
Compact Cactus Representations of all Non-Trivial Min-Cuts

On-Hei S. Lo∗
Institute of Mathematics
TU Ilmenau, Germany

Jens M. Schmidt∗
Institute of Mathematics
TU Ilmenau, Germany

Mikkel Thorup†
Department of Computer Science

University of Copenhagen, Denmark

Abstract

Recently, Kawarabayashi and Thorup presented the first deterministic edge-connectivity
recognition algorithm in near-linear time. A crucial step in their algorithm uses the
existence of vertex subsets of a simple graph G on n vertices whose contractions leave a
multigraph with Õ(n/δ) vertices and Õ(n) edges that preserves all non-trivial min-cuts of
G, where δ is the minimum degree of G and Õ hides logarithmic factors.

We present a simple argument that improves this contraction-based sparsifier by
eliminating the poly-logarithmic factors, that is, we show a contraction-based sparsification
that leaves O(n/δ) vertices and O(n) edges, preserves all non-trivial min-cuts and can
be computed in near-linear time Õ(m), where m is the number of edges of G. We also
obtain that every simple graph has O((n/δ)2) non-trivial min-cuts.

Our approach allows to represent all non-trivial min-cuts of a graph by a cactus repre-
sentation, whose cactus graph has O(n/δ) vertices. Moreover, this cactus representation
can be derived directly from the standard cactus representation of all min-cuts in linear
time. We apply this compact structure to show that all min-cuts can be explicitly listed
in Õ(m) +O(n2/δ) time for every simple graph, which improves the previous best time
bound O(nm) given by Gusfield and Naor.

1 Introduction
Edge-connectivity and the structure of (near-)minimum cuts of graphs have been studied
intensively for the last 60 years and proved to have a wide range of real-world applications
such as network reliability and information retrieval. Many of the discovered structures like
Gomory-Hu trees [3], cactus representations [1] and the lattice of minimum s-t-cuts led to
increasingly faster algorithms for recognizing, listing or counting various (near-)minimum cuts
of graphs. These structures fall into the field of graph sparsifiers, which decrease the graph
size while preserving certain connectivity properties.
∗This research is supported by the grant SCHM 3186/1-1 (270450205) from the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation).
†Mikkel Thorup’s research is supported by his Advanced Grant DFF-0602-02499B from the Danish Council

for Independent Research and by his Investigator Grant 16582, Basic Algorithms Research Copenhagen (BARC),
from the VILLUM Foundation.

1

ar
X

iv
:1

81
0.

03
86

5v
2

 [
m

at
h.

C
O

]
 2

8
O

ct
 2

01
9

In this paper, we demonstrate that a very simple contraction argument on cactus represen-
tations gives a sparsifier preserving non-trivial min-cuts that surpasses the best ones known,
where a cut is trivial if either it or its complement is a singleton. It turns out one can apply
it to enumerate min-cuts efficiently.

1.1 Previous Work

Recently, Kawarabayashi and Thorup [7] presented the first deterministic min-cut algorithm
with near-linear running time O(m log12 n) for simple graphs. They showed that vertex
sets of the input graph can be determined and contracted in near-linear time such that the
remaining graph has only Õ(n/δ) vertices, Õ(n) edges and preserves all non-trivial min-
cuts of the original graph [7, Theorem 1.3]. This contraction-based sparsification implies a
min-cut algorithm in near-linear time, as the contractions leave a graph on which Gabow’s
algorithm [2] can be applied, which runs itself in time Õ(λm), where λ denotes the edge-
connectivity. Subsequently, Henzinger, Rao and Wang [5] improved the running time of
this min-cut algorithm to O(m log2 n log log2 n) by replacing its diffusion subroutine with a
flow-based one; this algorithm relies also on contraction-based sparsification. We will first
focus on the question to which extent such contraction-based sparsifiers can be improved.

Cactus representation is well-known for its capability of storing min-cuts in a compact
way. It was first shown by [1] that one can construct a cactus representation of O(n) size
which represents all min-cuts. Later, Nagamochi and Kameda [9] gave two more forms of
cactus representation with the same size bound. We will introduce a cactus representation
with a better size bound, which represents all non-trivial min-cuts.

How fast one can enumerating all min-cuts comes up as a natural question. For instance,
counting the number of min-cuts can be seen as a measure for network reliability. Gusfield
and Naor [4] showed that all min-cuts can be listed explicitly in O(nm) time for every simple
graph. We will apply the new cactus representation to improve this time bound.

1.2 Our Results

We give an asymptotically optimal improvement of the bounds of the contraction-based
sparsifier of Kawarabayashi and Thorup [7, Theorem 1.1] by eliminating its poly-logarithmic
factors. Hence, every simple graph can be sparsified in near-linear time by contractions of
vertex subsets such that O(n/δ) vertices and O(n) edges are left and every non-trivial min-cut
is preserved. We provide not only the optimal bounds but also an insight into how these
non-trivial min-cuts can be represented by a specific cactus representation.

For a graph G, let C(G) be the set of all min-cuts of G and let NC(G) be the set of all
non-trivial min-cuts of G. We need to generalize cactus representations to represent proper
subsets of C(G) instead of the usual set C(G): For a subset S of C(G), a cactus representation
for S represents every min-cut in S by some min-cut of a cactus graph, but not necessarily
all such min-cuts (see the next section for a precise definition). In particular, a cactus
representation for C(G) is the usual cactus representation.

We will first show that a cactus representation for C(G) can be transformed to a cactus
representation for NC(G) whose cactus graph has only O(n/δ) vertices (Theorem 1). We will
then prove that simply contracting the vertex sets that correspond to the cactus vertices in the
new cactus representation gives our main result, the sparsifier mentioned above (Theorem 2).

2

Theorem 1. Given a simple graph G on n vertices and minimum degree δ, a cactus repre-
sentation for C(G) can be transformed in linear time to a cactus representation for NC(G)
whose cactus graph has O(n/δ) vertices.

We remark that by detailed calculation it can be shown that the cactus graph mentioned
above has less than 30n/δ vertices.

Theorem 2. Let G be a simple graph on n vertices, m edges and minimum degree δ. Then
vertex sets of G can be computed and contracted in time Õ(m) such that the remaining
multigraph has O(n/δ) vertices, O(n) edges and preserves all non-trivial min-cuts of G.

Kawarabayashi and Thorup [7] showed that every connected simple graph has Õ((n/δ)2)
non-trivial minimum cuts for some constant c. This follows directly from the well-known result
in [1] that the number of minimum cuts in any connected graph H is at most O(|V (H)|2),
when taking H as the sparsified graph. Hence, Theorem 2 implies the following fundamental
new bound.

Corollary 3. Every connected simple graph G has O((n/δ)2) non-trivial min-cuts and hence
n+O((n/δ)2) min-cuts.

We will show in Section 3.3 that Theorems 1+2 and also Corollary 3 are asymptotically
optimal from various perspectives; all of them improve the best known results so far, whenever
δ is superconstant.

We apply the compact cactus representation to explicitly list all min-cuts, each as a list
of the cut edges. The previous best time bound of O(nm) for enumerating all min-cuts of a
simple graph was given by Gusfield and Naor [4]. We have the following improvement:

Theorem 4. All min-cuts of a simple graph G can be listed explicitly in Õ(m) + O(n2/δ)
time, with output size O(λ(n+ (n/δ)2)) = O(m+ n2/δ).

We emphasize that, as in [4], instead of vertex subset of the graph, a cut in the output
is represented by the λ edges going across some vertex subset. We do so because the vertex
subsets representing min-cuts may have average size Θ(n) per each, e.g. a cycle.

The space bound of the explicit representation of all min cuts is tight as there are simple
graphs with Θ(n2/δ2) min-cuts and where λ = Θ(δ) (see Section 3.3). Moreover, for the m
term, we can easily find simple graphs where all edges are in some min-cut, e.g. a regular
expander where the min-cuts are exactly the trivial cuts.

1.3 Technical Overview

We will use a variant of the well-known cactus representation that is restricted to non-trivial
min-cuts to find the vertex sets that have to be contracted. This cactus representation can be
derived from any standard cactus representation that represents all min-cuts in linear time.
Since Kawarabayashi and Thorup showed that the standard cactus representation can be
found deterministically in near-linear time [7] (alternatively, one may use the randomized
Monte-Carlo algorithm in [6]), this gives a deterministic near-linear running time Õ(m) to
find the vertex sets to be contracted.

In order to enumerate all min-cuts of a simple graph, we combine the framework of Gusfield
and Naor [4] with our new cactus representation. We wish to apply their method to list the

3

min-cuts on the sparsified graph obtained from vertex subset contractions. However this
graph may have multiple edges. Thus we apply their algorithm in a cactus graph instead, and
place back the edges of the original graph when we start listing the min-cuts.

2 Preliminaries
All graphs considered in this paper are non-empty and finite. Let G := (V,E) be a graph.
We denote by uv the edge with endvertices u, v if G is a undirected graph, and by uv or (u, v)
the edge directed from u to v if G is a directed graph. Contracting a vertex subset X ⊆ V
consists in identifying all vertices in X and deleting occurring self-loops but no parallel edges
(we do not require that X induces a connected graph in G). For an edge vw in G, contracting
vw means contracting {v, w}.

For non-empty and disjoint vertex subsets X,Y ⊂ V , let EG(X,Y) denote the set of
all edges in G that have one endvertex in X and one in Y . Let further X := V − X,
dG(X,Y) := |EG(X,Y)| and dG(X) := |EG(X,X)|; if X = {v} for some vertex v ∈ V , we
simply write EG(v, Y), dG(v, Y) and dG(v), respectively. A subset ∅ 6= X ⊂ V of a graph G is
called a cut of G of size dG(X). A cut X of G is said to be trivial if |X| = 1 or |X| = 1, and
non-trivial otherwise. By an edge cut we mean a set EG(X) of edges for some cut X ⊂ V ; we
identify an edge cut EG(X) with the cut X if there is no ambiguity arises. A family of cuts
X1, . . . , Xk ⊂ V are uncrossing if we have Xi ⊂ Xj or Xi ⊃ Xj for all i 6= j ∈ {1, . . . , k}.

Let the length of a path (cycle) be the number of its edges; a k-cycle is a cycle of length k.
Let δ(G) := minv∈V dG(v) be the minimum degree of G.

A block of G is a maximal subgraph of G that does not contain a cut-vertex (i.e. a
separator made of a single vertex). For two vertices v, w ∈ V , a v-w-cut is a vertex set X ⊆ V
such that exactly one of {v, w} is in X. Let λG(v, w) be the minimum dG(X) over all v-w-cuts
X. Two vertices v, w ∈ V are called k-edge-connected if λG(v, w) ≥ k. The edge-connectivity
λ := λ(G) of G is minv,w∈V λG(v, w). We omit subscripts whenever the graph is clear from
the context.

We call a multigraph K a cactus if it is 2-edge-connected, contains no self-loops, and every
edge in K belongs to exactly one cycle (which may be of length 2, i.e. a pair of parallel edges).
In other words, all blocks of K are cycles. This way, an edge cut in K is a min-cut if and only
if it is consists of two edges from a cycle in K.

Let K be a cactus and ϕ be a mapping from V (G) to V (K). Given S ⊆ C(G), we say that
(K, ϕ) is a cactus representation of G for S if (i) for every X ∈ S, there is a min-cut Y in K
with X = ϕ−1(Y) and (ii) for every min-cut Y in K, ϕ−1(Y) is a min-cut in G. A vertex v in
K is empty if ϕ−1(v) is empty, a singleton if ϕ−1(v) consists of exactly one vertex of G, and a
k-junction if v is contained in exactly k cycles of K. It has been proven by Dinits et al. [1]
that every graph G admits a cactus representation for C(G). A cactus representation (K, ϕ)
of G for S is minimal if no smaller cactus representation for S can be obtained by contracting
an edge of K and revising ϕ accordingly.

A directed acyclic graph A is a directed multigraph with no directed cycle. Given
u, v ∈ V (A), we say u is a predecessor (successor) of v if there is a path directed from u to
v (v to u) in A. In this paper we consider only directed acyclic graphs A each has (unique)
vertices sA, tA ∈ V (A) such that sA and tA are a successor and a predecessor of v for any
v ∈ V (A), respectively. For ∅ 6= X ⊂ V (A), we call X a closed set of A if for every v in

4

X, every successor of v is also in X. It is clear that sA ∈ X and tA /∈ X for any closed set
X of A. A directed acyclic graph representation (DAG) (A, ρ) of G consists of a directed
acyclic graph A and a mapping ρ from V (G) to V (A). We also identify a DAG (A, ρ) with A
when we describe V (A) as a partition of V (G). For a closed set X of A, we say ρ−1(X) is
represented by (A, ρ).

3 Contraction-Based Sparsification
Let G := (V,E) be a simple graph and S ⊆ C(G). The following lemmas concern a cactus
representation (K, ϕ) of G for S.

For a vertex v of a cycle C in K and its two incident edges e and f in C, let K[C, v] be
the component of K − e− f that contains v.

Lemma 5 ([1]). Let u and v be two distinct vertices in a cycle C of length at least three in
K. If u and v are neighbors in C, then G has exactly λ/2 edges between ϕ−1(K[C, u]) and
ϕ−1(K[C, v]). Otherwise, G has no edge between ϕ−1(K[C, u]) and ϕ−1(K[C, v]).

Proof. Suppose u and v are neighbors in C. Let X1 := ϕ−1(K[C, u]), X2 := ϕ−1(K[C, v])
and X3 := V −X1 −X2. As (K, ϕ) is a cactus representation, X1, X2 and X3 are min-cuts
in G, respectively. This implies that d(X1, X2) + d(X1, X3) = d(X2, X3) + d(X2, X1) =
d(X3, X1) + d(X3, X2) = λ. Hence, d(X1, X2) = λ/2.

If u and v are not adjacent in C, then there exist vertices w1, w2 6= v adjacent to u in
C. Let X1 := ϕ−1(K[C, u]), X2 := ϕ−1(K[C, v]) and Xi+2 := ϕ−1(K[C,wi]) for i = 1, 2.
By the first case, we have that d(X1, X3) = d(X1, X4) = λ/2. Note that λ = d(X1) ≥∑
i=2,3,4 d(X1, Xi) = λ+ d(X1, X2). Hence we have d(X1, X2) = 0.

Lemma 6. Suppose that δ(G) ≥ 3. Then no cycle in K contains two adjacent 1-junction
singletons. In particular, at most half of the vertices of every cycle in K are 1-junction
singletons.

Proof. Assume to the contrary that {v} ⊆ V and {w} ⊆ V are the preimages of two adjacent
1-junction singletons of a k-cycle in K (for some k ≥ 2). In particular, v has degree λ in G, as
it is the preimage of a singleton. This implies λ = δ ≥ 3, as there is no 1-junction singleton
when λ < δ.

If k = 2, K and thus also G contains exactly two vertices, which contradicts λ ≥ 3, as G
is simple. Otherwise, k ≥ 3 and G contains exactly λ/2 > 1 parallel edges between v and w
by Lemma 5, which contradicts that G is simple.

The following lemma holds trivially from the definition of cactus representation.

Lemma 7. |ϕ−1(K[C, v])| ≥ 1 for any cycle C in K and any vertex v in C.

3.1 Proofs of Theorems 1 and 2

Now let (K, ϕ) be a cactus representation of G for the set C(G) of all min-cuts of G and
consider the following four simple modifications. Note that when an edge vw of the cactus
K is contracted into a new vertex v′, the mapping ϕ will be revised accordingly, namely all
vertices in ϕ−1(v) and ϕ−1(w) will be mapped to v′.

5

(i) For any 2-cycle that contains a 1-junction singleton v and another vertex a, contract va.

(ii) For any 3-cycle that contains a 1-junction singleton v and two other vertices a and b,
delete the edge ab and add the edges av and bv.

(iii) For any 2-cycle that contains an empty 2-junction v and another vertex a, contract va.

(iv) For any 3-cycle that contains two empty 2-junctions v, w, contract vw.

By applying these modifications iteratively to (K, ϕ) as long as possible, we obtain a
cactus representation (K′, ϕ′) (see Figure 1). Then (K′, ϕ′) is a cactus representation for the
set of all non-trivial min-cuts NC(G), as every application of Modification (i) and (ii) destroys
only a trivial min-cut {v} (in particular, (ii) preserves the possibly non-trivial min-cuts that
separate a and b) and that of Modifications (iii) and (iv) do not destroy any min-cut. Thus,
(K′, ϕ′) represents a set of min-cuts R such that NC(G) ⊆ R ⊆ C(G).

Note that, by Lemma 7 and the exhaustive application of Modification (i), if |ϕ−1(K′[C, v])| =
1 for some cycle C in K′ and some vertex v in C, then v must be a 1-junction singleton.

We claim that the cactus representation (K′, ϕ′) for NC(G) is minimal. Suppose not, and
let vw be an edge in a cycle C of K′ such that we can get a smaller cactus representation by
contracting vw. If C is of length greater than 3, then there is another edge st of C such that
vw and st share no common endvertex and there is a min-cut X separating v, s from w, t
in K′. By Lemma 7, ϕ−1(X) is a non-trivial cut of G, and this cut will not preserved if we
contract the edge vw. Thus we can assume C is of length either 2 or 3. If C is of length 3,
then |ϕ−1(K′[C, v])| > 1; otherwise v is a 1-junction singleton, contradicting the exhaustive
application of Modification (ii). If v is non-empty or empty but not a 2-junction, then the
non-trivial min-cut ϕ−1(K′[C, v]) of G cannot be preserved if we contract vw. Therefore v
and w must be empty 2-junctions, which is however not possible because of Modification (iv).
If C is of length 2, then, similarly, one of v, w must be an empty 2-junction; this possibility
has been ruled out by Modification (iii). Hence the claim is proved.

Since every application of Modification (i), (iii) and (iv) decreases the number of cactus
vertices by 1, and every application of Modification (ii) decreases the number of 3-cycles in
the cactus by 1, (K′, ϕ′) can be computed in a running time that is linear in the size of K. We
remark that we do not need the full strength of the minimality; Modification (iv) is actually
not needed to prove our results.

Kawarabayashi and Thorup [7, Theorem 8.2] showed that a standard cactus representation
can be found in Õ(m) time. We conclude that (K′, ϕ′) can be computed in Õ(m) time.

In the next section we will prove the following key lemma.

Lemma 8. K′ has O(n/δ) vertices.

Theorem 1 follows directly from Lemma 8, as we have already observed that K′ can be
computed in near-linear time.

Assuming Lemma 8, we can deduce Theorem 2 as follows. When we contract ϕ′−1(v) in
G for each cactus vertex v of K′, we obtain a graph with |V (K′)| = O(n/δ) vertices. The
graph has at most λ(|V (K′)| − 1) = O(n) edges by the definition of cactus representations,
as the edges in K′ can be covered by |V (K′)| − 1 uncrossing min-cuts (each of size 2) and,
consequently, the edges in G that are not contracted can be covered by |V (K′)| − 1 min-cuts

6

v

a

w

b

(a) A graph G (solid lines) and a cactus representation for C(G) (dotted
lines). Modification (i) is applicable for v and a, and Modification (ii)
for the singleton w, a and b.

(b) The cactus representation (K′, ϕ′) for N C(G) after applying Modifica-
tions (i) and (ii) as long as possible.

l1

l2

(c) The xylem X of (K′, ϕ′), in which circle vertices depict the center
vertices. The vertices l1 and l2 are deleted in order to obtain X ′.

Figure 1: A graph G satisfying λ = δ = 4 and cactus representations of G.

(each of size λ). Since (K′, ϕ′) is a cactus representation for NC(G), all non-trivial min-cuts
are preserved after the contractions.

This completes the proof of Theorem 2, and it remains to prove Lemma 8.

7

3.2 Proof of Lemma 8

We may assume that δ > 6, for otherwise, there is nothing to prove. In order to count the
number of vertices of K′, we consider a tree that reflects the cactus structure in a natural way.

Given a cactus, a xylem of the cactus is a tree that contains all cactus vertices plus one
additional center vertex for every cycle in the cactus, and has an edge between two vertices
v and c if and only if v is a cactus vertex and c a center vertex such that v is contained in
the cycle represented by c (see Figure 1). Note that the original edges of the cactus are not
part of the xylem and that the xylem is indeed a tree, because the blocks of every cactus are
its cycles and the blocks of every connected graph form a tree structure (the so-called block
tree). Since all cactus cycles have length at least two, the leaves of the xylem are exactly the
1-junction vertices of the cactus, i.e. the vertices of the cactus that appear in only one cycle.
In order to prove the claim, we will prove the slightly stronger statement that the xylem X of
K′ has O(n/δ) vertices.

Let X ′ be the tree obtained from X by deleting every vertex that is a 1-junction singleton
in K′. Note that the 1-junction non-singletons remain in X ′ and they are exactly the leaves of
X ′. By Lemma 6, at most half of the vertices of every cycle in K′ are 1-junction singletons.
Hence, the leaf pruning reduces the number of vertices by at most factor two, and for the
remainder it suffices to prove that X ′ has O(n/δ) vertices.

We next argue that the leaf pruning in X does not create any new leaves.
Lemma 9. The set of leaves in X ′ is the set of 1-junction non-singletons in K′.
Proof. It suffices to show that no center vertex of K′ is a leaf in X ′. Consider any k-cycle
A in K′ and let v be the center vertex that corresponds to that cycle. If k = 2, A does not
contain a 1-junction singleton by Modification (i), so that v is not a leaf. Otherwise, k ≥ 3.
By Lemma 6, A contains at least two vertices that are not 1-junction singletons, so that v is
not a leaf.

Consider any leaf l in X ′. By Lemma 9, l is a 1-junction vertex in K′ and |ϕ′−1(l)| > 1.
By the definition of cactus representations, ϕ′−1(l) is a min-cut of K of size λ ≤ δ. Since
G is simple, this implies |ϕ′−1(l)| ≥ δ by a well-known lemma (see e.g. the proof of [7,
Observation 1.5]).

Thus, X ′ contains at most O(n/δ) leaves, and the fact that X ′ is a tree implies in turn
that X ′ contains at most O(n/δ) vertices of degree at least three. It remains to show that X ′
contains O(n/δ) vertices of degree two.

To see this, observe that X ′ is bipartite and every path is alternating between cactus
vertices and center vertices. Consider any path c1, v2, c2, v3, c3, v4, c4 of length six in X ′,
where ci for every i = 1, . . . , 4 is a center vertex and all internal vertices v2, c2, v3, c3, v4 are
of degree two in X ′. For i = 1, . . . , 4, let Ci be the cactus cycle in K′ that corresponds to the
center vertex ci. For i = 2, 3, 4, Ci−1 and Ci are the two only cycles that contain vi in K′,
since vi has degree two in X ′ (and also in X). Our assumption δ > 6 together with Lemma 6
imply that Ci is a k-cycle with 2 ≤ k ≤ 4 for i = 2, 3, as ci is of degree two in X ′ and amongst
its neighbors in X there are at most two 1-junction singletons to be deleted when constructing
X ′ from X . Furthermore, it is actually either a 2-cycle or a 4-cycle, since Modification (ii)
ensures that every 3-cycle in K′ contains no 1-junction singleton.

Let W be the non-empty (by the existence of min-cuts) set of all vertices of G that are
mapped to a vertex in V (C2) ∪ V (C3) by ϕ′. Then W is separated from V −W 6= ∅ by two

8

min-cuts of G, one of which is represented by the two edges incident to v2 in C1 while the
other is represented by the two edges incident to v4 in C4. Thus, at most 2λ edges leave W
in G. As G is simple, we have |W |(δ − |W |+ 1) ≤ 2λ ≤ 2δ. Together with the assumption
δ > 6, this implies that if W has at least three vertices, W has Ω(δ) vertices.

We next argue that |W | ≥ 3, so that this Ω(δ) lower bound is effective. Consider the
cycle Ci (i = 2, 3). If Ci is a 2-cycle, then both vi and vi+1 are non-empty as ensured by
Modification (iii). If Ci is a 4-cycle, then Ci contains two non-empty 1-junction singletons
that are different from vi and vi+1. Thus, in every case, V (C2)∪V (C3) contains at least three
non-empty cactus vertices, which implies |W | ≥ 3. We conclude that |W | ≥ δ − 1 = Ω(δ).

A path in X ′ is called lean if every vertex of it has degree two. By the last paragraph, X ′
contains O(n/δ) leaves, O(n/δ) vertices of degree at least three, and O(n/δ) maximal lean
paths (they altogether partition the vertex set of X ′). We cut each maximal lean path into
vertex-disjoint lean subpaths of length five, plus a potential remainder of a lean subpath of
length less than five. Since every lean path of length five plus one of the two vertices adjacent
to its ends form a path of length six as defined above, at least Ω(δ) vertices of G are mapped
by ϕ′ to the vertices of every lean path of length five. Therefore, the number of these paths
of length five is O(n/δ). Since the number of the remainder paths of length less than five is
at most that of the maximal lean paths, i.e. O(n/δ), we conclude that X ′ and thus K′ have
O(n/δ) vertices. We remark that with a detailed calculation one can show that K′ has less
than 30n/δ vertices.

3.3 Tightness

Let n ≥ 3(δ + 1), δ ≥ 2, λ ≤ δ/2 be an even positive integer, and assume that n is
a multiple of δ + 1 (the last assumption can be avoided by a simple modification of the
construction). Set r := n/(δ + 1). Let G := ({vi,j : 1 ≤ i ≤ r, 1 ≤ j ≤ δ + 1}, E1 ∪ E2),
where E1 :=

⋃r
i=1{vi,jvi,k : 1 ≤ j < k ≤ δ + 1} and E2 :=

⋃λ/2
j=1{vi,jvi+1,j : 1 ≤ i ≤ r} (we

set vr+1,j := v1,j for all 1 ≤ j ≤ δ + 1). That is, G is r copies of cliques Kδ+1 linked by λ/2
vertex-disjoint cycles of length r, with minimum degree δ and edge-connectivity λ. It is clear
that G shows tightness of Theorem 2 and Corollary 3.

The assumption of connectedness in Corollary 3 is (not only technically) necessary, as
shown by the graph having n/(δ + 1) disjoint cliques Kδ+1, which has exponentially many
non-trivial min-cuts if we fix δ.

4 Enumerating all Min-Cuts
In this section we apply the compact cactus representation to a simple graph, to list all its
min-cuts explicitly in Õ(m) + O(n2/δ) time, which proves Theorem 4. This signicifantly
improves the previous best time bound O(nm) given by Gusfield and Naor [4]. Given a graph
G, it is known that [8] a subgraph H ⊆ G with O(nδ) edges can be obtained in O(m) time
such that H preserves all cuts of size not larger than δ and cuts of size larger than δ preserve
at least δ of their edges; in particular, all min-cuts are preserved. Therefore we may assume
that m = Θ(nδ) when only the cuts of size not larger than δ concern us. From this point of
view, we speeds up the approach of Gusfield and Naor by a factor of δ2.

9

Intuitively, we may obtain a graph with O(n/δ) vertices and O(n) edges preserving all non-
trivial min-cuts by contracting the vertices of the cactus in our compact cactus representation,
then apply the algorithm of Gusfield and Naor [4] to list all non-trivial min-cuts in O(n2/δ)
time, and finally add the missing trivial min-cuts to the list if there are any. However, the
graph obtained from contraction may have multiple edges. In this case we can not directly
apply the result of Gusfield and Naor. To this end, we propose the following enumeration
algorithm for a simple graph G.

1. Obtain a cactus representation (K1, ϕ1) for NC(G) in Õ(m) time as described in
Theorem 1.

Let H be the multigraph obtained from G by contracting the vertices of K1. H has O(n/δ)
vertices and O(n) edges, and preserves all non-trivial min-cuts of G.

2. Set D1 := ∅. For every 2-cycle C in K1 with V (C) = {u, v}, we set D1 := D1 ∪
{AC}, where AC is the DAG with two vertices K1[C, u],K1[C, v] and two edges both
directed from K1[C, u] to K1[C, v]. Contract all 2-cycles in K1 to obtain another cactus
representation (K2, ϕ2). D1 and (K2, ϕ2) can be constructed in O(n2/δ) time as there
are O(n/δ) 2-cycles in K1.

It is clear that AC has exactly one closed set which represents the min-cut K1[C, v] in K1
and the min-cut ϕ−1

1 (K1[C, v]) in G. All other min-cuts represented by (K1, ϕ1) preserve if
we contract C in K1. Note that the cactus K2 is simple.

3. Apply the method of Gusfield and Naor [4, Section 3.1] to the cactus K2, to obtain a
family D2 of O(n/δ) DAGs in O(n2/δ2) time, such that every min-cut of K2 is exactly
once represented by a closed set of some DAG from D2. Each of these DAGs A is
associated with two distinct vertices sA, tA ∈ V (K2) in the following way. Replace
every edge uv in K2 with directed edges uv, vu orientated in opposite directions, find a
maximum sA-tA-flow and construct the residual graph (which is called augmentation
graph in [4]), finally contract all strongly connected components in the residual graph
to obtain a DAG A.

As K2 is a cactus graph, every (A, ρ) ∈ D2 associated with sA, tA can be derived in
the following equivalent way. Let K(A)

2 be the minimal cactus subgraph of K2 containing
sA, tA. It is not hard to see that K(A)

2 consists of cycles C1, C2, . . . , Ck such that sA ∈ V (C1),
tA ∈ V (Ck), sA and tA are 1-junction vertices in K(A)

2 , and Ci intersects Ci+1 with exactly
one vertex for every i = 1, . . . , k− 1. The vertices of K(A)

2 have to be revised so that they form
a partition of V (K2). For every 1-junction vertex v in K(A)

2 , let C be the cycle containing v,
we set v := K2[C, v] (i.e. ρ maps every vertex in K2[C, v] to v); for every 2-junction vertex v
in K(A)

2 , let C,C ′ be the cycles containing v, we set v := K2[C, v] ∩ K2[C ′, v]. A is obtained
by orientating the edges of K(A)

2 so that there are two edge-disjoint paths directed from tA to
sA, and A is exactly the union of these two paths. For ease of presentation, we see ρ as a
mapping from V (K1) (instead of V (K2)) to V (A) for every (A, ρ) ∈ D2.

We now have a collection D := D1 ∪ D2 of O(n/δ) DAGs such that their closed sets
represent the min-cuts of K1 and this representation is a one-to-one correspondence. In order

10

to let them represent the min-cuts of G represented by (K1, ϕ1), we have to put back the
edges of H with orientation into the DAGs.

We claim that for every (A, ρ) ∈ D and uv ∈ E(H), if ρ(ϕ1(u)) 6= ρ(ϕ1(v)), then ρ(ϕ1(u))
is either a predecessor or a successor of ρ(ϕ1(v)) in A. Suppose not, then there is a cycle
C in the underlying undirected graph of A such that ρ(ϕ1(u)), ρ(ϕ1(v)) ∈ V (C) but they
are not adjacent to each other. It implies that there is a cycle C ′ in K1 such that C ′
contains two non-adjacent vertices u′, v′ satisfying ϕ1(u) ∈ K1[C ′, u′], ϕ1(v) ∈ K1[C ′, v′]
and dG(ϕ−1

1 (K1[C ′, u′]), ϕ−1
1 (K1[C ′, v′])) = dH(ϕ−1

1 (K1[C ′, u′]), ϕ−1
1 (K1[C ′, v′])) > 0, which

contradicts Lemma 5.

4. We aim for a collection D′ of DAGs such that the closed sets of the DAGs from this
collection represent the min-cuts of G. For every (A, ρ) ∈ D, we construct a DAG A′
on the same vertex set V (A) as follows. We first order the vertices of A linearly as
v1 = tA, v2, . . . , va = sA such that for any 1 ≤ i < j ≤ a we have either that vi is neither
a predecessor nor a successor of vj , or that vi is a predecessor of vj in A. This can be
readily done in O(n/δ) time by a topological sort. Set V (A′) := V (A) and E(A′) := ∅.
For every uv ∈ E(H) with ρ(ϕ1(u)) 6= ρ(ϕ1(v)), say ρ(ϕ1(u)) = ui and ρ(ϕ1(v)) = uj
for some 1 ≤ i < j ≤ a, set E(A′) := E(A′) ∪ {uiuj}. Here we keep the multiple edges;
more precisely, we identify the directed edge uiuj ∈ E(A′) with the edge uv ∈ E(H). It
takes O(n) time per DAG, and hence D′ := {A′ : A ∈ D} can be constructed in O(n2/δ)
time.

We claim that for every ∅ 6= X ⊂ V (A) = V (A′), X is a closed set of A if and only
if it is a closed set of A′. It suffices to show that u is a predecessor of v in A if and
only if u is a predecessor of v in A′, equivalently, u is a predecessor of v in A for every
uv ∈ E(A′), and so in A′ for every uv ∈ E(A). That u is a predecessor of v in A for
every uv ∈ E(A′) follows immediately from the previous claim and the construction in
Step 4. It is left to show that for every uv ∈ E(A), u is a predecessor of v in A′. Let
uv ∈ E(A), and U be the underlying undirected graph of A. If both u, v are 1-junction
vertices in U , then, by Lemma 5, exists a undirected edge u′v′ ∈ E(H) such that ρ(ϕ1(u′)) = u
and ρ(ϕ1(v′)) = v, and hence there exists an edge directed from u to v in A′. If u is
1-junction and v is 2-junction in U , let C,C ′ be the cycles of U containing v, say u is in
C. Denote X := ϕ−1

1 (ρ−1({u})), Y := ϕ−1
1 (ρ−1({v})), Z := ϕ−1

1 (ρ−1(U [C ′, v])) − X − Y
and W := ϕ−1

1 (ρ−1(U [C, v])) − Y , i.e. X,Y, Z and W form a partition of V (G). We recall
that K2 ⊇ U is a simple graph, in particular, |Z| ≥ 1 and |W | > 1. Indeed, the possibility
that |Z| = 1 is ruled out by Modifications (i) and (ii), as U can be obtained from K1 by
cycle contractions. Thus we have |Z| > 1. Suppose dG(X,Y) = 0. By Lemma 5, we
have dG(X,W) = dG(X,Y ∪W) = λ/2, and hence dG(X,Y ∪ Z) = dG(X,Z) = λ/2. As
dG(X ∪Y ∪Z) = λ, we have dG(Y ∪Z) = dG(X ∪Y ∪Z)− dG(X,W) + dG(X,Y ∪Z) = λ. It
implies that U has a cut of size 4 (the two edges incident to u in C and the two edges incident
to v in C ′) which represents a non-trivial min-cut of G. But this non-trivial min-cut is not
represented by any min-cut of K1, which contradicts that (K1, ϕ1) is a cactus representation
for NC(G). Therefore dH(X,Y) = dG(X,Y) > 0, and there is an edge directed from u to v
in A′. Finally, if both u, v are 2-junction vertices in U , let C be the cycle in U containing u, v.
It is clear that there is a path of length at least 2 directed from u to v in A such that all
internal vertices of this path are 1-junction in U . By the previous two cases, we conclude that

11

this directed path is also in A′. In any case, we have u is a predecessor of v in A′. Thus the
claim is justified, and hence we can list all non-trivial min-cuts as follows.

5. Apply the method of Gusfield and Naor [4, Section 3.2] to list, for every closed set of
the DAGs of D′, the λ edges that go across it. We interpret them as the min-cuts of H
represented in K1. As it can be done in O(λ) time per min-cut (closed set) [4], and there
are O(n2/δ2) min-cuts in H, we list all min-cuts of H, including all non-trivial min-cuts
of G, in O(n2/δ) time. At last we check if there are any missing trivial min-cuts of G in
O(n+m) time.

The correctness of the algorithm is clear. As the running time for Steps 1 to 5 is
Õ(m) +O(n2/δ) in total, the proof of Theorem 4 is completed.

References
[1] E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family

of minimal weighted cuts in a graph. In A. A. Fridman, editor, Studies in Discrete
Optimization (in Russian), pages 290–306, Nauka, Moscow, 1976.

[2] H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50(2):259–273, 1995.

[3] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for
Industrial and Applied Mathematics, 9:551–570, 1961.

[4] D. Gusfield and D. Naor. Extracting maximal information about sets of minimum cuts.
Algorithmica, 10(1):64–89, 1993.

[5] M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity.
In Proceedings of the 28th Annual Symposium on Discrete Algorithms (SODA’17), pages
1919–1938, 2017.

[6] D. R. Karger and D. Panigrahi. A near-linear time algorithm for constructing a cactus
representation of minimum cuts. In Proceedings of the 20th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA’09), pages 246–255, 2009.

[7] K. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear time. J.
ACM, 66(1):4:1–4:50, 2018.

[8] H. Nagamochi and T. Ibaraki. A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph. Algorithmica, 7(1-6):583–596, 1992.

[9] H. Nagamochi and T. Kameda. Canonical cactus representation for minimum cuts. Japan
Journal of Industrial and Applied Mathematics, 11(3):343–361, 1994.

12

	1 Introduction
	1.1 Previous Work
	1.2 Our Results
	1.3 Technical Overview

	2 Preliminaries
	3 Contraction-Based Sparsification
	3.1 Proofs of Theorems ?? and ??
	3.2 Proof of Lemma ??
	3.3 Tightness

	4 Enumerating all Min-Cuts

