Global Defensive Alliances in the Lexicographic Product of Paths and Cycles

Rommel M. Barbosa ${ }^{1 *} \quad$ Mitre C. Dourado ${ }^{2 \dagger} \quad$ Leila R. S. da Silva ${ }^{3 \ddagger}$

October 22, 2018

${ }^{1}$ Instituto de Informática, Universidade Federal de Goiás, Goiânia, Brazil
${ }^{2}$ Instituto de Matemática, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
${ }^{3}$ Instituto Federal Goiano, Campus Mourinhos, Brazil

Abstract

A set S of vertices of graph G is a defensive alliance of G if for every $v \in S$, it holds $|N[v] \cap S| \geq|N[v]-S|$. An alliance S is called global if it is also a dominating set. In this paper, we determine the exact values of the global defensive alliance number of lexicographic products of path and cycles.

Mathematical Sciences Classification: 05C76
Keywords: Global defensive alliance; lexicographic product; path and cycle.

1 Introduction

We consider only finite, simple, and undirected graphs. Given a graph $G=(V, E)$, open neighborhood and the closed neighborhood of a $v \in V$ are denoted by $N(v), N[v]$, respectively. Given a set $S \subseteq V$, the subgraph of G induced by S is denoted by $G[S]$. If $v \in S$ and $|N[v] \cap S| \geq|N[v]-S|$, then v is said to be defended in S. We say that S is a defensive alliance if all vertices of S are defended. Note that if v is defended in S, then $|S \cap N(v)| \geq\left\lfloor\frac{d(v)}{2}\right\rfloor$. The set S is a dominating set of G if every vertex of G belongs to S or has a neighbor is S. A defensive alliance is global (GDA) if it is also a dominating set of the graph. The minimum cardinality of a global defensive alliance of G is its global defensive alliance number and is denoted by $\gamma_{a}(G)$.

The lexicographic product of graphs $G^{1}=\left(V_{1}, E_{1}\right)$ and $G^{2}=\left(V_{2}, E_{2}\right)$ is the graph $G=$ $(V, E)=G^{1} \circ G^{2}$ such that $V=V_{1} \times V_{2}$ and $E=\left\{\left(u_{1}, u_{2}\right)\left(v_{1}, v_{2}\right):\left(u_{1} v_{1} \in E_{1}\right)\right.$ or $\left(u_{1}=v_{1}\right.$

[^0]and $\left.\left.u_{2} v_{2} \in E_{2}\right)\right\}$. Given a graph $F=G^{1} \circ G^{2}$ where the orders of G^{1} and G^{2} are n and m, respectively, it is clear that F contains n disjoint copies of G^{2}, which will be denoted by $G_{1}^{2}, G_{2}^{2}, \ldots, G_{n}^{2}$. Furthermore, for a set $S \subseteq V(G)$, we will denote by S_{i} the set $S \cap V\left(G_{i}^{2}\right)$ for $i \in\{1, \ldots, n\}$ and $s_{i}=\left|S_{i}\right|$.

In this work, we present formulas that allow one determining the global defensive alliance number of a graph $F=G^{1} \circ G^{2}$ where G^{1} and G^{2} are cycles or paths within a constant number of operations. In Section 2, we present a general characterization of $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ for $G^{1} \in\left\{P_{n}, C_{n}\right\}, n \geq 3$, and any graph $G^{2} \not 千 K_{m}$. Such characterization will be useful for the proposed solution presented in next sections. Section 3 contains useful properties of minimum global defensive alliances of the lexicographic product of paths and cycles. In Section 4.1, we present the formulas for $n \leq 7$ while the solution for $n \geq 8$ is given in Section 4.2. In Section 5 , we explore the homogenous bevavior of $\gamma_{a}\left(G^{1} \circ G^{2}\right)$, when the orders of G_{1} and G_{2} change, for obtaining more structural results. The conclusions are in Section 6. We finish this section presenting related works.

The definition of alliances in graphs first appeard in [9]. Since then many variatons appeared. The most extensively studied are defensive alliances [9, 8, 13, 19, 21, offensive alliances [7, 12, [18] and powerful or dual alliances [2, 3, 22]. A more generalized concept of alliance is represented by k-alliances [1, 15, 16, 17, 19, and Dourado et al. presented a new definition of alliances, namely, (f, g)-alliances [6], that generalizes previous concepts. In [23], Yero and RodríguezVelázquez published a summary of the major results obtained concerning defensive alliances up through 2013.

Since the decision problems of computing the minimum cardinality of these concepts for general graphs are NP-complete [4, 11, 14], several studies of alliances in graphs have been developed in graph classes and product of graphs; these advances are described in detail in [23, 10].

Haynes, Hedetniemi and Henning [9] determined the cardinality of the minimum set that can constitute a global defensive alliance for several classes of graphs and presented some limits on the minimum GDA in cubic, bipartite graphs and trees.

The initial studies of defensive alliances in Cartesian products were done by Brigham, Dutton and Hedetniemi in [2], and several parameters were also presented in [1, 19, 20] for Cartesian products of graphs for k-alliances. Following this trend, there is also the work by Chang et al. in 2012 [5], which presented some upper bounds for Cartesian products between paths and cycles. In 2013, Yero and Rodríguez-Velázquez [24] obtained closed formulas for the GDA number for several classes of Cartesian products of graphs.

2 Characterization of $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ for $G^{1} \in\left\{C_{n}, P_{n}\right\}$

In this section, we present a characterization of $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ for $G^{1} \in\left\{P_{n}, C_{n}\right\}, n \geq 3$, and any graph $G^{2} \not \nsim K_{m}$. Let S be a GDA of $F=G^{1} \circ G^{2}$. The spectrum of S in F, spe (S, F), is a sequence obtained in the following way. If $G^{2}=C_{m}$ and there is $S_{i}=0$, we assume that
$S_{n}=0$: if $S_{i} \neq 0$ for $2 \leq i \leq n-1$, then $\operatorname{spe}(S, F)=(n)$; otherwise let $i \geq 3$ be the minimum number such that $S_{i}=0$. If $S_{i+1}=0$, then $k_{1}=i$; otherwise $k_{1}=i-1$. In both cases, $\operatorname{spe}(S, F)=\left(k_{1}\right) \operatorname{spe}\left(S^{\prime}, F^{\prime}\right)$ where $S^{\prime}=S \cap V\left(F^{\prime}\right)$ and $F^{\prime}=F-\left(V\left(G_{1}^{2}\right) \cup \ldots \cup V\left(G_{k_{1}}^{2}\right)\right)$. When there is no doubt about which is the graph F, we can use $\operatorname{spe}(S)$ to represent the spectrum of S in F.

We say that a sequence $w=\left(k_{1}, \ldots, k_{t}\right)$ is feasible for $G^{1} \circ G^{2}$ for $G^{1} \in\left\{C_{n}, P_{n}\right\}$ and $G^{2} \not 千 K_{m}$ if there is a GDA S of $G^{1} \circ G^{2}$ whose spectrum is w. We denote $\max (w)=\max _{i \in t}\left\{k_{i}\right\}$ and say that w is an n-sequence if $\underset{1 \leq i \leq t}{k_{i}}=n$. Observe that we can see w as a t-partition $\left(V_{1}, \ldots, V_{t}\right)$ of $V(F)$ where each part is associated with an element k_{i} and $F\left[V_{i}\right] \simeq P_{k_{i}} \circ G^{2}$. We call each such subgraph by a section of F. If $G^{1} \simeq P_{n}$ and F_{i} is a section for $i \in\{1, t\}$, then we say that F_{i} is an external section; otherwise it is an internal section.

Given elements k_{i} and k_{j} of a sequence $w=\left(k_{1}, \ldots, k_{t}\right)$ for $j>i$, the sequence formed by the elements that are between k_{i} and k_{j} in w will be denoted by $w_{i+1, j-1}=\left(k_{i+1}, \ldots, k_{j-1}\right)$, the sequence formed by the elements that preceed k_{i} by $w_{1, i-1}=\left(k_{1}, \ldots, k_{i-1}\right)$, and the sequence formed by the elements that succeed k_{j} by $w_{j+1, t}=\left(k_{j+1}, \ldots, k_{t}\right)$. The concatenation of sequences w and w^{\prime} will be denoted by $w w^{\prime}$. If all elements of w are equal, then we can write $w=\left([t] k_{1}\right)$. This definition allows one to write $w=\left(\left[t_{1}\right] k_{1}, \ldots,\left[t_{p}\right] k_{p}\right)$, which means that, for $1 \leq i \leq p$, there are t_{i} consecutive occurrences of k_{i} and $\underset{\substack{t_{1 \leq i \leq p} k_{i}}}{ }=n$. The feasible sequences are characterized in the following result.

Proposition 2.1 For $G^{1} \in\left\{P_{n}, C_{n}\right\}$ and $G^{2} \not 千 K_{m}$, a sequence $w=\left(k_{1}, \ldots, k_{t}\right)$ is feasible for $G^{1} \circ G^{2}$ if and only if $k_{1} \geq 2, k_{i} \geq 3$ for $i \in\{2, \ldots, t\}$, and $\sum_{1 \leq i \leq t} k_{i}=n$.

Proof. Let S be a GDA of F such that $\operatorname{spe}(S)=w$. By the construction of a spectrum, it is clear that $\sum_{1 \leq i \leq t} k_{i}=n$. Since every vertex of S has a neighbour outside the copy of G^{2} that it belongs, every $k_{i} \geq 2$. Since the definition of spectrum guarantees that for every k_{i}, for $i \geq 2$, the first copy of the section associated with it has no vertex of $S, k_{i} \geq 3$ for $i \geq 3$.

Conversely, let $F_{i}=F\left[V\left(G_{j}^{2}\right) \cup \ldots \cup V\left(G_{j+k_{i}-1}^{2}\right)\right]$ be the section associated with k_{i}. If $k_{i} \geq 4$, add $V\left(G_{j+1}^{2}\right) \cup \ldots \cup V\left(G_{j+k_{i}-2}^{2}\right)$ to S. If $k_{i}=3$, add $V\left(G_{j+1}^{2}\right) \cup V\left(G_{j+2}^{2}\right)$ to S. If $k_{1}=2$, add $V\left(G_{1}^{2}\right) \cup V\left(G_{2}^{2}\right)$ to S. It is clear S is a dominating set, every vertex of S is defended, and that $\operatorname{spe}(S)=w$, then w is feasible.

For the characterization of minimum GDA in terms of feasible sequences, we need some definitions. Given a positive integer k, we define

- for $k \geq 4, \operatorname{val}_{i}\left(k, G^{2}\right)$ as the cardinality of a minimum GDA S of $P_{k} \circ G^{2}$ such that $s_{1}=s_{k}=0 ;$
- for $k \in\{2,3\}, \operatorname{val}_{i}\left(k, G^{2}\right)=\operatorname{val}_{i}\left(4, G^{2}\right)$;
- for $k \geq 3, \operatorname{val}_{e}\left(k, G^{2}\right)$ as the minimum GDA S of $P_{k} \circ G^{2}$ such that $s_{1}=0$;
－ $\operatorname{val}_{e}\left(2, G^{2}\right)=\operatorname{val}_{e}\left(3, G^{2}\right)$.
For a sequence $w=\left(k_{1}, \ldots, k_{t}\right)$ ，we define
－ $\operatorname{val}\left(P_{n}, G^{2}, w\right)=\operatorname{val}_{e}\left(k_{1}, G^{2}\right)+\sum_{2 \leq i \leq t-1} \operatorname{val}_{i}\left(k_{i}, G^{2}\right)+\operatorname{val}_{e}\left(k_{t}, G^{2}\right) ;$
－ $\operatorname{val}\left(C_{n}, G^{2}, w\right)=\sum_{1 \leq i \leq t} \operatorname{val}_{i}\left(k_{i}, G^{2}\right)$.
Proposition 2．2 If S is a $G D A$ of $F=G^{1} \circ G^{2}$ for $G^{1} \in\left\{C_{n}, P_{n}\right\}$ and $G^{2} \not 千 K_{m}$ ，then $|S| \geq$ $\operatorname{val}\left(G^{1}, G^{2}, \operatorname{spe}(S)\right)$ for $G \in\{P, C\}$ ．Furthermore，there is $G D A$ of F of size $\operatorname{val}\left(G^{1}, G^{2}, \operatorname{spe}(S)\right)$ ．

Proof．Write $w=\left(k_{1}, \ldots, k_{t}\right)$ and let $F_{i}=F\left[V\left(G_{j}^{2}\right) \cup \ldots \cup V\left(G_{j+k_{i}-1}^{2}\right)\right]$ be the section asso－ ciated with k_{i} and $S^{\prime}=S \cap F_{i}$ ．First，consider $G=C$ ．For $k_{i} \geq 4$ ，since $s_{j+k_{i}}=0$ ，it holds $\left|S^{\prime}\right| \geq \operatorname{val}_{i}\left(k_{i}, G^{2}\right)$ ．For $k_{i}=3$ ，since $s_{j+3}=0$ ，it holds $\left|S^{\prime}\right| \geq \operatorname{val}_{i}\left(4, G^{2}\right)$ ．Finally for $k_{1}=2$ ， since $s_{3}=s_{n}=0$ ，it holds $\left|S^{\prime}\right| \geq \operatorname{val}_{i}\left(4, G^{2}\right)$ ．Then，the result holds for $G=C$ ．Now consider $G=P$ ．For $k_{i} \geq 3$ ，since $s_{j}=0$ or $s_{j+k_{i}}=0$ ，it holds $\left|S^{\prime}\right| \geq \operatorname{val}_{e}\left(k_{i}, G^{2}\right)$ ．Finally for $k_{1}=2$ ， since $s_{3}=0$ ，it holds $\left|S^{\prime}\right| \geq \operatorname{val}_{e}\left(3, G^{2}\right)$ ，completing the proof．

Corollary 2．3 Let $F=G^{1} \circ G^{2}$ for $G^{1} \in\left\{C_{n}, P_{n}\right\}$ and $G^{2} \not 千 K_{m}$ ．Then $\gamma_{a}(F)=\min \{v a l(w)\}$ where w is a feasible sequence for G^{2} ．

As a byproduct，we have that，for $G^{1} \in\left\{C_{n}, P_{n}\right\}$ and $G^{2} \not 千 K_{m}$ ，if the number of feasible sequences w that can reach the minimum GDA of $G^{1} \circ G^{2}$ is bounded by a polynomial on n and m ，one can determine them efficiently，and the values $\operatorname{val}_{i}\left(k, G^{2}\right)$ and $v a l_{e}\left(k, G^{2}\right)$ are known for every $k \leq \max (w)$ ，one can find $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ efficiently．We show in next sections that this does hold for $G^{2} \in\left\{P_{m}, C_{m}\right\}$ ．The last result of this section deals with the external sections．

Corollary 2．4 If w is a feasible sequence of $F=P_{n} \circ G^{2}$ for $G^{2} \nsimeq K_{m}$ such that val $\left(P_{n}, G^{2}, w\right)=$ $\gamma_{a}(F)$ ，then the following hold：
－if 3 occurs in w ，we can assume that $k_{t}=3$ ；
－if $k_{1} \neq 2$ and there are two occurrences of 3 in w ，we can assume that $k_{1}=k_{t}=3$ ．

3 Properties of global defensive alliances

In this section，we present some bounds and properties of GDAs that will be useful in the remaining sections．

Proposition 3．1 Let S be a $G D A$ of $G^{1} \circ G^{2}$ for $G^{1} \in\left\{P_{n}, C_{n}\right\}, G^{2} \in\left\{P_{m}, C_{m}\right\}, n \geq 3, m \geq 3$ ， and i be an integer such that $2 \leq i \leq n-1$ ．Then，the following setences hold
（i）If $G^{2} \simeq\left\{C_{m}, P_{3}\right\}$ ，then $s_{i-1}+s_{i}+s_{i+1} \geq m+2$ ；
(ii) If $G^{2} \simeq P_{m}$ for $m \geq 4$, then $s_{i-1}+s_{i}+s_{i+1} \geq m+1$;
(iii) If $s_{i} \geq 1$, then $s_{i-1}+s_{i+1} \geq m-1$; and
(iv) If $1 \leq s_{i}<m$, then $s_{i-1}+s_{i+1} \geq m$.

Proof. Let $v \in S_{i}$ and d be the number of neighbors of v in S_{i}.
(i) Since $d(v)=2 m+2, S$ must contain at least $m+1$ neighbors of v. This means that $s_{i-1}+s_{i}+s_{i+1} \geq m+2$ because $N[v] \subseteq V\left(G_{i-1}^{2}\right) \cup V\left(G_{i}^{2}\right) \cup V\left(G_{i+1}^{2}\right)$.
(ii) Since $d(v)=2 m+1, S$ must contain at least m neighbors of v. This means that $s_{i-1}+$ $s_{i}+s_{i+1} \geq m+1$ because $N[v] \subseteq V\left(G_{i-1}^{2}\right) \cup V\left(G_{i}^{2}\right) \cup V\left(G_{i+1}^{2}\right)$.
(iii) Consequence of $(i),(i i)$, and $1 \leq\left|N(v) \cap V\left(G_{i}^{2}\right)\right| \leq 2$.
(iv) Consequence of (iii) and the fact that v can be chosen as a vertex having a neighbor in $V\left(G_{i}^{2}\right) \backslash S$.

Proposition 3.2 Let S be a $G D A$ of $G^{1} \circ G^{2}$ for $G^{1} \in\left\{P_{n}, C_{n}\right\}, G^{2} \in\left\{P_{m}, C_{m}\right\}$, $n \equiv r$ $\bmod 4$, and $m \geq 3$ such that $s_{i} \geq 1$ for every $2 \leq i \leq n-1$. Then the following hold.
(i) If $r=0$, then $|S| \geq(2 m-1) \frac{n}{4}$
(ii) If $r \in\{1,2,3\}$ and $n \geq 8$, then $|S| \geq(2 m-1)\left\lfloor\frac{n}{4}\right\rfloor+t$, where

$$
t= \begin{cases}m+1 & , \text { if } r=3 \text { and } G^{2} \simeq P_{m} \\ m+2 & , \text { if } r=3 \text { and } G^{2} \simeq C_{m} \\ r & , \text { if } r \in\{1,2\}\end{cases}
$$

(iii) If $n \geq 6$ and $m=3$, then $|S| \geq 6\left\lfloor\frac{n}{4}\right\rfloor+t$, where $t= \begin{cases}r+2 & \text {, if } r \in\{1,2,3\} \\ 0, & \text { if } r=0\end{cases}$
(iv) If $n \geq 9$ and $m=4$, then $|S| \geq 2 n$ for $G^{2} \simeq C_{m}$ and $|S| \geq 2 n-2$ for $G^{2} \simeq P_{m}$

Proof. (i) By Proposition 3.1, $s_{1}+s_{3} \geq m-1$ and $s_{2}+s_{4} \geq m-1$. If $s_{1}+s_{3}=s_{2}+s_{4}=m-1$, then S is not a GDA because some vertex of S_{2} is not defended in S. Then $s_{1}+s_{2}+s_{3}+s_{4} \geq 2 m-1$. In fact, we can conclude that $s_{i}+s_{i+1}+s_{i+2}+s_{i+3} \geq 2 m-1$ for every $i \in\{1, \ldots, n-3\}$.
(ii) Since $n \geq 8, n-4-r=4 k$ for some positive integer k. If suffices to show that for $T=\left(V\left(G_{5}^{2}\right) \cup \ldots \cup V\left(G_{5+r-1}^{2}\right)\right) \cap S$ it holds $|T| \geq t$. If $r \leq 2$, then $|T| \geq r$ because $s_{i} \geq 1$ for every $i \in\{2, \ldots, n-1\}$. If $r=3$, then $|T| \geq m+1$ if $G^{2} \simeq P_{m}$ and $|T| \geq m+2$ if $G^{2} \simeq C_{m}$ due Proposition 3.1.
(iii) By Proposition (3.1 (i), it holds $s_{i}+s_{i+1}+s_{i+2}+s_{i+3} \geq 6$ for every $i \in\{1, \ldots, n-3\}$. Then, the result is clear for $r=0$. Case $r=1$ is consequence of the fact that $s_{1}+\ldots+s_{9} \geq 15$, case $r=2$ because $s_{1}+\ldots+s_{6} \geq 10$, and case $r=3$ because $s_{1}+\ldots+s_{7} \geq 11$.
(iv) It suffices to prove for $G^{2} \simeq P_{m}$. We prove that if $s_{i}=1$, then $s_{i+1} \geq 3$ or $s_{i+1}+s_{i+2} \geq 5$ or $s_{i+1}+s_{i+2}+s_{i+3} \geq 7$. If $s_{i+1} \geq 3$, we are done. If $s_{i+1}=1$, then $s_{i+2} \geq 3$. If then $s_{i+2}=3$, then there is a vertex of degree 2 in S_{i+2} having a neighbor in $V\left(G_{2}^{2}\right) \backslash S$, therefore $s_{i+3} \geq 3$. Then consider $s_{i+3}=4$ and $s_{i+1}+s_{i+2} \geq 5$. Then consider $s_{i+1}=2$. This means that there is a vertex of degree 2 in S_{i+1} having a neighbor in $V\left(G_{1}^{2}\right) \backslash S$, therefore $s_{i+2} \geq 3$ and $s_{i+1}+s_{i+2} \geq 5$.

Now, it remains to recall that $s_{1}+s_{2}+s_{3} \geq 6$ and $s_{n-2}+s_{n-1}+s_{n} \geq 6$ for $G^{2} \simeq C_{4}$ and $s_{1}+s_{2}+s_{3} \geq 5$ and $s_{n-2}+s_{n-1}+s_{n} \geq 5$ for $G^{2} \simeq P_{4}$.

Proposition 3.3 If G is a spanning subgraph of G^{\prime} and S is a minimum $G D A$ of G such that no vertex of S is incident to any edge of $E\left(G^{\prime}\right) \backslash E(G)$, then S is also a minimum $G D A$ of G^{\prime}.

Proof. Consequence of the fact that the neighborhood of each vertex of S is the same in G and in G^{\prime}.

4 Determining γ_{a} for paths and cycles

For $n \geq 3$ and $m \geq 2$, we show in this section that $\gamma_{a}\left(G_{1}, G_{2}\right)$ for $G^{1}, G^{2} \in\left\{C_{n}, P_{m}\right\}$ is the minimum among at most four values. Since these values are easily evaluated, one can determining $\gamma_{a}\left(G^{1}, G^{2}\right)$ within a constant number of operations. We consider first the case where G^{1} has order at most 7 .

4.1 Case $n \leq 7$

Let $F=G^{1} \circ G^{2}$, for $G^{1} \simeq P_{n}, G^{2} \simeq C_{m}, n \in\{2, \ldots, 7\}$, and $m \geq 3$. We define $X_{n, m} \subseteq V(F)$ as follows:

- $X_{2,3}=V\left(G_{1}^{2}\right)$. For $m \geq 4$, define $X_{2, m}=T_{1} \cup T_{2}$, where T_{1} and T_{2} are the vertex sets of paths of order $\left\lfloor\frac{m}{2}\right\rfloor$ of G_{1}^{2} and G_{2}^{2}, respectively.
- $X_{3, m}=V\left(G_{3}^{2}\right) \cup T_{2}$, where T_{2} is the vertex set of a path of order x of G_{2}^{2} where $x=$ $\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$.
- $X_{4, m}=V\left(G_{3}^{2}\right) \cup V\left(G_{2}^{2}\right)-\{u\}$, for some vertex $u \in V\left(G_{2}^{2}\right)$.
- $X_{5, m}=V\left(G_{3}^{2}\right) \cup T_{2} \cup T_{4}$ where T_{2} contains two adjacent vertices of G_{2}^{2} and T_{4} contains the vertices of a path of G_{4}^{2} of size $\max \{2, m-3\}$.
- $X_{6,3}=V\left(G_{1}^{2}\right) \cup V\left(G_{5}^{2}\right) \cup T_{4}$, where T_{4} is a pair of vertices; for $m \geq 4$, define $X_{6, m}=$ $V\left(G_{3}^{2}\right) \cup V\left(G_{4}^{2}\right) \cup T_{2} \cup T_{5}$, where T_{2} and T_{5} are two adjacent vertices of G_{2}^{2} and G_{5}^{2}, respectively.
- $X_{7, m}=V\left(G_{3}^{2}\right) \cup V\left(G_{5}^{2}\right) \cup T_{2} \cup T_{4} \cup T_{6}$, where T_{2} and T_{6} are two adjacent vertices of G_{2}^{2} and G_{6}^{2}, respectively, and T_{4} is the vertex set of a path of order $m-3$ of G_{4}^{2}.

n	$P_{n} \circ C_{3}$	$P_{n} \circ C_{m}, m \geq 4$
2	3	$2\left\lfloor\frac{m}{2}\right\rfloor$
3	5	$m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$
4	5	$2 m-1$
5	7	$\max \{m+4,2 m-1\}$
6	8	$2 m+4$
7	10	$3 m+1$

Table 1: $P_{n} \circ C_{m}, 2 \leq n \leq 7$ and $m \geq 3$.

n	$C_{n} \circ C_{3}$	$C_{n} \circ C_{m}, m \geq 4$
3	5	$3\left\lceil\frac{m}{2}\right\rceil$
4	5	$2 m-1$
5	7	$\max \{m+4,2 m-1\}$
6	10	$2 m+4$
7	10	$3 m+1$

Table 2: $C_{n} \circ C_{m}, 3 \leq n \leq 7$ and $m \geq 3$.
Let $F=G^{1} \circ G^{2}$, for $G^{1} \simeq P_{n}, G^{2} \simeq P_{m}, n \in\{2, \ldots, 7\}$, and $m \geq 3$. We define $Y_{n, m} \subseteq V(F)$ as follows:

- $Y_{2,3}=V\left(G_{1}^{2}\right) \backslash\left\{v_{1}\right\} \cup\left\{v_{2}\right\}$. For $m \geq 4$, define $X_{2, m}=T_{1} \cup T_{2}$, where T_{1} and T_{2} are the vertex sets of paths of order $\left\lfloor\frac{m}{2}\right\rfloor$ of G_{1}^{2} and G_{2}^{2}, respectively.
- For $m \in\{3,4\}, Y_{3, m}=V\left(G_{3}^{2}\right) \cup\left\{v_{2}\right\}$ for $v_{2} \in V\left(G_{2}^{2}\right) ; Y_{3,5}=V\left(G_{3}^{2}\right) \backslash\{u\} \cup T_{2}$ where T_{2} contains two adjacent vertices of G_{2}^{2}; for $m \geq 6, Y_{3, m}=V\left(G_{3}^{2}\right) \cup T_{2}$, where T_{2} is the vertex set of a path of G_{2}^{2} of order $\left\lfloor\frac{m-2}{2}\right\rfloor$.
- $Y_{4, m}=X_{4, m}$.
- $Y_{5,3}=V\left(G_{3}^{2}\right) \cup\left\{v_{1}\right\} \cup\left\{v_{4}\right\} ; Y_{5,4}=V\left(G_{3}^{2}\right) \cup\left\{v_{2}\right\} \cup\left\{v_{4}, v_{4}^{\prime}\right\} ;$ for $m \geq 5, Y_{5, m}=X_{5, m}$.
- $Y_{6,3}=V\left(G_{3}^{2}\right) \cup V\left(G_{4}^{2}\right) \cup\left\{v_{2}\right\} \cup\left\{v_{5}\right\}$, where $d\left(v_{2}\right)=d\left(v_{5}\right)=7$; for $m \geq 4$, define $X_{6, m}=V\left(G_{3}^{2}\right) \cup V\left(G_{4}^{2}\right) \cup\left\{v_{2}\right\} \cup\left\{v_{5}\right\}$.
- $Y_{7, m}=V\left(G_{3}^{2}\right) \cup V\left(G_{5}^{2}\right) \cup\left\{v_{2}\right\} \cup T_{4} \cup\left\{v_{6}\right\}$, where T_{4} is the vertex set of a path of order $m-2$ of G_{4}^{2}.

Denote $x_{i, m}=\left|X_{i, m}\right|$ and $y_{i, m}=\left|Y_{i, m}\right|$.

n	$P_{n} \circ P_{3}$	$P_{n} \circ P_{m}, m \geq 4$
2	3	$2\left\lfloor\frac{m}{2}\right\rfloor$
3	4	$m+\left\lfloor\frac{m-2}{2}\right\rfloor$
4	5	$2 m-1$
5	5	$2 m-1$
6	8	$2 m+2$
7	9	$3 m$

Table 3: $P_{n} \circ P_{m}, 2 \leq n \leq 7$ and $m \geq 3$.

n	$C_{n} \circ P_{3}$	$C_{n} \circ P_{m}, m \geq 4$
3	5	$3\left\lfloor\frac{m}{2}\right\rfloor$
4	5	$2 m-1$
5	5	$2 m-1$
6	8	$2 m+2$
7	9	$3 m$

Table 4: $C_{n} \circ P_{m}, 3 \leq n \leq 7$ and $m \geq 3$.

Proposition 4.1 For $n \in\{2, \ldots, 7\}, \gamma_{a}\left(P_{n} \circ C_{m}\right)$ is given in Table 1 and $\gamma_{a}\left(P_{n} \circ P_{m}\right)$ is given in Table 3.

Proof. It is easy to check that X_{i}^{m} is a GDA of $F=P_{i} \circ G^{2}$ for $i \in\{2, \ldots, 7\}$ and $G^{2} \in\left\{C_{m}, P_{m}\right\}$. For the converse, let S be a minimum GDA of F.

Case $i=2$. For $m=3$, it is easy to check that there is no GDA of size 2 and that $V\left(G_{1}^{2}\right)$ is a GDA of the graph. Then assume $m \geq 4$. Since $V\left(G_{1}^{2}\right)$ is not a GDA, $\left(V\left(G_{1}^{2}\right) \backslash\left\{v_{1}\right\}\right) \cup\left\{v_{2}\right\}$ is not a a GDA for $v_{1} \in V\left(G_{2}^{2}\right)$ and $v_{2} \in V\left(G_{2}^{2}\right)$, and $x_{2} \leq m$, it holds $2 \leq s_{1}<m$ and $2 \leq s_{2}<m$ for a minimum GDA S. Then, we can assume that there is a vertex $v \in S \cap V\left(G_{1}^{2}\right)$ such that $d(v)=m+2$ and having a neighbor in $V\left(G_{1}^{2}\right) \backslash S$. Therefore, we have $s_{2} \geq\left\lfloor\frac{m+2}{2}\right\rfloor-1=\left\lfloor\frac{m}{2}\right\rfloor$. Since the same does hold for s_{1}, the result is true.

Case $i=3$. Suppose that $|S|<m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}=x_{3}^{m}<2 m$. If $s_{2}=0$, then we can assume that $v \in V\left(G_{1}^{2}\right)$ has at most one neighbor in S, then v is not defended in S. Hence $s_{2} \geq 1$. First, consider $m \in\{3,4,5\}$ and $G_{2} \simeq C_{m}$. Since $d(v)=2 m+2$ for $v \in V\left(G_{2}^{2}\right)$, we have $|S \cap N(v)|<\frac{d(v)}{2}$, a contradiction. Case $m \in\{3,4,5\}$ and $G_{2} \simeq P_{m}$ is direct from Proposition 3.1 (ii).

Now, consider $m \geq 6$. We can now write $|S|<m+\left\lfloor\frac{m-2}{2}\right\rfloor$. By Proposition 3.1, $s_{1}+s_{3} \geq$ $m-1$. Since $m-1>\left\lfloor\frac{m-2}{2}\right\rfloor$ for $m \geq 4$, we have $s_{2}<m$. Consequently, by Proposition 3.1 again, we have $m \leq s_{1}+s_{3}<2 m$. Then, without loss of generality, there is a vertex in $V\left(G_{1}^{2}\right)$ having at most one neighbor in $S \cap V\left(G_{1}^{2}\right)$. Therefore $s_{2} \geq\left\lfloor\frac{m+2}{2}\right\rfloor-1=\left\lfloor\frac{m}{2}\right\rfloor$, which means that $|S| \geq m+\left\lfloor\frac{m}{2}\right\rfloor>x_{3}$, a contradiction.

Case $i=4$. First, consider $s_{2}=0$ and $s_{3}=0$. Then $m=3, s_{1}=s_{4}=m$, and $|S|=6>$ $x_{4}^{3}=5$. Next, consider $s_{2}=0$ and $s_{3} \geq 1$. Then $m=3, s_{1}=m$ and, using Proposition 3.1, $s_{2}+s_{3}+s_{4} \geq m+2=5$. Which means $|S| \geq 8>x_{4}^{3}=5$. The case $s_{2} \geq 1$ and $s_{3}=0$ is
analogue. Then $s_{2} \geq 1$ and $s_{3} \geq 1$. By Proposition 3.2, $|S| \geq 2 m-1$, completing the proof for $i=4$.

Case $i=5$. Since $x_{5}^{m}=2 m-1$ for $m \geq 5$, and $\gamma_{a}\left(P_{5} \circ G^{2}\right) \geq \gamma_{a}\left(P_{4} \circ G^{2}\right)$ for $G^{2} \in\left\{C_{m}, P_{m}\right\}$, case $i=4$ implies, for $m \geq 5,|S| \geq x_{5}^{m}$. The same argument holds for $m \leq 4$ and $G^{2} \simeq P_{m}$.

For $m \leq 4$ and $G^{2} \simeq C_{m}$, we have $x_{5}^{m}=m+4$. If $s_{2}=0$, then $m=3$ and $s_{1}=3$. Since s_{3} and s_{4} are both not equal to 0 , then $s_{2}+s_{3}+s_{4}+s_{5} \geq m+2$, which means $|S|>m+4$. Then $s_{2} \geq 1$ and $s_{4} \geq 1$. Suppose that $s_{3}=m-k$ for $k \geq 1$. This implies that $s_{1}+s_{2} \geq 2+k$ and $s_{4}+s_{5} \geq 2+k$. Then $|S| \geq m-k+2+k+2+k=m+4+k$, a contradiction. Therefore $s_{3}=m$. Since every vertex of $S_{2} \cup S_{4}$ has degree $2 m+2, s_{1}+s_{2} \geq 2$ and $s_{4}+s_{5} \geq 2$, which implies that $|S| \geq m+4$.

Case $i=6$. First, consider $m=3$ and $G^{2} \simeq C_{m}$. If $s_{2} \geq 1$ and $s_{5} \geq 1$, then $s_{1}+s_{2}+s_{3} \geq 5$ and $s_{4}+s_{5}+s_{6} \geq 5$, which means $|S|>x_{6}^{3}=8$. If $s_{2}=0$ and $s_{5}=0$, then $s_{1}=s_{6}=3$, furthermore $s_{3}+s_{4} \geq 5$, which means $|S|>x_{6}^{3}$. Then, without loss of generality, we can assume $s_{2}=0$ and $s_{5} \geq 1$. This implies $s_{1}=3$ and $s_{4}+s_{5}+s_{6} \geq 5$, which means $|S| \geq x_{6}^{3}=8$.

Next, consider $m=3$ and $G^{2} \simeq P_{m}$. Since $V\left(G_{1}^{2}\right)$ is not a GDA of $P_{2} \circ P_{3}$, then $s_{2} \geq 1$ and $s_{5} \geq 1$. Observe that a vertex $v \in S_{2}$ needs at least four neighbors in S because $d(v)=8$. Then $s_{1}+s_{2}+s_{3} \geq 5$ and $s_{4}+s_{5}+s_{6} \geq 5$.

Now, consider $m \geq 4$. It is clear that $s_{2} \geq 1$ and $s_{5} \geq 1$. By Proposition 3.1, $s_{1}+s_{2}+s_{3} \geq$ $m+2$ for $G^{2} \simeq C_{m}$ and $s_{1}+s_{2}+s_{3} \geq m+1$ for $G^{2} \simeq P_{m}$. By symmetry, $s_{4}+s_{5}+s_{6} \geq m+2$ for $G^{2} \simeq C_{m}$ and $s_{4}+s_{5}+s_{6} \geq m+2$ for $G^{2} \simeq P_{m}$. Therefore $|S| \geq 2 m+4$ for $G^{2} \simeq C_{m}$ and $|S| \geq 2 m+2$ for $G^{2} \simeq P_{m}$.

Case $i=7$. If $s_{2}=0$, then $m=3, G^{2} \simeq C_{m}$, and $s_{1}=3$. If $s_{3} \geq 1$, then $s_{3}+s_{4} \geq 5$. Since $s_{5}+s_{6}+s_{7} \geq 3$, we have $|S|>x_{7}^{3}$. Then $s_{3}=0$. This implies that $s_{4} \geq 1$, which means $s_{4}+s_{5} \geq 5$. Therefore $|S|<x_{7}^{3}$ if $s_{6}+s_{7}=1$. But the vertex of $S_{6} \cup S_{7}$ is not defendend in S.

Then, consider $s_{2} \geq 1$ and $s_{6} \geq 1$. If $s_{3}^{\prime}=0$, then cases $i=3$ and $i=5$ imply that $s_{1}+s_{2}+s_{3} \geq m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$ and $s_{3}+s_{4}+s_{5}+s_{6}+s_{7} \geq \max \{m+4,2 m-1\}$ which is at least x_{7}^{m} for any $m \geq 3$. Then, we can consider $s_{3} \geq 1$ and $s_{5} \geq 1$. Since $s_{1}+s_{3}$ and $s_{2}+s_{4}$ cannot both be equal to $m-1$ and for $G^{2} \simeq C_{m}$, we have $s_{5}+s_{6}+s_{7} \geq m+2$, for $G^{2} \simeq P_{m}$, we have $s_{5}+s_{6}+s_{7} \geq m+1$, we have $|S| \geq m-1+m+m+2=3 m+1$ for $G^{2} \simeq C_{m}$, and we have $|S| \geq m-1+m+m+2=3 m$ for $G^{2} \simeq P_{m}$.

Corollary 4.2 For $n \in\{3, \ldots, 7\}, \gamma_{a}\left(C_{n} \circ C_{m}\right)$ is given in Table 2 and $\gamma_{a}\left(C_{n} \circ P_{m}\right)$ is given in Table 4.

Proof. Proposition 3.2 implies that $\gamma_{a}\left(C_{3} \circ C_{3}\right) \geq 5$ and $\gamma_{a}\left(C_{3} \circ P_{3}\right) \geq 4$. It is easy to check that $C_{3} \circ P_{3}$ has no GDA with less than 5 vertices, then since $X_{3,3}$ and $Y_{3,3}$ are GDAs of $C_{3} \circ C_{3}$ and $C_{3} \circ P_{3}$, respectively, $\gamma_{a}\left(C_{3} \circ C_{3}\right)=\gamma_{a}\left(C_{3} \circ P_{3}\right)=5$.

Now, consider $n=3, m \geq 4$, and let S be a minimum GDA of $C_{n} \circ G^{2}$ for $G^{2} \in\left\{C_{m}, P_{m}\right\}$. We can assume that $v_{2} \in S_{2}$ and $v_{3} \in S_{3}$. Since $d\left(v_{2}\right)=d\left(v_{3}\right) \in\{2 m+1,2 m+2\}, s_{1}+s_{3} \geq m-1$
and $s_{1}+s_{2} \geq m-1$. If $s_{1}=0$, then $|S| \geq 2 m-2$. Therefore, we can assume $s_{1} \neq 1$, which implies, by the symmetry of the graph, that $s_{1}=s_{2}=s_{3}=k$. If $d\left(v_{2}\right)=2 m+1$ and $k<\left\lfloor\frac{m}{2}\right\rfloor$, then S is not a GDA. Therefore $\gamma_{a}\left(C_{3} \circ P_{n}\right)=3\left\lfloor\frac{m}{2}\right\rfloor$ for $m \geq 4$. If $d\left(v_{2}\right)=2 m+2$ and $k<\left\lceil\frac{m}{2}\right\rceil$, then S is not a GDA. Therefore $\gamma_{a}\left(C_{3} \circ C_{n}\right)=3\left\lceil\frac{\mathrm{~m}}{2}\right\rceil$ for $m \geq 4$.

The cases $n \in\{4,5,6,7\}$ are consequence of Propositons 3.3 and 4.1.

Corollary 4.3 For $k \in\{3, \ldots, 7\}, G^{1} \in\left\{C_{n}, P_{n}\right\}$, and $G^{2} \in\left\{C_{m}, P_{m}\right\}$, there is a minimum $G D A S$ of $G^{1} \circ G^{2}$ such that $\max (\operatorname{spe}(S)) \leq k$.

4.2 Case $n \geq 8$

We begin this section presenting a hyerarchy of $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ which depends of the operands and is consequence of the previous results.

Corollary 4.4 For $n \geq 2$ and $m \geq 3$, it holds $\gamma_{a}\left(P_{n} \circ P_{m}\right) \leq \gamma_{a}\left(C_{n} \circ P_{m}\right) \leq \gamma_{a}\left(C_{n} \circ C_{m}\right)$ and $\gamma_{a}\left(P_{n} \circ P_{m}\right) \leq \gamma_{a}\left(P_{n} \circ C_{m}\right) \leq \gamma_{a}\left(C_{n} \circ C_{m}\right)$.

Proof. $\gamma_{a}\left(P_{n} \circ P_{m}\right) \leq \gamma_{a}\left(C_{n} \circ P_{m}\right)$ and $\gamma_{a}\left(P_{n} \circ C_{m}\right) \leq \gamma_{a}\left(C_{n} \circ C_{m}\right)$ are consequences of Corollary 2.3, while $\gamma_{a}\left(C_{n} \circ P_{m}\right) \leq \gamma_{a}\left(C_{n} \circ C_{m}\right)$ and $\gamma_{a}\left(P_{n} \circ P_{m}\right) \leq \gamma_{a}\left(P_{n} \circ C_{m}\right)$ are consequence of Corollaries 2.3, 4.2, and Proposition 4.1.

Now, we consider the case where G^{1} has order at least 8 . We divide the study into two cases, $m=3$ and $m \geq 4$.

4.2.1 Case $m=3$

Proposition 4.5 For $n \geq 8, G^{1} \in\left\{P_{n}, C_{n}\right\}$, and $G^{2} \in\left\{P_{3}, C_{3}\right\}$, there is minimum $G D A S$ of $G^{1} \circ G^{2}$ such that $\max (\operatorname{spe}(S)) \leq 6$.

Proof. Write $F=G^{1} \circ G^{2}$ and let $w=\left(k_{1}, \ldots, k_{t}\right)$ be the spectrum of a minimum GDA S of $F, k_{i} \geq 7$ for some $i \in[t]$, and $r \equiv k_{i} \bmod 4$.

By Proposition 3.2 ((iii), val $_{e}\left(k_{i}, C_{3}\right) \geq 6\left\lfloor\frac{k_{i}}{4}\right\rfloor+t$ where $t= \begin{cases}r+2 & , \text { if } r \in\{2,3\} \\ 2 & , \text { if } r=1 \\ 0 & , \text { if } r=0\end{cases}$
For each value of r, we present a k_{i}-sequence $w^{\prime}=\left(\ell_{1}, \ldots, \ell_{p}\right)$ such that $\max \left(w^{\prime}\right) \leq 6$ and $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right) \leq 6\left\lfloor\frac{k}{4}\right\rfloor+t$. Since $y_{t, 3} \leq x_{t, 3}$ for $3 \leq t \leq 6$ and the bound of Proposition 3.2 (iiii) holds for $G^{2} \simeq P_{3}$ and $G^{2} \simeq C_{3}$, we only need to consider $G^{2} \simeq C_{3}$.

For $r=0$, define $w^{\prime}=\left(\left[\frac{k}{4}\right] 4\right)$ containing $\frac{k}{4}$. Since $x_{4,3}=5$, it holds $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right)=5 \frac{k}{4} \leq$ $6 \frac{k}{4} \leq \operatorname{val}_{e}\left(k_{i}, C_{3}\right)$. For $r=1$, consider $w^{\prime}=\left(\left[\frac{k-5}{4}\right] 4,5\right)$. Since $x_{5,3}=5$, it holds $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right)=$ $5 \frac{k-5}{4}+5 \leq 6\left\lfloor\frac{k}{4}\right\rfloor+2 \leq \operatorname{val}_{e}\left(k_{i}, C_{3}\right)$. For $r=2$, define $w^{\prime}=\left(\left[\frac{k-6}{4}\right] 4,6\right)$. Since $x_{6,3}=8$, it holds $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right)=5 \frac{k-6}{4}+8 \leq 6\left\lfloor\frac{k}{4}\right\rfloor+4 \leq \operatorname{val}_{e}\left(k_{i}, C_{3}\right)$. For $r=3$, define $w^{\prime}=\left(3,\left[\frac{k-3}{4}\right] 4\right)$. Since $\operatorname{val}^{\prime}(3)=x_{4,3}=5$, it holds $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right)=5 \frac{k-3}{4}+5 \leq 6\left\lfloor\frac{k}{4}\right\rfloor+5 \leq \operatorname{val}_{e}\left(k_{i}, C_{3}\right)$.

Now, it remains to observe that $w^{\prime \prime}=w_{1, i-1} w^{\prime} w_{i+1, t}$ is a feasible n-sequence and $\operatorname{val}\left(G^{1}, C_{3}, w^{\prime \prime}\right) \leq$ $\operatorname{val}\left(G^{1}, C_{3}, w\right)$.

Proposition 4.6 For $n \geq 8, G^{1} \in\left\{C_{n}, P_{n}\right\}$, and $G^{2} \in\left\{C_{3}, P_{3}\right\}$, there is a minimim $G D A S$ of $G^{1} \circ G^{2}$ such that
(i) if $G^{2} \simeq C_{3}$, then spe (S) has at most one element in the set $\{3,5,6\}$ and no one is equal to 2 ;
(ii) if $G^{2} \simeq P_{3}$, then spe(S) has at most one element in the set $\{2,3,4,6\}$.

Proof. By Proposition 4.5, there is a minimum GDA S of $F=G^{1} \circ C_{3}$ whose $\max (\operatorname{spe}(S)) \leq 6$. Suppose that k_{i} and k_{j} are values of $\operatorname{spe}(S)$ and of $\{2,3,5,6\}$. For each possible case, we present in Table 5 a sequence $w^{\prime}=\left(\ell_{1}, \ldots, \ell_{t}\right)$ for $t \leq 3$ such that $\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right) \leq \operatorname{val}_{e}\left(k_{i}, C_{3}\right)+$ $\operatorname{val}_{e}\left(k_{j}, C_{3}\right), w^{\prime}$ does not contain the number 2 , and contains at most one element of the set $\{3,5,6\}$. The third column of the table is a lower bound of $\operatorname{val}_{e}\left(k_{i}, C_{3}\right)+\operatorname{val}_{e}\left(k_{j}, C_{3}\right)$, which is consequence of Proposition 4.1.

k_{i}	k_{j}	val $_{e}\left(k_{i}, C_{3}\right)+\operatorname{val}_{e}\left(k_{j}, C_{3}\right)$	ℓ_{1}	ℓ_{2}	ℓ_{3}	$\operatorname{val}\left(P_{n}, C_{3}, w^{\prime}\right)$
2	3	$5+5=10$	5			7
2	4	$5+5=10$	6			8
2	5	$5+7=12$	4	3		10
2	6	$5+8=13$	4	4		10
3	3	$5+5=10$	6			8
3	5	$5+7=12$	4	4		10
3	6	$5+8=13$	5	4		12
5	5	$7+7=14$	6	4		13
5	6	$7+8=15$	4	4	3	15
6	6	$8+8=16$	4	4	4	15

Table 5: Case $G^{2} \simeq C_{3}$.
It is clear that the sequence $w^{\prime \prime}=\left(k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{t},\right) w^{\prime}$ is feasible and $\operatorname{val}\left(G^{1}, C_{3}, w^{\prime \prime}\right) \leq \operatorname{val}\left(G^{1}, C_{3}, w\right)$. Since one can repeat this process until a sequence with the required properties be obtained, the result does hold.

The proof of (ii) is essentially the same of (i) by considering $G^{2} \simeq P_{3}$ and Table 6,

$$
f(n, 3)= \begin{cases}5 \frac{n}{4} & , \text { if } n \equiv 0 \bmod 4 \\ 5 \frac{n-5}{4}+7 & , \text { if } n \equiv 1 \bmod 4 \\ 5 \frac{n-6}{4}+8 & , \text { if } n \equiv 2 \bmod 4 \\ 5 \frac{n-3}{4}+5 & , \text { if } n \equiv 3 \bmod 4\end{cases}
$$

k_{i}	k_{j}	$\operatorname{val}_{e}\left(k_{i}, P_{3}\right)+\operatorname{val}_{e}\left(k_{j}, P_{3}\right)$	ℓ_{1}	ℓ_{2}	ℓ_{3}	$\operatorname{val}\left(P_{n}, P_{3}, w^{\prime}\right)$
2	3	$4+4=8$	5			5
2	4	$4+5=9$	6			8
2	6	$4+8=12$	5	3		10
3	3	$4+4=8$	6			8
3	4	$4+5=9$	5	2		9
3	6	$4+8=12$	5	4		10
4	4	$5+5=10$	5	3		10
4	6	$5+8=13$	5	5		10
6	6	$8+8=16$	5	5	2	14

Table 6: Case $G^{2} \simeq P_{3}$.

$$
f^{\prime}(n, 3)= \begin{cases}5 \frac{n}{5} & , \text { if } n \equiv 0 \bmod 5 \\ 5 \frac{n-6}{5}+8 & , \text { if } n \equiv 1 \bmod 5 \\ 5 \frac{n-r}{5}+4 & , \text { if } n \equiv r \bmod 5 \text { for } r \in\{2,3\} \\ 5 \frac{n-4}{5}+5 & , \text { if } n \equiv 4 \bmod 5\end{cases}
$$

Theorem 4.7 For $n \geq 8$ and $G^{1} \in\left\{C_{n}, P_{n}\right\}, \gamma_{a}\left(G^{1} \circ C_{3}\right)=f(n, 3)$ and $\gamma_{a}\left(G^{1} \circ P_{3}\right)=f^{\prime}(n, 3)$.
Proof. Corollary 2.4 and Propositions 4.5 and (4.6 (i) imply that, for $p=\left\lfloor\frac{n}{4}\right\rfloor$ and $r=n \bmod 4$, it holds that a sequence w such that $\gamma_{a}\left(G^{1} \circ C_{3}\right)=\operatorname{val}\left(G^{1}, C_{3}, w\right)$ is

$$
w= \begin{cases}([p] 4) & , \text { if } r=0 \\ ([p-1] 4,5) & , \text { if } r=1 \\ ([p-1] 4,6) & , \text { if } r=2 \\ ([p] 4,3) & , \text { if } r=3\end{cases}
$$

Using Proposition 4.1, we have $\gamma_{a}\left(G^{1} \circ C_{3}\right)=f(n, 3)$. Now, Corollary 2.4 and Propositions 4.5 and 4.6 (iii) imply that, for $p=\left\lfloor\frac{n}{4}\right\rfloor$ and $r=n \bmod 5$, it holds that a sequence w such that $\gamma_{a}\left(G^{1} \circ P_{3}\right)=\operatorname{val}\left(G^{1}, P_{3}, w\right)$ is

$$
w= \begin{cases}([p-1] 5) & , \text { if } r=0 \\ ([p-1] 5,6) & , \text { if } r=1 \\ (r,[p] 5) & , \text { if } r \in\{2,3,4\}\end{cases}
$$

Using Proposition 4.1, we have $\gamma_{a}\left(G^{1} \circ P_{3}\right)=f^{\prime}(n, 3)$.

4.2.2 Case $m \geq 4$

Proposition 4.8 For $n \geq 8, m \geq 4, G^{1} \in\left\{P_{n}, C_{n}\right\}$, and $G^{2} \in\left\{P_{m}, C_{m}\right\}$, there is a minimim $G D A S$ of $G^{1} \circ G^{2}$ such that $\max (\operatorname{spe}(S)) \leq 7$.

Proof. Let $w=\left(k_{1}, \ldots, k_{t}\right)$ be the spectrum of a minimum GDA S of $F=G^{1} \circ G^{2}$ such that $k_{i} \geq 8$ for some $i \in[t]$. Let F^{\prime} be the section of F associated with k_{i} and set $S^{\prime}=$ $\left|V\left(F^{\prime}\right) \cap S\right|$. For each case, we present a k_{i}-sequence $w^{\prime}=\left(\ell_{1}, \ldots, \ell_{p}\right)$ such that $\max \left(w^{\prime}\right) \leq 7$ and $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right) \leq\left|S^{\prime}\right|$.

For $k_{i}=8$, consider $r \equiv k_{i} \bmod 4$. Proposition (3.2 (i) implies $\left|S^{\prime}\right| \geq 4 m-2$. If $m=4$, let $w^{\prime}=(4,4)$. Since $y_{4,4}=x_{4,4}=7, \operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right)=14 \leq\left|S^{\prime}\right|$. If $m \geq 5$, let $w^{\prime}=(5,3)$. Since $y_{5, m}=x_{5, m}=2 m-1$ and $y_{3, m} \leq x_{3, m}=m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$, it holds $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right) \leq$ $3 m-1+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\} \leq 4 m-2 \leq\left|S^{\prime}\right|$, which means that the result also holds for $k_{i}=8$.

For $k_{i} \geq 9$, consider $r \equiv k_{i} \bmod 5$. Let w^{\prime} as follows

$$
w^{\prime}= \begin{cases}\left(\left[\frac{k_{i}}{5}\right] 5\right) & , \text { if } r=0 \\ \left(\left[\frac{k_{i}-6}{5}\right] 5,6\right) & , \text { if } r=1 \\ \left(r,\left[\frac{k_{i}-r}{5}\right] 5\right) & , \text { if } r \in\{2,3,4\}\end{cases}
$$

Consider first $m=4$. If $G^{2} \simeq C_{4}$, Proposition 3.2 (iv) implies $\left|S^{\prime}\right| \geq 2 k_{i}$. By Proposition 4.1, it holds that $\operatorname{val}\left(P_{n}, C_{4}, w^{\prime}\right)$ is $8 \frac{k_{i}}{5}$ for $r=0$, is $8 \frac{k_{i}-6}{5}+12$ for $r=1$, is $8 \frac{k_{i}-r}{5}+6$ for $r \in\{2,3\}$, is $8 \frac{k_{i}-4}{5}+7$ for $r=4$. Since $\operatorname{val}\left(P_{n}, C_{4}, w^{\prime}\right) \leq 2 k_{i} \leq\left|S^{\prime}\right|$ in all cases, the result follows for $G^{2} \simeq C_{4}$. If $G^{2} \simeq P_{4}$, Proposition 3.2 (iv) implies $\left|S^{\prime}\right| \geq 2 k_{i}-2$. By Proposition 4.1, it holds that $\operatorname{val}\left(P_{n}, P_{4}, w^{\prime}\right)$ is $7 \frac{k_{i}}{5}$ for $r=0$, is $7 \frac{k_{i}-6}{5}+10$ for $r=1$, is $7 \frac{k_{i}-r}{5}+5$ for $r \in\{2,3\}$, is $7 \frac{k_{i}-4}{5}+7$ for $r=4$. Since $\operatorname{val}\left(P_{n}, P_{4}, w^{\prime}\right) \leq 2 k_{i}-2 \leq\left|S^{\prime}\right|$ in all cases, the result follows for $G^{2} \simeq P_{4}$.

Consider now $m \geq 5$. Proposition 3.2 (ii) and (iii) imply $\left|S^{\prime}\right| \geq\left\lfloor\frac{k}{4}\right\rfloor(2 m-1)+t$ where

$$
t= \begin{cases}m+1 & , \text { if } r=3 \\ r & , \text { if } r \in\{0,1,2\}\end{cases}
$$

for $G^{2} \in\left\{P_{m}, C_{m}\right\}$. By Proposition 4.1, $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right)$ is $(2 m-1) \frac{k_{i}}{5}$ for $r=0$, is at most $(2 m-1) \frac{k_{i}-6}{5}+2 m+4$ for $r=1$, is at most $(2 m-1) \frac{k_{i}-r}{5}+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$ for $r \in\{2,3\}$, is $(2 m-1) \frac{k_{i}-4}{5}+2 m-1$ for $r=4$. Since $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right) \leq\left|S^{\prime}\right|$ in all cases, the proof is complete.

Proposition 4.9 For $n \geq 8, m \geq 4, G^{1} \in\left\{P_{n}, C_{n}\right\}$, and $G^{2} \in\left\{P_{m}, C_{m}\right\}$, there is a minimum $G D A S$ of $G^{1} \circ G^{2}$ whose spectrum contains at most one element of the set $\{2,3,4,7\}$.

Proof. By Proposition 4.8, there is a minimum GDA S of $F=G^{1} \circ G^{2}$ such that $\max (\operatorname{spe}(S)) \leq$ 7. Suppose that k_{i} and k_{j} are values of $\operatorname{spe}(S)$ and of $\{2,3,4,7\}$. For each possible case, we present in Tables 7 and 8 a sequence $w^{\prime}=\left(\ell_{1}, \ldots, \ell_{t}\right)$ for $t \leq 3$ such that $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right) \leq$ $\operatorname{val}_{e}\left(k_{i}, G^{2}\right)+\operatorname{val}_{e}\left(k_{j}, G^{2}\right)$ such that w^{\prime} contains at most one element of the set $\{2,3,4,7\}$. Table 7 contains the cases for $G^{2} \simeq C_{m}$ and Table 8 for $G^{2} \simeq P_{m}$. The third column of each table contains a lower bound of $\operatorname{val}_{e}\left(k_{i}, G^{2}\right)+\operatorname{val}_{e}\left(k_{j}, G^{2}\right)$, which is consequence of Proposition 4.1.

It is clear that the sequence $w^{\prime \prime}=\left(k_{1}, \ldots, k_{i-1}, k_{i+1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{t},\right) w^{\prime}$ is feasible and $\operatorname{val}\left(G^{1}, G^{2}, w^{\prime \prime}\right) \leq \operatorname{val}\left(G^{1}, G^{2}, w\right)$ for $G \in\{P, C\}$. Since one can repeat this process until a sequence with the required properties be obtained, the result does hold.

k_{i}	k_{j}	$\operatorname{val}_{e}\left(k_{i}, C_{m}\right)+\operatorname{val} l_{e}\left(k_{j}, C_{m}\right)$	ℓ_{1}	ℓ_{2}	ℓ_{3}	$\operatorname{val}\left(P_{n}, C_{m}, w^{\prime}\right)$
2	3	$2\left(m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}\right)$	5			$\max \{m+4,2 m-1\}$
3	3	$2\left(m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}\right)$	6			$2 m+4$
2	4	$2 m-1+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$	6			$2 m+4$
3	4	$2 m-1+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$	7			$3 m+1$
4	4	$2(2 m-1)$	5	3		$\max \{m+4,2 m-1\}+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$
2	7	$3 m+1+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$	5	4		$\max \{m+4,2 m-1\}+2 m-1$
3	7	$m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}+3 m+1$	5	5		$2(\max \{m+4,2 m-1\})$
4	7	$3 m+1+2 m-1$	6	5		$2 m+4+\max \{m+4,2 m-1\}$
7	7	$2(3 m+1)$	5	5	4	$2(\max \{m+4,2 m-1\})+2 m-1$

Table 7: Case $G^{2} \simeq C_{m}$.

k_{i}	k_{j}	val $_{e}\left(k_{i}, P_{m}\right)+\operatorname{val}_{e}\left(k_{j}, P_{m}\right)$	ℓ_{1}	ℓ_{2}	ℓ_{3}	$\operatorname{val}\left(P_{n}, G^{2},[) P_{m}\right] w^{\prime}$
2	3	$2\left(m+\left\lfloor\frac{m-2}{2}\right\rfloor\right)$	5			$2 m-1$
3	3	$2\left(m+\left\lfloor\frac{m-2}{2}\right\rfloor\right)$	6			$2 m+2$
2	4	$2 m-1+m+\left\lfloor\frac{m-2}{2}\right\rfloor$	6			$2 m+2$
3	4	$2 m-1+m+\left\lfloor\frac{m-2}{2}\right\rfloor$	7			$3 m$
4	4	$2(2 m-1)$	5	3		$2 m-1+m+\left\lfloor\frac{m-2}{2}\right\rfloor$
2	7	$3 m+m+\left\lfloor\frac{m-2}{2}\right\rfloor$	5	4		$2 m-1+2 m-1$
3	7	$m+\left\lfloor\frac{m-2}{2}\right\rfloor+3 m$	5	5		$2(2 m-1)$
4	7	$3 m+2 m-1$	6	5		$2 m+2+2 m-1$
7	7	$2(3 m)$	5	5	4	$2(2 m-1)+2 m-1$

Table 8: Case $G^{2} \simeq P_{m}$.
Proposition 4.10 If $n \geq 8, m \geq 4, G^{1} \in\left\{P_{n}, C_{n}\right\}, G^{2} \in\left\{P_{m}, C_{m}\right\}$, and $w=\left(k_{1}, \ldots, k_{t}\right)$ is the spectrum of a minimum $G D A$ of $G^{1} \circ G^{2}$ containing three numbers that are pairwise different, then we can assume that $w \in\{(3,[p-1] 5,6),(3,5,[q-1] 6)\}$ where $p=\frac{n-9}{5}$ and $q=\frac{n-8}{6}$.

Proof. Suppose that, for $i, j, r \in[t], k_{i}, k_{j}$, and k_{r} are pairwise different. By Proposition 4.9, we can assume that $k_{j}=5$ and $k_{r}=6$. In Tables 9 and 10, we show that if $k_{i} \neq 3$, then there is a k_{i}-sequence $w^{\prime}=\left(\ell_{1}, \ldots, \ell_{t^{\prime}}\right)$ for $t^{\prime} \leq 4$ such that w^{\prime} contains only numbers 3,5 , and 6 , and $\operatorname{val}\left(P_{n}, G^{2}, w^{\prime}\right) \leq \operatorname{val}_{e}\left(k_{i}, G^{2}\right)+\operatorname{val}_{e}\left(k_{j}, G^{2}\right)+\operatorname{val}_{e}\left(k_{r}, G^{2}\right)$.

It remains to prove that $w \neq(3,[p] 5),[q] 6)$ for $p, q \geq 2$. First, we consider $G^{2} \simeq C_{m}$. We can assume that $w=(3,[2] 5,[2] 6,[p-2] 5,[q-2] 6)$. We know that $\operatorname{val}\left(P_{n}, C_{m},(3,[2] 5,[2] 6)\right)=$ $2(2 m+4)+2(\max \{m+4,2 m-1\})+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}=9 m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}+6$. For $m \leq 17$, $\operatorname{val}\left(P_{n}, C_{m},([5] 5)\right)=5(\max \{m+4,2 m-1\})=10 m-5$ and for $m \geq 18, \operatorname{val}\left(P_{n}, C_{m},([3] 6,7)\right)=$ $3(2 m+4)+3 m+1=9 m+13$, which means that w is not the spectrum of a minimum GDA of $G^{1} \circ C_{m}$.

Finally consider $G^{2} \simeq P_{m}$. We know that $\operatorname{val}\left(P_{n}, P_{m},(3,[2] 5,[2] 6)\right)=2(2 m+2)+2(2 m-$ $1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor=9 m+3+\left\lfloor\frac{m-2}{2}\right\rfloor$. For $m \leq 11, \operatorname{val}\left(P_{n}, P_{m},([5] 5)\right)=5(2 m-1)=10 m-5$ and for $m \geq 12, \operatorname{val}\left(P_{n}, P_{m},([3] 6,7)\right)=3(2 m+2)+3 m=9 m+6$, which means that w is not the spectrum of a minimum GDA of $G^{1} \circ P_{m}$.

The above results reduce the number of sequences that can reach $\gamma_{a}(F)$ for $G^{1} \circ G^{2}, G^{1} \in$

k_{i}	val (i, j, r)	ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	$\operatorname{val}\left(P_{n}, C_{m}, w^{\prime}\right)$
2	$\begin{aligned} & m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}+2 m+4+ \\ & \max \{m+4,2 m-1\}= \\ & 5 m+3+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\} \\ & \hline \end{aligned}$	5	5	3		$\begin{aligned} & 2(\max \{m+4,2 m-1\})+ \\ & m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}= \\ & 5 m-2+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\} \end{aligned}$
4	$\begin{aligned} & 2 m-1+\max \{m+4,2 m-1\}+ \\ & 2 m+4 \geq 6 m+3 \end{aligned}$	5	5	5		$\begin{aligned} & 3(\max \{m+4,2 m-1\})= \\ & 6 m-3 \end{aligned}$
7	$\begin{aligned} & \max \{m+4,2 m-1\}+2 m+4+ \\ & 3 m+1=7 m+4 \end{aligned}$	5 6	5	5 6	3	$\begin{aligned} & \text { For } m \leq 10, \\ & 3(\max \{m+4,2 m-1\})+ \\ & m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}= \\ & 7 m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}-3 \\ & \text { For } m \geq 11,3(2 m+4)= \\ & 6 m+12 \end{aligned}$

Table 9: Case $G^{2} \simeq C_{m}$, where $\operatorname{val}(i, j, r)=\operatorname{val}_{e}\left(k_{i}, C_{m}\right)+\operatorname{val}_{e}\left(k_{j}, C_{m}\right)+\operatorname{val}_{e}\left(k_{r}, C_{m}\right)$

k_{i}	$\operatorname{val}(i, j, r)$	ℓ_{1}	ℓ_{2}	ℓ_{3}	ℓ_{4}	$\operatorname{val}\left(P_{n}, P_{m}, w^{\prime}\right)$
2	$\begin{aligned} & m+\left\lfloor\frac{m-2}{2}\right\rfloor+2 m+2+ \\ & 2 m-1=5 m+1+\left\lfloor\frac{m-2}{2}\right\rfloor \end{aligned}$	5	5	3		$\begin{aligned} & 2(2 m-1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor= \\ & 5 m-2+\left\lfloor\frac{m-2}{2}\right\rfloor \end{aligned}$
4	$2 m-1+2 m-1+2 m+2=$ $6 m$	5	5	5		$3(2 m-1)=6 m-3$
7	$\begin{aligned} & 2 m-1+2 m+2+ \\ & 3 m \geq 7 m+1 \end{aligned}$	5 6	6	5 6	3	For $m \leq 10$, $\begin{aligned} & 3(2 m-1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor= \\ & 7 m+\left\lfloor\frac{m-2}{2}\right\rfloor-3 \end{aligned}$ For $m \geq 11,3(2 m+2)=6 m+6$

Table 10: Case $G^{2} \simeq P_{m}$, where $\operatorname{val}(i, j, r)=\operatorname{val}_{e}\left(k_{i}, P_{m}\right)+\operatorname{val}_{e}\left(k_{j}, P_{m}\right)+\operatorname{val}_{e}\left(k_{r}, P_{m}\right)$
$\left\{C_{n}, P_{n}\right\}, G^{2} \in\left\{C_{m}, P_{m}\right\}, n \geq 8$, and $m \geq 4$. In fact, we will show that, for a given $F, \gamma_{a}(F)$ can be determined considering at most four sequences, the ones defined in the sequel.
$f_{1, n}= \begin{cases}([p] 5) & , \text { if } n \equiv 0 \bmod 5 \\ (r,[p] 5) & , \text { if } n \equiv r \bmod 5 \text { for } r \in\{2,3,4\} \\ ([p] 5,6) & , \text { if } n \equiv 6 \bmod 5\end{cases}$
$f_{2, n}= \begin{cases}([p] 5,[q] 6) \text { for maximum } p & , \text { if } n \neq 19 \\ (3,[2] 5,6) & , \text { if } n=19\end{cases}$
$f_{3, n}=([p] 5,[q] 6)$ for maximum q
$f_{4, n}= \begin{cases}([q] 6) & , \text { if } n \equiv 0 \bmod 6 \\ (s,[q] 6) & , \text { if } n \equiv s \bmod 6 \text { for } s \in\{3,5\} \\ ([q] 6,7) & , \text { if } n \equiv 1 \bmod 6 \\ (3,5,[q] 6) & , \text { if } n \equiv 2 \bmod 6 \\ ([2] 5,[q] 6) & , \text { if } n \equiv 4 \bmod 6\end{cases}$
For $i \in[4], f_{i, n}$ is an infinite set of sequences, which is associated with at most one sequence if we fix the value of n. Therefore, when we can handle $f_{i, n}$ as a set.

Theorem 4.11 For $n \geq 8, m \geq 4, G^{1} \in\left\{P_{n}, C_{n}\right\}$, and $G^{2} \in\left\{P_{m}, C_{m}\right\}$, it holds $\gamma_{a}\left(G^{1} \circ G^{2}\right)=$ $\min \left\{\operatorname{val}\left(G^{1}, G^{2}, f_{1, n}\right), \operatorname{val}\left(G^{1}, G^{2}, f_{2, n}\right), \operatorname{val}\left(G^{1}, G^{2}, f_{3, n}\right), \operatorname{val}\left(G^{1}, G^{2}, f_{4, n}\right)\right\}$.

Proof. Write $F=G^{1} \circ G^{2}$. Corollary 2.4 and Propositions 4.8, 4.9, 4.10 imply that there is a sequence w such that $\operatorname{val}\left(G^{1}, G^{2}, w\right)=\gamma_{a}(F)$ and w is a sequence of one of the following 8 sets of sequences for $G=C$ if $G^{1} \simeq C_{n}, G=P$ if $G^{1} \simeq P_{n}, p=\left\lfloor\frac{n}{5}\right\rfloor, q=\left\lfloor\frac{n}{6}\right\rfloor, r=n \bmod 5$, and $s=n \bmod 6$:
$T_{1}=\{([p] 5)\}$,
$T_{2}=\{([p] 5, r)$ for $r \in\{2,3,4\}\}$,
$T_{3}=\{([q] 6)\}$,
$T_{4}=\{([q] 6, s)$ for $s \in\{2,3,4,5\}\}$,
$T_{5}=\{([q-1] 6,7)\}$,
$T_{6}=\{(3,5,[q-1] 6)\}$,
$T_{7}=\{(3,[p-1] 5,6)\}$,
$T_{8}=\left\{\left(\left[p^{\prime}\right] 5,\left[q^{\prime}\right] 6\right)\right.$, for all positive integers p^{\prime} and q^{\prime} such that $\left.5 p^{\prime}+6 q^{\prime}=n\right\}$.
We note that there are values of n such that some of these sets are empty. Therefore, we need to show that, if w belongs to some T_{i} for $i \in[8]$ and $\operatorname{val}\left(G^{1}, G^{2}, w\right)=\gamma_{a}(F)$, then w appears in some $f_{i, n}$, for $i \in[4]$.

- The sequences of T_{17}, T_{2}, T_{3}, $T_{[5}$, and $T_{[6}$ appear in $f_{1, n}, f_{1, n}, f_{4, n}, f_{4, n}$, and $f_{4, n}$, respectively, so there is nothing to do for these cases.
- The sequences of $T_{[4}$ appear in $f_{4, n}$ for $s \in\{3,5\}$. We will show: (i) for $s \in\{2,4\}$, $\operatorname{val}\left(G^{1}, G^{2},([q] 6, s)\right) \leq \operatorname{val}\left(G^{1}, G^{2}, w\right)$ for some w that appears in $f_{j, n}$ for some $j \in[4]$.
- The 19 -sequence of T_{7} appears in $f_{2, n}$. We will show: (ii) for $n \geq 22, \operatorname{val}\left(G^{1}, G^{2},(3,[p-\right.$ $1] 5,6)) \leq \operatorname{val}\left(G^{1}, G^{2}, w\right)$ for some w that appears in $f_{j, n}$ for some $j \in[4]$.
- Only two sequences of T_{8} are considered, one in $f_{2, n}$ and the other in $f_{3, n}$. We will show: (iii) only these two sequences of T_{8} can reach the minimum.

Hence, to complete the proof it suffices to prove (i), (ii), and (iii).
(i) We show that $\operatorname{val}\left(G^{1}, G^{2}, w\right) \leq \operatorname{val}\left(G^{1}, G^{2}, w^{\prime}\right)$ for $w \in T_{6}$ and $w^{\prime} \in T_{[4}$ with $s=2$. First, consider $G^{2} \simeq C_{m}$. For $G^{1} \simeq P_{n}$, suppose that $q x_{6, m}+x_{3, m}<(q-1) x_{6, m}+x_{5, m}+x_{3, m}$ for some n. We have $q(2 m+4)+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}<(q-1)(2 m+4)+\max \{m+4,2 m-1\}+$ $m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$. Then $2 m+4<\max \{m+4,2 m-1\}$, a contradiction. For $G^{1} \simeq C_{n}$, suppose that $q x_{6, m}+x_{4, m}<(q-1) x_{6, m}+x_{5, m}+x_{4, m}$ for some n. We have $q(2 m+4)<$ $(q-1)(2 m+4)+\max \{m+4,2 m-1\} \Rightarrow 2 m+4<\max \{m+4,2 m-1\}$, a contradiction.

Now, consider $G^{2} \simeq P_{m}$. For $G^{1} \simeq P_{n}$, suppose that $q y_{6, m}+y_{3, m}<(q-1) y_{6, m}+y_{5, m}+y_{3, m}$ for some n. We have $q(2 m+2)+m+\left\lfloor\frac{m-2}{2}\right\rfloor<(q-1)(2 m+2)+2 m-1+m+\left\lfloor\frac{m-2}{2}\right\rfloor$. Then $2 m+2<$ $2 m-1$, a contradiction. For $G^{1} \simeq C_{n}$, suppose that $q y_{6, m}+y_{4, m}<(q-1) y_{6, m}+y_{5, m}+y_{4, m}$ for some n. We have $q(2 m+2)<(q-1)(2 m+2)+2 m-1 \Rightarrow 2 m+2<2 m-1$, a contradiction.

Next, we show that $\operatorname{val}\left(G^{1}, G^{2},([2] 5,[q-1] 6)\right) \leq \operatorname{val}\left(G^{1}, G^{2},([q] 6,4)\right)$. Suppose that $q x_{6, m}+$ $x_{4, m}<(q-1) x_{6, m}+2 x_{5, m}$ for some n. We have $q(2 m+4)+2 m-1<(q-1)(2 m+4)+$ $2(\max \{m+4,2 m-1\})$. Then $4 m+3<2(\max \{m+4,2 m-1\})$, For $m=3,15<14 ; m=4$, $19<16 ; m=5,23<18$, a contradiction.
(ii) We show that $\operatorname{val}\left(G^{1}, G^{2}, u_{7}\right) \geq \min \left\{\operatorname{val}\left(G^{1}, G^{2}, u_{2}\right), \operatorname{val}\left(G^{1}, G^{2}, u_{8}\right)\right\}$ where $u_{7}=(3,[p-$ $1] 5,6) \in T_{7}, u_{2}=([p] 5,4) \in T_{[2}$, and $u_{[8}=\left(\left[p^{\prime} 5\right],\left[q^{\prime}\right] 6\right) \in T_{8}$ for $n \geq 24$. Since the 3 sequences have a 24 -subsequence, we do the analysis comparing the correspoding 24 -subsequences $u_{[7}^{\prime}, u_{[2}^{\prime}$, and $u_{[8]}^{\prime}$. First consider $G^{1} \simeq P_{n}$ and $G^{2} \simeq C_{m}$. If $m \leq 5,4 x_{5, m}+x_{4, m}=6 m+15$ while $3 x_{5, m}+x_{6, m}+x_{3, m}=3(m+4)+2 m+4+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}=6 m+16+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$. Then for $m=4, \operatorname{val}\left(P_{n}, C_{m}, u_{(2)}^{\prime}\right)=39<\operatorname{val}\left(P_{n}, C_{m}, u_{7}^{\prime}\right)=42$; and for $m=5, \operatorname{val}\left(P_{n}, C_{m}, u_{[2}^{\prime}\right)=$ $45 \leq \operatorname{val}\left(P_{n}, C_{m}, u_{(}^{\prime}\right)=48$. If $m \geq 6,3 x_{5, m}+x_{6, m}+x_{3, m}=6 m-3+2 m+4+m+\left\lfloor\frac{m-2}{2}\right\rfloor=9 m+$ $1+\left\lfloor\frac{m-2}{2}\right\rfloor$ and $4 x_{6, m}=4(2 m+4)=8 m+8$, which means that $\operatorname{val}\left(P_{n}, C_{m}, u_{[8}^{\prime}\right)=8 m+8<9 m+$ $1+\left\lfloor\frac{m-2}{2}\right\rfloor=\operatorname{val}\left(P_{n}, C_{m}, u_{7}^{\prime}\right)$ for $m \geq 6$. The result for $G^{1} \simeq C_{n}$ and $G^{2} \simeq C_{m}$ is consequence of the fact that $\operatorname{val}\left(C_{n}, C_{m}, u_{7}\right) \geq \operatorname{val}\left(P_{n}, C_{m}, u_{7}\right)$ is true due Corollary 4.4. It remains to consider $G^{1} \in\left\{C_{n}, P_{n}\right\}$ and $G^{2} \simeq P_{m}$. Now, it suffices to observe that $\operatorname{val}\left(G^{1}, P_{m}, u(2)=\right.$ $10 m-5<\operatorname{val}\left(G^{1}, P_{m}, u_{7}^{\prime}\right)=10 m-2$ for every $m \geq 4$.
(iii) Suppose that the minimum one is achieved by ([pp]5,[$\left[q^{\prime}\right] 6$) for $p^{\prime}<p$ and $q^{\prime}<q^{\prime \prime}$. (We consider p maximum and $q^{\prime \prime}$ maximum). This means that we can change either ([6]5) for ([5]6) or vice-versa obtaining a smaller GDA, a contradiction.

Theorems 4.7 and 4.11 lead to a constant-time algorithm for computing $\gamma_{a}\left(G^{1} \circ G^{2}\right)$ for $G^{1} \in\left\{C_{n}, P_{n}\right\}, G^{2} \in\left\{C_{m}, P_{m}\right\}, n \geq 8$ and $m \geq 3$. It consists in computing at most four values and choosing the minimum one. In the next section, we show that functions $f_{k, n}$ have an homogeneous behavior, which allows one to characterize, for each pair $\{n, m\}$, which function gives the global defensive alliance number of $G^{1} \circ G^{2}$.

5 Deepening the results

It is easy to verify that if $n \geq 8$ is such that $f_{i, n}$ and $f_{i+1, n}$ are defined, then there is an integer m_{0} such that $\operatorname{val}\left(G^{1}, G^{2}, f_{i, n}\right) \geq \operatorname{val}\left(G^{1}, G^{2}, f_{i, n}\right)$ for $G^{2} \in\left\{C_{m}, P_{m}\right\}$ and $m \geq m_{0}$. The minimum m_{0} with this property is the threshold between $f_{i, n}$ and $f_{i+1, n}$ and will be denoted by $t_{n, i}$. If one of the functions is not defined or if $\operatorname{val}\left(G^{1}, G^{2}, f_{i, n}\right)=\operatorname{val}\left(G^{1}, G^{2}, f_{i, n}\right)$ for every m that both functions are defined, we will say that $t_{n, i}$ is undefined.

Proposition 5.1 If $t_{n, 2}$ is defined for n, then $t_{n, 2}^{C C}=t_{n, 2}^{P C}=13$ and $t_{n, 2}^{C P}=t_{n, 2}^{P P}=8$.

Proof. Let $w_{2}=([p] 5,[q] 6) \in f_{2, n}$ and $w_{3}=\left(\left[p^{\prime}\right] 5,\left[q^{\prime}\right] 6\right) \in f_{3, n}$. If $\operatorname{val}\left(G^{1}, G^{2}, w_{2}\right) \neq$ $\operatorname{val}\left(G^{1}, G^{2}, w_{3}\right)$, then $p>p^{\prime}$. Furthermore, $p=6 k+p^{\prime}$ and $q^{\prime}=5 k+q$ for $k \geq 1$.

Since $\operatorname{val}_{i}\left(k, G^{2}\right)=\operatorname{val}_{e}\left(k, G^{2}\right)$ for $G^{2} \in C_{m}$ and $k \in\{5,6\}$, we have $\operatorname{val}\left(G^{1}, G^{2}, w_{2}\right)=$ $p \times \operatorname{val}_{i}\left(5, G^{2}\right)+q \times \operatorname{val}_{i}\left(6, G^{2}\right)$ and $\operatorname{val}\left(G^{1}, G^{2}, w_{3}\right)=p^{\prime} \times \operatorname{val}_{i}\left(5, G^{2}\right)+q^{\prime} \times \operatorname{val}_{i}\left(6, G^{2}\right)$. Replacing, we have $\operatorname{val}\left(G^{1}, G^{2}, w_{2}\right)=\left(6 k+p^{\prime}\right) \operatorname{val}_{i}\left(5, G^{2}\right)+\left(q^{\prime}-5 k\right) \operatorname{val}_{i}\left(6, G^{2}\right)=6 k \times \operatorname{val}_{i}\left(5, G^{2}\right)-5 k \times$ $\operatorname{val}_{i}\left(6, G^{2}\right)+\operatorname{val}\left(G^{1}, G^{2}, w_{3}\right)$.

For $G^{2} \simeq C_{m}$, we have $\operatorname{val}\left(G^{1}, C_{m}, w_{2}\right)=6 k(2 m-1)-5 k(2 m+4)+\operatorname{val}\left(G^{1}, C_{m}, w_{3}\right)=$ $k(2 m-26)+\operatorname{val}\left(G^{1}, C_{m}, w_{3}\right)$, which meanst that $t_{n, 2}^{P C}=t_{n, 2}^{C C}=13$.

For $G^{2} \simeq P_{m}$, we have $\operatorname{val}\left(G^{1}, P_{m}, w_{2}\right)=6 k(2 m-1)-5 k(2 m+2)+\operatorname{val}\left(G^{1}, P_{m}, w_{3}\right)=$ $k(2 m-16)+\operatorname{val}\left(G^{1}, P_{m}, w_{3}\right)$, which meanst that $t_{n, 2}^{P P}=t_{n, 2}^{C P}=8$.

Proposition 5.2 For every n and $m \geq 4, t_{n, 1}$ is given in Table 11 .

$n \bmod 5$	$t_{n, 1}^{P C}$	$t_{n, 1}^{C C}$	$t_{n, 1}^{P P}$	$t_{n, 1}^{C P}$
0	13	13	8	8
1	$*$	$*$	$*$	$*$
2	8	6	5	4
3	9	8	7	5
$4, n \neq 19$	11	11	7	7
$n=19$	9	$*$	5	$*$

Table 11: $t_{n, 1}$.
Proof. Case $1\left(n \equiv 1 \bmod 5, f_{1, n}=f_{2, n}\right)$
Case $2\left(n \equiv 2 \bmod 5, f_{1, n}=(2,[p] 5)\right.$, and $\left.f_{2, n}=([p-2] 5,[2] 6)\right)$
For $P_{n} \circ C_{m}$, using Corollary 2.3, $\operatorname{val}\left(P_{n}, C_{m}, f_{1, n}\right)=p x_{5, m}+x_{3, m} \geq \operatorname{val}\left(P_{n}, C_{m}, f_{2, n}\right)=$ $(p-2) x_{5, m}+2 x_{6, m}$.

$$
\begin{gathered}
2(2 m-1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 2(2 m+4) \\
5 m-2+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 4 m+8 \Rightarrow m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 10
\end{gathered}
$$

which is true for $m \geq 8$.
For $C_{n} \circ C_{m}$, using Corollary 2.3, $\operatorname{val}\left(C_{n}, C_{m}, f_{1, n}\right)=p x_{5, m}+x_{4, m} \geq \operatorname{val}\left(C_{n}, C_{m}, f_{2, n}\right)=$ $(p-2) x_{5, m}+2 x_{6, m}$

$$
\begin{gathered}
p(2 m-1)+2 m-1 \geq(p-2)(2 m-1)+2(2 m+4) \\
3(2 m-1) \geq 2(2 m+4) \Rightarrow 6 m-3 \geq 4 m+8 \Rightarrow 2 m \geq 11
\end{gathered}
$$

that is true for $m \geq 6$.

For $P_{n} \circ P_{m}$, using Corollary [2.3, $\operatorname{val}\left(P_{n}, P_{m}, f_{1, n}\right)=p y_{5, m}+y_{3, m} \geq \operatorname{val}\left(P_{n}, P_{m}, f_{2, n}\right)=$ $(p-2) y_{5, m}+2 y_{6, m}$.

$$
\begin{gathered}
2(2 m-1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 2(2 m+2) \\
m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 6
\end{gathered}
$$

which is true for $m \geq 5$.
For $C_{n} \circ P_{m}$, using Corollary [2.3, $\operatorname{val}\left(C_{n}, P_{m}, f_{1, n}\right)=p y_{5, m}+y_{4, m} \geq \operatorname{val}\left(C_{n}, P_{m}, f_{2, n}\right)=$ $(p-2) y_{5, m}+2 y_{6, m}$.

$$
2(2 m-1)+2 m-1 \geq 2(2 m+2) \Rightarrow 2 m \geq 7
$$

which is true for $m \geq 4$.
Case $3\left(n \equiv 3 \bmod 5, f_{1, n}=(3,[p] 5)\right.$, and $\left.f_{2, n}=([p-3] 5,[3] 6)\right)$
For $P_{n} \circ C_{m}, \operatorname{val}\left(P_{n}, C_{m}, f_{1, n}\right)=p x_{5, m}+x_{3, m} \geq \operatorname{val}\left(P_{n}, C_{m}, f_{2, n}\right)=(p-3) x_{5, m}+3 x_{6, m}$.

$$
3(\max \{m+4,2 m-1\})+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\} \geq 3(2 m+4)
$$

which is true for $m \geq 9$.
For $C_{n} \circ C_{m}, \operatorname{val}\left(C_{n}, C_{m}, f_{1, n}\right)=p x_{5, m}+x_{4, m} \geq \operatorname{val}\left(C_{n}, C_{m}, f_{2, n}\right)=(p-3) x_{5, m}+3 x_{6, m}$.

$$
3(\max \{m+4,2 m-1\})+2 m-1 \geq 3(2 m+4)
$$

which is valid for $m \geq 8$.
For $P_{n} \circ P_{m}, \operatorname{val}\left(P_{n}, P_{m}, f_{1, n}\right)=p y_{5, m}+y_{3, m} \geq \operatorname{val}\left(P_{n}, P_{m}, f_{2, n}\right)=(p-3) y_{5, m}+3 y_{6, m}$.

$$
\begin{gathered}
3(2 m-1)+m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 3(2 m+2) \\
m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 9
\end{gathered}
$$

which is true for $m \geq 7$.
For $C_{n} \circ P_{m}, \operatorname{val}\left(C_{n}, P_{m}, f_{1, n}\right)=p y_{5, m}+y_{4, m} \geq \operatorname{val}\left(C_{n}, P_{m}, f_{2, n}\right)=(p-3) y_{5, m}+3 y_{6, m}$.

$$
3(2 m-1)+2 m-1 \geq 3(2 m+2)
$$

$$
2 m \geq 10
$$

which is true for $m \geq 5$.
Case $4\left(n \equiv 4 \bmod 5, n \neq 19, f_{1, n}=(4,[p] 5)\right.$, and $\left.f_{2, n}=([p-4] 5,[4] 6)\right)$
For $P_{n} \circ C_{m}$ and $C_{n} \circ C_{m}$, we have $4 x_{5, m}+x_{4, m} \geq 4 x_{6, m}$

$$
4(\max \{m+4,2 m-1\})+2 m-1 \geq 4(2 m+4)
$$

which is true for $m \geq 11$.
For $P_{n} \circ P_{m}$ and $C_{n} \circ P_{m}$, we have $4 y_{5, m}+y_{4, m} \geq 4 y_{6, m}$

$$
4(2 m-1)+2 m-1 \geq 4(2 m+2) \Rightarrow 2 m \geq 13
$$

which is true for $m \geq 7$.
Case $5\left(n \equiv 0 \bmod 5, f_{1, n}=([p] 5)\right.$, and $\left.f_{2, n}=([p-6] 5,[5] 6)\right)$
For $P_{n} \circ C_{m}$ and $C_{n} \circ C_{m}$, we have

$$
6 x_{5, m} \geq 5 x_{6, m} \Rightarrow 6(2 m-1) \geq 5(2 m+4) \Rightarrow 12 m-6 \geq 10 m+20 \Rightarrow 2 m \geq 26
$$

which is true for $m \geq 13$.
For $P_{n} \circ P_{m}$ and $C_{n} \circ P_{m}$, we have

$$
6 y_{5, m} \geq 5 y_{6, m} \Rightarrow 6(2 m-1) \geq 5(2 m+2) \Rightarrow 12 m-6 \geq 10 m+10
$$

which is true for $m \geq 8$.
Case $6\left(n=19, f_{1, n}=(4,[3] 5)\right.$, and $\left.f_{2, n}=(3,[2] 5,6)\right)$
For $P_{n} \circ C_{m}$,

$$
\begin{gathered}
3(\max \{m+4,2 m-1\})+2 m-1 \geq 2(2 m-1)+2 m+4+m+\left\lfloor\frac{m-2}{2}\right\rfloor \\
8 m-4 \geq 7 m+2+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m \geq 6+\left\lfloor\frac{m-2}{2}\right\rfloor
\end{gathered}
$$

that is true for $m \geq 9$.
For $C_{n} \circ C_{m}, \operatorname{val}\left(C_{n}, C_{m}, f_{1, n}\right)=3 x_{5, m}+x_{4, m} \geq \operatorname{val}\left(C_{n}, C_{m}, f_{2, n}\right)=2 x_{5, m}+x_{6, m}+x_{4, m}$.

$$
\max \{m+4,2 m-1\} \geq 2 m+4
$$

since there is no m satisfying the above inequality, $t_{19,1}^{C P}$ is not defined.
For $P_{n} \circ P_{m}$,

$$
\begin{gathered}
3(2 m-1)+2 m-1 \geq 2(2 m-1)+2 m+2+m+\left\lfloor\frac{m-2}{2}\right\rfloor \\
8 m-4 \geq 7 m+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m-\left\lfloor\frac{m-2}{2}\right\rfloor \geq 4
\end{gathered}
$$

that is true for $m \geq 5$.
For $C_{n} \circ P_{m}$,

$$
3(2 m-1)+2 m-1 \geq 2(2 m-1)+2 m+2+2 m-1
$$

$$
8 m-4 \geq 8 m-1
$$

since there is no m satisfying the above inequality, $t_{19,1}^{C C}$ is not defined.

Proposition 5.3 For $n \geq 8$ and $m \geq 4, t_{n, 3}$ is given in Table 12 .

$n \bmod 6$	$t_{n, 3}^{P C}$	$t_{n, 3}^{C C}$	$t_{n, 3}^{P P}$	$t_{n, 3}^{C P}$
0	$*$	$*$	$*$	$*$
1	18	18	11	11
2		19	$*$	6
$*$				
3	19	$*$	6	$*$
4		$*$	$*$	$*$
5		$*$	$*$	$*$

Table 12: $t_{n, 3}$.

Proof. Case $1\left(n \equiv 1 \bmod 6, f_{3, n}=([5] 5,[q-4] 6)\right.$, and $\left.f_{4, n}=([q-1] 6,7)\right)$
For $P_{n} \circ C_{m}$ and $C_{n} \circ C_{m}, 5 x_{5, m} \geq 3 x_{6, m}+x_{7, m}$.

$$
5(\max \{m+4,2 m-1\}) \geq 3(2 m+4)+3 m+1
$$

From, $10 m-5 \geq 9 m+13$, we have that $t_{n, 3}=18$.
For $P_{n} \circ P_{m}$ and $C_{n} \circ P_{m}$, we can write $5 y_{5, m} \geq 3 y_{6, m}+y_{7, m}$. Thus

$$
5(2 m-1) \geq 3(2 m+2)+3 m
$$

From, $10 m-5 \geq 9 m+6$, we have that $t_{n, 3}=11$.
Case $2\left(n \equiv 2 \bmod 6, f_{3, n}=([4] 5,[q-3] 6)\right.$, and $\left.f_{4, n}=(3,5,[q-1] 6)\right)$
For $P_{n} \circ C_{m}$, we have $4 x_{5, m} \geq 2 x_{6, m}+x_{5, m}+x_{3, m}$.
$3(\max \{m+4,2 m-1\}) \geq 2(2 m+4)+m+\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$. Thus

$$
6 m-3 \geq 5 m+8+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m \geq 11+\left\lfloor\frac{m-2}{2}\right\rfloor
$$

is true for $m \geq 19$.
For $C_{n} \circ C_{m}$, we have $4 x_{5, m} \geq 2 x_{6, m}+x_{5, m}+x_{4, m}$.
Since there is no positive m satisfying $3(2 m-1) \geq 2 m-1+2 m-1, t_{n, 3}$ is undefined for this case.

For $P_{n} \circ P_{m}$, we have $4 y_{5, m} \geq 2 y_{6, m}+y_{5, m}+y_{3, m}$.
$3(2 m-1) \geq 2(2 m+2)+m+\left\lfloor\frac{m-2}{2}\right\rfloor$. Then

$$
6 m-3 \geq 5 m+4+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m \geq 7+\left\lfloor\frac{m-2}{2}\right\rfloor
$$

is true for $m \geq 6$.
For $C_{n} \circ P_{m}$, we have $4 y_{5, m} \geq 2 y_{6, m}+y_{5, m}+y_{4, m}$.
$3(2 m-1) \geq 2(2 m+2)+2 m-1$. Since $6 m-3 \geq 6 m+3$ is not true for any positive m, $t_{n, 3}$ is undefined for this case.

Case $3\left(n \equiv 3 \bmod 6, f_{3, n}=([3] 5,[q-2] 6)\right.$, and $\left.f_{4, n}=(3,[q] 6)\right)$
For $P_{n} \circ C_{m}$, one has $3 x_{5, m} \geq 2 x_{6, m}+x_{3, m} \Rightarrow 3(\max \{m+4,2 m-1\}) \geq 2(2 m+4)+m+$ $\max \left\{2,\left\lfloor\frac{m-2}{2}\right\rfloor\right\}$

$$
6 m-3 \geq 4 m+8+m+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m \geq 11+\left\lfloor\frac{m-2}{2}\right\rfloor
$$

that is true for $m \geq 19$.
For $C_{n} \circ C_{m}$, one has $3 x_{5, m} \geq 2 x_{6, m}+x_{4} \Rightarrow 3(\max \{m+4,2 m-1\}) \geq 2(2 m+4)+2 m-1$. From $6 m-3 \geq 6 m+7$, we conclude that $t_{n, 3}$ is undefined for this case.

For $P_{n} \circ P_{m}$, one has $3 y_{5, m} \geq 2 y_{6, m}+y_{3, m} \Rightarrow 3(2 m-1) \geq 2(2 m+2)+m+\left\lfloor\frac{m-2}{2}\right\rfloor$.

$$
6 m-3 \geq 5 m+4+\left\lfloor\frac{m-2}{2}\right\rfloor \Rightarrow m+\left\lfloor\frac{m-2}{2}\right\rfloor \geq 7
$$

which is true for $m \geq 6$.
For $C_{n} \circ P_{m}$, one has $3 y_{5, m} \geq 2 y_{6, m}+y_{4, m} \Rightarrow 3(2 m-1) \geq 2(2 m+2)+2 m-1$.
Since $6 m-3 \geq 6 m+3$ is not true for any positive $m, t_{n, 3}$ is undefined for this case.
Case $4\left(n \equiv 4 \bmod 6, f_{3, n}=([2] 5,[q-1] 6)\right.$, and $\left.f_{4, n}=([2] 5,[q-1] 6)\right)$
Since $f_{n, 3}=f_{n, 4}, t_{n, 3}$ is undefined for this case.
Case $5\left(n \equiv 5 \bmod 6, f_{3, n}=(5,[q] 6)\right.$, and $\left.f_{4, n}=(5,[q] 6)\right)$
Since $f_{n, 3}=f_{n, 4}, t_{n, 3}$ is undefined for this case.
Case $6\left(n \equiv 0 \bmod 6, f_{3, n}=([q] 6)\right.$, and $\left.f_{4, n}=([q] 6)\right)$.
Since $f_{n, 3}=f_{n, 4}, t_{n, 3}$ is undefined for this case.

Corollary 5.4 For $n \geq 8, m \geq 4, G^{1} \in\left\{C_{n}, P_{n}\right\}$, and $G^{2} \in\left\{C_{m}, P_{m}\right\}$, it holds

$$
\gamma_{a}\left(G^{1} \circ G^{2}\right)= \begin{cases}\operatorname{val}\left(G^{1}, G^{2}, f_{1, n}\right) & , \text { if } m<\min \left\{t_{n, 1}, t_{n, 2}\right\} \\ \operatorname{val}\left(G^{1}, G^{2}, f_{2, n}\right) & , \text { if } t_{n, 1} \text { is defined and } t_{n, 1} \leq m \leq t_{n, 2} \\ \operatorname{val}\left(G^{1}, G^{2}, f_{3, n}\right) & , \text { if } t_{n, 3} \text { is defined and } t_{n, 2} \leq m<t_{n, 3} \\ \operatorname{val}\left(G^{1}, G^{2}, f_{4, n}\right) & , \text { if } m \geq \max \left\{t_{n, 3}, t_{n, 2}\right\}\end{cases}
$$

Proof. For $m \geq 4$, the result is consequence of Theorem 4.11 and Propositions 5.1 to 5.3 ,

6 Conclusion

One can determining the global defensive alliance number of a graph $F=G^{1} \circ G^{2}$ for $G^{1} \in$ $\left\{C_{n}, P_{n}\right\}$ and $G^{2} \in\left\{C_{m}, P_{m}\right\}$ within a constant number of arithmetic operations.

For $n \leq 7$, the answer is obtained directly from Tables 1 to 4 For instance, $\gamma_{a}\left(P_{5} \circ C_{3}\right)=7$ due Proposition 4.1 and $\gamma_{a}\left(C_{5} \circ P_{3}\right)=5$ due Proposition 4.2.

For $n \geq 8$, consider as an example $P_{20} \circ C_{15}$. Since $t_{2,3}^{P C}=13$ (Proposition 5.1) and $t_{2,3}^{P C}=19$ (Proposition 5.3), Corollary 5.4, implies that $\gamma_{a}\left(P_{20} \circ C_{15}\right)=f_{3,20}=\operatorname{val}\left(P_{n}, C_{15},([4] 5)\right)=$ $4 x_{5,15}=116$. As another example, consider the graph $C_{20} \circ P_{15}$. Since $t_{2,3}^{C P}=8$ (Proposition 5.1) and $t_{2,3}^{C P}$ is undefined (Proposition 5.3), Corollary [5.4, implies that $\gamma_{a}\left(C_{20} \circ P_{15}\right)=f_{4,20}=$ $\operatorname{val}\left(C_{n}, P_{15},(3,5,[2] 6)\right)=y_{4,15}+y_{5,15}+2 y_{6,15}=29+29+2 * 32=122$.

For concluding, we remark that the four examples presented in this section show that the only relation not contained in Corollary 4.4 indeed cannot be stablished because $\gamma_{a}\left(P_{5} \circ C_{3}\right)=$ $7>5=\gamma_{a}\left(C_{5} \circ P_{3}\right)$ and $\gamma_{a}\left(P_{20} \circ C_{15}\right)=116<122=\gamma_{a}\left(C_{20} \circ P_{15}\right)$.

References

[1] S. Bermudo, J. A. Rodríguez-Velázquez, J. M. Sigarreta, and I. G. Yero. On global offensive k-alliances in graphs. Applied Mathematics Letters, 2010.
[2] R. C. Brigham, R. D. Dutton, and S. T. Hedetniemi. A sharp lower bound on the powerful alliance number of $c_{m} \times c_{n}$. Congressus Numer- antium, 167:57-63, 2004.
[3] R. C. Brigham, R. D. Dutton, and S. T. Hedetniemi. Powerful alliance in graphs. Discrete Mathematics, 309(8):2140-2147, 2009.
[4] Aurel Cami, Hemant Balakrishnan, Narsingh Deo, and Ronald D. Dut- ton. On the complexity of finding optimal global alliances. JCMCC. The Journal of Combinatorial Mathematics and Combinatorial Computing, 58(4):23-31, 2006.
[5] Chan-Wei Chang, Ma-Lian Chia, Cheng-Ju Hsu, David Kuo, Li-Ling Lai, and Fu-Hsing Wang. Global defensive alliances of trees and carte- sian product of paths and cycles. Discrete Applied Mathematics, 160(4-5):479-487, March 2012.
[6] MC Dourado, LD Penso, D Rautenbach, and JL Szwarcfiter. The south zone: distributed algorithms for alliances. In Stabilization, Safety, and Security of Distributed Systems, pages 178-192. Springer, 2011.
[7] O. Favaron, G. Fricke, W. Goddard, S. M. Hedetniemi, S. T. Hedet- niemi, P. Kristiansen, R. C. Laskar, and R. D. Skaggs. Offensive al- liances in graphs. Discussiones Mathematicae Graph Theory, 24(2):263-275, 2004.
[8] P. Kristiansen and S. M. Hedetniemi and S. T. Hedetniemi, Alliances in graphs, JCMCC The Journal of Combinatorial Mathematics and Combinatorial Computing, 48 (2004), 157-177.
[9] T.W. Haynes, S.T. Hedetniemi, M.A. Henning, Global defensive alliances in graphs, Electron. J. Combin. 10 (2003) R47.
[10] Henning Fernau and Juan A. Rodr'iguez-Velázquez. A survey on alliances and related parameters in graphs. Eletronic Journal of Graph Theory and Applications, 2(1):70-86, 2014.
[11] Henning Fernau, Juan A. Rodríguez-Velázquez, and José M. Sigarreta. Offensive r-alliances in graphs. Discrete Applied Mathematics, 157(1):177-182, 2008.
[12] J. A. Rodríguez-Velázquez and J. M. Sigarreta. Global offensive al- liances in graphs. Discrete Mathematics, 25:157-164, 2006.
[13] J.A. Rodríguez-Velázquez and J. M. Sigarreta. Global defensive k-alliances in graphs. Discrete Applied Mathematics, 157:211-218, 2009.
[14] J. A. Rodríguez-Velázquez and J. M. Sigarreta. Defensive k-alliances in graphs. Applied Mathematics, 22:96-100, 2009.
[15] K. H. Shafique and R. D. Dutton. On satisfactory partitioning of graphs. Congressus Numeratium, 154:183-194, 2002.
[16] K. H. Shafique and R. D. Dutton. Maximum alliance-free and minimum alliance-cover sets. Congressus Numeratium, 162:139-146, 2003.
[17] K. H. Shafique and R. D. Dutton. A tight bound on the cardinalities of maximum alliancefree and minimum alliance-cover sets. JCMCC. The Journal of Combinatorial Mathematics and Combinatorial Computing, 56:139-145, 2006.
[18] J. M. Sigarreta and J. A. Rodríguez-Velázquez. On the global offensive alliance number of a graph. Discrete Applied Mathematics, 157(2):219-226, 2009.
[19] J. M. Sigarreta, I. G. Yero, S. Bermudo, and J. A. Rodríguez-Velázquez. Partitioning a graph into offensive k-alliances. Discrete Applied Mathematics, 159(4):224-231, 2011.
[20] I. G. Yero, S. Bermudo, J. A. Rodríguez-Velázquez, and J. M. Sigarreta. Partitioning a graph into defensive k-alliances. Acta Mathematica Sinica, 27(1):73-82, 2011.
[21] I. G. Yero and J. A. Rodríguez-Velázquez. Boundary defensive k- alliances in graphs. Discrete Applied Mathematics, 158:1205-1211, 2010.
[22] I. G. Yero and J. A. Rodríguez-Velázquez. Partitioning a graph into global powerful kalliances. Graphs and Combinatorics, 28:575-583, 2012.
[23] Ismael G. Yero and Juan A. Rodríguez-Velázquez. Defensive alliances in graphs: a survey. arXiv:1308.2096 [math.CO], 2013.
[24] I. G. Yero and J. A. Rodríguez-Velázquez. Computing global offensive alliances in cartesian product graphs. Discrete Applied Mathematics, 161:284-293, 2013.

[^0]: *E-mail: rommel@inf.ufg.br
 ${ }^{\dagger}$ Partially suported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil). Email: mitre@dcc.ufrj.br
 ${ }^{\ddagger}$ Partially suported by Fundação de Amparo à Pesquisa do Estado de Goiás (FAPEG, Brazil). E-mail: leila.roling@ifgoiano.edu.br

