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Abstract

The digirth of a digraph is the length of a shortest directed cycle. The dichromatic number
X(D) of a digraph D is the smallest size of a partition of the vertex-set into subsets inducing
acyclic subgraphs. A conjecture by Harutyunyan and Mohar [7] states that ¥(D) < [£]+1
for every digraph D of digirth at least 3 and maximum degree A. The best known partial
result by Golowich [5] shows that ¥(D) < 2A 4 O(1). In this short note we prove for
every g > 2 that if D is a digraph of digirth at least 29 — 1 and maximum degree A, then
X(D) < (5 + Sig)A + O4(1). This improves the bound of Golowich for digraphs without
directed cycles of length at most 10.

1 Introduction

Preliminaries. All digraphs in this note are finite and do not contain loops or parallel arcs.
Given a digraph D, we denote by V(D) its vertex-set and by A(D) the arc-set. A digraph is called
acyclic if it does not contain directed cycles. By A(D), AT (D), A~ (D),d%(D),d~ (D) we denote,
respectively, the maximum degree in (the underlying graph of) D, and the extremal out- and in-
degrees in D. We furthermore denote by A(D) = max{+/d*(v)d—(v)|v € V(D)} the maximum
geometric mean of the in- and out-degree of a vertex in D. Note that in case D has no cycles
of length 2, the inequality of geometric and arithmetic mean shows that A(D) < #. Given a
vertex set X C V(D), we denote by D[X] the induced subdigraph of D with vertex-set X and
call X acyclic if D[X] is acyclic. By g(D) we denote the digirth of D, that is, the shortest length
of a directed cycle in D (§(D) := oo if D is acyclic). Given a a family A, ..., A,, of finite sets,
a system of representatives of this family is a set X C |JI*, A; such that XNA; # 0 for all i € [m].

We deal with a notion of coloring for directed graphs introduced in 1982 by Neumann-Lara [13].
Given a digraph D, an acyclic coloring of D is a vertex-coloring in which all color classes are
acyclic. The smallest number of colors sufficient for an acyclic coloring of D is denoted by ¥(D)
and called dichromatic number of D. This notion has received a fair amount of attention in the
past two decades, see [I B} 4l [6] [8 @] [12] for some recent results. As for undirected graphs,
there is a Brooks-type upper bound on the dichromatic number of a digraph, see [IT], T3], which
implies ¥(D) < [£] for every digraph of girth at least 3 and maximum degree A > 3. In this
note, we are motivated by the following conjecture from [7], which claims that this Brook’s type
bound can be improved by a factor of 2 if we forbid directed cycles of length 2 in the digraph.

Conjecture 1 (cf. [7], Conjecture 1.5). Let D be a digraph of digirth at least 3 and mazimum
degree A. Then ¥(D) < [#W +1< (%] ey

*Institute of Mathematics, Technische Universitat Berlin, Germany, email: steiner@math.tu-berlin.de.
Funded by DFG-GRK 2434 Facets of Complexity.


http://arxiv.org/abs/2004.01925v1

Approaching their conjecture, in [7] Harutyunyan and Mohar proved that there is a small

absolute constant & > 0 such that ¥(D) < (1 —e)A(D) < (3 — £)A(D) for every digraph D of
digirth at least 3 and A sufficiently large. Subsequently Golowich [5] improved the multiplicative
constant in the upper bound, by showing that every digraph D of digirth at least 3 satisfies
X(D) < 2A(D) + O(1). Our contribution is to further improve the multiplicative constant in

this upper bound for digraphs without short directed cycles.

Theorem 1. Let g > 2 a natural number, and let D be a digraph with g(D) > 2g — 1 and

mazimum degree A. Then X(D) < (% + ;—Q)A +(g+1).

2 Proof of Theorem [

We need three auxiliary results by Neumann-Lara, by Aharoni, Berger and Kfir, and by Lovéasz.

Lemma 2 (cf. [I3], Theorem 5). Let k € N and let D be a (k + 1)-critical digraph, that is,
X(D) =k +1 but X(D') <k for every proper subdigraph D' C D. Then 6% (D),06~ (D) > k.

Lemma 3 (cf. [2], Corollary 11.13). Let D be a digraph of digirth at least v > 2 and let
Vi, Va, ..., Vi be a partition of V(D). If |Vi| > 23 AT(D) for alli € [m], then there is a system
X of representatives of V1, ...,V which is acyclic in D.

Lemma 4 ([I0]). Let G be an undirected graph, k € N. Then V(G) admits a partition X1, ..., Xy
such that for every v € X;,i € [k], we have deggx,)(v) < % deg(v).

The proof of Theorem [l relies on the following bound on the dichromatic number for digraphs
of large girth compared to their maximum out-degree.

Lemma 5. Let D be a digraph such that g(D) > AY(D). Then

A(D
X(D) < {%J +2.
Proof. Abbreviate A = A(D) and v = (D) and put k := L%J +1> %. By Lemma [4 there is
a partition X1,..., Xy of V(D) such that for every i € [m] we have A(D[X;]) < £ < 3. Hence,

DI[X;] is a disjoint union of oriented paths and oriented cycles. For every i, let us denote by C;
the set of all directed cycles in D[X;] and put V' := Uie[k],Ced V(C). We claim that there is
an acyclic set X in D such that X N V(C) # 0 for all C € C; and i € [k]. To see this, note
that |V(C)| > v > ﬁA*(D) > %A*‘(D[V’]) for every C € C; and i € [k]. We can therefore
apply Lemma [3 to the digraph D[V'] equipped with the partition (V (C)|C € C;,i € [k]) to find
a system of representatives X which is acyclic in D[V'] and thus in D. Next we claim that each
of the sets X; \ X, € [k] is acyclic in D. Indeed, the digraph D[X; \ X]| = D[X;] — (X; N X) is
obtained from a disjoint union of oriented paths and cycles by removing at least one vertex from
each directed cycle, and is therefore acyclic. Hence, X7 \ X, X2\ X, ..., X \ X, X is a partition
of V(D) into acyclic sets which certifies that ¥(D) < k+ 1= L%J +2. O

We can now complete the proof of Theorem [1l by applying Lemma [4] a second time.

Proof of Theorem [l Let £ := {?’A—gJ + 1. By Lemma M there exists a partition Y7,...,Y; of V(D)

such that A(D[Y;]) < £ < 3g for every i € [(]. We claim that for every i € [{], we have

X(D[Y;]) < g+ 1. Suppose by way of a contradiction that x(DI[Y;]) > g + 2 for some i € [{].



Consider a subgraph D; of D[Y;] with ¥(D;) > g + 2 minimizing |V (D;)| + |A(D;)|. Clearly, D
is (g + 2)-critical, and thus 6~ (D;) > g + 1 by Lemma[2l Hence we have

AT(D;) < A(D;) —67(D;) < A(D[Yi]) — 67 (D;) < (3g — 1) — (g + 1) = 29 — 2 < §(D) < (D).

J + 2 = g+ 1, which is the desired
g+ 1 for all ¢ € [¢]. The claim now

We can therefore apply Lemma [l to obtain x(D;) < L3g3_
contradiction. This shows that indeed we have ¥(D[Y;]) <
follows from

oo < (3]) (e 3)aroen
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