤ p, there are ti consecutive occurrences of ki and tiki
1≤i≤p

= n. The feasible sequences are

characterized in the following result.

Proposition 2.1 For G1 ∈ {Pn, Cn} and G2 6≃ Km, a sequence w = (k1, . . . , kt) is feasible for

G1 ◦G2 if and only if k1 ≥ 2, ki ≥ 3 for i ∈ {2, . . . , t}, and
∑

1≤i≤t

ki = n.

Proof. Let S be a GDA of F such that spe(S) = w. By the construction of a spectrum, it is

clear that
∑

1≤i≤t

ki = n. Since every vertex of S has a neighbour outside the copy of G2 that it

belongs, every ki ≥ 2. Since the definition of spectrum guarantees that for every ki, for i ≥ 2,

the first copy of the section associated with it has no vertex of S, ki ≥ 3 for i ≥ 3.

Conversely, let Fi = F [V (G2
j)∪ . . .∪V (G2

j+ki−1)] be the section associated with ki. If ki ≥ 4,

add V (G2
j+1) ∪ . . . ∪ V (G2

j+ki−2) to S. If ki = 3, add V (G2
j+1) ∪ V (G2

j+2) to S. If k1 = 2, add

V (G2
1) ∪ V (G2

2) to S. It is clear S is a dominating set, every vertex of S is defended, and that

spe(S) = w, then w is feasible. �

For the characterization of minimum GDA in terms of feasible sequences, we need some

definitions. Given a positive integer k, we define

• for k ≥ 4, vali(k,G
2) as the cardinality of a minimum GDA S of Pk ◦ G2 such that

s1 = sk = 0;

• for k ∈ {2, 3}, vali(k,G
2) = vali(4, G

2);

• for k ≥ 3, vale(k,G
2) as the minimum GDA S of Pk ◦G

2 such that s1 = 0;
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• vale(2, G
2) = vale(3, G

2).

For a sequence w = (k1, . . . , kt), we define

• val(Pn, G
2, w) = vale(k1, G

2) +
∑

2≤i≤t−1

vali(ki, G
2) + vale(kt, G

2);

• val(Cn, G
2, w) =

∑

1≤i≤t

vali(ki, G
2).

Proposition 2.2 If S is a GDA of F = G1 ◦G2 for G1 ∈ {Cn, Pn} and G2 6≃ Km, then |S| ≥

val(G1, G2, spe(S)) for G ∈ {P,C}. Furthermore, there is GDA of F of size val(G1, G2, spe(S)).

Proof. Write w = (k1, . . . , kt) and let Fi = F [V (G2
j) ∪ . . . ∪ V (G2

j+ki−1)] be the section asso-

ciated with ki and S ′ = S ∩ Fi. First, consider G = C. For ki ≥ 4, since sj+ki = 0, it holds

|S ′| ≥ vali(ki, G
2). For ki = 3, since sj+3 = 0, it holds |S ′| ≥ vali(4, G

2). Finally for k1 = 2,

since s3 = sn = 0, it holds |S ′| ≥ vali(4, G
2). Then, the result holds for G = C. Now consider

G = P . For ki ≥ 3, since sj = 0 or sj+ki = 0, it holds |S ′| ≥ vale(ki, G
2). Finally for k1 = 2,

since s3 = 0, it holds |S ′| ≥ vale(3, G
2), completing the proof. �

Corollary 2.3 Let F = G1 ◦G2 for G1 ∈ {Cn, Pn} and G2 6≃ Km. Then γa(F ) = min{val(w)}

where w is a feasible sequence for G2.

As a byproduct, we have that, for G1 ∈ {Cn, Pn} and G2 6≃ Km, if the number of feasible

sequences w that can reach the minimum GDA of G1 ◦G2 is bounded by a polynomial on n and

m, one can determine them efficiently, and the values vali(k,G
2) and vale(k,G

2) are known for

every k ≤ max(w), one can find γa(G
1 ◦G2) efficiently. We show in next sections that this does

hold for G2 ∈ {Pm, Cm}. The last result of this section deals with the external sections.

Corollary 2.4 If w is a feasible sequence of F = Pn◦G
2 for G2 6≃ Km such that val(Pn, G

2, w) =

γa(F ), then the following hold:

• if 3 occurs in w, we can assume that kt = 3;

• if k1 6= 2 and there are two occurrences of 3 in w, we can assume that k1 = kt = 3.

3 Properties of global defensive alliances

In this section, we present some bounds and properties of GDAs that will be useful in the

remaining sections.

Proposition 3.1 Let S be a GDA of G1◦G2 for G1 ∈ {Pn, Cn}, G
2 ∈ {Pm, Cm}, n ≥ 3, m ≥ 3,

and i be an integer such that 2 ≤ i ≤ n− 1. Then, the following setences hold

(i) If G2 ≃ {Cm, P3}, then si−1 + si + si+1 ≥ m+ 2;
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(ii) If G2 ≃ Pm for m ≥ 4, then si−1 + si + si+1 ≥ m+ 1;

(iii) If si ≥ 1, then si−1 + si+1 ≥ m− 1; and

(iv) If 1 ≤ si < m, then si−1 + si+1 ≥ m.

Proof. Let v ∈ Si and d be the number of neighbors of v in Si.

(i) Since d(v) = 2m + 2, S must contain at least m + 1 neighbors of v. This means that

si−1 + si + si+1 ≥ m+ 2 because N [v] ⊆ V (G2
i−1) ∪ V (G2

i ) ∪ V (G2
i+1).

(ii) Since d(v) = 2m + 1, S must contain at least m neighbors of v. This means that si−1 +

si + si+1 ≥ m+ 1 because N [v] ⊆ V (G2
i−1) ∪ V (G2

i ) ∪ V (G2
i+1).

(iii) Consequence of (i), (ii), and 1 ≤ |N(v) ∩ V (G2
i )| ≤ 2.

(iv) Consequence of (iii) and the fact that v can be chosen as a vertex having a neighbor in

V (G2
i ) \ S. �

Proposition 3.2 Let S be a GDA of G1 ◦ G2 for G1 ∈ {Pn, Cn}, G2 ∈ {Pm, Cm}, n ≡ r

mod 4, and m ≥ 3 such that si ≥ 1 for every 2 ≤ i ≤ n− 1. Then the following hold.

(i) If r = 0, then |S| ≥ (2m− 1)n
4

(ii) If r ∈ {1, 2, 3} and n ≥ 8, then |S| ≥ (2m− 1)⌊n
4
⌋ + t, where

t =



















m+ 1 , if r = 3 and G2 ≃ Pm

m+ 2 , if r = 3 and G2 ≃ Cm

r , if r ∈ {1, 2}

(iii) If n ≥ 6 and m = 3, then |S| ≥ 6⌊n
4
⌋ + t, where t =







r + 2 , if r ∈ {1, 2, 3}

0 , if r = 0

(iv) If n ≥ 9 and m = 4, then |S| ≥ 2n for G2 ≃ Cm and |S| ≥ 2n− 2 for G2 ≃ Pm

Proof. (i) By Proposition 3.1, s1+s3 ≥ m−1 and s2+s4 ≥ m−1. If s1+s3 = s2+s4 = m−1, then

S is not a GDA because some vertex of S2 is not defended in S. Then s1+s2+s3+s4 ≥ 2m−1.

In fact, we can conclude that si + si+1 + si+2 + si+3 ≥ 2m− 1 for every i ∈ {1, . . . , n− 3}.

(ii) Since n ≥ 8, n − 4 − r = 4k for some positive integer k. If suffices to show that for

T = (V (G2
5) ∪ . . . ∪ V (G2

5+r−1)) ∩ S it holds |T | ≥ t. If r ≤ 2, then |T | ≥ r because si ≥ 1 for

every i ∈ {2, . . . , n− 1}. If r = 3, then |T | ≥ m + 1 if G2 ≃ Pm and |T | ≥ m + 2 if G2 ≃ Cm

due Proposition 3.1.
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(iii) By Proposition 3.1 (i), it holds si + si+1 + si+2 + si+3 ≥ 6 for every i ∈ {1, . . . , n − 3}.

Then, the result is clear for r = 0. Case r = 1 is consequence of the fact that s1+ . . .+ s9 ≥ 15,

case r = 2 because s1 + . . .+ s6 ≥ 10, and case r = 3 because s1 + . . .+ s7 ≥ 11.

(iv) It suffices to prove for G2 ≃ Pm. We prove that if si = 1, then si+1 ≥ 3 or si+1 + si+2 ≥ 5

or si+1 + si+2 + si+3 ≥ 7. If si+1 ≥ 3, we are done. If si+1 = 1, then si+2 ≥ 3. If then si+2 = 3,

then there is a vertex of degree 2 in Si+2 having a neighbor in V (G2
2) \ S, therefore si+3 ≥ 3.

Then consider si+3 = 4 and si+1+ si+2 ≥ 5. Then consider si+1 = 2. This means that there is a

vertex of degree 2 in Si+1 having a neighbor in V (G2
1)\S, therefore si+2 ≥ 3 and si+1+si+2 ≥ 5.

Now, it remains to recall that s1 + s2 + s3 ≥ 6 and sn−2 + sn−1 + sn ≥ 6 for G2 ≃ C4 and

s1 + s2 + s3 ≥ 5 and sn−2 + sn−1 + sn ≥ 5 for G2 ≃ P4. �

Proposition 3.3 If G is a spanning subgraph of G′ and S is a minimum GDA of G such that

no vertex of S is incident to any edge of E(G′) \E(G), then S is also a minimum GDA of G′.

Proof. Consequence of the fact that the neighborhood of each vertex of S is the same in G and

in G′. �

4 Determining γa for paths and cycles

For n ≥ 3 and m ≥ 2, we show in this section that γa(G1, G2) for G1, G2 ∈ {Cn, Pm} is

the minimum among at most four values. Since these values are easily evaluated, one can

determining γa(G
1, G2) within a constant number of operations. We consider first the case

where G1 has order at most 7.

4.1 Case n ≤ 7

Let F = G1 ◦G2, for G1 ≃ Pn, G
2 ≃ Cm, n ∈ {2, . . . , 7}, and m ≥ 3. We define Xn,m ⊆ V (F )

as follows:

• X2,3 = V (G2
1). For m ≥ 4, define X2,m = T1 ∪ T2, where T1 and T2 are the vertex sets of

paths of order ⌊m
2
⌋ of G2

1 and G2
2, respectively.

• X3,m = V (G2
3) ∪ T2, where T2 is the vertex set of a path of order x of G2

2 where x =

max{2, ⌊m−2
2

⌋}.

• X4,m = V (G2
3) ∪ V (G2

2)− {u}, for some vertex u ∈ V (G2
2).

• X5,m = V (G2
3) ∪ T2 ∪ T4 where T2 contains two adjacent vertices of G2

2 and T4 contains

the vertices of a path of G2
4 of size max{2, m− 3}.
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• X6,3 = V (G2
1) ∪ V (G2

5) ∪ T4, where T4 is a pair of vertices; for m ≥ 4, define X6,m =

V (G2
3) ∪ V (G2

4) ∪ T2 ∪ T5, where T2 and T5 are two adjacent vertices of G2
2 and G2

5,

respectively.

• X7,m = V (G2
3) ∪ V (G2

5) ∪ T2 ∪ T4 ∪ T6, where T2 and T6 are two adjacent vertices of G2
2

and G2
6, respectively, and T4 is the vertex set of a path of order m− 3 of G2

4.

n Pn ◦ C3 Pn ◦ Cm, m ≥ 4
2 3 2⌊m

2
⌋

3 5 m+max{2, ⌊m−2
2

⌋}
4 5 2m− 1
5 7 max{m+ 4, 2m− 1}
6 8 2m+ 4
7 10 3m+ 1

Table 1: Pn ◦ Cm, 2 ≤ n ≤ 7 and m ≥ 3.

n Cn ◦ C3 Cn ◦ Cm, m ≥ 4
3 5 3⌈m

2
⌉

4 5 2m− 1
5 7 max{m+ 4, 2m− 1}
6 10 2m+ 4
7 10 3m+ 1

Table 2: Cn ◦ Cm, 3 ≤ n ≤ 7 and m ≥ 3.

Let F = G1◦G2, for G1 ≃ Pn, G
2 ≃ Pm, n ∈ {2, . . . , 7}, and m ≥ 3. We define Yn,m ⊆ V (F )

as follows:

• Y2,3 = V (G2
1) \ {v1} ∪ {v2}. For m ≥ 4, define X2,m = T1 ∪ T2, where T1 and T2 are the

vertex sets of paths of order ⌊m
2
⌋ of G2

1 and G2
2, respectively.

• For m ∈ {3, 4}, Y3,m = V (G2
3) ∪ {v2} for v2 ∈ V (G2

2); Y3,5 = V (G2
3) \ {u} ∪ T2 where T2

contains two adjacent vertices of G2
2; for m ≥ 6, Y3,m = V (G2

3)∪T2, where T2 is the vertex

set of a path of G2
2 of order ⌊m−2

2
⌋.

• Y4,m = X4,m.

• Y5,3 = V (G2
3) ∪ {v1} ∪ {v4}; Y5,4 = V (G2

3) ∪ {v2} ∪ {v4, v
′
4}; for m ≥ 5, Y5,m = X5,m.

• Y6,3 = V (G2
3) ∪ V (G2

4) ∪ {v2} ∪ {v5}, where d(v2) = d(v5) = 7; for m ≥ 4, define

X6,m = V (G2
3) ∪ V (G2

4) ∪ {v2} ∪ {v5}.

• Y7,m = V (G2
3) ∪ V (G2

5) ∪ {v2} ∪ T4 ∪ {v6}, where T4 is the vertex set of a path of order

m− 2 of G2
4.

Denote xi,m = |Xi,m| and yi,m = |Yi,m|.
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n Pn ◦ P3 Pn ◦ Pm, m ≥ 4
2 3 2⌊m

2
⌋

3 4 m+ ⌊m−2
2

⌋
4 5 2m− 1
5 5 2m− 1
6 8 2m+ 2
7 9 3m

Table 3: Pn ◦ Pm, 2 ≤ n ≤ 7 and m ≥ 3.

n Cn ◦ P3 Cn ◦ Pm, m ≥ 4
3 5 3⌊m

2
⌋

4 5 2m− 1
5 5 2m− 1
6 8 2m+ 2
7 9 3m

Table 4: Cn ◦ Pm, 3 ≤ n ≤ 7 and m ≥ 3.

Proposition 4.1 For n ∈ {2, . . . , 7}, γa(Pn ◦Cm) is given in Table 1 and γa(Pn ◦Pm) is given

in Table 3.

Proof. It is easy to check thatXm
i is a GDA of F = Pi◦G

2 for i ∈ {2, . . . , 7} andG2 ∈ {Cm, Pm}.

For the converse, let S be a minimum GDA of F .

Case i = 2. For m = 3, it is easy to check that there is no GDA of size 2 and that V (G2
1) is a

GDA of the graph. Then assume m ≥ 4. Since V (G2
1) is not a GDA, (V (G2

1) \ {v1}) ∪ {v2} is

not a a GDA for v1 ∈ V (G2
2) and v2 ∈ V (G2

2), and x2 ≤ m, it holds 2 ≤ s1 < m and 2 ≤ s2 < m

for a minimum GDA S. Then, we can assume that there is a vertex v ∈ S ∩ V (G2
1) such that

d(v) = m+ 2 and having a neighbor in V (G2
1) \ S. Therefore, we have s2 ≥ ⌊m+2

2
⌋ − 1 = ⌊m

2
⌋.

Since the same does hold for s1, the result is true.

Case i = 3. Suppose that |S| < m + max{2, ⌊m−2
2

⌋} = xm
3 < 2m. If s2 = 0, then we can

assume that v ∈ V (G2
1) has at most one neighbor in S, then v is not defended in S. Hence

s2 ≥ 1. First, consider m ∈ {3, 4, 5} and G2 ≃ Cm. Since d(v) = 2m + 2 for v ∈ V (G2
2),

we have |S ∩ N(v)| < d(v)
2
, a contradiction. Case m ∈ {3, 4, 5} and G2 ≃ Pm is direct from

Proposition 3.1 (ii).

Now, consider m ≥ 6. We can now write |S| < m+ ⌊m−2
2

⌋. By Proposition 3.1, s1 + s3 ≥

m − 1. Since m − 1 > ⌊m−2
2

⌋ for m ≥ 4, we have s2 < m. Consequently, by Proposition 3.1

again, we have m ≤ s1 + s3 < 2m. Then, without loss of generality, there is a vertex in V (G2
1)

having at most one neighbor in S ∩ V (G2
1). Therefore s2 ≥ ⌊m+2

2
⌋ − 1 = ⌊m

2
⌋, which means

that |S| ≥ m+ ⌊m
2
⌋ > x3, a contradiction.

Case i = 4. First, consider s2 = 0 and s3 = 0. Then m = 3, s1 = s4 = m, and |S| = 6 >

x3
4 = 5. Next, consider s2 = 0 and s3 ≥ 1. Then m = 3, s1 = m and, using Proposition 3.1,

s2 + s3 + s4 ≥ m + 2 = 5. Which means |S| ≥ 8 > x3
4 = 5. The case s2 ≥ 1 and s3 = 0 is
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analogue. Then s2 ≥ 1 and s3 ≥ 1. By Proposition 3.2, |S| ≥ 2m− 1, completing the proof for

i = 4.

Case i = 5. Since xm
5 = 2m− 1 for m ≥ 5, and γa(P5 ◦G

2) ≥ γa(P4 ◦ G
2) for G2 ∈ {Cm, Pm},

case i = 4 implies, for m ≥ 5, |S| ≥ xm
5 . The same argument holds for m ≤ 4 and G2 ≃ Pm.

For m ≤ 4 and G2 ≃ Cm, we have xm
5 = m + 4. If s2 = 0, then m = 3 and s1 = 3. Since

s3 and s4 are both not equal to 0, then s2 + s3 + s4 + s5 ≥ m + 2, which means |S| > m + 4.

Then s2 ≥ 1 and s4 ≥ 1. Suppose that s3 = m− k for k ≥ 1. This implies that s1 + s2 ≥ 2+ k

and s4 + s5 ≥ 2+ k. Then |S| ≥ m− k+2+ k+2+ k = m+4+ k, a contradiction. Therefore

s3 = m. Since every vertex of S2 ∪ S4 has degree 2m + 2, s1 + s2 ≥ 2 and s4 + s5 ≥ 2, which

implies that |S| ≥ m+ 4.

Case i = 6. First, consider m = 3 and G2 ≃ Cm. If s2 ≥ 1 and s5 ≥ 1, then s1+s2+s3 ≥ 5 and

s4+s5+s6 ≥ 5, which means |S| > x3
6 = 8. If s2 = 0 and s5 = 0, then s1 = s6 = 3, furthermore

s3 + s4 ≥ 5, which means |S| > x3
6. Then, without loss of generality, we can assume s2 = 0 and

s5 ≥ 1. This implies s1 = 3 and s4 + s5 + s6 ≥ 5, which means |S| ≥ x3
6 = 8.

Next, consider m = 3 and G2 ≃ Pm. Since V (G2
1) is not a GDA of P2 ◦ P3, then s2 ≥ 1

and s5 ≥ 1. Observe that a vertex v ∈ S2 needs at least four neighbors in S because d(v) = 8.

Then s1 + s2 + s3 ≥ 5 and s4 + s5 + s6 ≥ 5.

Now, consider m ≥ 4. It is clear that s2 ≥ 1 and s5 ≥ 1. By Proposition 3.1, s1 + s2 + s3 ≥

m+ 2 for G2 ≃ Cm and s1 + s2 + s3 ≥ m+ 1 for G2 ≃ Pm. By symmetry, s4 + s5 + s6 ≥ m+ 2

for G2 ≃ Cm and s4 + s5 + s6 ≥ m+ 2 for G2 ≃ Pm. Therefore |S| ≥ 2m+ 4 for G2 ≃ Cm and

|S| ≥ 2m+ 2 for G2 ≃ Pm.

Case i = 7. If s2 = 0, then m = 3, G2 ≃ Cm, and s1 = 3. If s3 ≥ 1, then s3 + s4 ≥ 5. Since

s5 + s6 + s7 ≥ 3, we have |S| > x3
7. Then s3 = 0. This implies that s4 ≥ 1, which means

s4 + s5 ≥ 5. Therefore |S| < x3
7 if s6 + s7 = 1. But the vertex of S6 ∪ S7 is not defendend in S.

Then, consider s2 ≥ 1 and s6 ≥ 1. If s′3 = 0, then cases i = 3 and i = 5 imply that

s1 + s2 + s3 ≥ m+max{2, ⌊m−2
2

⌋} and s3 + s4 + s5 + s6 + s7 ≥ max{m+ 4, 2m− 1} which is

at least xm
7 for any m ≥ 3. Then, we can consider s3 ≥ 1 and s5 ≥ 1. Since s1 + s3 and s2 + s4

cannot both be equal to m− 1 and for G2 ≃ Cm, we have s5 + s6 + s7 ≥ m+ 2, for G2 ≃ Pm,

we have s5 + s6 + s7 ≥ m+ 1, we have |S| ≥ m− 1 +m+m+ 2 = 3m+ 1 for G2 ≃ Cm, and

we have |S| ≥ m− 1 +m+m+ 2 = 3m for G2 ≃ Pm. �

Corollary 4.2 For n ∈ {3, . . . , 7}, γa(Cn ◦ Cm) is given in Table 2 and γa(Cn ◦ Pm) is given

in Table 4.

Proof. Proposition 3.2 implies that γa(C3 ◦ C3) ≥ 5 and γa(C3 ◦ P3) ≥ 4. It is easy to check

that C3 ◦P3 has no GDA with less than 5 vertices, then since X3,3 and Y3,3 are GDAs of C3 ◦C3

and C3 ◦ P3, respectively, γa(C3 ◦ C3) = γa(C3 ◦ P3) = 5.

Now, consider n = 3, m ≥ 4, and let S be a minimum GDA of Cn ◦G
2 for G2 ∈ {Cm, Pm}.

We can assume that v2 ∈ S2 and v3 ∈ S3. Since d(v2) = d(v3) ∈ {2m+1, 2m+2}, s1+s3 ≥ m−1
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and s1 + s2 ≥ m − 1. If s1 = 0, then |S| ≥ 2m − 2. Therefore, we can assume s1 6= 1, which

implies, by the symmetry of the graph, that s1 = s2 = s3 = k. If d(v2) = 2m+ 1 and k < ⌊m
2
⌋,

then S is not a GDA. Therefore γa(C3 ◦Pn) = 3⌊m
2
⌋ for m ≥ 4. If d(v2) = 2m+2 and k < ⌈m

2
⌉,

then S is not a GDA. Therefore γa(C3 ◦ Cn) = 3⌈m
2
⌉ for m ≥ 4.

The cases n ∈ {4, 5, 6, 7} are consequence of Propositons 3.3 and 4.1. �

Corollary 4.3 For k ∈ {3, . . . , 7}, G1 ∈ {Cn, Pn}, and G2 ∈ {Cm, Pm}, there is a minimum

GDA S of G1 ◦G2 such that max(spe(S)) ≤ k.

4.2 Case n ≥ 8

We begin this section presenting a hyerarchy of γa(G
1 ◦G2) which depends of the operands and

is consequence of the previous results.

Corollary 4.4 For n ≥ 2 and m ≥ 3, it holds γa(Pn ◦ Pm) ≤ γa(Cn ◦ Pm) ≤ γa(Cn ◦ Cm) and

γa(Pn ◦ Pm) ≤ γa(Pn ◦ Cm) ≤ γa(Cn ◦ Cm).

Proof. γa(Pn ◦ Pm) ≤ γa(Cn ◦ Pm) and γa(Pn ◦ Cm) ≤ γa(Cn ◦ Cm) are consequences of Corol-

lary 2.3, while γa(Cn ◦ Pm) ≤ γa(Cn ◦ Cm) and γa(Pn ◦ Pm) ≤ γa(Pn ◦ Cm) are consequence of

Corollaries 2.3, 4.2, and Proposition 4.1. �

Now, we consider the case where G1 has order at least 8. We divide the study into two

cases, m = 3 and m ≥ 4.

4.2.1 Case m = 3

Proposition 4.5 For n ≥ 8, G1 ∈ {Pn, Cn}, and G2 ∈ {P3, C3}, there is minimum GDA S of

G1 ◦G2 such that max(spe(S)) ≤ 6.

Proof. Write F = G1 ◦ G2 and let w = (k1, . . . , kt) be the spectrum of a minimum GDA S of

F , ki ≥ 7 for some i ∈ [t], and r ≡ ki mod 4.

By Proposition 3.2 (iii), vale(ki, C3) ≥ 6⌊ki
4
⌋+ t where t =



















r + 2 , if r ∈ {2, 3}

2 , if r = 1

0 , if r = 0

For each value of r, we present a ki-sequence w′ = (ℓ1, . . . , ℓp) such that max(w′) ≤ 6 and

val(Pn, C3, w
′) ≤ 6⌊k

4
⌋+ t. Since yt,3 ≤ xt,3 for 3 ≤ t ≤ 6 and the bound of Proposition 3.2 (iii)

holds for G2 ≃ P3 and G2 ≃ C3, we only need to consider G2 ≃ C3.

For r = 0, define w′ = ([k
4
]4) containing k

4
. Since x4,3 = 5, it holds val(Pn, C3, w

′) = 5k
4
≤

6k
4
≤ vale(ki, C3). For r = 1, consider w′ = ([k−5

4
]4, 5). Since x5,3 = 5, it holds val(Pn, C3, w

′) =

5k−5
4

+ 5 ≤ 6⌊k
4
⌋ + 2 ≤ vale(ki, C3). For r = 2, define w′ = ([k−6

4
]4, 6). Since x6,3 = 8, it holds

val(Pn, C3, w
′) = 5k−6

4
+ 8 ≤ 6⌊k

4
⌋ + 4 ≤ vale(ki, C3). For r = 3, define w′ = (3, [k−3

4
]4). Since

val′(3) = x4,3 = 5, it holds val(Pn, C3, w
′) = 5k−3

4
+ 5 ≤ 6⌊k

4
⌋+ 5 ≤ vale(ki, C3).
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Now, it remains to observe that w′′ = w1,i−1w
′wi+1,t is a feasible n-sequence and val(G1, C3, w

′′) ≤

val(G1, C3, w). �

Proposition 4.6 For n ≥ 8, G1 ∈ {Cn, Pn}, and G2 ∈ {C3, P3}, there is a minimim GDA S

of G1 ◦G2 such that

(i) if G2 ≃ C3, then spe(S) has at most one element in the set {3, 5, 6} and no one is equal

to 2;

(ii) if G2 ≃ P3, then spe(S) has at most one element in the set {2, 3, 4, 6}.

Proof. By Proposition 4.5, there is a minimum GDA S of F = G1 ◦C3 whose max(spe(S)) ≤ 6.

Suppose that ki and kj are values of spe(S) and of {2, 3, 5, 6}. For each possible case, we present

in Table 5 a sequence w′ = (ℓ1, . . . , ℓt) for t ≤ 3 such that val(Pn, C3, w
′) ≤ vale(ki, C3) +

vale(kj , C3), w
′ does not contain the number 2, and contains at most one element of the set

{3, 5, 6}. The third column of the table is a lower bound of vale(ki, C3) + vale(kj, C3), which is

consequence of Proposition 4.1.

ki kj vale(ki, C3) + vale(kj , C3) ℓ1 ℓ2 ℓ3 val(Pn, C3, w
′)

2 3 5 + 5 = 10 5 7
2 4 5 + 5 = 10 6 8
2 5 5 + 7 = 12 4 3 10
2 6 5 + 8 = 13 4 4 10
3 3 5 + 5 = 10 6 8
3 5 5 + 7 = 12 4 4 10
3 6 5 + 8 = 13 5 4 12
5 5 7 + 7 = 14 6 4 13
5 6 7 + 8 = 15 4 4 3 15
6 6 8 + 8 = 16 4 4 4 15

Table 5: Case G2 ≃ C3.

It is clear that the sequence w′′ = (k1, . . . , ki−1, ki+1, . . . , kj−1, kj+1, . . . , kt, )w
′ is feasible and

val(G1, C3, w
′′) ≤ val(G1, C3, w). Since one can repeat this process until a sequence with the

required properties be obtained, the result does hold.

The proof of (ii) is essentially the same of (i) by considering G2 ≃ P3 and Table 6.

�

f(n, 3) =































5n
4

, if n ≡ 0 mod 4

5n−5
4

+ 7 , if n ≡ 1 mod 4

5n−6
4

+ 8 , if n ≡ 2 mod 4

5n−3
4

+ 5 , if n ≡ 3 mod 4
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ki kj vale(ki, P3) + vale(kj, P3) ℓ1 ℓ2 ℓ3 val(Pn, P3, w
′)

2 3 4 + 4 = 8 5 5
2 4 4 + 5 = 9 6 8
2 6 4 + 8 = 12 5 3 10
3 3 4 + 4 = 8 6 8
3 4 4 + 5 = 9 5 2 9
3 6 4 + 8 = 12 5 4 10
4 4 5 + 5 = 10 5 3 10
4 6 5 + 8 = 13 5 5 10
6 6 8 + 8 = 16 5 5 2 14

Table 6: Case G2 ≃ P3.

f ′(n, 3) =































5n
5

, if n ≡ 0 mod 5

5n−6
5

+ 8 , if n ≡ 1 mod 5

5n−r
5

+ 4 , if n ≡ r mod 5 for r ∈ {2, 3}

5n−4
5

+ 5 , if n ≡ 4 mod 5

Theorem 4.7 For n ≥ 8 and G1 ∈ {Cn, Pn}, γa(G
1 ◦C3) = f(n, 3) and γa(G

1 ◦P3) = f ′(n, 3).

Proof. Corollary 2.4 and Propositions 4.5 and 4.6 (i) imply that, for p = ⌊n
4
⌋ and r = n mod 4,

it holds that a sequence w such that γa(G
1 ◦ C3) = val(G1, C3, w) is

w =































([p]4) , if r = 0,

([p− 1]4, 5) , if r = 1,

([p− 1]4, 6) , if r = 2,

([p]4, 3) , if r = 3.

Using Proposition 4.1, we have γa(G
1 ◦ C3) = f(n, 3). Now, Corollary 2.4 and Proposi-

tions 4.5 and 4.6 (ii) imply that, for p = ⌊n
4
⌋ and r = n mod 5, it holds that a sequence w

such that γa(G
1 ◦ P3) = val(G1, P3, w) is

w =



















([p− 1]5) , if r = 0,

([p− 1]5, 6) , if r = 1,

(r, [p]5) , if r ∈ {2, 3, 4}.

Using Proposition 4.1, we have γa(G
1 ◦ P3) = f ′(n, 3). �

4.2.2 Case m ≥ 4

Proposition 4.8 For n ≥ 8, m ≥ 4, G1 ∈ {Pn, Cn}, and G2 ∈ {Pm, Cm}, there is a minimim

GDA S of G1 ◦G2 such that max(spe(S)) ≤ 7.
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Proof. Let w = (k1, . . . , kt) be the spectrum of a minimum GDA S of F = G1 ◦ G2 such

that ki ≥ 8 for some i ∈ [t]. Let F ′ be the section of F associated with ki and set S ′ =

|V (F ′) ∩ S|. For each case, we present a ki-sequence w′ = (ℓ1, . . . , ℓp) such that max(w′) ≤ 7

and val(Pn, G
2, w′) ≤ |S ′|.

For ki = 8, consider r ≡ ki mod 4. Proposition 3.2 (i) implies |S ′| ≥ 4m − 2. If m = 4,

let w′ = (4, 4). Since y4,4 = x4,4 = 7, val(Pn, G
2, w′) = 14 ≤ |S ′|. If m ≥ 5, let w′ = (5, 3).

Since y5,m = x5,m = 2m − 1 and y3,m ≤ x3,m = m+max{2, ⌊m−2
2

⌋}, it holds val(Pn, G
2, w′) ≤

3m− 1 + max{2, ⌊m−2
2

⌋} ≤ 4m− 2 ≤ |S ′|, which means that the result also holds for ki = 8.

For ki ≥ 9, consider r ≡ ki mod 5. Let w′ as follows

w′ =



















([ki
5
]5) , if r = 0

([ki−6
5

]5, 6) , if r = 1

(r, [ki−r
5

]5) , if r ∈ {2, 3, 4}

Consider firstm = 4. If G2 ≃ C4, Proposition 3.2 (iv) implies |S ′| ≥ 2ki. By Proposition 4.1,

it holds that val(Pn, C4, w
′) is 8ki

5
for r = 0, is 8ki−6

5
+ 12 for r = 1, is 8ki−r

5
+ 6 for r ∈ {2, 3},

is 8ki−4
5

+ 7 for r = 4. Since val(Pn, C4, w
′) ≤ 2ki ≤ |S ′| in all cases, the result follows for

G2 ≃ C4. If G2 ≃ P4, Proposition 3.2 (iv) implies |S ′| ≥ 2ki − 2. By Proposition 4.1, it holds

that val(Pn, P4, w
′) is 7ki

5
for r = 0, is 7ki−6

5
+10 for r = 1, is 7ki−r

5
+5 for r ∈ {2, 3}, is 7ki−4

5
+7

for r = 4. Since val(Pn, P4, w
′) ≤ 2ki − 2 ≤ |S ′| in all cases, the result follows for G2 ≃ P4.

Consider now m ≥ 5. Proposition 3.2 (i) and (ii) imply |S ′| ≥ ⌊k
4
⌋(2m− 1) + t where

t =







m+ 1 , if r = 3

r , if r ∈ {0, 1, 2}

for G2 ∈ {Pm, Cm}. By Proposition 4.1, val(Pn, G
2, w′) is (2m − 1)ki

5
for r = 0, is at most

(2m−1)ki−6
5

+2m+4 for r = 1, is at most (2m−1)ki−r
5

+m+max{2, ⌊m−2
2

⌋} for r ∈ {2, 3}, is

(2m−1)ki−4
5

+2m−1 for r = 4. Since val(Pn, G
2, w′) ≤ |S ′| in all cases, the proof is complete. �

Proposition 4.9 For n ≥ 8, m ≥ 4, G1 ∈ {Pn, Cn}, and G2 ∈ {Pm, Cm}, there is a minimum

GDA S of G1 ◦G2 whose spectrum contains at most one element of the set {2, 3, 4, 7}.

Proof. By Proposition 4.8, there is a minimum GDA S of F = G1◦G2 such that max(spe(S)) ≤

7. Suppose that ki and kj are values of spe(S) and of {2, 3, 4, 7}. For each possible case, we

present in Tables 7 and 8 a sequence w′ = (ℓ1, . . . , ℓt) for t ≤ 3 such that val(Pn, G
2, w′) ≤

vale(ki, G
2) + vale(kj, G

2) such that w′ contains at most one element of the set {2, 3, 4, 7}.

Table 7 contains the cases forG2 ≃ Cm and Table 8 forG2 ≃ Pm. The third column of each table

contains a lower bound of vale(ki, G
2) + vale(kj, G

2), which is consequence of Proposition 4.1.

It is clear that the sequence w′′ = (k1, . . . , ki−1, ki+1, . . . , kj−1, kj+1, . . . , kt, )w
′ is feasible

and val(G1, G2, w′′) ≤ val(G1, G2, w) for G ∈ {P,C}. Since one can repeat this process until a

sequence with the required properties be obtained, the result does hold. �
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ki kj vale(ki, Cm) + vale(kj , Cm) ℓ1 ℓ2 ℓ3 val(Pn, Cm, w
′)

2 3 2(m+max{2, ⌊m−2
2

⌋}) 5 max{m+ 4, 2m− 1}
3 3 2(m+max{2, ⌊m−2

2
⌋}) 6 2m+ 4

2 4 2m− 1 +m+max{2, ⌊m−2
2

⌋} 6 2m+ 4
3 4 2m− 1 +m+max{2, ⌊m−2

2
⌋} 7 3m+ 1

4 4 2(2m− 1) 5 3 max{m+ 4, 2m− 1}+m+max{2, ⌊m−2
2

⌋}
2 7 3m+ 1 +m+max{2, ⌊m−2

2
⌋} 5 4 max{m+ 4, 2m− 1}+ 2m− 1

3 7 m+max{2, ⌊m−2
2

⌋}+ 3m+ 1 5 5 2(max{m+ 4, 2m− 1})
4 7 3m+ 1 + 2m− 1 6 5 2m+ 4 +max{m+ 4, 2m− 1}
7 7 2(3m+ 1) 5 5 4 2(max{m+ 4, 2m− 1}) + 2m− 1

Table 7: Case G2 ≃ Cm.

ki kj vale(ki, Pm) + vale(kj , Pm) ℓ1 ℓ2 ℓ3 val(Pn, G
2, [)Pm]w

′

2 3 2(m+ ⌊m−2
2

⌋) 5 2m− 1
3 3 2(m+ ⌊m−2

2
⌋) 6 2m+ 2

2 4 2m− 1 +m+ ⌊m−2
2

⌋ 6 2m+ 2
3 4 2m− 1 +m+ ⌊m−2

2
⌋ 7 3m

4 4 2(2m− 1) 5 3 2m− 1 +m+ ⌊m−2
2

⌋
2 7 3m+m+ ⌊m−2

2
⌋ 5 4 2m− 1 + 2m− 1

3 7 m+ ⌊m−2
2

⌋+ 3m 5 5 2(2m− 1)
4 7 3m+ 2m− 1 6 5 2m+ 2 + 2m− 1
7 7 2(3m) 5 5 4 2(2m− 1) + 2m− 1

Table 8: Case G2 ≃ Pm.

Proposition 4.10 If n ≥ 8, m ≥ 4, G1 ∈ {Pn, Cn}, G2 ∈ {Pm, Cm}, and w = (k1, . . . , kt)

is the spectrum of a minimum GDA of G1 ◦ G2 containing three numbers that are pairwise

different, then we can assume that w ∈ {(3, [p − 1]5, 6), (3, 5, [q − 1]6)} where p = n−9
5

and

q = n−8
6
.

Proof. Suppose that, for i, j, r ∈ [t], ki, kj, and kr are pairwise different. By Proposition 4.9,

we can assume that kj = 5 and kr = 6. In Tables 9 and 10, we show that if ki 6= 3, then there

is a ki-sequence w′ = (ℓ1, . . . , ℓt′) for t
′ ≤ 4 such that w′ contains only numbers 3,5, and 6, and

val(Pn, G
2, w′) ≤ vale(ki, G

2) + vale(kj , G
2) + vale(kr, G

2).

It remains to prove that w 6= (3, [p]5), [q]6) for p, q ≥ 2. First, we consider G2 ≃ Cm. We

can assume that w = (3, [2]5, [2]6, [p− 2]5, [q− 2]6). We know that val(Pn, Cm, (3, [2]5, [2]6)) =

2(2m+4)+2(max{m+4, 2m−1})+m+max{2, ⌊m−2
2

⌋} = 9m+max{2, ⌊m−2
2

⌋}+6. Form ≤ 17,

val(Pn, Cm, ([5]5)) = 5(max{m+4, 2m−1}) = 10m−5 and for m ≥ 18, val(Pn, Cm, ([3]6, 7)) =

3(2m+ 4) + 3m+ 1 = 9m+ 13, which means that w is not the spectrum of a minimum GDA

of G1 ◦ Cm.

Finally consider G2 ≃ Pm. We know that val(Pn, Pm, (3, [2]5, [2]6)) = 2(2m+ 2) + 2(2m−

1) +m + ⌊m−2
2

⌋ = 9m + 3 + ⌊m−2
2

⌋. For m ≤ 11, val(Pn, Pm, ([5]5)) = 5(2m − 1) = 10m − 5

and for m ≥ 12, val(Pn, Pm, ([3]6, 7)) = 3(2m+ 2) + 3m = 9m+ 6, which means that w is not

the spectrum of a minimum GDA of G1 ◦ Pm. �

The above results reduce the number of sequences that can reach γa(F ) for G1 ◦ G2, G1 ∈
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ki val(i, j, r) ℓ1 ℓ2 ℓ3 ℓ4 val(Pn, Cm, w
′)

2 m+max{2, ⌊m−2
2

⌋}+ 2m+ 4+ 5 5 3 2(max{m+ 4, 2m− 1})+
max{m+ 4, 2m− 1} = m+max{2, ⌊m−2

2
⌋} =

5m+ 3 +max{2, ⌊m−2
2

⌋} 5m− 2 + max{2, ⌊m−2
2

⌋}
4 2m− 1 + max{m+ 4, 2m− 1}+ 5 5 5 3(max{m+ 4, 2m− 1}) =

2m+ 4 ≥ 6m+ 3 6m− 3
7 max{m+ 4, 2m− 1}+ 2m+ 4+ 5 5 5 3 For m ≤ 10,

3m+ 1 = 7m+ 4 3(max{m+ 4, 2m− 1})+
m+max{2, ⌊m−2

2
⌋} =

7m+max{2, ⌊m−2
2

⌋} − 3
6 6 6 For m ≥ 11, 3(2m+ 4) =

6m+ 12

Table 9: Case G2 ≃ Cm, where val(i, j, r) = vale(ki, Cm) + vale(kj, Cm) + vale(kr, Cm)

ki val(i, j, r) ℓ1 ℓ2 ℓ3 ℓ4 val(Pn, Pm, w
′)

2 m+ ⌊m−2
2

⌋+ 2m+ 2+ 5 5 3 2(2m− 1) +m+ ⌊m−2
2

⌋ =
2m− 1 = 5m+ 1 + ⌊m−2

2
⌋ 5m− 2 + ⌊m−2

2
⌋

4 2m− 1 + 2m− 1 + 2m+ 2 = 5 5 5 3(2m− 1) = 6m− 3
6m

7 2m− 1 + 2m+ 2+ 5 5 5 3 For m ≤ 10,
3m ≥ 7m+ 1 3(2m− 1) +m+ ⌊m−2

2
⌋ =

7m+ ⌊m−2
2

⌋ − 3
6 6 6 For m ≥ 11, 3(2m+ 2) = 6m+ 6

Table 10: Case G2 ≃ Pm, where val(i, j, r) = vale(ki, Pm) + vale(kj, Pm) + vale(kr, Pm)

{Cn, Pn}, G
2 ∈ {Cm, Pm}, n ≥ 8, and m ≥ 4. In fact, we will show that, for a given F , γa(F )

can be determined considering at most four sequences, the ones defined in the sequel.

f1,n =



















([p]5) , if n ≡ 0 mod 5

(r, [p]5) , if n ≡ r mod 5 for r ∈ {2, 3, 4}

([p]5, 6) , if n ≡ 6 mod 5

f2,n =







([p]5, [q]6) for maximum p , if n 6= 19

(3, [2]5, 6) , if n = 19

f3,n = ([p]5, [q]6) for maximum q

f4,n =











































([q]6) , if n ≡ 0 mod 6

(s, [q]6) , if n ≡ s mod 6 for s ∈ {3, 5}

([q]6, 7) , if n ≡ 1 mod 6

(3, 5, [q]6) , if n ≡ 2 mod 6

([2]5, [q]6) , if n ≡ 4 mod 6

For i ∈ [4], fi,n is an infinite set of sequences, which is associated with at most one sequence

if we fix the value of n. Therefore, when we can handle fi,n as a set.
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Theorem 4.11 For n ≥ 8, m ≥ 4, G1 ∈ {Pn, Cn}, and G2 ∈ {Pm, Cm}, it holds γa(G
1 ◦G2) =

min{val(G1, G2, f1,n), val(G
1, G2, f2,n), val(G

1, G2, f3,n), val(G
1, G2, f4,n)}.

Proof. Write F = G1 ◦ G2. Corollary 2.4 and Propositions 4.8, 4.9, 4.10 imply that there is a

sequence w such that val(G1, G2, w) = γa(F ) and w is a sequence of one of the following 8 sets

of sequences for G = C if G1 ≃ Cn, G = P if G1 ≃ Pn, p = ⌊n
5
⌋, q = ⌊n

6
⌋, r = n mod 5, and

s = n mod 6:

T1 = {([p]5)},

T2 = {([p]5, r) for r ∈ {2, 3, 4}},

T3 = {([q]6)},

T4 = {([q]6, s) for s ∈ {2, 3, 4, 5}},

T5 = {([q − 1]6, 7)},

T6 = {(3, 5, [q − 1]6)},

T7 = {(3, [p− 1]5, 6)},

T8 = {([p′]5, [q′]6), for all positive integers p′ and q′ such that 5p′ + 6q′ = n}.

We note that there are values of n such that some of these sets are empty. Therefore, we

need to show that, if w belongs to some Ti for i ∈ [8] and val(G1, G2, w) = γa(F ), then w

appears in some fi,n, for i ∈ [4].

• The sequences of T1, T2, T3, T5, and T6 appear in f1,n, f1,n, f4,n, f4,n, and f4,n, respectively,

so there is nothing to do for these cases.

• The sequences of T4 appear in f4,n for s ∈ {3, 5}. We will show: (i) for s ∈ {2, 4},

val(G1, G2, ([q]6, s)) ≤ val(G1, G2, w) for some w that appears in fj,n for some j ∈ [4].

• The 19-sequence of T7 appears in f2,n. We will show: (ii) for n ≥ 22, val(G1, G2, (3, [p−

1]5, 6)) ≤ val(G1, G2, w) for some w that appears in fj,n for some j ∈ [4].

• Only two sequences of T8 are considered, one in f2,n and the other in f3,n. We will show:

(iii) only these two sequences of T8 can reach the minimum.

Hence, to complete the proof it suffices to prove (i), (ii), and (iii).

(i) We show that val(G1, G2, w) ≤ val(G1, G2, w′) for w ∈ T6 and w′ ∈ T4 with s = 2. First,

consider G2 ≃ Cm. For G1 ≃ Pn, suppose that qx6,m + x3,m < (q − 1)x6,m + x5,m + x3,m for

some n. We have q(2m+ 4) +m+max{2, ⌊m−2
2

⌋} < (q− 1)(2m+ 4) +max{m+ 4, 2m− 1}+

m + max{2, ⌊m−2
2

⌋}. Then 2m + 4 < max{m + 4, 2m − 1}, a contradiction. For G1 ≃ Cn,

suppose that qx6,m + x4,m < (q − 1)x6,m + x5,m + x4,m for some n. We have q(2m + 4) <

(q − 1)(2m+ 4) + max{m+ 4, 2m− 1} ⇒ 2m+ 4 < max{m+ 4, 2m− 1}, a contradiction.

16



Now, consider G2 ≃ Pm. For G
1 ≃ Pn, suppose that qy6,m+y3,m < (q−1)y6,m+y5,m+y3,m for

some n. We have q(2m+2)+m+⌊m−2
2

⌋ < (q−1)(2m+2)+2m−1+m+⌊m−2
2

⌋. Then 2m+2 <

2m− 1, a contradiction. For G1 ≃ Cn, suppose that qy6,m+ y4,m < (q− 1)y6,m+ y5,m+ y4,m for

some n. We have q(2m+ 2) < (q − 1)(2m+ 2) + 2m− 1 ⇒ 2m+ 2 < 2m− 1, a contradiction.

Next, we show that val(G1, G2, ([2]5, [q−1]6)) ≤ val(G1, G2, ([q]6, 4)). Suppose that qx6,m+

x4,m < (q − 1)x6,m + 2x5,m for some n. We have q(2m + 4) + 2m − 1 < (q − 1)(2m + 4) +

2(max{m+ 4, 2m− 1}). Then 4m+ 3 < 2(max{m+ 4, 2m− 1}), For m = 3, 15 < 14; m = 4,

19 < 16; m = 5, 23 < 18, a contradiction.

(ii) We show that val(G1, G2, w7) ≥ min{val(G1, G2, w2), val(G
1, G2, w8)} where w7 = (3, [p−

1]5, 6) ∈ T7, w2 = ([p]5, 4) ∈ T2, and w8 = ([p′5], [q′]6) ∈ T8 for n ≥ 24. Since the 3 sequences

have a 24-subsequence, we do the analysis comparing the correspoding 24-subsequences w′

7, w
′

2,

and w′

8. First consider G1 ≃ Pn and G2 ≃ Cm. If m ≤ 5, 4x5,m + x4,m = 6m + 15 while

3x5,m+x6,m+x3,m = 3(m+4)+2m+4+m+max{2, ⌊m−2
2

⌋} = 6m+16+max{2, ⌊m−2
2

⌋}. Then

for m = 4, val(Pn, Cm, w
′

2) = 39 < val(Pn, Cm, w
′

7) = 42; and for m = 5, val(Pn, Cm, w
′

2) =

45 ≤ val(Pn, Cm, w
′

7) = 48. If m ≥ 6, 3x5,m+x6,m+x3,m = 6m−3+2m+4+m+⌊m−2
2

⌋ = 9m+

1+⌊m−2
2

⌋ and 4x6,m = 4(2m+4) = 8m+8, which means that val(Pn, Cm, w
′

8) = 8m+8 < 9m+

1 + ⌊m−2
2

⌋ = val(Pn, Cm, w
′

7) for m ≥ 6. The result for G1 ≃ Cn and G2 ≃ Cm is consequence

of the fact that val(Cn, Cm, w7) ≥ val(Pn, Cm, w7) is true due Corollary 4.4. It remains to

consider G1 ∈ {Cn, Pn} and G2 ≃ Pm. Now, it suffices to observe that val(G1, Pm, w
′

2) =

10m− 5 < val(G1, Pm, w
′

7) = 10m− 2 for every m ≥ 4.

(iii) Suppose that the minimum one is achieved by ([p′]5, [q′]6) for p′ < p and q′ < q′′. (We

consider p maximum and q′′ maximum). This means that we can change either ([6]5) for ([5]6)

or vice-versa obtaining a smaller GDA, a contradiction. �

Theorems 4.7 and 4.11 lead to a constant-time algorithm for computing γa(G
1 ◦ G2) for

G1 ∈ {Cn, Pn}, G
2 ∈ {Cm, Pm}, n ≥ 8 and m ≥ 3. It consists in computing at most four

values and choosing the minimum one. In the next section, we show that functions fk,n have an

homogeneous behavior, which allows one to characterize, for each pair {n,m}, which function

gives the global defensive alliance number of G1 ◦G2.

5 Deepening the results

It is easy to verify that if n ≥ 8 is such that fi,n and fi+1,n are defined, then there is an

integer m0 such that val(G1, G2, fi,n) ≥ val(G1, G2, fi,n) for G
2 ∈ {Cm, Pm} and m ≥ m0. The

minimum m0 with this property is the threshold between fi,n and fi+1,n and will be denoted by

tn,i. If one of the functions is not defined or if val(G1, G2, fi,n) = val(G1, G2, fi,n) for every m

that both functions are defined, we will say that tn,i is undefined.

Proposition 5.1 If tn,2 is defined for n, then tCC
n,2 = tPC

n,2 = 13 and tCP
n,2 = tPP

n,2 = 8.
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Proof. Let w2 = ([p]5, [q]6) ∈ f2,n and w3 = ([p′]5, [q′]6) ∈ f3,n. If val(G1, G2, w2) 6=

val(G1, G2, w3), then p > p′. Furthermore, p = 6k + p′ and q′ = 5k + q for k ≥ 1.

Since vali(k,G
2) = vale(k,G

2) for G2 ∈ Cm and k ∈ {5, 6}, we have val(G1, G2, w2) =

p×vali(5, G
2)+q×vali(6, G

2) and val(G1, G2, w3) = p′×vali(5, G
2)+q′×vali(6, G

2). Replacing,

we have val(G1, G2, w2) = (6k + p′)vali(5, G
2) + (q′ − 5k)vali(6, G

2) = 6k × vali(5, G
2)− 5k ×

vali(6, G
2) + val(G1, G2, w3).

For G2 ≃ Cm, we have val(G1, Cm, w2) = 6k(2m − 1) − 5k(2m + 4) + val(G1, Cm, w3) =

k(2m− 26) + val(G1, Cm, w3), which meanst that tPC
n,2 = tCC

n,2 = 13.

For G2 ≃ Pm, we have val(G1, Pm, w2) = 6k(2m − 1) − 5k(2m + 2) + val(G1, Pm, w3) =

k(2m− 16) + val(G1, Pm, w3), which meanst that tPP
n,2 = tCP

n,2 = 8. �

Proposition 5.2 For every n and m ≥ 4, tn,1 is given in Table 11.

n mod 5 tPC
n,1 tCC

n,1 tPP
n,1 tCP

n,1

0 13 13 8 8
1 ∗ ∗ ∗ ∗
2 8 6 5 4
3 9 8 7 5
4, n 6= 19 11 11 7 7
n = 19 9 ∗ 5 ∗

Table 11: tn,1.

Proof. Case 1 (n ≡ 1 mod 5, f1,n = f2,n)

Case 2 (n ≡ 2 mod 5, f1,n = (2, [p]5), and f2,n = ([p− 2]5, [2]6))

For Pn ◦ Cm, using Corollary 2.3, val(Pn, Cm, f1,n) = px5,m + x3,m ≥ val(Pn, Cm, f2,n) =

(p− 2)x5,m + 2x6,m.

2(2m− 1) +m+ ⌊
m− 2

2
⌋ ≥ 2(2m+ 4)

5m− 2 + ⌊
m− 2

2
⌋ ≥ 4m+ 8 ⇒ m+ ⌊

m− 2

2
⌋ ≥ 10

which is true for m ≥ 8.

For Cn ◦ Cm, using Corollary 2.3, val(Cn, Cm, f1,n) = px5,m + x4,m ≥ val(Cn, Cm, f2,n) =

(p− 2)x5,m + 2x6,m

p(2m− 1) + 2m− 1 ≥ (p− 2)(2m− 1) + 2(2m+ 4)

3(2m− 1) ≥ 2(2m+ 4) ⇒ 6m− 3 ≥ 4m+ 8 ⇒ 2m ≥ 11

that is true for m ≥ 6.
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For Pn ◦ Pm, using Corollary 2.3, val(Pn, Pm, f1,n) = py5,m + y3,m ≥ val(Pn, Pm, f2,n) =

(p− 2)y5,m + 2y6,m.

2(2m− 1) +m+ ⌊
m− 2

2
⌋ ≥ 2(2m+ 2)

m+ ⌊
m− 2

2
⌋ ≥ 6

which is true for m ≥ 5.

For Cn ◦ Pm, using Corollary 2.3, val(Cn, Pm, f1,n) = py5,m + y4,m ≥ val(Cn, Pm, f2,n) =

(p− 2)y5,m + 2y6,m.

2(2m− 1) + 2m− 1 ≥ 2(2m+ 2) ⇒ 2m ≥ 7

which is true for m ≥ 4.

Case 3 (n ≡ 3 mod 5, f1,n = (3, [p]5), and f2,n = ([p− 3]5, [3]6))

For Pn ◦ Cm, val(Pn, Cm, f1,n) = px5,m + x3,m ≥ val(Pn, Cm, f2,n) = (p− 3)x5,m + 3x6,m.

3(max{m+ 4, 2m− 1}) +m+max{2, ⌊
m− 2

2
⌋} ≥ 3(2m+ 4)

which is true for m ≥ 9.

For Cn ◦ Cm, val(Cn, Cm, f1,n) = px5,m + x4,m ≥ val(Cn, Cm, f2,n) = (p− 3)x5,m + 3x6,m.

3(max{m+ 4, 2m− 1}) + 2m− 1 ≥ 3(2m+ 4)

which is valid for m ≥ 8.

For Pn ◦ Pm, val(Pn, Pm, f1,n) = py5,m + y3,m ≥ val(Pn, Pm, f2,n) = (p− 3)y5,m + 3y6,m.

3(2m− 1) +m+ ⌊
m− 2

2
⌋ ≥ 3(2m+ 2)

m+ ⌊
m− 2

2
⌋ ≥ 9

which is true for m ≥ 7.

For Cn ◦ Pm, val(Cn, Pm, f1,n) = py5,m + y4,m ≥ val(Cn, Pm, f2,n) = (p− 3)y5,m + 3y6,m.

3(2m− 1) + 2m− 1 ≥ 3(2m+ 2)

2m ≥ 10

which is true for m ≥ 5.

Case 4 (n ≡ 4 mod 5, n 6= 19, f1,n = (4, [p]5), and f2,n = ([p− 4]5, [4]6))

For Pn ◦ Cm and Cn ◦ Cm, we have 4x5,m + x4,m ≥ 4x6,m
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4(max{m+ 4, 2m− 1}) + 2m− 1 ≥ 4(2m+ 4)

which is true for m ≥ 11.

For Pn ◦ Pm and Cn ◦ Pm, we have 4y5,m + y4,m ≥ 4y6,m

4(2m− 1) + 2m− 1 ≥ 4(2m+ 2) ⇒ 2m ≥ 13

which is true for m ≥ 7.

Case 5 (n ≡ 0 mod 5, f1,n = ([p]5), and f2,n = ([p− 6]5, [5]6))

For Pn ◦ Cm and Cn ◦ Cm, we have

6x5,m ≥ 5x6,m ⇒ 6(2m− 1) ≥ 5(2m+ 4) ⇒ 12m− 6 ≥ 10m+ 20 ⇒ 2m ≥ 26

which is true for m ≥ 13.

For Pn ◦ Pm and Cn ◦ Pm, we have

6y5,m ≥ 5y6,m ⇒ 6(2m− 1) ≥ 5(2m+ 2) ⇒ 12m− 6 ≥ 10m+ 10

which is true for m ≥ 8.

Case 6 (n = 19, f1,n = (4, [3]5), and f2,n = (3, [2]5, 6))

For Pn ◦ Cm,

3(max{m+ 4, 2m− 1}) + 2m− 1 ≥ 2(2m− 1) + 2m+ 4 +m+ ⌊
m− 2

2
⌋

8m− 4 ≥ 7m+ 2 + ⌊
m− 2

2
⌋ ⇒ m ≥ 6 + ⌊

m− 2

2
⌋

that is true for m ≥ 9.

For Cn ◦ Cm, val(Cn, Cm, f1,n) = 3x5,m + x4,m ≥ val(Cn, Cm, f2,n) = 2x5,m + x6,m + x4,m.

max{m+ 4, 2m− 1} ≥ 2m+ 4

since there is no m satisfying the above inequality, tCP
19,1 is not defined.

For Pn ◦ Pm,

3(2m− 1) + 2m− 1 ≥ 2(2m− 1) + 2m+ 2 +m+ ⌊
m− 2

2
⌋

8m− 4 ≥ 7m+ ⌊
m− 2

2
⌋ ⇒ m− ⌊

m− 2

2
⌋ ≥ 4

that is true for m ≥ 5.

For Cn ◦ Pm,

3(2m− 1) + 2m− 1 ≥ 2(2m− 1) + 2m+ 2 + 2m− 1
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8m− 4 ≥ 8m− 1

since there is no m satisfying the above inequality, tCC
19,1 is not defined. �

Proposition 5.3 For n ≥ 8 and m ≥ 4, tn,3 is given in Table 12.

n mod 6 tPC
n,3 tCC

n,3 tPP
n,3 tCP

n,3

0 ∗ ∗ ∗ ∗
1 18 18 11 11
2 19 ∗ 6 ∗
3 19 ∗ 6 ∗
4 ∗ ∗ ∗ ∗
5 ∗ ∗ ∗ ∗

Table 12: tn,3.

Proof. Case 1 (n ≡ 1 mod 6, f3,n = ([5]5, [q − 4]6), and f4,n = ([q − 1]6, 7))

For Pn ◦ Cm and Cn ◦ Cm, 5x5,m ≥ 3x6,m + x7,m.

5(max{m+ 4, 2m− 1}) ≥ 3(2m+ 4) + 3m+ 1

From, 10m− 5 ≥ 9m+ 13, we have that tn,3 = 18.

For Pn ◦ Pm and Cn ◦ Pm, we can write 5y5,m ≥ 3y6,m + y7,m. Thus

5(2m− 1) ≥ 3(2m+ 2) + 3m

From, 10m− 5 ≥ 9m+ 6, we have that tn,3 = 11.

Case 2 (n ≡ 2 mod 6, f3,n = ([4]5, [q − 3]6), and f4,n = (3, 5, [q − 1]6))

For Pn ◦ Cm, we have 4x5,m ≥ 2x6,m + x5,m + x3,m.

3(max{m+ 4, 2m− 1}) ≥ 2(2m+ 4) +m+max{2, ⌊m−2
2

⌋}. Thus

6m− 3 ≥ 5m+ 8 + ⌊
m− 2

2
⌋ ⇒ m ≥ 11 + ⌊

m− 2

2
⌋

is true for m ≥ 19.

For Cn ◦ Cm, we have 4x5,m ≥ 2x6,m + x5,m + x4,m.

Since there is no positive m satisfying 3(2m− 1) ≥ 2m− 1 + 2m− 1, tn,3 is undefined for

this case.

For Pn ◦ Pm, we have 4y5,m ≥ 2y6,m + y5,m + y3,m.

3(2m− 1) ≥ 2(2m+ 2) +m+ ⌊m−2
2

⌋. Then

6m− 3 ≥ 5m+ 4 + ⌊
m− 2

2
⌋ ⇒ m ≥ 7 + ⌊

m− 2

2
⌋
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is true for m ≥ 6.

For Cn ◦ Pm, we have 4y5,m ≥ 2y6,m + y5,m + y4,m.

3(2m − 1) ≥ 2(2m + 2) + 2m − 1. Since 6m − 3 ≥ 6m + 3 is not true for any positive m,

tn,3 is undefined for this case.

Case 3 (n ≡ 3 mod 6, f3,n = ([3]5, [q − 2]6), and f4,n = (3, [q]6))

For Pn ◦ Cm, one has 3x5,m ≥ 2x6,m + x3,m ⇒ 3(max{m + 4, 2m− 1}) ≥ 2(2m+ 4) +m+

max{2, ⌊m−2
2

⌋}

6m− 3 ≥ 4m+ 8 +m+ ⌊
m− 2

2
⌋ ⇒ m ≥ 11 + ⌊

m− 2

2
⌋

that is true for m ≥ 19.

For Cn ◦Cm, one has 3x5,m ≥ 2x6,m + x4 ⇒ 3(max{m+ 4, 2m− 1}) ≥ 2(2m+ 4) + 2m− 1.

From 6m− 3 ≥ 6m+ 7, we conclude that tn,3 is undefined for this case.

For Pn ◦ Pm, one has 3y5,m ≥ 2y6,m + y3,m ⇒ 3(2m− 1) ≥ 2(2m+ 2) +m+ ⌊m−2
2

⌋.

6m− 3 ≥ 5m+ 4 + ⌊
m− 2

2
⌋ ⇒ m+ ⌊

m− 2

2
⌋ ≥ 7

which is true for m ≥ 6.

For Cn ◦ Pm, one has 3y5,m ≥ 2y6,m + y4,m ⇒ 3(2m− 1) ≥ 2(2m+ 2) + 2m− 1.

Since 6m− 3 ≥ 6m+ 3 is not true for any positive m, tn,3 is undefined for this case.

Case 4 (n ≡ 4 mod 6, f3,n = ([2]5, [q − 1]6), and f4,n = ([2]5, [q − 1]6))

Since fn,3 = fn,4, tn,3 is undefined for this case.

Case 5 (n ≡ 5 mod 6, f3,n = (5, [q]6), and f4,n = (5, [q]6))

Since fn,3 = fn,4, tn,3 is undefined for this case.

Case 6 (n ≡ 0 mod 6, f3,n = ([q]6), and f4,n = ([q]6)).

Since fn,3 = fn,4, tn,3 is undefined for this case. �

Corollary 5.4 For n ≥ 8, m ≥ 4, G1 ∈ {Cn, Pn}, and G2 ∈ {Cm, Pm}, it holds

γa(G
1 ◦G2) =































val(G1, G2, f1,n) , if m < min{tn,1, tn,2}

val(G1, G2, f2,n) , if tn,1 is defined and tn,1 ≤ m ≤ tn,2

val(G1, G2, f3,n) , if tn,3 is defined and tn,2 ≤ m < tn,3

val(G1, G2, f4,n) , if m ≥ max{tn,3, tn,2}

Proof. For m ≥ 4, the result is consequence of Theorem 4.11 and Propositions 5.1 to 5.3. �
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6 Conclusion

One can determining the global defensive alliance number of a graph F = G1 ◦ G2 for G1 ∈

{Cn, Pn} and G2 ∈ {Cm, Pm} within a constant number of arithmetic operations.

For n ≤ 7, the answer is obtained directly from Tables 1 to 4. For instance, γa(P5 ◦C3) = 7

due Proposition 4.1 and γa(C5 ◦ P3) = 5 due Proposition 4.2.

For n ≥ 8, consider as an example P20 ◦C15. Since t
PC
2,3 = 13 (Proposition 5.1) and tPC

2,3 = 19

(Proposition 5.3), Corollary 5.4, implies that γa(P20 ◦ C15) = f3,20 = val(Pn, C15, ([4]5)) =

4x5,15 = 116. As another example, consider the graph C20◦P15. Since t
CP
2,3 = 8 (Proposition 5.1)

and tCP
2,3 is undefined (Proposition 5.3), Corollary 5.4, implies that γa(C20 ◦ P15) = f4,20 =

val(Cn, P15, (3, 5, [2]6)) = y4,15 + y5,15 + 2y6,15 = 29 + 29 + 2 ∗ 32 = 122.

For concluding, we remark that the four examples presented in this section show that the

only relation not contained in Corollary 4.4 indeed cannot be stablished because γa(P5 ◦C3) =

7 > 5 = γa(C5 ◦ P3) and γa(P20 ◦ C15) = 116 < 122 = γa(C20 ◦ P15).
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