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Abstract

Several domination results have been obtained for maximal outerplanar graphs (mops).
The classical domination problem is to minimize the size of a set S of vertices of an
n-vertex graph G such that G — N[S], the graph obtained by deleting the closed neigh-
borhood of S, is null. A classical result of Chvatal is that the minimum size is at most
n/3 if G is a mop. Here we consider a modification by allowing G — N[S] to have isolated
vertices and isolated edges only. Let 11 (G) denote the size of a smallest set S for which
this is achieved. We show that if G is a mop on n > 5 vertices, then ¢1(G) < n/5. We
also show that if no is the number of vertices of degree 2, then ¢1(G) < % if ng < %,
and ¢1(G) < %572 otherwise. We show that these bounds are best possible.
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1 Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). We denote the degree of
v in G by dg(v). The open neighborhood Ng(v) of a vertex v of G is the set of neighbors
of v, that is, Ng(v) = {u € V(G): wv € E(G)}. The closed neighborhood of v is Ng[v] =
Ng(v) U{v}. The neighborhood of a subset S of V(G) is the set Ng(S) = UyesNg(v). The
closed neighborhood of a subset S of V(G) is the set Ng[S] = Ng(S)US. For S C V(G), the

*Research supported in part by Skill Development Grant 2018, King Mongkut’s University of Technology
Thonburi.


http://arxiv.org/abs/1903.12292v1

subgraph of G induced by S is denoted by G[S]. The subgraph obtained from G by deleting
all vertices in S (and all edges incident to vertices in S) is denoted by G — S.

A subset S of V(G) is a dominating set of G if each vertex in V(G) \ S is adjacent to at
least one vertex in S. The domination number of G is the size of a smallest dominating set
of G and is denoted by v(G). Given a graph H, a subset S of V(G) is an H-isolating set of
G if G — Ng[S] does not contain a copy of H. Obviously, S is a dominating set if H = Kj.
The H -isolation number of G is the size of a smallest H-isolating set of G and is denoted
by «(G,H). If H = Kj j41 for some k > 0, then we may abbreviate +(G, H) to t;(G). The
study of isolating sets is an appealing and natural direction in domination theory that was
introduced recently by Caro and Hansberg [].

A triangulated disc is a simple planar graph whose interior faces are triangles. A mazimal
outerplanar graph is a triangulated disc whose exterior face (the unbounded face) contains
all vertices. Hence, a maximal outerplanar graph can be embedded in the plane such that
all vertices lie on the boundary of the exterior face and all interior faces are triangles. We
abbreviate the term maximal outerplanar graph to mop. O’Rourke [14] pointed out that
every mop has a unique Hamiltonian cycle. Thus, the Hamiltonian cycle of a mop is the
boundary of the mop. This paper’s notation and terminology on mops follows that of [10];
in particular, an edge belonging to the Hamiltonian cycle of a mop is called a Hamiltonian
edge, while any other edge of the mop is called a diagonal. A fan of order n > 3, denoted
F,, is the mop obtained from a path P,_; by adding a new vertex v and joining it to every
vertex of the path. We say that v is the center of F,.

Domination in mops has been extensively studied since 1975. In the classical paper [3],
Chvatal essentially proved that the domination number of an n-vertex mop is at most n/3.
Other proofs were obtained by Fish [7] and by Matheson and Tarjan [I12]. Caro and Hans-
berg [1] proved that the K j-isolation number of a mop of order n > 4 is at most n/4.

Theorem 1 If G is a mop of order n, then the following hold:
(a) BITI2] If n > 3, then v(G) < 5.
(b) [ If n > 4, then 1o(G) < %.

For results on other types of domination in mops, we refer the reader to [1,12,4H6,[8915].

Consider any n-vertex mop G. Theorem [Il(a) tells us that there exists some S C V(G)
such that |S| < n/3 and G — Ng[S] is null. Theorem [Ib) tells us that there exists some
S C V(G) such that |S| < n/4 and G — Ng[S] has isolated vertices only. In this paper, we
establish sharp upper bounds on the size of a smallest subset S of V(G) such that G — Ng[S]
has isolated vertices and isolated edges only, that is, the edges of G — N¢[S] form a matching
(that is, they are pairwise disjoint). The bounds are detailed in the following two theorems
and the proofs are given in Section 2

Theorem 2 If G is a mop of order n > 5, then

Ll(G) S
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Theorem 3 If G is a mop of order n > 5 with no vertices of degree 2, then

nE2 ifny < 2,
1 (G) <
otherwise.

The bounds in Theorems 2 and [ are sharp. For example, let F, F2,... F! be t > 2
vertex disjoint fans of order 5. From each Fg, we choose a vertex of degree 2 and its neighbor
of degree 3. Then, we join these 2t vertices by edges to form a mop. The resulting graph Gy
is a mop of order n = 5t with ny = t vertices of degree 2. An example of the graph G; with
t = 4 is illustrated in Figure 1.

Figure 1 : The mop G4, which satisfies ¢t1(G4) =n/5 =20/5 =4
and 11(Gs) = (n+mn2)/6 = (204+4)/6 = 4.

Clearly, for a K o-isolating set S of Gt, we have |S NV (FY)| > 1 because Gy — Ng,[S] does
not contain Kj . Thus, ¢;(Gy) > t. However, Gj has a K o-isolating set containing the
vertex of degree 4 of each FY. Consequently, 11(Gt) =t = (5t)/5 = n/5 and 11(Gy) =t =
(5t +1)/6 = (n + n2)/6.

Figure 2 : The mop Hy, which satisfies ¢1(Hs) = (n —n2)/3 = (20 — 8)/3 = 4.

To see the sharpness of the bound ¢1(G) < "2, we first let Fl F2 ... F! bet > 2 fans

of order 5. We choose the two vertices of degree 3 from each FY. Then we join these 2t




vertices by edges to form a mop. The resulting graph H; is a mop of order n = 5¢ with
ny = 2t vertices of degree 2. An example of the graph H; with ¢t = 4 is illustrated in Figure
2. Clearly, for a K o-isolating set S of H;, we have |S NV (FY)| > 1 because Hy — N, [9]
does not contain K. Thus, ¢1(H;) > t. However, H; has a K »-isolating set containing the
vertex of degree 4 of each Fi. Consequently, t1(H;) =t = (5t — 2t)/3 = (n — na)/3.

We conclude this section by comparing the bound n/5 with (n+n2)/6 and (n —nsy)/3. We
see that n/5 < (n + ng2)/6 when n/5 < ny. Moreover, n/5 < (n — n2)/3 when ny < 2n/5.
Thus, the bound in Theorem [2is better than that in Theorem [B when n/5 < ny < 2n/5. We
will show that the bound n/5 is sharp when n/5 < ng < 2n/5. Let Fy, F; and F3 be vertex-
disjoint fans of order 5 such that V(Fy) = {xo,z1,...,24},V(F2) = {y0,v1,...,y4} and
V(F3) = {20,21,-..,24}, where g, y0, 20 are the centers of the fans and x1, x4, y1,y4, 21, 24
are the vertices of degree 2 of the fans. Let Ai5 be the graph obtained by taking the union
of F1, Fy, F5 and a mop that has {z1, 22,2, x3,y2,y3} as its vertex set and has z1z9, xox3
and yoy3 among its Hamiltonian edges. Clearly, A15 is a mop of order 15 with 5 vertices of
degree 2. This graph is illustrated in Figure 3. Then, we let A%5,A%5, ..., Al be t vertex-
disjoint copies of Ay5. The graph B; is constructed by taking the union of Ai,, A% ... A,
and a mop that has {xé,yé,x%,yg, . ,a:g,yg} as its vertex set and has xéy%,x%yg, ... ,azgyg
among its Hamiltonian edges. Clearly, B; is a mop of order n = 15¢ with no = 5t vertices of
degree 2. Thus, n/5 < ng = 5n/15 < 2n/5. Clearly, each K o-isolating set of B; needs at
least one vertex from each fan F]’ Thus, ¢(B;) > 3t. Moreover, {z}: 1 <i<t}U{yi: 1<
i <tyU{z}: 1 <i<t}isa Kj-isolating set of B. Thus, ¢;(B;) = 3t = n/5.
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Figure 3 : The mop Ajs.



2 Proofs of the upper bounds

In this section, we prove Theorems 2] and Bl We apply results of O’Rourke [I3] in computa-
tional geometry that were used in a new proof by Lemanska, Zuazua and Zylinski [I0] of an
upper bound by Dorfling, Hattingh and Jonck [5] on the size of a total dominating set (a set
S of vertices such that each vertex of the graph is adjacent to a vertex in S) of a mop. Before
stating these results, we make a related straightforward observation that we will also use.

Given three mops G, G; and G9, we say that a diagonal d of G partitions G into G and
Gs if G is the union of G; and Go, V(G1) NV (G2) = d and E(G1) N E(G2) = {d}.

Lemma 1 If d is a diagonal of a mop G, then d partitions G into two mops G1 and Gs.

Proof. Let z1x2...x,x1 be the Hamiltonian cycle C' of G. We may assume that d = z1z;
for some ¢ € {2,3,...,n}. Let Cy be the cycle z1z5...x;x1 of G, and let Cy be the cycle
T1TTit1 - .- Tpry. For each i € {1,2}, let G; be the subgraph of G induced by V(C;). Then,
V(G1) NV (Ge2) = d and E(G1) N E(G2) = {d}. Each face of G; is a face of G in the interior
of C; and hence a triangle; thus, G; is a mop. Since G is a mop and ziz; is a diagonal of
G, G has no edge with one vertex in V(C1)\{z1,x;} and the other vertex in V(Ca)\{x1, z;}.
Thus, E(G) = E(G1) U E(G3). O

The next lemma was proved by Chvétal in [3] and is restated in [I4, Lemma 1.1], and the
lemma following it is an extension by O’Rourke [13] that has a central role in our proofs.

Lemma 2 ( [3]) If G is a mop of order n > 8, then G has a diagonal d that partitions it
into two mops G1 and Go such that G1 has exactly 4, 5 or 6 Hamiltonian edges of G.

Lemma 3 ( [13]) If G is a mop of order n > 10, then G has a diagonal d that partitions it
into two mops G1 and G such that Gy has exactly 5, 6, 7 or 8 Hamiltonian edges of G.

For a graph G and an edge uv of G, the edge contraction of G along wuv is the graph
obtained from G by deleting u and v (and all incident edges), adding a new vertex x, and
making x adjacent to the vertices in Ng({u,v}) \ {u,v} only. Recall that every mop can be
embedded in a plane so that the exterior face contains all vertices. By looking at polygon
corners as vertices, we have that a mop is a triangulation of a simple polygon, meaning that
its boundary is the polygon and its interior faces are triangles.

Lemma 4 ( [13]) If G is a triangulation of a simple polygon P, e is a Hamiltonian edge of
G, and G’ is the edge contraction of G along e, then G’ is a triangulation of some simple
polygon P'.

If G is a graph and I C V(G) such that uv ¢ E(G) for every u,v € I, then I is called an
independent set of G.

For the proof of Theorem [, we establish the following result about vertices of degree 2.



Lemma 5 If G is a mop of order n > 4, then the set of vertices of G of degree 2 is an
independent set of G of size at most 5.

Proof. Let V5 be the set of vertices of G of degree 2. Let zgxi...x,_129 be the unique
Hamiltonian cycle of G and hence the boundary of the exterior face of G. For each ¢ €
{0,1,...,n — 1}, the vertices ;1 mod n and Z; 41 mod » are neighbours of x;.

Suppose x;, x; € Vo such that z;2; € E(G). For each £ € {—1,0,1,2}, let ¥y = T4 mod n-
Since n > 4, the vertices y_1, y0, Y1, y2 are distinct. Since yo = x; € Vi, we have Ng(yo) =
{y—1,91}, so xj is y—1 or y;. We may assume that x; = y;. Since x; € Vi, we obtain

Ne(y1) = {yo,y2}. Together with Ne(yo) = {y—1,v1}, this gives us that the path y_1y0y192
lies on an interior face of G, which contradicts the assumption that G is a mop.

Therefore, V5 is an independent set of G. Thus, each edge of G contains at most one vertex
in V5. Let H be the set of Hamiltonian edges. For any v € V5 and e € H, let x(v,e) =1 ife
contains v, and let x(v, e) = 0 otherwise. By the above, > . x(v,e) <1 for each e € H. If
x; € V3, then the edges containing ; are ;1 mod n®i aNd 341 mod ns S0 Y e pr X(Ti,€) = 2.

We have
2|Va| = 22: Z Zx(v,e)zz Zx(v,e)§ len,

vEVS veVo eeH ecH veVsy eeH
and hence |Va| < n/2. O

The next lemma lists other facts about vertices of degree 2, which we shall also use.

Lemma 6 If G is a mop of order n > 3, then the following hold:

(a) Each vertex of G is of degree at least 2.

(b) G has at least 2 vertices of degree 2.

(¢) G — v is a mop for any vertex v of G of degree 2.

(d) A graph H is a mop if G = H —w for some w € V(H) such that dg(w) =2 and Ng(w)
1s a Hamiltonian edge of G.

Proof. (a) This is immediate from the fact that G has a Hamiltonian cycle.

(b) We use induction on n. The result is trivial if n = 3. Suppose n > 4. Since G is a
mop, G has a diagonal d = xy. By Lemmal[ll G is the union of two mops G and Gs such
that V(G1) N V(G2) = d and E(G1) N E(G2) = {d}. By the induction hypothesis, for each
i € {1,2}, G; has two vertices v; 1 and v; 2 such that dg, (vi1) = dg, (vi2) = 2. By Lemma[5],
for each i € {1,2}, we cannot have dg,(z) = dg,(y) = 2, so v j, ¢ {z,y} for some j; € {1,2}.
Therefore, we have vy j, # v j,, dg(vij,) = dg, (v1;,) = 2 and dg(v25,) = dg,(v2 j,) = 2.

(c) Let v be a vertex of G of degree 2. We may label the vertices x1,xa,...,2, so that
1Ty ...Tp2y is the Hamiltonian cycle C of G and z, = v. Since dg(z,) = 2, Ng(x,) =
{z1,2,-1}. The face F having z,, 1z, and z,z7 on its boundary must also have x,_1x1
on its boundary (as all interior faces are triangles), meaning that z,_i12; € E(G). Thus,
T1%2 ..., Tp_121 18 a Hamiltonian cycle of G — v. Also, every interior face of G other than F
is a face of G — v (and a triangle). Therefore, G — v is a mop.



(d) Let zixs...x,21 be the Hamiltonian cycle C' of G. We may assume that Ng(w) =
{x1,22}. Let C! = zqwzy ... zyx1. Then, C’ is a Hamiltonian cycle of H. Let p be a plane
drawing of GG such that all vertices of G lie on the boundary C' and all interior faces are
triangles. Extend p to a plane drawing p’ of H by putting w and the edges wz1,wxs on the
exterior of p. Then, C’ is the boundary of p’. Also, the faces of p’ are the faces of p together
with the face bounded by wx, wze and 129, so all faces of p’ are triangles. Thus, H is a
mop. O

Lemmas [bl and [B(b) tell us that the number ng of vertices of degree 2 (of a mop) satisfies

: (1)

2<ny <

|3

We show in passing that both bounds are sharp. For the upper bound, we start with any
mop M with Hamiltonian cycle z1z2...zpx1, add p new vertices y1,ys,...,¥p, and add the
edges Y121, Y122, Y222, Y23, - - ., YpTp, YpZ1, and hence the resulting graph G is a mop (by
Lemma [6(d)), the vertices of G of degree 2 are y1,9y2,...,Yp, and p = LzG)' For the lower
bound, we start with a cycle C' = z122 ... zp21, set p = [n/2], and take G with V(G) = V(C)
and E(G) = E(C)U{xaxn, Tnx3, T3Tn—1, Tn_124, - . . , Lp—1Tn—p+3; Tn—p+3Tp; TpTn—pt2}, and
hence the vertices of G' of degree 2 are x1 and x41.

The next lemma settles Theorem 2 for 5 < n < 9, and hence allows us to use Lemma [3]in
the proof of Theorem [2

Lemma 7 If5 <n <9 and G is a mop of order n, then 11(G) =1 <

o3

Proof. By definition of a mop, ¢1(G) > 1.

Suppose n = 9. Let x1xs5...x9x1 be the unique Hamiltonian cycle of G and hence the
boundary of the exterior face of G. By Lemma/[2, G has a diagonal d such that G is the union
of two mops G and Gy such that V(G1) N V(Gz2) = d, E(G1) N E(G2) = {d}, and G has
exactly ¢ Hamiltonian edges of G for some ¢ € {4,5,6}. We may assume that d is the edge
12941 and that V(Gy) = {z1,xa,. .., ze41}-

Suppose £ = 4. Then, V(G2) = {x1, 25,26, 27, 28,29} Let (x1,25,2;) be the triangular
face of Gy containing the edge z125 (so j € {6,7,8,9}). Let 2’ = x5 if j = 9, and let 2’ = 24
otherwise. If 6 < j < 8, then z1,z9,x5,xj,29 € Ng[z']. If j = 9, then x1, 24,25, 76,79 €
Ng¢l2']. Clearly, each component of G — N¢[2'] contains at most two vertices. Therefore, {z'}
is a K g-isolating set of G. Hence, 11(G) =1 < n/5.

Suppose £ = 5. Then, xgx7, x728, T3x9, T9x1 are the 4 Hamiltonian edges of G that belong
to G9. Thus, this case is identical to the case ¢ = 4.

Suppose ¢ = 6. Let (x1,xj,27) be the triangular face of G containing the edge 27
(so j € {2,3,4,5,6}). Suppose j = 2. Then, xox7; € F(G). By Lemma [I zoz7 partitions
G into two mops H; and Hs such that H; has exactly 4 Hamiltonian edges of G (namely,
T7Ts, LT, Tox1,T1X2), so the result follows as in the case £ = 4. By symmetry, it suffices to
consider the cases j = 3 and j = 4; that is, the cases j = 6 and j = 5 are identical to the



cases j = 2 and j = 3, respectively. In both cases, each component of G — N¢[x;] contains
at most two vertices, so {z;} is a K s-isolating set of G.

Now suppose n = 8. Let uv be a Hamiltonian edge of G, and let H be the graph obtained
by adding a new vertex w to G and adding the edges wu and wv. By Lemma [B(d), H is
a mop of order 9, so t1(H) = 1 < n/5. Let {z} be a K s-isolating set of H. If z # w,
then {z} is a K o-isolating set of G. If x = w, then {u} is a K o-isolating set of G as
Np[w] = {u,v,w} C Ng[u]. Therefore, 11(G) =1 < n/5.

For 5 < i < 7, we obtain the result for n = i from the result for n =i+ 1 in the same way
we obtained the result for n = 8 from the result for n = 9. O

We now prove Theorems 2 and [Bl Recall the statement of Theorem [l
Theorem [2l If G is a mop of order n > 5, then 11(G) < .

Proof. We use induction on n. Lemma [7] establishes the base case n =5 (in this case, G is
a fan Fy, and its center is a K o-isolating set of G) and also the case 6 < n < 9. Suppose
n > 10. We assume that if G’ is a mop of order n’ with 5 < n’ < n, then 1 (G’) < n'/5.

Let x1x5 ... 221 be the unique Hamiltonian cycle C of G and hence the boundary of the
exterior face of G. By Lemma [B] G has a diagonal d such that G is the union of two mops
G1 and Gy such that V(Gy) NV (Gy) = d, E(G1) N E(Gy) = {d}, and G; has exactly ¢
Hamiltonian edges of G for some ¢ € {5,6,7,8}. We may assume that d is the edge x12¢11
and that V(G1) = {z1,22,...,2s11}. Note that the edges 19, zoxs, ..., xpzs11 are the ¢
Hamiltonian edges of G that belong to Gi. Let (x1,xj,x,41) be the triangular face of Gy
containing the edge z1zs41 (so j € {2,3,...,¢}).

Claim 1 If ¢ =5, then 11(G) < %.
Proof. Let G’ be the graph obtained from G by deleting the vertices 9,3, 74,75 and

contracting the edge x4 to form a new vertex y (see Figure 4). Thus, G’ is obtained from
G2 by contracting the edge z126. By Lemmall G’ is a mop.

I3 T4

T2 Ts

L6

Tp T4 T, Tp T,

Figure 4 : The edge contraction of Ga.

Let n’ be the order n —5 > 5 of G’. By the induction hypothesis, t1(G') <n'/5 =n/5—1.



Let S’ be a smallest K o-isolating set of G’. Then, |S'| = ¢1(G") < n/5 — 1. We have that
{z1,26} is a { K 2}-isolating set of G and that Ng/(y) C Ng(z1) U Ng(z6). Thus, if y € S,
then (S"\{y})U{z1, 26} is a {K; 2}-isolating set of G, and hence ¢; (G) < (|S'|—1)+2 < n/5.
Suppose y ¢ S’. Observe that [V(G1 — Ng, [z;])| < 2. Thus, G1 — Ng, [z;] does not contain
a copy of K1 2. Moreover, S"U {xz;} is a K s-isolating set of G as z; is adjacent to both x;
and xg. Therefore, 11(G) < S|+ 1 < n/5. ©)

Claim 2 [f ¢ =6, then 11(G) < %.

Proof. Let G' = Gy and n’ = |[V(G3)|. We have V(G') = V(G) \ {x2,x3, 24,25, 76}, SO
n’ =n —5 > 5. By the induction hypothesis, ¢1(G’) <n//5 =n/5 —1. Let S’ be a smallest
K o-isolating set of G'. Then, |S'| = 11(G') < n/5 — 1. Suppose j = 2. Then, zoz7 is a
diagonal of G that partitions G into two mops Hy and Hs with H; = G; — x1. Since H; has
exactly 5 Hamiltonian edges of G' (namely, xox3, 2324, 2475, 256, T627), We have 11(G) < 2
by Claim [II Now suppose j > 3. By symmetry, it suffices to consider the cases 7 = 3 and
j = 4 (see Figure 5); that is, the cases j = 6 and j = 5 are identical to the cases j = 2 and
J = 3, respectively. In both cases, the order of each component of G; — Ng, [z;] is at most 2,
so G1 — Ng, [z;] does not contain a copy of K. Since z; is adjacent to z1 and z7, S"U{x;}

is a K g-isolating set of G, and hence ¢;(G) < |S'| +1 < n/5. ©
T4 T4
T3 T5 T3 T5
To Tg X2 Te
1 T T T
Figure 5

Claim 3 If ¢ =17, then 1;(G) <

o3

Proof. Let G’ = Gy and n’ = |[V(G2)|. We have V(G') = V(G) \ {z2,x3, x4, x5, T6, 27},
son’ =n—6 > 4. Suppose j = 2. Then, xoxg is a diagonal of G that partitions G into
two mops Hi and Ho with Hy = G; — z1. Since H; has exactly 6 Hamiltonian edges of G
(namely, xox3, 2324, . . ., x78), we have 11(G) < £ by Claim 2 Similarly, if j = 3, then z3xg
is a diagonal which partitions G into two mops H; and Hs with H; = Gy — {z1,22}, and
hence the result follows by Claim [Il Now suppose j > 4. By symmetry, we may assume that
j =4 (see Figure 6, left); that is, the cases j =7, j = 6 and j = 5 are identical to the cases
j=2,75 =3 and j =4, respectively.

The order of each component of G1 — N¢, [x4] is at most 2, so G1 — N¢, [x4] does not contain
a copy of Kj9. Suppose n’ = 4. Then, n = 10 and |[V(G’)| = 4. Since z4 is adjacent to



both z1 and xg, G’ — Ng[z4] does not contain a copy of K 9. Thus, {z4} is a K o-isolating
set of G, and hence 11(G) = 1 < n/5. Now suppose n’ > 5. By the induction hypothesis,
11 (G') <n'/5 <n/5—1. Let S’ be a smallest K o-isolating set of G’. Then, since S’ U {z4}

is a K g-isolating set of G, we have ¢1(G) < |S'|+1 =41 (G') +1 < n/5. ©)
T3
Zq Ts Tq Te
T3 Te T3 xT7
T2 T T2 s
L1 8 L1 )
Figure 6

By Claims [, Pland [Bl we may assume that ¢ = 8. Similarly to the above, the cases j = 2,
j =3 and j = 4 follow by Claims [, @l and [I] respectively. Thus, we may assume that j > 5.
Also similarly to the above, by symmetry, it suffices to consider j = 5 (see Figure 6, right).

The order of each component of G; — Ng,[z5] is at most 2, so G; — Ng, [z5] does not
contain a copy of Kjo. Let G' = Gy and n' = [V(G2)|. Then, n’ =n — 7. Suppose n’ < 4.
Then, n < 11 and |V (G")| < 4. Since x5 is adjacent to both z1 and zg, G’ — Ng[z5] does not
contain a copy of Kj . Thus, {z5} is a K o-isolating set of G, and hence 11 (G) =1 < n/5.
Now suppose n’ > 5. By the induction hypothesis, 11(G’) < n'/5 < n/5 —1. Let S’ be a
smallest K o-isolating set of G'. Then, since S’ U {z5} is a K o-isolating set of G, we have
1 (G) < |9 +1=u(G)+1<n/5. 0

Recall the statement of Theorem Bl

Theorem 3Bl If G is a mop of order n > 5 with ny vertices of degree 2, then

N2 when ng < LR
Ll(G) §
"_3"2 otherwise.

Proof. We first consider ny > 5. Let V2 be the set of vertices of G' of degree 2. Let
G'=G—Vyand n' = |V(G')|. By Lemmal[dl V5 is an independent set of G, and ny < n/2.
Since n’ is an integer satisfying n’ =n—ng > n/2 > 5/2, we have n’ > 3. Since G’ is obtained
from G by deleting the vertices in V5 one by one, G’ is a mop by Lemma [6lc). Let S be a
smallest dominating set of G’. By Theorem [(a), |S| < n’/3. Since V3 is an independent set
of G, S is a K p-isolating set of G. Thus, ¢1(G) < |S| < (n —n2)/3.
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We now prove the bound for ny < %, using induction on n. We actually prove it for
n > 4. If n = 4, then we trivially have 11(G) = 1, so 1t1(G) < (n + n3)/6 by Lemma [GI(b).
By Theorem ] and Lemma [Bl(b), we have ¢1(G) < 1 < (n+ng)/6 if 5 < n < 9, and
we have 11(G) < 2 < (n+ ng)/6 if n = 10. We now consider n > 11 and assume that
11(G") < (n' + nl)/6 for any mop G’ such that |[V(G')] = n’ > 4, G’ has n}, vertices of
degree 2, and n’ + nb < n + no.

Let x1x5 ... xp21 be the unique Hamiltonian cycle C of G and hence the boundary of the
exterior face of G. By Lemma [3] G has a diagonal d such that G is the union of two mops
G1 and G such that V(G1) N V(G2) = d, E(Gy) N E(G2) = {d}, and G; has exactly ¢
Hamiltonian edges of G for some ¢ € {5,6,7,8}. We may assume that d is the edge x4
and that V(G1) = {x1,22,...,2¢11}. Note that the edges x1x9, xoxs, ..., zsxp11 are the ¢
Hamiltonian edges of G that belong to Gi. Let (x1,xj,2,41) be the triangular face of G4
containing the edge z1z,41 (so j € {2,3,...,¢}).

Claim 4 If( =5, then 11(G) < "2,

Proof. By Lemma [6la), dg,(v) > 2 for each v € V(G2). Since x; and zg are adjacent in
G2, Lemma Bl tells us that their degrees cannot be both 2. We may assume that dg,(x1) > 3.
This yields dg, (xl) +dg, (x(;) > 5.

I3 T4
T2 &5
I Te
Tn xT7
Figure 7

Claim 4.1 If dg,(z1) + da,(w6) = 5, then 11(G) < 22,

Proof. Suppose dg,(z1) + dg,(x¢) = 5. Then, dg,(z1) = 3 and dg,(z¢) = 2. We have
T1Zn, vex7 € E(C)NE(Ge). Since x1x6, z¢x7 € E(G2) and dg, (x6) = 2, Ng,(v6) = {x1, 27}
Thus, since G5 is a mop, the face having x1x¢ and zgx7 on its boundary must also have xqx7
on its boundary (as all interior faces are triangles), that is, 127 € E(G2) (see Figure 7).
Together with zyx¢, 212, € E(G2) and dg,(z1) = 3, this gives us Ng, (1) = {x¢, 27,20}
Thus, since G5 is a mop, the face having xz1x7 and z1x, on its boundary must also have x7x,,
on its boundary, that is, z7x, € F(G2) (see Figure 7). Let G' = G — {x1,x2,...,26}. Then,

11



G’ = (Gy—x¢) —x1. Since dg, (x6) = 2, G2 — 6 is a mop by Lemmal6l(c). Since dg,—zq(71) =
2, G' is a mop by Lemma [lc). Let n’ = |[V(G')| and n}, = {v € V(G'): dg(v) = 2}|. We
have n' =n —6 > 5.

By Lemma [l at most one of z7 and z, has degree 2 in G’. By Lemma [B at most
one of z1 and zg has degree 2 in Gy, and hence, by Lemma [B(b), dg, (x) = 2 for some
h € {2,3,4,5}. Since zj, € V(G1)\V(G2), da(z1) = dg, (z1). Therefore, nf, < ng, and hence
n’ +nb < n+ng—6. By the induction hypothesis, ¢1(G’) < (n’+n})/6 < (n+ng)/6—1. Let
S’ be a smallest K o-isolating set of G'. Clearly, |V (G1 — Ng, [z;])| < 2, so G1 — Ng, [z;] does
not contain a copy of K. Since z; is adjacent to both z1 and g, it follows that S’ U {z;}
is a K g-isolating set of G. Thus, we have ¢1(G) < [9'|+1=01(G')+1 < (n+n2)/6. (@

By Claim [T we may assume that dg,(21) + dg,(z¢) > 6. Let G’ be the graph obtained
from G by deleting the vertices xo, 3,4, 5 and contracting the edge z1z¢ to form a new

vertex y. Then, G’ is obtained from Gy by contracting x1x¢. Thus, G’ is a mop by Lemmaldl
Let n' = |[V(G')| and nb, = [{v € V(G'): dg'(v) = 2}|. We have n’ =n —5 > 6.

Suppose that every vertex that has degree 2 in G’ also has degree 2 in G. As in the proof
of Claim 1] dg, (xp) = 2 for some h € {2,3,4,5}, so nh, < ng—1. Thus, n'+nl < n+ny—6.
By the induction hypothesis, ¢1(G") < (n’ 4+ nf)/6 < (n + n2)/6 — 1. Let S’ be a smallest
K o-isolating set of G'. Then, |S’| < (n+ ng)/6 — 1. We can continue as in the proof of
Claim [ to obtain ¢;(G) < |S'| +1 < (n+ n2)/6.

Now suppose that G’ has a vertex z such that dg/(2) = 2 # dg(z). Then z = y or
x1,26 € Ngy(2).

Suppose z = y. As noted in the proof of Claim A1l zix,,x¢x7 € E(G2). Thus, z7,x, €
Ngr(y). Since dei(y) = 2, Nei(y) = {x7,2,}. Since dg,(z1) + dg,(x6) > 6, we obtain
Ng, (1) = {x6, 27,25} and Ng,(z6) = {x1,27,2,}. Since Ng,(x1) = {xe, 27,20}, 127 18
a diagonal of Gy3. By Lemma [I we obtain z¢z, ¢ E(G2), which contradicts Ng,(x¢) =
{xlyx'?)xn}-

Therefore, z # y. Thus, x1,z¢ € Ng,(z). For each i € {8,9,...,n — 1} with dg/(z;) = 2,
we have Ng(x;) = Ng(x;) = {xi—1,®it1}, so z # x;. Thus, z = 27 or z = x,,. By symmetry,
we may assume that z = z7. Since z7xg € E(C) N E(G2) and x1,26 € Ng,(27), Na,(z7) =
{z1, ¢, 8}. Thus, since G is a mop, the face having x127 and x7zs on its boundary must also
have x1xg on its boundary (as all interior faces are triangles), meaning that z125 € E(G2). By
Lemmalll zqxg partitions G into two mops Hy and Hs such that V(Hs) = {x1, 28,29, ..., Zn}.
Let G' = Hy, 0 = V(Hs) and nb, = |[{v € V(H3): dp,(v) = 2}|. We have n’ =n —6 > 5. By
Lemma [5, for each i € {1,2}, at most one of x; and zg has degree 2 in H;. By Lemma[6(b),
dm, (zp) = 2 for some h € V(H;)\{x1,zs}, and hence dg(x),) = 2. Therefore, nf, < ng, and
hence n'+nl, < n+ny—6. By the induction hypothesis, ¢1(G’) < (n'+n})/6 < (n+ng)/6—1.
Let S’ be a smallest K o-isolating set of G'. Let 2/ = z¢ if j = 2, and let 2’ = x; otherwise.
If 3 < j <5, then 1,x9,2j,x¢, 27,28 € N, [2]. If j = 2, then x1, 29, x5, %6, 27 € N, [2].
Since z1z¢ is a diagonal of G, we have x3, 24 ¢ Ng(xs) by Lemma [Il Therefore, S’ U {2’} is
a K o-isolating set of G. Thus, we have ¢1(G) < |5'| +1 =11(G') +1 < (n +n2)/6. @)

12



Claim 5 If { =6, then 11(G) < ™52,

Proof. As in the proof of Claim 2] we may assume that j = 3 or j = 4. In both cases, the
order of each component of G; — Ng, [z;] is at most 2, so G1 — Ng, [z;] does not contain a
copy of K15. Let G' = Ga, n' = |V(G2)| and n, = [{v € V(G2): dg,(v) = 2}|. We have
V(G') =V (G) \ {2, x3, 24, 25,26}, son =n—5> 6.

We have z12j,z;27 € E(Gq). Since 3 < j < 4, xz1x; and xjz7 are diagonals of G. By
Lemma [I zz; partitions G into two mops G1,1 and G2 with V(G11) = {z1,22,...,2;},
and x;z7 partitions G into two mops Gg;1 and Gao with V(Ga,1) = {zj,zj11,...,27}. By
Lemma [3], at most one of z1 and x; is of degree 2 in G',1, and at most one of x; and x7 is
of degree 2 in Ga,1. Thus, by Lemma B(b), dg, , (y) = 2 for some y € V(G1,1)\{z1,2;}, and
da,,(z) = 2 for some z € V(Ga,1)\{z;,z7}. We have dg(y) = dg,,(y) = 2 and dg(z) =
da,,(2) = 2. Also, y,z ¢ V(G'). Now dg(v) = dg/(v) for each v € V(G')\{x1, 27}, and, by
Lemma[6(b), at most one of z1 and x7 is of degree 2 in G'. Therefore, ny, < ng — 1.

We have n’ 4+ nl, < n+ ng — 6. By the induction hypothesis, ¢1(G’) < (n' +n})/6 = (n +
n2)/6 — 1. Let S’ be a smallest K s-isolating set of G’. Then, |S| = ¢1(G') < (n+n2)/6 — 1.
Since x; is adjacent to 1 and x7, S’ U {z;} is a K s-isolating set of G, and hence ¢1(G) <
IS/l +1 < (n+ n9)/6. @)

Claim 6 If{ =17, then 11(G) < ™52,

Proof. As in the proof of Claim[3 we may assume that j = 4. Let G’ = Gg and n/ = |V (G2)].
We have V(G') = V(G) \ {x2, x3, 24,75, 26,27}, son’ =n —6 > 5. By the same reasoning
used for Claim [ there are at least two vertices in V(G)\V(G’) of degree 2 in G, at most
one of z1 and xg is of degree 2 in G', and dg(v) = dg/(v) for each v € V(G )\{x1,zs}.
Thus, nf, < ny — 1, and hence n’ +nb < n + ng — 7. By the induction hypothesis, 1(G’) <
(' +nb)/6 < (n+n2)/6 —1. Let S’ be a smallest K o-isolating set of G’. Then, since
S"U{z4} is a K o-isolating set of G, we have ¢1(G) < || +1=0u(G)+1< (n+n2)/6. @

By Claims [, Bl and 6, we may assume that £ = 8. As in the proof of Theorem [2 for
the same case, we may assume that j = 5. Let G’ = G5 and n’ = |[V(G2)|. We have
V(G) = V(G) \ {2, x3, 4, 75,26, 27,28}, so ' = n — 7 > 4. By the same reasoning used
for Claim [B] there are at least two vertices in V(G)\V(G’) of degree 2 in G, at most one
of z1 and xg is of degree 2 in G', and dg(v) = dg/(v) for each v € V(G')\{x1,29}. Thus,
ny < ng — 1, and hence n’ + nh < n+ ny — 8. By the induction hypothesis (recall that the
first bound in the theorem is being proved for n > 4), 11(G") < (n’ +n%)/6 < (n+n32)/6 — 1.
Let S’ be a smallest K o-isolating set of G’. Then, since S" U {z5} is a K o-isolating set of
G, we have 11(G) < |5+ 1=u(G")+1 < (n+n3)/6. O
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