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Abstract. A contact B0–VPG graph is a graph for which there exists a collection
of nontrivial pairwise interiorly disjoint horizontal and vertical segments in one-to-
one correspondence with its vertex set such that two vertices are adjacent if and
only if the corresponding segments touch. It was shown in [15] that Recognition
is NP-complete for contact B0–VPG graphs. In this paper we present a minimal
forbidden induced subgraph characterisation of contact B0–VPG graphs within the
class of circular-arc graphs and provide a polynomial-time algorithm for recognising
these graphs.

1. Introduction

Intersection graphs of various types of objects have been extensively studied in the
last sixty years (see for example [30]). In [4], Asinowski et al. introduced the class of
Vertex intersection graphs of Paths on a Grid (VPG graphs for short) which consists of
those graphs whose vertices may be representated by paths on a grid in such a way that
two vertices are adjacent if and only if the corresponding paths intersect on at least
one grid-point. It is not difficult to see that the class of VPG graphs coincides with
that of string graphs [16], that is, intersection graphs of curves in the plane (see [4]).

A natural restriction which was forthwith considered consists in limiting the number
of bends (i.e. 90 degrees turns at a grid-point) that the paths may have: a graph is
a Bk-VPG graph, for some integer k ≥ 0, if one can assign a path on a grid having
at most k bends to each vertex such that two vertices are adjacent if and only if the
corresponding paths intersect on at least one grid-point. Since their introduction, Bk-
VPG graphs have received much attention (see for instance [3,4,8–11,17,19,21,22,24]).

A notion closely related to intersection graphs is that of contact graphs. Such graphs
can be seen as a special type of intersection graphs of geometrical objects in which
these objects are pairwise interiorly disjoint. Similarly to intersections graphs, contact
graphs of various types of objects have been extensively studied in the literature (see
for instance [1, 2, 12–14, 17, 25–27]). In this paper, we are interested in the contact
counterpart of VPG graphs, namely Contact graphs of Paths on a Grid (contact VPG
graphs for short, also known as CPG graphs) which are defined as follows. A graph G
is a contact VPG graph if the vertices of G can be represented by a family of nontrivial
and pairwise interiorly disjoint paths on a grid in such a way that two vertices are
adjacent in G if and only if the corresponding paths touch, that is, share a grid-point
which is an endpoint of at least one of the two paths. Note that this class is hereditary,
i.e., closed under vertex deletion. Similarly to VPG graphs, a contact Bk-VPG graph
is a contact VPG graph admitting a representation in which each path has at most k
bends. Clearly, any contact Bk-VPG graph is also a Bk-VPG graph.

In this paper, we focus solely on contact B0–VPG graphs. It was shown in [15,20] that
recognising the class of contact B0–VPG graphs is NP-complete, and the complete list
of minimal forbidden induced subgraphs for the class is not yet known. Nevertheless,
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characterisations of contact B0–VPG graphs by minimal forbidden induced subgraphs
are known when restricted to some graph classes such as chordal, P5-free, P4-tidy, tree-
cographs [6, 7]; furthermore, most of those characterisations lead to polynomial-time
recognition algorithms within the class. It is also known that every bipartite planar
graph is contact B0–VPG [14]. We here provide a characterisation of contact B0–VPG
graphs by minimal forbidden induced subgraphs within the class of circular-arc graphs,
i.e., intersection graphs of arcs of a circle [23,28] (see Section 4), and a polynomial-time
recognition algorithm for this class (see Section 5). We first give some terminology in
Section 2 and some preliminary results in Section 3.

2. Basic definitions

Let G be a finite, simple and undirected graph with vertex set V (G) and edge set
E(G). For any W ⊆ V (G), we denote by G[W ] the subgraph of G induced by W .

Let N(v) be the set of neighbours of v ∈ V (G) and N [v] = N(v) ∪ {v}. A vertex
is simplicial if its neighbours are pairwise adjacent. If H is an induced subgraph of G
and v a vertex of G, we denote by NH(v) the set N(v)∩V (H) and by G−H the graph
G[V (G)− V (H)].

Let v and w be two vertices of G. The graph G′ obtained by the contraction of v
and w has vertex set V (G)− {w} and edge set (E(G)− {wz : z ∈ N(w)}) ∪ {vz : z ∈
N(w), z 6= v}.

Let A,B ⊆ V (G). We say that A is complete to B if every vertex of A is adjacent to
every vertex of B; and A is anticomplete to B if no vertex of A is adjacent to a vertex
of B. A stable set is a set of pairwise nonadjacent vertices. A graph G is bipartite
if V (G) can be partitioned into two stable sets V1, V2; and G is complete bipartite if
V1 is complete to V2. We denote by Kr,s the complete bipartite graph with |V1| = r
and |V2| = s. The claw is the complete bipartite graph K1,3. The bipartite claw is the
graph arising by subdividing the three edges of the claw.

We denote by Kr (r ≥ 0) the complete graph on r vertices; K3 will be also called a
triangle. A clique in G is a subset of vertices which induces a complete subgraph. A
diamond, also known as K4 − e, is the graph obtained from K4 by removing exactly
one edge.

Let P be a path in G. We denote by P = v1 . . . vk the fact that V (P ) = {v1, . . . , vk}
and vi is adjacent to vi+1 for 1 ≤ i ≤ k− 1. Vertices v1 and vk are the extreme vertices
of P , while vertices in V (P )− {v1, vk} are the internal vertices of P . Similarly, let C
be a cycle in G. We denote by C = v1 . . . vk the fact that V (C) = {v1, . . . , vk} and
vi is adjacent to vi+1 for 1 ≤ i ≤ k, where indexes should be understood modulo k
(throughout the paper). An edge joining two nonconsecutive vertices of a path or a
cycle in a graph is called a chord. An induced path is a chordless path in a graph.
Likewise, an induced cycle is a chordless cycle in a graph. A hole is an induced cycle
of length at least 4. A graph is chordal if it does not contain any hole. A hole is odd
if it has an odd number of vertices, and even, otherwise.

Let G and H be two graphs. We say that G is H–free if G does not contain an
induced subgraph isomorphic to H. If H is a family of graphs, we say that G is H–free
if G is H–free for every H ∈ H.

A graph G is a circular-arc graph if it is the intersection graph of a set S of arcs on a
circle, i.e., if there exists a one-to-one correspondence between the vertices of G and the
arcs of S such that two vertices of G are adjacent if and only if the corresponding arcs
in S intersect. Circular-arc graphs can be recognised in linear time [29], and have been
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characterised recently by a family of obstacles [18]. Previously, partial characterisations
by minimal forbidden induced subgraphs were presented in [32] and [5].

3. Preliminary results

We first introduce some known families of minimal forbidden induced subgraphs for
the class of contact B0–VPG graphs.

(a) H0 (b) K5 (c) K4 − e

Figure 1. Some forbidden induced subgraphs for contact B0–VPG graphs.

Lemma 3.1. [6, 15] H0, K5 and K4 − e are not contact B0–VPG.

Let T [6] be the family of graphs containing H0 (see Figure 1) as well as all graphs
that can be partitioned into a nontrivial tree T of maximum degree at most three and
the disjoint union of triangles, in such a way that each triangle is complete to a vertex v
of T and anticomplete to T −{v}, every leaf v of T is complete to exactly two triangles,
every vertex v of degree two in T is complete to exactly one triangle, and vertices of
degree three in T have no neighbours outside T (see Figure 2).

Figure 2. An example of a graph in T .

Theorem 3.2. [6] Let G be a chordal graph. Then, G is a contact B0–VPG graph if
and only if G is {T , K5, K4 − e}–free.

Let F1 be the family of graphs in T such that the tree T is a path.

Figure 3. F1: The family of graphs in T such that the tree T is a path.

Lemma 3.3. The graphs in F1 are not contact B0–VPG.

Proof. F1 is a subfamily of T and it was shown in [6] that no graph in T is contact
B0–VPG. �
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It is easy to see that {H0} ∪ F1 is the family of graphs of T that do not contain a
bipartite claw as induced subgraph (if a graph in T contains an induced bipartite claw
then the tree T must contain a vertex of degree three, and conversely, if T contains a
vertex of degree three then the graph contains an induced bipartite claw). Since the
bipartite claw is not a circular-arc graph [32], we have the following corollary.

Corollary 3.4. Let G be a (bipartite claw)–free chordal graph. Then, G is a contact
B0–VPG graph if and only if G is {F1, H0, K5, K4 − e}–free.

The next result easily follows.

Corollary 3.5. Let G be a chordal circular-arc graph. Then, G is a contact B0–VPG
graph if and only if G is {F1, H0, K5, K4 − e}–free.

In [5], circular-arc graphs are characterised within some graph classes including,
among others, the class of diamond–free graphs. The following is a straightforward
corollary of Theorem 16 in [5].

Corollary 3.6. Let G be a diamond–free circular-arc graph that contains a hole. If
C = v1 . . . vk is a hole of G, then the vertices of G−C can be partitioned into 2k (pos-
sibly empty) pairwise anticomplete sets U1, . . . , Uk, S1, . . . , Sk such that the following
conditions hold.

• For each i = 1, . . . , k, G[Ui] is the disjoint union of cliques and for each u ∈ Ui,
NC(u) = {vi}.

• For each i = 1, . . . , k, G[Si] is a clique and for each s ∈ Si, NC(s) = {vi, vi+1}.
Remark 3.7. In this framework, G is further {K5, H0}–free if and only if |Si| ≤ 2 for
each i = 1, . . . , k, the cliques in each Ui, i = 1, . . . , k, have size at most three, the
number of triangles in each Ui, i = 1, . . . , k, is at most two, and it is at most one if
either Si−1 or Si are of size two, and zero if both Si−1 and Si are of size two.

We use the following to further simplify the structure of the graphs under consider-
ation.

Lemma 3.8. [6] Let G be a {K5, K4 − e}–free graph.1 If G is a minimal non contact
B0–VPG graph, then every simplicial vertex of G has degree exactly three.

vi

(a) Type 1

vivi±1

(b) Type 2

vivi±1

(c) Type 3

vi

(d) Type 4

Figure 4. Types of a vertex vi in a hole v1, . . . , vk.

In accordance with Corollary 3.6, Remark 3.7, and Lemma 3.8, Figure 4 illustrates
the different cases that may arise for a vertex vi in a hole v1, . . . , vk of a {K5, H0, K4−e}–
free circular-arc graph G which is minimally not contact B0–VPG.

• Type 0: Ui = Si = Si−1 = ∅.
• Type 1: Ui induces a triangle and Si = Si−1 = ∅.
• Type 2: Ui = ∅ and max{|Si|, |Si−1|} = 2.
• Type 3: Ui induces a triangle and max{|Si|, |Si−1|} = 2.
• Type 4: G[Ui] is the disjoint union of two triangles.

1In [6], the lemma is stated for chordal graphs but the proof does not use this hypothesis.
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4. Characterisation

We will call line (vertical or horizontal) a 0-bend path on the grid in a contact
B0–VPG representation of a graph G so as to avoid confusion with paths in G. In a
contact B0–VPG representation of a graph, a corner is a point of the grid that belongs
to a vertical and a horizontal line.

Lemma 4.1. The number of corners in a contact B0–VPG representation of a hole is
even.

Proof. Let us colour the vertices of the hole according to the representation: a vertex
is coloured red (resp. blue) if it is represented by a vertical (resp. horizontal) line. A
corner is then determined by two consecutive vertices of the hole that receive different
colours. Since the hole starts and ends at the same vertex, and thus, with the same
colour, the number of corners is even. �

Lemma 4.2. Let C be an odd hole. In every contact B0–VPG representation of C
there are two lines that correspond to consecutive vertices and have the same direction
(both vertical or both horizontal).

Proof. Assume the contrary. Then every pair of consecutive vertices in C determines a
corner in its contact B0–VPG representation. But the number of pairs of consecutive
vertices in an odd hole is odd, which contradicts Lemma 4.1. �

Lemma 4.3. Let G be a contact B0–VPG graph admitting a representation in which
the lines `v and `w corresponding to two adjacent vertices v and w have the same
direction. Then the graph G′ obtained by contracting v and w is also contact B0–VPG.

Proof. A representation of G′ can be obtained by combining `v and `w into a single
line. �

Corollary 4.4. Let C be an odd hole of a contact B0–VPG graph G. Then there
are two consecutive vertices of C such that their contraction yields a contact B0–VPG
graph.

As noticed in previous work [15, 20], any contact B0–VPG representation of a K4

necessarily contains a point where coincide one endpoint of each of the lines represent-
ing the four vertices. We say that this endpoint of the line is taken by the K4, which
implies in particular that it cannot be the contact point with a line corresponding to a
neighbour outside this K4. It follows that if ` is a line representing a vertex of Type 4
and `′ is a line representing one of its neighbour outside the K4s, then the contact point
of ` and `′ is an interior point of ` and an endpoint of `′; in particular, it is a corner.

Let F2 be the family of graphs that are an even hole where one of its vertices is of
Type 4 and every other vertex of the hole is of Type 1 (see Figure 5).

Lemma 4.5. The graphs in F2 are not contact B0–VPG.

Proof. Let G be a graph in F2. Let C = v1 . . . vk be an even hole of G such that v1 is
the vertex of Type 4 and v2, . . . , vk are of Type 1.

Suppose that there is a contact B0–VPG representation of G and let `1, . . . , `k be
the lines corresponding to the vertices v1, . . . , vk, respectively. Then, every `i with
2 ≤ i ≤ k, has one endpoint taken by its corresponding K4, and `1 has both endpoints
taken. It follows that `1 and `2 meet at an interior point of `1 which is an endpoint of
`2; and we conclude by induction that for any i ≥ 2, `i and `i+1 meet at an interior
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Figure 5. F2: The family of graphs that are an even hole where one of
its vertices is of Type 4 and every other vertex of the hole is of Type 1.

point of `i which is an endpoint of `i+1. We then reach a contradiction as `k and `1
should meet at an interior point of `k which is an endpoint of `1. �

Let F3 be the family of graphs that are an odd hole where every vertex of the hole
is of Type 1 (see Figure 6).

Figure 6. F3: The family of graphs that are an odd hole where every
vertex of the hole is of Type 1.

Lemma 4.6. The graphs in F3 are not contact B0–VPG.

Proof. Let G be a graph in F3, with odd hole C. If G is contact B0–VPG, by Corol-
lary 4.4, there are two consecutive vertices of C such that their contraction yields a
contact B0–VPG graph. But by contracting any two consecutive vertices of C we get
a graph in F2, which is not contact B0–VPG by Lemma 4.5. �

Let F4 be the family of graphs that are an odd hole containing at least one vertex
of Type 4, where “between” every pair of “consecutive” vertices of Type 4, there is
only one vertex of Type 0 and no vertices of Type 2 nor 3. We say that a pair of
vertices vi, vj (possibly the same) of Type 4 are “consecutive” if no vertex in the path
vi+1, . . . , vj−1 is of Type 4; and a vertex “between” vi and vj is any vertex in the path
vi+1, . . . , vj−1 (see Figure 7).

Lemma 4.7. The graphs in F4 are not contact B0–VPG.

Proof. It follows from Corollary 4.4 and the fact that by contracting two consecutive
vertices of C, we obtain as an induced subgraph either H0, a graph of F1, or a graph
of F2, which are not contact B0–VPG by Lemmas 3.1, 3.3, and 4.5. �

Let F5 be the family of graphs that are an even hole where two of its vertices are of
Type 3 and all the other vertices of the hole are of Type 1 (see Figure 8).

Lemma 4.8. The graphs in F5 are not contact B0–VPG.



CHARACTERISING CIRCULAR-ARC CONTACT B0–VPG GRAPHS 7

(a) (b)

Figure 7. F4: The family of graphs that are an odd hole containing at
least one vertex of Type 4, where “between” every pair of “consecutive”
vertices of Type 4, there is only one vertex of Type 0 and no vertices of
Type 2 nor 3.

Figure 8. F5: The family of graphs that are an even hole where two
of its vertices are of Type 3 and all the other vertices of the hole are of
Type 1.

Proof. Let G be a graph in F5. Let C = v1 . . . vk be an even hole of G such that v1
and v2 are of Type 3, and v3, . . . , vk are of Type 1.

Suppose that there is a contact B0–VPG representation of G and let `1, . . . , `k be
the lines corresponding to the vertices v1, . . . , vk, respectively. Then, every `i with
3 ≤ i ≤ k, has one endpoint taken by its corresponding K4, and `1 and `2 have a
common endpoint while their other endpoint taken. It follows that `2 and `3 meet at
an interior point of `2 which is an endpoint of `3; and we conclude by induction that
for i ≥ 3, `i and `i+1 meet at an interior point of `i which is an endpoint of `i+1. We
then reach a contradiction as `k and `1 should meet at an interior point of `k which is
an endpoint of `1. �

Let G be an H0–free graph containing a hole C = v1 . . . vk, such that the ver-
tices of G− C can be partitioned into 2k (possibly empty) pairwise anticomplete sets
U1, . . . , Uk, S1, . . . , Sk, where for each i = 1, . . . , k and for each u ∈ Ui, NC(u) = {vi},
and for each s ∈ Si, NC(s) = {vi, vi+1}; moreover, G[Ui] is either empty, or consists of
one or two disjoint triangles; and G[Si] is either empty or a clique of size two. Notice
that the vertices of C can be classified into Type 0, Type 1, Type 2, Type 3, and
Type 4. We say that an orientation of some of the edges of C is feasible if

(1) no edge is oriented both ways;
(2) if Si 6= ∅ then vivi+1 is not oriented;
(3) if vi is of Type 4, then vi−1vi and vi+1vi are oriented this way.
(4) if vi is of Type 3 and Si 6= ∅ (resp. Si−1 6= ∅), then vi−1vi (resp. vi+1vi) is

oriented this way;
(5) if vi is of Type 1, then at least one of vi−1vi and vi+1vi is oriented this way.
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(6) if C is odd, at least one edge of C is not oriented.

Lemma 4.9. Let G and C be defined as above. If C admits a feasible orientation then
G is a contact B0–VPG graph.

Proof. The representation of G is based on the “staircase” scheme, illustrated in Fig-
ure 9, with bk−2

2
c steps representing vertices v1 . . . vk where the lines in the figure are

in clockwise order.

C even C odd (a) (b) (c)

Figure 9. Sketch of a staircase contact B0–VPG representation of a
hole admitting a feasible orientation (the endpoints of a line are marked
by an arrow).

Figure 10. Staircase contact B0–VPG representation of an even hole
where all vertices are of Type 1 and the edges are oriented clockwise.

More specifically, we build a staircase contact B0–VPG representation of G given
a feasible orientation of C, as follows. If C is even, the base of the staircase consists
of one line only; and if C is odd, the base of the staircase is formed by two lines
corresponding to vertices vi, vi+1 such that the edge vivi+1 is not oriented (in the
dotted circle of Figure 9 is shown the contact point when Si is nonempty). For every
other i = 1, . . . , k, the corner formed by the lines corresponding to vi and vi+1 is drawn
as shown in the dashed circles of Figure 9 (rotated or reflected according to the position
of the corner in the staircase), where (a) represents the orientation vivi+1, (b) represents
the orientation vi+1vi, and (c) represents vivi+1 not oriented. The short lines within the
dashed/dotted circles in Figure 9 represent the vertices in Ui and Si that may exist.
An example of a staircase contact B0–VPG representation is shown in Figure 10. �

Theorem 4.10. Let G be a circular-arc graph that is not chordal. Let F = F1 ∪F2 ∪
F3 ∪ F4 ∪ F5 ∪ {H0, K4 − e,K5}. Then, G is a contact B0–VPG graph if and only if
G is F–free.

Proof. If G is not F–free, then, by Lemmas 3.1, 3.3, 4.5, 4.6, 4.7 and 4.8, G is not
contact B0–VPG.
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Now assume G is F–free and let C = v1 . . . vk be a hole of G (which exists as G
is not chordal). It then follows from Corollary 3.6 that the vertices of G − C can be
partitioned into 2k (possibly empty) pairwise anticomplete sets U1, . . . , Uk, S1, . . . , Sk

such that for each i = 1, . . . , k, G[Ui] is the disjoint union of cliques and for each u ∈ Ui,
NC(u) = {vi}; G[Si] is a clique and for each s ∈ Si, NC(s) = {vi, vi+1}. Furthermore,
by Remark 3.7, we have that for each i = 1, . . . , k, |Si| ≤ 2, and the cliques in Ui have
size at most three; moreover, the number of triangles in Ui is at most two, and it is at
most one if either Si−1 or Si are of size two, and zero if both Si−1 and Si are of size two.
By Lemma 3.8, we may assume henceforth that for each i = 1, . . . , k, |Si| is either zero
or two, and that Ui is either empty or the disjoint union of triangles, which allows us
to classify the vertices according to their neighbourhood outside C as Type 0, Type 1,
Type 2, Type 3, or Type 4.

By Lemma 4.9, it suffices to show that C admits a feasible orientation. To this end,
consider the connected components of C restricted to the vertices of Type 1.

Case 1: Every vertex of C is of Type 1 (the only connected component is a hole).
If C is odd, then G is a graph in F3, a contradiction. Thus, C is even and orienting

every edge as vivi+1 produces a feasible orientation of the edges of C.
Case 2: There is only one connected component P , which is a path, and only one

vertex in C − P .
Suppose without loss of generality this vertex is v1. Notice that v1 cannot be of

Type 2 or 3 as every vertex of Type 2 or 3 has a neighbour of Type 2 or 3. If
v1 is Type 4, then G is either a graph in F2 or contains a graph in F3 as induced
subgraph, a contradiction. Thus, v1 is of Type 0 and orienting every edge as vjvj+1,
for j = 1, . . . , k− 1, while keeping vkv1 not oriented, produces a feasible orientation of
the edges of C.

Case 3: There is only one connected component P , which is a path, and only two
vertices in C − P .

Notice that these two vertices are necessarily adjacent; thus, we may assume without
loss of generality that vk and v1 are the only two vertices in C − P .

If both are of Type 3, then G contains as induced subgraph either a graph in F3 or
a graph in F5 (according to the parity of C), a contradiction. If v1 is Type 3 and vk
is Type 2, a feasible orientation of C is obtained by orienting every edge as vj+1vj, for
j = 1, . . . , k − 1, and keeping vkv1 not oriented (the case where v1 is of Type 2 and vk
is of Type 3 is symmetric). The same orientation remains feasible if v1 and vk are both
of Type 2, although in this case, v2v1 need not be oriented.

Note that vk and v1 cannot both be of Type 4 for otherwise they would induce
a graph in F1, a contradiction. Suppose first that one of them is Type 4 and the
other Type 0. Then C must be even as G would otherwise be a graph in F4, a
contradiction. Assuming that v1 is of Type 4 and vk is of Type 0 (the other case is
symmetric), a feasible orientation of C is obtained by orienting the edges as vj+1vj, for
j = 1, . . . , k− 1, and vkv1. The same orientation remains feasible if both v1 and vk are
of Type 0, although in this case, edges v2v1 and vkv1 need not be oriented (note that
at least one of them should not be oriented when C is odd).

Case 4: None of the above.
Let P be a (possibly trivial) connected component of C restricted to the vertices of

Type 1 (if any). Since we are in neither of the above cases, P is a path and there exist
exactly two vertices u and w in P − C having neighbours in P . Moreover, u and w
are not adjacent. Since G is F1–free, at least one of them is neither of Type 4 nor of
Type 3, say u without loss of generality. Orienting the edge joining u and P towards P
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and the edges of P in the same direction (clockwise or counter-clockwise), we obtain a
partial orientation in which every vertex of P has one incoming edge. By repeating the
process for each connected component, we obtain at the end an orientation satisfying
the following properties.

– No edge of C is oriented both ways.
– No edge of C incident to a vertex of Type 3 or Type 4 is oriented.
– No edge vivi+1 of C such that Si 6= ∅, is oriented.
– No edge of C with two endpoints of Type 0 is oriented.
– Every vertex of Type 1 in C has one incoming edge of C.

Next, we orient every edge incident to a vertex v of Type 4 towards v, and for every
vertex w of Type 3 we define the orientation uw, where u is the neighbour of w having
no common neighbour with w. Since G is F1–free, this orientation is well defined (no
edge is incident to two vertices of Types 3 or 4). After this second round of orientation,
four of the five properties mentioned above are maintained and the property “no edge
of C incident to a Type 3 or Type 4 is oriented” is replaced by “every vertex of Type 3
(resp. Type 4) in C has one (resp. two) incoming edge(s) of C.”. A sketch of the
orientation process can be found in Figure 11.

Figure 11. Building a feasible orientation of the edges of the hole.
Vertices in grey may or may not be present.

Thus, in order to ensure that the obtained orientation is a feasible orientation, there
remains to show that if C is odd, then there is at least one nonoriented edge. Since
this property holds if there are vertices of Type 2 or Type 3, we are left with the case
where C odd and only has vertices of Type 4, 1, and 0. Since G is not in F4, either
there exist two adjacent vertices of Type 0 (in which case, the edge joining them is not
oriented), or there is a path P of vertices of Type 1 such that the two vertices u, v of
C − P having neighbours in P are of Type 0. By the rules defined above, none of the
edges joining u and v to P was oriented during the second phase, and one of them was
left not oriented during the first phase, which concludes the proof. �

Combining Corollary 3.5 and Theorem 4.10, we have the following result.

Theorem 4.11. Let G be a circular-arc graph. Let F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ F5 ∪
{H0, K4 − e,K5}. Then, G is a contact B0–VPG graph if and only if G is F–free.

5. Algorithm

In order to recognise the class of contact B0–VPG graphs within circular-arc graphs,
we first check whether the graph is chordal, which can be done in polynomial time [31].
If it is the case, we can apply the recognition algorithm of [6], whose output is either
a contact B0–VPG representation or a forbidden induced subgraph. Otherwise, we
obtain a hole in the graph, and we either find an induced K4 − e in the graph or
we can compute the structure of the graph with respect to this hole, as described in
Corollary 3.6. Each of these steps can be performed in polynomial time.
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Once we have computed those different sets, it is easy to check whether it contains
either K5 or H0 or none of them. In the latter case, we can use Lemma 3.8 to disregard
the simplicial vertices of degree one or two, since its proof also suggests how to include
them in case we obtain a contact B0–VPG representation of the remaining part of the
graph.

The remainder of the recognition algorithm is largely based on the proofs of Lemma 4.9
and Theorem 4.10. We first follow the steps in the proof of Theorem 4.10 to either
build a feasible orientation of the hole or find a forbidden induced subgraph. In case
we obtained a feasible orientation of the hole, we follow the proof of Lemma 4.9 in
order to obtain a contact B0–VPG representation of the graph.

Acknowledgements

This work was done when the second author was visiting the University of Buenos
Aires funded by a grant from the Centro Latinoamericano Suizo de la Universidad
de San Gallen. It was also partially supported by ANPCyT PICT-2015-2218, and
UBACyT Grants 20020170100495BA and 20020160100095BA (Argentina). Carolina
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