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Abstract

The subtree number index STN(G) of a simple graph G is the number of
nonempty subtrees of G. It is a structural and counting topological index that
has received more and more attention in recent years. In this paper we first
obtain exact formulas for the expected values of subtree number index of ran-
dom polyphenylene and spiro chains, which are molecular graphs of a class of
unbranched multispiro molecules and polycyclic aromatic hydrocarbons. More-
over, we establish a relation between the expected values of the subtree number
indices of a random polyphenylene and its corresponding hexagonal squeeze.
We also present the average values for subtree number indices with respect to
the set of all polyphenylene and spiro chains with n hexagons.
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MSC[2020] 05C80, 05C05

1. Introduction

The subtree number index STN(G) of a graph G is a structure-based index,
defined as the total number of non-empty subtrees of G. It is discovered to have
applications in the design of reliable communication network [21], bioinformatics
[11], and characterizing physicochemical and structural properties of molecular
graphs [13, 26, 25]. In recent years there have been related works on enumerating
subtrees [22, 15, 3, 2, 28], characterizing extremal graphs and values [16, 29, 10,
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30], analyzing relations with other topological indices such as the Wiener index
[26, 25, 17, 19], average order and density of subtrees [18, 9, 6].

Polyphenylenes, spiro compounds and their derivatives are important poly-
cyclic aromatic hydrocarbons in organic chemistry and have many applications
in industry including organic synthesis, drug synthesis, heat exchangers, etc.
For more details one may see [4, 5, 1, 12] and the references cited therein.

Regarding topological indices of random polyphenylene and spiro chains,
Yang and Zhang [23] found the expected value of the Wiener index of a random
polyphenylene chain. Huang, Kuang and Deng [7] obtained the expected values
of the Kirchhoff index of random polyphenyl and spiro chains. Subsequently,
Huang, Kuang and Deng [8] presented explicit formulas for the expected values
of the Hosoya index and the Merrifield-Simmons index of a random polypheny-
lene chain. More recently, Liu [20] presented explicit formulas for the expected
values of ABC and GA indices in random spiro chains and compare the expected
values of these two indices. Zhang, Li, Li, and Zhang [27] established explicit
analytical expressions for the expected values of the Schultz index, Gutman in-
dex, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index
of a random polyphenylene chain.

As far as the subtree number is concerned, there is no mathematical or
computational studies on these two random chains. In this paper, we fill in the
gap by studying the subtree number index of the random polyphenylene and
spiro chains.

The rest of the paper is organized as follows. Section 2 contains the necessary
definitions and lemmas. In Section 3, we provide the expected value of the
subtree number index of random polyphenylene and spiro chains, and a relation
between the subtree number of these two random chains. Lastly, we briefly
discuss the average value of the subtree number index of the polyphenylene and
spiro chains in Section 4.

2. Preliminaries

We first introduce the technical notations and lemmas that will be used in
the discussion. For more background information one may check [26, 22, 20, 27].

Let G = (V (G), E(G); f, g) be a weighted graph on n vertices and m edges,
with vertex-weight function f : V (G) → ℜ and edge-weight function g : E(G) →
ℜ (where ℜ is a commutative ring with a unit element 1). Denote by ST (G)
the set of all nonempty subtrees of G. Given vertex subset VS ⊆ V (G) and
edge subset ES ⊆ E(G), denote by ST (G, VS), ST (G,ES) the set of subtrees
containing VS , ES respectively.

For a given subtree T ∈ ST (G), its weight is defined as

ω(T ) =
∏

v∈V (T ), e∈E(T )

f(v)g(e).
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And we define the subtree generating function of G by

F (G; f, g) =
∑

T∈ST (G)

ω(T ).

Similarly, the subtree generating function of G containing VS , ES are as follows:

F (G; f, g;VS) =
∑

T∈ST (G,VS)

ω(T ),

F (G; f, g;ES) =
∑

T∈ST (G,ES)

ω(T ).

Letting η(·) be the number of subtrees in set ST (·), we have

η(G) = F (G; 1, 1)

and
η(G, VS) = F (G; 1, 1;VS), η(G,ES) = F (G; 1, 1;ES).

Through introducing the subtree weight and using generating function, Yan
and Yeh [22] developed algorithms for counting the subtrees under various con-
strains. We summarize their approach as follows.

Let T = (V (T ), E(T ); f, g) be a weighted tree on n ≥ 2 vertices, assume u is
a leaf vertex and pu = (u, v) is a pendant edge of T , we define a weighted tree
T ′ = (V (T ′), E(T ′); f ′, g′) from T with V (T ′) = V (T )\u, E(T ′) = E(T )\pu,

f ′(w) =

{

f(v)(1 + f(u)g(pu)) if w = v,

f(w) otherwise.
(1)

for any w ∈ V (T ′), and g′(e) = g(e) for any e ∈ E(T ′).

Lemma 1 ([22]). Assume T and T ′ are weighted trees defined above, and u

(6= vi) is an arbitrary vertex, then

F (T ; f, g; vi) = F (T ′; f ′, g′; vi),

F (T ; f, g) = F (T ′; f ′, g′) + f(u).

Assume v0, vl are two distinct vertices of weighted tree T = (V (T ), E(T ); f, g),
denote by Pv0vl = v0v1 · · · vl the unique path of length l (≥ 1) connecting v0 and
vl with V (Pv0vl) = {vi|i = 0, 1, . . . , l}, E(Pv0vl) = {(vi, vi+1)|i = 0, 1, . . . , l− 1}.
Moreover, denote by Tvi the weighted subtree that contains vertex vi (i =
0, 1, . . . , l) after removing all edges in E(Pv0vl) from T .

Lemma 2 ([22]). With the above notations, we have

F (T ; f, g; v0, vl) =
l

∏

i=0

f∗(vi)
∏

e∈E(Pv0vl
)

g(e), (2)

where f∗(vi) = F (Tvi ; f, g; vi) for any vi ∈ V (Pv0vl).
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Let Um,n = (V (Um,n), E(Um,n); fm,n, gm,n) be a weighted unicyclic graph
of order m ≥ 2 whose unique cycle has vertices v1, . . . , vn with m ≥ n ≥ 2.
At each vertex vi let the tree Tvi rooted at vi be the component containing vi
after removing the cycle. We can contract each tree Tvi to the vertex vi on the
unique cycle with the contraction rule as in eq. (1) to make the computing more
efficient.

For convenience, denote by Un = (V (Un), E(Un); fn, gn) the weighted uni-
cyclic graph obtained from Um,n = (V (Um,n), E(Um,n); fm,n, gm,n) by contract-
ing each tree Tvi to the vertex vi on the unique cycle defined above, where
V (Un) = {vi|i = 1, 2, . . . , n}, E(Un) = {(vi, vi+1)|i = 1, 2, . . . , n} (assume
vn+i = vi for all i), and fn is the vertex weight function and gn is the edge
weight function, note that the weight of each vertex (resp. edge) may be dif-
ferent with each other. Through classifying the subtrees of Un into n types:
subtrees that do not contain the edge (v1, vn); subtrees that contain the edge

set
j
⋃

k=−1

(vn−k, vn−k−1), but not edge (vn−j−1, vn−j−2), where vn+1 = v1 and

j = −1, 0, . . . , n − 3. From the definitions of subtree weight and subtree gen-
erating function, Lemmas 1 and 2, it is not difficult to obtain the following
theorem.

Theorem 2.1. Let Un = (V (Un), E(Un); fn, gn) be a weighted unicyclic graph,
then

F (Un; fn, gn) =fn(v1)
(

n−1
∏

j=1

gn(vn−j+2, vn−j+1)fn(vn−j+1)

n
∑

s=j+1

n−s
∏

k=1

gn(vk, vk+1)fn(vk+1)
)

+

n−1
∑

j=1

fn(vj)
(

n−j+1
∑

s=1

n−s
∏

k=j

gn(vk, vk+1)fn(vk+1)
)

.

(3)

Through similar analysis, for any fixed vertex vj ∈ V (Un), the subtree gen-
erating function of Un containing vj follows immediately.

Theorem 2.2. Given weighted unicyclic graph Un = (V (Un), E(Un); fn, gn)
and a fixed vertex vj ∈ V (Un), we have

F (Un; fn, gn; vj) =

n
∑

q=1

(

fn(vj)

q−2
∏

k=0

gn(v
1
k, v

2
k)fn(v

2
k)
(

1 +

n−q−1
∑

s=0

s
∏

k=0

gn(v
3
k, v

4
k)fn(v

4
k)
)

)

,

(4)

where v1k = v(j+k)(mod n), v
2
k = v(j+k+1)(mod n), v

3
k = v(n+j−k)(mod n) and v4k =

v(n+j−k−1)(mod n).

Let Pvrivrj
= vri · · · vrj be a path of Un, we define the weighted unicyclic

graph U c
n = (V (U c

n), E(U c
n); f

c
n, g

c
n) by contracting the path Pvrivrj

= vri · · · vrj
to vri , with V (U c

n) = {vri} ∪ {V (Un)\V (Pvrivrj
)}, E(U c

n) = E(Un)\E(Pvrivrj
),

f c
n(vri) =

∏

v∈V (Pvri
vrj

)

fn(v)
∏

e∈E(Pvri
vrj

)

gn(e),
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f c
n(v) = fn(v) for v ∈ V (U c

n)\vri , and gcn(e) = gn(e) for e ∈ E(U c
n). From the

definitions of subtree weight and subtree generating function, with Theorem 2.2,
we can obtain the subtree generating function of Un containing path Pvrivrj

as

follows.

Theorem 2.3. Assume Un and U c
n are weighted unicyclic graphs defined above,

and Pvrivrj
= vri · · · vrj a path of Un, then

F (Un; fn, gn;Pvrivrj
) = F (Uc

n; f
c
n, g

c
n; vri). (5)

Assume vi, vj are two distinct vertices of Un, the two paths connecting vi
and vj are denoted by

P 1
vivj

= viv(i+1)(mod n) · · · v(j−1)(mod n)vj

and
P 2
vivj

= viv(i−1)(mod n) · · · v(j+1)(mod n)vj ,

respectively.
We define the weighted unicyclic graph U c1

n = (V (U c1
n ), E(U c1

n ); f c1
n , gc1n )

from Un by contracting the path P 1
vivj

to vi, with V (U c1
n ) = {vi}∪{V (Un)\V (P 1

vivj
)},

E(U c1
n ) = E(Un)\E(P 1

vivj
),

f c1
n (vi) =

∏

v∈V (P 1
vivj

)

fn(v)
∏

e∈E(P 1
vivj

)

gn(e),

f c1
n (v) = fn(v) for v ∈ V (U c1

n )\vi, and gc1n (e) = gn(e) for e ∈ E(U c1
n ).

Similarly, we define the weighted unicyclic graphU c2
n = (V (U c2

n ), E(U c2
n ); f c2

n , gc2n )
from Un by contracting the path P 2

vivj
to vi, with V (U c2

n ) = {vi}∪{V (Un)\V (P 2
vivj

)},

E(U c2
n ) = E(Un)\E(P 2

vivj
),

f c2
n (vi) =

∏

v∈V (P 2
vivj

)

fn(v)
∏

e∈E(P 2
vivj

)

gn(e),

f c2
n (v) = fn(v) for v ∈ V (U c2

n )\vi, and gc2n (e) = gn(e) for e ∈ E(U c2
n ).

From the definitions of subtree weight and subtree generating function, with
Theorem 2.3, we can obtain the subtree generating function of Un containing
any prescribed two distinct vertices of Un as follows.

Corollary 2.4. Assume Un, U
c1
n and U c2

n are weighted unicyclic graph defined
above, and vi, vj are two prescribed distinct vertices of Un, then

F (Un; fn, gn; vi, vj) = F (Uc1
n ; fc1

n , g
c1
n ; vi) + F (Uc2

n ; fc2
n , g

c2
n ; vi). (6)

A polyphenylene chain RPCn with n hexagons can be obtained by adjoining
a polyphenylene chain RPCn−1 with n−1 hexagons and a new terminal hexagon
Hn with a cut edge (see Fig. 1), for n ≥ 3, the terminal hexagon can be attached

5



in three different ways, which results in the local arrangements we describe as
RPC1

n+1, RPC2
n+1, RPC3

n+1 (see Fig. 2).
A random polyphenylene chainRPC(n, p1, p2) with n hexagons is a polypheny-

lene chain obtained by step-wise addition of terminal hexagons. At each step
(i = 3, 4, . . . , n), a random selection is made from one of the three possible
constructions:

(1) RPCi−1 → RPC1
i with probability p1,

(2) RPCi−1 → RPC2
i with probability p2,

(3) RPCi−1 → RPC3
i with probability 1− p1 − p2,

Here the probabilities p1 and p2 are constants. Namely, the process described
is a zeroth-order Markov Process.

. . .

RPCn−1

tn−1
h1 Hn

h2 h3

h4

h5h6

. . .

RSC

. . .

RPC

RPC +1

. . .

RPC

RPC +1

. . .

RPC

RPC +1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

(a) A polyphenylene chain RPCn

with n hexagons.

. . .

RPC

. . .

RSCn−1

cn−1(h1)

h2 h3

Hn
h4

h5h6

. . .

RPC

RPC +1

. . .

RPC

RPC +1

. . .

RPC

RPC +1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

(b) A spiro chain RSCn with n

hexagons.

Figure 1. A polyphenylene chain RPCn and a spiro chain RSCn.
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. . .
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1
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. . .
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2
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. . .
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RPC
3
n+1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

. . .

RSC

RSC +1

Figure 2. Three types of local arrangements in polyphenylene chains.
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. . .

RSC

. . .
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RPC +1

. . .

RPC

RPC +1

. . .

RPC

RPC +1

. . .

RSCn−1

RSC
1
n+1

. . .

RSCn−1

RSC
2
n+1

. . .

RSCn−1

RSC
3
n+1

Figure 3. Three types of local arrangements in spiro chains.

Similarly, a spiro chain RSCn with n hexagons can be obtained by adjoining
a new terminal hexagon Hn to a spiro chain RSCn−1 with n− 1 hexagons (see

6



Fig. 1), for n ≥ 3, the terminal hexagon can be attached in three different
ways, which results in the local arrangements we describe as RSC1

n+1, RSC2
n+1,

RSC3
n+1 (see Fig. 3).

And a random spiro chain RSC(n, p1, p2) with n hexagons is a spiro chain ob-
tained by stepwise addition of terminal hexagons. At each step (i = 3, 4, . . . , n),
a random selection is made from one of the three possible constructions:

(1) RSCi−1 → RSC1
i with probability p1,

(2) RSCi−1 → RSC2
i with probability p2,

(3) RSCi−1 → RSC3
i with probability 1− p1 − p2,

Here the probabilities p1 and p2 are constants.
Specially, the random polyphenylene chain RPC(n, 1, 0), RPC(n, 0, 1) and

RPC(n, 0, 0) are the polyphenylene ortho-chainOn, meta-chainMn, para-chain
Pn, by setting (p1, p2) = (1, 0), (0, 1), (0, 0), respectively, see Fig. 2. And sim-
ilarly, the random spiro chain RSC(n, 1, 0), RSC(n, 0, 1), RSC(n, 0, 0) are the
spiro ortho-chainOn, meta-chainMn and para-chain Pn, respectively, see Fig. 3.

3. The expected value of the subtree number index of random polypheny-
lene and spiro chains

3.1. Random polyphenylene chain

Firstly, we study the subtree number index of the random polyphenylene
chain.

Theorem 3.1. For n ≥ 1, the expected value of the subtree number index of

random polyphenylene RPC(n, p1, p2) is

E(STN(RPC(n, p1, p2))) =
441

(11 + 4p1 + p2)2
(12 + 4p1 + p2)

n +
144p1 + 36p2 − 45

11 + 4p1 + p2
n

−
441

(11 + 4p1 + p2)2
.

Proof. It is easy to know that E(STN(RPC(1, p1, p2))) = 36, for n ≥ 2, we
categorize the subtrees of the random polyphenylene chain RPCn into two cases:

(i) not containing edge (tn−1, h1),
(ii) containing edge (tn−1, h1).
It is easy to see that the subtree number of case (i) is

STN(RPCn−1) + 36. (7)

The subtree set of case (ii), denoted by RPCn(tn−1, h1) can be described as:

RPCn(tn−1, h1) = {Tl + (tn−1, h1) + Tr|Tl ∈ RPCn−1(tn−1), Tr ∈ Hn(h1)},
(8)

where Tl + (tn−1, h1) + Tr is the subtree obtained by connecting subtree Tl ∈
RPCn−1(tn−1) (subtree of RPCn−1 containing vertex tn−1) and subtree Tr ∈
Hn(h1) (subtree of Hn containing vertex h1) with edge (tn−1, h1), see Fig. 1(a).
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Since the subtree number of Hn containing vertex h1 is 21, by eq. (8), we
have the subtree number of case (ii) as

21STN(RPCn−1(tn−1)). (9)

Thus by eqs. (7) and (9), we have

STN(RPCn) = STN(RPCn−1) + 21STN(RPCn−1(tn−1)) + 36. (10)

Namely,

STN(RPCn+1) = STN(RPCn) + 21STN(RPCn(tn)) + 36. (11)

For a random polyphenylene chain RPC(n, p1, p2), the subtree number of
RPC(n, p1, p2) containing vertex tn is a random variable, and its expected value
is denoted by

Tn = E(STN(RPC(n, p1, p2; tn))). (12)

By the expectation operator and eqs. (11) and (12), we can obtain a recur-
sive relation for the expected value of the subtree number index of a random
polyphenylene chain RPC(n, p1, p2)

E(STN(RPC(n+ 1, p1, p2))) = E(STN(RPC(n, p1, p2))) + 21Tn + 36. (13)

Now, we consider computing Tn. Take the weighted random polyphenylene
chainRPC(n−1, p1, p2) as a single vertex “tn−1” whose weight is STN(RPC(n−
1, p1, p2; tn−1)), see Fig. 1(a), then, with Theorem 2.2, we have

(i) If RPCn → RPC1
n+1 with probability p1,

STN(RPC(n, p1, p2; tn)) = 21 + 16STN(RPC(n− 1, p1, p2; tn−1))

with probability p1.

(ii) If RPCn → RPC2
n+1 with probability p2,

STN(RPC(n, p1, p2; tn)) = 21 + 13STN(RPC(n− 1, p1, p2; tn−1))

with probability p2.

(iii) If RPCn → RPC3
n+1 with probability 1− p1 − p2,

STN(RPC(n, p1, p2; tn)) = 21 + 12STN(RPC(n− 1, p1, p2; tn−1))

with probability 1− p1 − p2.

From (i)-(iii) above, we immediately obtain

Tn =p1[21 + 16STN(RPC(n− 1, p1, p2; tn−1))] + p2[21 + 13STN(RPC(n− 1, p1, p2; tn−1))]

+ (1− p1 − p2)[21 + 12STN(RPC(n− 1, p1, p2; tn−1))]

=(12 + 4p1 + p2)STN(RPC(n− 1, p1, p2; tn−1) + 21.

(14)

8



By applying the expectation operator to the above eq. (14), we obtain

Tn = (12 + 4p1 + p2)Tn−1 + 21. (15)

Since T1 = 21, using the above recurrence relation, we have

Tn =
21

11 + 4p1 + p2
(12 + 4p1 + p2)

n −
21

11 + 4p1 + p2
. (16)

From eq. (13), we have

E(STN(RPC(n+ 1, p1, p2))) =21[
21

11 + 4p1 + p2
(12 + 4p1 + p2)

n −
21

11 + 4p1 + p2
]

+ E(STN(RPC(n, p1, p2))) + 36

=
441

11 + 4p1 + p2
(12 + 4p1 + p2)

n −
441

11 + 4p1 + p2

+ E(STN(RPC(n, p1, p2))) + 36.

(17)

Using the above recurrence relation, we have

E(STN(RPC(n, p1, p2))) =
441(12 + 4p1 + p2)

(11 + 4p1 + p2)2
(

(12 + 4p1 + p2)
n−1 − 1

)

+ (36−
441

11 + 4p1 + p2
)(n− 1) + 36.

(18)

The theorem thus follows.

Specially, by taking (p1, p2) = (1, 0), (0, 1) or (0, 0), respectively, and Theorem
3.1, we have the following.

Corollary 3.2. The subtree number indices of the polyphenylene ortho-chain

On, meta-chain Mn and para-chain Pn are

STN(On) =
49(16n − 1)

25
+

33n

5
,

STN(Mn) =
49(13n − 1)

16
−

3n

4
,

STN(Pn) =
441(12n − 1)

121
−

45n

11
.

The results of Corollary 3.2 agree with the subtree numbers of On, Mn and
Pn presented in [26].
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3.2. Random spiro chain

Theorem 3.3. For n ≥ 1, the expected value of the subtree number index of a

random spiro chain RSC(n, p1, p2) is

E(STN(RSC(n, p1, p2))) =
400

(11 + 4p1 + p2)2
(12 + 4p1 + p2)

n +
140p1 + 35p2 − 15

11 + 4p1 + p2
n

−
400

(11 + 4p1 + p2)2
+ 1.

Proof. It is not difficult to obtain that E(STN(RSC(1, p1, p2))) = 36, for n ≥
2, assume that the terminal hexagon is spanned by vertices h2, h3, h4, h5, h6,
and the vertex h1(i.e. cn−1) (see Fig. 1(b)). We categorize the subtrees of the
random spiro chain RSCn into four cases:

(i) contain neither (cn−1, h2) nor (cn−1, h6),
(ii) contain (cn−1, h2) but not (cn−1, h6),
(iii) contain (cn−1, h6) but not (cn−1, h2),
(iv) contain both (cn−1, h2) and (cn−1, h6).
by Lemma 1, the subtree number of case (i) is

STN(RSCn−1) + 15. (19)

Taking the the random spiro chain RSCn−1 as a single vertex “cn−1” with
weight STN(RSCn−1(cn−1)) (namely, subtree number of RSCn−1 containing
vertex cn−1) (see Fig. 1(b)), then, by Lemma 2, we know that both the subtree
number of case (ii) and case (iii) are

5STN(RSCn−1(cn−1)). (20)

and further with Theorem 2.3, we can obtain that the subtree number of case
(iii) is

10STN(RSCn−1(cn−1)). (21)

thus, we have

STN(RSCn) = STN(RSCn−1) + 20STN(RSCn−1(cn−1)) + 15. (22)

Namely,

STN(RSCn+1) = STN(RSCn) + 20STN(RSCn(cn)) + 15. (23)

For a random spiro chain RSC(n, p1, p2), the subtree number of RSC(n, p1, p2)
containing vertex cn is a random variable, and its expected value is denoted by

Cn = E(STN(RSC(n, p1, p2; cn))). (24)
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By the expectation operator and eqs. (23) and (24), we can obtain a recursive
relation for the expected value of the subtree number index of a random spiro
chain RSC(n, p1, p2)

E(STN(RSC(n+ 1, p1, p2))) = E(STN(RSC(n, p1, p2))) + 20Cn + 15. (25)

Now, we consider Cn. Again, take the the random spiro chain RSCn−1 as
a single vertex “cn−1” with weight STN(RSCn−1(cn−1)) (see Fig. 1(b)), then,
with Theorem 2.2,

(i) If RSCn → RSC1
n+1 with probability p1,

STN(RSC(n, p1, p2; cn)) = 5 + 16STN(RSC(n− 1, p1, p2; cn−1))

with probability p1.

(ii) If RSCn → RSC2
n+1 with probability p2,

STN(RSC(n, p1, p2; cn)) = 8 + 13STN(RSC(n− 1, p1, p2; cn−1))

with probability p2.

(iii) If RSCn → RSC3
n+1 with probability 1− p1 − p2,

STN(RSC(n, p1, p2; cn)) = 9 + 12STN(RSC(n− 1, p1, p2; cn−1))

with probability 1− p1 − p2.

From (i)-(iii) above, we immediately obtain

Cn =p1[5 + 16STN(RSC(n− 1, p1, p2; cn−1))] + p2[8 + 13STN(RSC(n− 1, p1, p2; cn−1))]

+ (1 − p1 − p2)[9 + 12STN(RSC(n− 1, p1, p2; cn−1))]

=(12 + 4p1 + p2)STN(RSC(n− 1, p1, p2; cn−1) + 9− (4p1 + p2).

(26)

By applying the expectation operator to the above eq. (26), we obtain

Cn = (12 + 4p1 + p2)Cn−1 + 9− (4p1 + p2). (27)

Since C1 = 21, using the above recurrence relation, we have

Cn =
20

11 + 4p1 + p2
(12 + 4p1 + p2)

n + 1−
20

11 + 4p1 + p2
. (28)

It is easy to see that E(STN(RSC(1, p1, p2))) = 36, from eq. (25), we have

E(STN(RSC(n+ 1, p1, p2))) =20[
20

11 + 4p1 + p2
(12 + 4p1 + p2)

n + 1−
20

11 + 4p1 + p2
]

+ E(STN(RSC(n, p1, p2))) + 15

=
400

11 + 4p1 + p2
(12 + 4p1 + p2)

n −
400

11 + 4p1 + p2

+ E(STN(RSC(n, p1, p2))) + 35.

(29)
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Using the above recurrence relation, we have

E(STN(RSC(n, p1, p2))) =
400(12 + 4p1 + p2)

(11 + 4p1 + p2)2
(

(12 + 4p1 + p2)
n−1 − 1

)

+ (35−
400

11 + 4p1 + p2
)(n− 1) + 36.

(30)

The theorem holds immediately.

Let (p1, p2) = (1, 0), (0, 1), or (0, 0), we can obtain the subtree number in-
dex of the spiro ortho-chain On, the meta-chain Mn and the para-chain Pn,
respectively, with Theorem 3.3, we have

Corollary 3.4. The subtree number indices of the spiro ortho-chain On, the

meta-chain Mn and the para-chain Pn are

STN(On) =
256(16n−1 − 1)

9
+

25(n− 1)

3
+ 36,

STN(Mn) =
325(13n−1 − 1)

9
+

5(n− 1)

3
+ 36,

STN(Pn) =
4800(12n−1 − 1)

121
−

15(n− 1)

11
+ 36.

(31)

Again, the results of Corollary 3.4 agree with the subtree numbers of On,
Mn and Pn presented in [26].

3.3. A relation between E(STN(RPC)) and E(STN(RSC))

It is easy to see that every spiro chain could be obtained by squeezing off
the cut edges of a polyphenylene chain. Pavlović and Gutman [14], Deng [4]
provided a formula of the relation between the Wiener indices of a polyphenylene
chain and its squeeze independently. In 2015, Yang et al. [26] presented a
formula of the relation between the subtree number index of these two chains.

When random structures are concerned, Yang and Zhang [23] presented an
exact formula for the expected value of the Wiener index of a random polypheny-
lene chain RPC(n, p1, p2) with the same probabilities p1 and p2, Regarding the
random polyphenylene chain RPC(n, p1, p2) and spiro chain RSC(n, p1, p2),
Huang, Kuang and Deng [7] presented a relation between the expected values
of the Kirchhoff indices of these two chains.

In what follows, we present a relation between the expected values of the
subtree number indices of the random polyphenylene chain RPC(n, p1, p2) and
the random spiro chain RSC(n, p1, p2) from Theorems 3.1 and 3.3.

Theorem 3.5. For a random polyphenylene chain RPC(n, p1, p2) and a ran-

dom spiro chain RSC(n, p1, p2) with n hexagons, the expected values of their

subtree number indices are related as

400E(STN(RPC(n, p1, p2))) = 441E(STN(RSC(n, p1, p2)))− 1035n− 441.
(32)
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Proof. From Eq. (18) and (30), we have

E(STN(RPC(n, p1, p2))) − (36− 441
11+4p1+p2

)(n− 1)− 36

E(STN(RSC(n, p1, p2)))− (35− 400
11+4p1+p2

)(n− 1)− 36
=

441

400
, (33)

or equivalently,

400E(STN(RPC(n, p1, p2))) = 441E(STN(RSC(n, p1, p2)))− 1035n− 441.

�

By Theorem 3.5, the expected value of the subtree number index of the
random spiro chain is less than the random polyphenylene chain. In fact, for
n → ∞,

E(STN(RSC(n, p1, p2))) ≈
400

441
E(STN(RPC(n, p1, p2))).

From Theorems 3.1 and 3.3, we also point out that

E(STN(RPC(n, p1, p2))) ≈
441

(11 + 4p1 + p2)2
(12 + 4p1 + p2)

n

and

E(STN(RSC(n, p1, p2))) ≈
400

(11 + 4p1 + p2)2
(12 + 4p1 + p2)

n.

Namely, the values of E(STN(RPC(n, p1, p2))) andE(STN(RSC(n, p1, p2)))
are asymptotic to exponential function in n as n −→ ∞.

4. Average value of the subtree number index

Let Gn be the set of all polyphenylene chains with n hexagons. The average
value of the subtree number indices with respect to Gn is

STNavr(Gn) =
1

|Gn|

∑

G∈Gn

STN(G).

In order to obtain the average value of the subtree number indices with
respect to Gn, we only need to take p1 = p2 = 1

3 in the random polyphenylene
chain RPC(n, p1, p2), i.e., the average value of the subtree number indices with
respect to Gn is just the expected value of the subtree number index of the
random polyphenylene chain RPC(n, p1, p2) for p1 = p2 = 1

3 . From Theorem
3.1, we have

Theorem 4.1. The average value of the subtree number indices with respect to

Gn is

STNavr(Gn) =
3969

1444
(
41

3
)n +

45

38
n−

3969

1444
.
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Similarly, Let Gn be the set of all spiro chains with n hexagons. The average
value of the subtree number indices with respect to Gn is

STNavr(Gn) =
1

|Gn|

∑

G∈Gn

STN(G),

and the average value of the subtree number indices with respect to Gn is
just the expected value of the subtree number index of the random spiro chain
RSC(n, p1, p2) for p1 = p2 = 1

3 . From Theorem 3.3, we have

Theorem 4.2. The average value of the subtree number indices with respect to

Gn is

STNavr(Gn) =
900

361
(
41

3
)n +

130

38
n−

539

361
.

5. Concluding remarks

In this paper we obtain exact formulas for the expected values of subtree
number index of the random polyphenylene and spiro chains, and then establish
a relation between the expected values of the subtree number indices of a random
polyphenylene and its corresponding random hexagonal squeeze, we also briefly
study the average values for subtree number indices with respect to the set of
all polyphenylene and spiro chains with n hexagons.

For future works, we plan to study the expected values of subtree number
index of the random hexagonal chains, phenylene chains and other regular chem-
ical structures such as cata-condensed hexagonal systems. Meanwhile, It is also
interesting to study the expected values of the recently proposed multi-distance
granularity structural α-subtree index [24] of the random polyphenylene and
spiro chains, as well as other regular chemical structures.
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