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Abstract

The digirth of a digraph is the length of a shortest directed cycle. The dichromatic number

~χ(D) of a digraph D is the smallest size of a partition of the vertex-set into subsets inducing
acyclic subgraphs. A conjecture by Harutyunyan and Mohar [7] states that ~χ(D) ≤ ⌈ ∆

4
⌉ + 1

for every digraph D of digirth at least 3 and maximum degree ∆. The best known partial
result by Golowich [5] shows that ~χ(D) ≤ 2

5
∆ + O(1). In this short note we prove for

every g ≥ 2 that if D is a digraph of digirth at least 2g − 1 and maximum degree ∆, then
~χ(D) ≤ ( 1

3
+ 1

3g
)∆ + Og(1). This improves the bound of Golowich for digraphs without

directed cycles of length at most 10.

1 Introduction

Preliminaries. All digraphs in this note are finite and do not contain loops or parallel arcs.
Given a digraph D, we denote by V (D) its vertex-set and by A(D) the arc-set. A digraph is called
acyclic if it does not contain directed cycles. By ∆(D), ∆+(D), ∆−(D), δ+(D), δ−(D) we denote,
respectively, the maximum degree in (the underlying graph of) D, and the extremal out- and in-
degrees in D. We furthermore denote by ∆̃(D) = max{

√

d+(v)d−(v)|v ∈ V (D)} the maximum
geometric mean of the in- and out-degree of a vertex in D. Note that in case D has no cycles

of length 2, the inequality of geometric and arithmetic mean shows that ∆̃(D) ≤ ∆(D)
2 . Given a

vertex set X ⊆ V (D), we denote by D[X ] the induced subdigraph of D with vertex-set X and
call X acyclic if D[X ] is acyclic. By ~g(D) we denote the digirth of D, that is, the shortest length
of a directed cycle in D (~g(D) := ∞ if D is acyclic). Given a a family A1, . . . , Am of finite sets,
a system of representatives of this family is a set X ⊆

⋃m
i=1 Ai such that X∩Ai 6= ∅ for all i ∈ [m].

We deal with a notion of coloring for directed graphs introduced in 1982 by Neumann-Lara [13].
Given a digraph D, an acyclic coloring of D is a vertex-coloring in which all color classes are
acyclic. The smallest number of colors sufficient for an acyclic coloring of D is denoted by ~χ(D)
and called dichromatic number of D. This notion has received a fair amount of attention in the
past two decades, see [1, 3, 4, 6, 8, 9, 12] for some recent results. As for undirected graphs,
there is a Brooks-type upper bound on the dichromatic number of a digraph, see [11, 13], which
implies ~χ(D) ≤ ⌈ ∆

2 ⌉ for every digraph of girth at least 3 and maximum degree ∆ ≥ 3. In this
note, we are motivated by the following conjecture from [7], which claims that this Brook’s type
bound can be improved by a factor of 2 if we forbid directed cycles of length 2 in the digraph.

Conjecture 1 (cf. [7], Conjecture 1.5). Let D be a digraph of digirth at least 3 and maximum

degree ∆. Then ~χ(D) ≤
⌈

∆̃(D)
2

⌉

+ 1 ≤ ⌈ ∆
4 ⌉ + 1.
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Approaching their conjecture, in [7] Harutyunyan and Mohar proved that there is a small
absolute constant ε > 0 such that ~χ(D) ≤ (1 − ε)∆̃(D) ≤ (1

2 − ε
2 )∆(D) for every digraph D of

digirth at least 3 and ∆̃ sufficiently large. Subsequently Golowich [5] improved the multiplicative
constant in the upper bound, by showing that every digraph D of digirth at least 3 satisfies
~χ(D) ≤ 2

5 ∆(D) + O(1). Our contribution is to further improve the multiplicative constant in
this upper bound for digraphs without short directed cycles.

Theorem 1. Let g ≥ 2 a natural number, and let D be a digraph with ~g(D) ≥ 2g − 1 and

maximum degree ∆. Then ~χ(D) ≤ (1
3 + 1

3g
)∆ + (g + 1).

2 Proof of Theorem 1

We need three auxiliary results by Neumann-Lara, by Aharoni, Berger and Kfir, and by Lovász.

Lemma 2 (cf. [13], Theorem 5). Let k ∈ N and let D be a (k + 1)-critical digraph, that is,

~χ(D) = k + 1 but ~χ(D′) ≤ k for every proper subdigraph D′ ( D. Then δ+(D), δ−(D) ≥ k.

Lemma 3 (cf. [2], Corollary II.13). Let D be a digraph of digirth at least γ ≥ 2 and let

V1, V2, . . . , Vm be a partition of V (D). If |Vi| ≥ γ
γ−1∆+(D) for all i ∈ [m], then there is a system

X of representatives of V1, . . . , Vm which is acyclic in D.

Lemma 4 ([10]). Let G be an undirected graph, k ∈ N. Then V (G) admits a partition X1, . . . , Xk

such that for every v ∈ Xi, i ∈ [k], we have degG[Xi](v) ≤ 1
k

deg(v).

The proof of Theorem 1 relies on the following bound on the dichromatic number for digraphs
of large girth compared to their maximum out-degree.

Lemma 5. Let D be a digraph such that ~g(D) > ∆+(D). Then

~χ(D) ≤

⌊

∆(D)

3

⌋

+ 2.

Proof. Abbreviate ∆ = ∆(D) and γ = ~g(D) and put k :=
⌊

∆
3

⌋

+ 1 > ∆
3 . By Lemma 4 there is

a partition X1, . . . , Xk of V (D) such that for every i ∈ [m] we have ∆(D[Xi]) ≤ ∆
k

< 3. Hence,

D[Xi] is a disjoint union of oriented paths and oriented cycles. For every i, let us denote by ~Ci

the set of all directed cycles in D[Xi] and put V ′ :=
⋃

i∈[k],C∈~Ci

V (C). We claim that there is

an acyclic set X in D such that X ∩ V (C) 6= ∅ for all C ∈ ~Ci and i ∈ [k]. To see this, note

that |V (C)| ≥ γ ≥ γ
γ−1 ∆+(D) ≥ γ

γ−1 ∆+(D[V ′]) for every C ∈ ~Ci and i ∈ [k]. We can therefore

apply Lemma 3 to the digraph D[V ′] equipped with the partition (V (C)|C ∈ ~Ci, i ∈ [k]) to find
a system of representatives X which is acyclic in D[V ′] and thus in D. Next we claim that each
of the sets Xi \ X, i ∈ [k] is acyclic in D. Indeed, the digraph D[Xi \ X ] = D[Xi] − (Xi ∩ X) is
obtained from a disjoint union of oriented paths and cycles by removing at least one vertex from
each directed cycle, and is therefore acyclic. Hence, X1 \ X, X2 \ X, . . . , Xk \ X, X is a partition
of V (D) into acyclic sets which certifies that ~χ(D) ≤ k + 1 =

⌊

∆
3

⌋

+ 2.

We can now complete the proof of Theorem 1 by applying Lemma 4 a second time.

Proof of Theorem 1. Let ℓ :=
⌊

∆
3g

⌋

+ 1. By Lemma 4 there exists a partition Y1, . . . , Yℓ of V (D)

such that ∆(D[Yi]) ≤ ∆
ℓ

< 3g for every i ∈ [ℓ]. We claim that for every i ∈ [ℓ], we have
~χ(D[Yi]) ≤ g + 1. Suppose by way of a contradiction that ~χ(D[Yi]) ≥ g + 2 for some i ∈ [ℓ].
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Consider a subgraph Di of D[Yi] with ~χ(Di) ≥ g + 2 minimizing |V (Di)| + |A(Di)|. Clearly, Di

is (g + 2)-critical, and thus δ−(Di) ≥ g + 1 by Lemma 2. Hence we have

∆+(Di) ≤ ∆(Di) − δ−(Di) ≤ ∆(D[Yi]) − δ−(Di) ≤ (3g − 1) − (g + 1) = 2g − 2 < ~g(D) ≤ ~g(Di).

We can therefore apply Lemma 5 to obtain ~χ(Di) ≤
⌊

3g−1
3

⌋

+ 2 = g + 1, which is the desired
contradiction. This shows that indeed we have ~χ(D[Yi]) ≤ g + 1 for all i ∈ [ℓ]. The claim now
follows from

~χ(D) ≤
ℓ

∑

i=1

~χ(D[Yi]) ≤ (g + 1)

(⌊

∆

3g

⌋

+ 1

)

≤

(

1

3
+

1

3g

)

∆ + (g + 1).
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