
Parameterized and Exact Algorithms for Class

Domination Coloring ?

R. Krithika

Indian Institute of Technology Palakkad, Palakkad, India

Ashutosh Rai

Indian Institute of Technology Delhi, Delhi, India

Saket Saurabh1

The Institute of Mathematical Sciences, HBNI, Chennai, India and University of

Bergen, Bergen, Norway

Prafullkumar Tale2

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Abstract

A class domination coloring (also called cd-Coloring or dominated coloring)
of a graph is a proper coloring in which every color class is contained in
the neighbourhood of some vertex. The minimum number of colors required
for any cd-coloring of G, denoted by χcd(G), is called the class domination
chromatic number (cd-chromatic number) of G. In this work, we consider

?A preliminary version of this paper appeared in the proceedings of 43rd International
Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM
2016).

Email addresses: krithika@iitpkd.ac.in (R. Krithika),
ashutosh.rai@maths.iitd.ac.in (Ashutosh Rai), saket@imsc.res.in (Saket
Saurabh), prafullkumar.tale@cispa.saarland (Prafullkumar Tale)

1The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement no. 306992

2This research is a part of a project that has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement SYSTEMATICGRAPH (No. 725978).

Preprint submitted to Nuclear Physics B March 18, 2022

ar
X

iv
:2

20
3.

09
10

6v
1

 [
cs

.D
M

]
 1

7
M

ar
 2

02
2

two problems associated with the cd-coloring of a graph in the context of ex-
act exponential-time algorithms and parameterized complexity. (1) Given a
graph G on n vertices, find its cd-chromatic number. (2) Given a graph G and
integers k and q, can we delete at most k vertices such that the cd-chromatic
number of the resulting graph is at most q? For the first problem, we give
an exact algorithm with running time O(2nn4 log n). Also, we show that the
problem is FPT with respect to the number q of colors as the parameter on
chordal graphs. On graphs of girth at least 5, we show that the problem also
admits a kernel with O(q3) vertices. For the second (deletion) problem, we
show NP-hardness for each q ≥ 2. Further, on split graphs, we show that
the problem is NP-hard if q is a part of the input and FPT with respect to
k and q as combined parameters. As recognizing graphs with cd-chromatic
number at most q is NP-hard in general for q ≥ 4, the deletion problem is
unlikely to be FPT when parameterized by the size of the deletion set on
general graphs. We show fixed parameter tractability for q ∈ {2, 3} using
the known algorithms for finding a vertex cover and an odd cycle transversal
as subroutines.

1. Introduction

Graph coloring is a classical problem in the fields of combinatorics and
algorithm design. A proper coloring of a graph is an assignment of colors to
its vertices such that no two adjacent vertices receive the same color. Equiv-
alently, a proper coloring is a partition of the vertex set into independent
sets. In this context, these independent sets are also called color classes.
A proper coloring of a graph G using q colors is called a q-coloring of G
and the minimum number of colors required in a proper coloring is called
as the chromatic number of G. Determining the chromatic number of a
graph is a classical NP-hard problem. This problem has been widely investi-
gated in the areas of exact algorithms [1, 2, 3, 4, 5, 6], approximation algo-
rithms [7, 8, 9, 10], and parameterized algorithms [11, 12, 13, 14]. Further,
variants of the graph coloring like Edge-Chromatic Number, Achro-
matic Number, b-Chromatic Number, Total Chromatic Number,
Dominator Coloring and Class Domination Coloring have also
been well studied [15, 16, 17].

In this work, we initiate the study of Class Domination Coloring
(also called cd-Coloring or Dominated Coloring) in the realm of pa-
rameterized complexity and exact exponential time algorithms. A cd-coloring

2

is a proper coloring of the graph in which every color class is contained in the
neighbourhood of some vertex. See Figure 1 for an example. The minimum
number of colors needed in any cd-coloring of G is called the class domination
chromatic number or cd-chromatic number of G and is denoted by χcd(G).
Also, G is said to be q-cd-colorable if χcd(G) ≤ q. The cd-Coloring prob-
lem is formally defined as follows.

cd-Coloring
Input: A graph G and a positive integer q.
Question: Is χcd(G) ≤ q?

cd-Coloring is NP-complete for q ≥ 4 and polynomial-time solvable
for q ≤ 3 [18]. A characterization of graphs that admit 3-cd-colorings is also
known [18]. cd-Coloring has also been studied on many restricted graph
classes like split graphs, P4-free graphs [18] and middle and central graphs
of K1,n, Cn and Pn [19]. See also [20, 21, 22, 23, 24].

We study this problem in the context of exact exponential-time algorithms
and parameterized complexity. The field of exact algorithms typically deals
with designing algorithms for NP-hard problems that are faster than brute-
force search while the goal in parameterized complexity is to provide efficient
algorithms for NP-complete problems by switching from the classical view of
single-variate measure of the running time to a multi-variate one. In param-
eterized complexity, we consider instances (I, k) of a parameterized problem
Π ⊆ Σ∗ × N, where Σ is a finite alphabet. Algorithms in this area have
running times of the form f(k)|I|O(1), where k is an integer measuring some
part of the instance. This integer k is called the parameter, and a problem
that admits such an algorithm is said to be fixed-parameter tractable (FPT).
In most of the cases, the solution size is taken to be the parameter, which
means that this approach results in efficient (polynomial-time) algorithms
when the solution is of small size. A kernelization algorithm for a parame-
terized problem Π is a polynomial time procedure which takes as input an
instance (x, k) of Π and returns an instance (x′, k′) such that (x, k) ∈ Π if
and only if (x′, k′) ∈ Π and |x′| ≤ h(k) and k′ ≤ g(k), for some computable
functions h, g. The returned instance is called a kernel and h(k) + g(k) is its
size. We say that Π admits a polynomial kernel if h and g are polynomials.
For more background on parameterized complexity, we refer the reader to
the monographs [25, 26, 27, 28].

We first observe that parameterizing cd-Coloring by the solution size

3

Figure 1: An example of a cd-Coloring of a graph

(which is the number of colors) does not help in designing efficient algorithms
as the problem is para-NP-hard (NP-hard even when the parameter is a
constant). Hence, this problem is unlikely to be FPT when parameterized
by the solution size. Then, we describe an O(2nn4 log n)-time algorithm for
finding the cd-chromatic number of a graph using polynomial method. Next,
we show that cd-Coloring is FPT when parameterized by the number of
colors and the treewidth of the input graph. Further, we show that the
problem is FPT when parameterized by the number of colors on chordal
graphs. Kaminski and Lozin [29] showed that determining if a graph of
girth at least g admits a proper coloring with at most q colors or not is
NP-complete for any fixed q ≥ 3 and g ≥ 3. In particular, Chromatic
Number is para-NP-hard for graphs of girth at least 5. In contrast, we show
that cd-Coloring is FPT on this graph class and admits a kernel with
O(q3) vertices.

On a graph G that is not q-cd-colorable, a natural optimization question is
to check if we can delete at most k vertices from G such that the cd-chromatic
number of the resultant graph is at most q. We define this problem as follows.

cd-Partization
Input: Graph G, integers k and q
Question: Does there exist S ⊆ V (G), |S| ≤ k, such that χcd(G− S) ≤
q?

If q is fixed, then we refer to the problem as q-cd-Partization. Once
again, from parameterized complexity point of view, this question is not
interesting on general graphs for values of q greater than three, as in those
cases, an FPT algorithm with deletion set (solution) size as the parameter
is a polynomial-time recognition algorithm for q-cd-colorable graphs. Hence,
the deletion question is interesting only on graphs where the recognition

4

problem is polynomial-time solvable. We show that q-cd-Partization is
NP-complete for each q ≥ 2, and that for q ∈ {2, 3}, the problem is FPT
with respect to the solution size as the parameter. Our algorithms use the
known parameterized algorithms for finding a vertex cover and an odd cycle
transversal of a graph as subroutines. We also show that cd-Partization
remains NP-complete on split graphs and is FPT when parameterized by the
number of colors and solution size.

2. Preliminaries

The set of integers {1, 2, . . . , k} is denoted by [k]. All graphs considered
in this paper are finite, undirected and simple. For the terms which are not
explicitly defined here, we use standard notations from [30]. For a graph G,
its vertex set is denoted by V (G) and its edge set is denoted by E(G). For
a vertex v ∈ V (G), its (open) neighbourhood NG(v) is the set of all vertices
adjacent to it and its closed neighborhood is the set NG(v)∪{v}. We omit the
subscript in the notation for neighbourhood if the graph under consideration
is clear from the context. The degree of a vertex v is the size of its open
neighborhood.

For a set S ⊆ V (G), the subgraph of G induced by S, denoted by G[S],
is defined as the subgraph of G with vertex set S and edge set {(u, v) ∈
E(G) : u, v ∈ S}. The subgraph of G obtained after deleting S (and the
edges incident on it) is denoted as G− S. The girth of a graph is the length
of a smallest cycle. A set D ⊆ V (G) is said to be a dominating set of G if
every vertex in V (G) \D is adjacent to some vertex in D.

A proper coloring of G with q colors is a function f : V (G) → [q] such
that for all (u, v) ∈ E(G), f(u) 6= f(v). For a proper coloring f of G with q
colors and i ∈ [q], f−1(i) ⊆ V (G) is called a color class in the coloring f . The
chromatic number χ(G) of G is the minimum number of colors required in a
proper coloring ofG. A clique is a graph which has an edge between every pair
of vertices. The clique number ω(G) of G is the size of a largest clique which is
a subgraph of G. A vertex cover is a set of vertices that contains at least one
endpoint of every edge in the graph. An independent set is a set of pairwise
nonadjacent vertices. A graph is said to be a bipartite graph if its vertex set
can be partitioned into two independent sets. An odd cycle transversal is a
set of vertices whose deletion from the graph results in a bipartite graph. A
tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T)) such that

•
⋃
t∈V (T)Xt = V (G),

5

• for every edge (x, y) ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt,
and

• for every vertex v ∈ V (G) the subgraph of T induced by the set {t |
v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt| − 1 and the treewidth of
G, denoted by tw(G), is the minimum width over all tree decompositions
of G. The syntax of Monadic Second Order Logic (MSO) of graphs includes
the logical connectives ∨, ∧, ¬, ⇒, ⇔, variables for vertices, edges, sets
of vertices, sets of edges, the quantifiers ∀, ∃ that can be applied to these
variables and the following five binary relations.

• u ∈ U where u is a vertex variable and U is a vertex set variable;

• e ∈ F where e is an edge variable and F is an edge set variable;

• inc(e, u), where e is an edge variable, u is a vertex variable, and the
interpretation is that the edge e is incident with the vertex u;

• adj(u, v), where u and v are vertex variables and the interpretation is
that u and v are adjacent;

• equality of variables representing vertices, edges, sets of vertices, and
sets of edges.

For an MSO formula φ, ||φ|| denotes the length of its encoding as a string.

Theorem 1 (Courcelle’s theorem, [31, 32]). Let φ be a graph property that
is expressible in MSO. Suppose G is a graph on n vertices with treewidth tw
equipped with the evaluation of all the free variables of φ. Then, there is an
algorithm that verifies whether φ is satisfied in G in f(||φ||, tw) · n time for
some computable function f .

We end the preliminaries section with following simple observations.

Observation 1. If G1, . . . , Gl are the connected components of G, then
χcd(G) =

∑l
i=1 χcd(Gi).

Observation 2. If G is q-cd-colorable, then G has a dominating set of size
at most q.

6

3. Exact Algorithm for cd-Chromatic Number

Let G denote the input graph on n vertices. Given a coloring of V (G), we
can check in polynomial time whether it is a cd-coloring or not. Therefore,
to compute χcd(G), we can iterate over all possible colorings of V (G) with at
most n colors and return a valid cd-coloring that uses the minimum number
of colors. This brute force algorithm runs in 2O(n logn) time. In this section
we present an algorithm which runs in O(2nn4 log n) time. The idea for
this algorithm is inspired by an exact algorithm for b-Chromatic Number
presented in [33]. We first list some preliminaries on polynomials and Fast
Fourier Transform following the framework of [33].

A binary vector φ is a finite sequence of bits and val(φ) denotes the integer
d of which φ is the binary representation. All vectors considered here are
binary vectors and are synonymous to binary numbers. Further, they are the
binary representations of integers less than 2n and are assumed to consist of n
bits. φ1+φ2 denotes the vector obtained by the bitwise addition of the binary
numbers (vectors) φ1 and φ2. Let U = {u1, u2, . . . , un} denote a universe with
a fixed ordering on its elements. The characteristic vector of a set S ⊆ U ,
denoted by ψ(S), is the vector of length |U | whose jth bit is 1 if uj ∈ S and
0 otherwise. The Hamming weight of a vector φ is the number of 1s in φ and
it is denoted by H(φ). Observe that H(ψ(S)) = |S|. The Hamming weight
of an integer is define as hamming weight of its binary representation. To
obtain the claimed running time bound for our exponential-time algorithm,
we make use of the algorithm for multiplying polynomials based on the Fast
Fourier Transform.

Lemma 1 ([34]). Two polynomials of degree at most d over any commu-
tative ring R can be multiplied using O(d · log d · log log d) additions and
multiplications in R.

Let z denote an indeterminate variable. We use the monomial zval(ψ(S))

to represent the set S ⊆ U and as a natural extension, we use univariate
polynomials to represent a family of sets.

Definition 1 (Characteristic Polynomial of a Family of Sets). For a family
F = {S1, S2, . . . , Sq} of subsets of U , the characteristic polynomial of F is
defined as pψ(F) =

∑q
i=1 z

val(ψ(Si)).

Definition 2 (Representative Polynomial). For a polynomial p(z) =
∑q

i=1 ai·
zi, we define its representative polynomial as

∑q
i=1 bi ·zi where bi = 1 if ai 6= 0

and bi = 0 if ai = 0.

7

Definition 3 (Hamming Projection). The Hamming projection of the poly-
nomial p(z) =

∑q
i=1 ai ·zi to the integer h is defined as Hh(p(z)) :=

∑q
i=1 bi ·zi

where bi = ai if H(i) = h and bi = 0 otherwise.

Next, for two sets S1, S2 ⊆ U , we define a modified multiplication operation
(?) of the monomials zψ(S1) and zψ(S2) in the following way.

zval(ψ(S1)) ? zval(ψ(S2)) =

{
zval(ψ(S1))+val(ψ(S2)) if S1 ∩ S2 = ∅
0 otherwise

For a polynomial function p(z) of z and a positive integer ` ≥ 2, we induc-
tively define the polynomial p(z)` as p(z)` := p(z)`−1?p(z). Here, coefficients
of monomials follow addition and multiplications defined over underlying
field. We now describe an algorithm for implementing the ? operation using
the standard multiplication operation and the notion of Hamming weights of
bit strings associated with exponents.

Algorithm 3.1: Compute (?) product of two polynomials

Input: Two polynomials q(z), r(z) of degree at most 2n

Output: q(z) ? r(z)
1 Initialize polynomials t(z) and t′(z) to 0
2 for each ordered pair (i, j) such that i+ j ≤ n do
3 Compute si(z) = Hi(q(z)) and sj(z) = Hj(r(z))
4 Compute sij(z) = si(z) ∗ sj(z) using Lemma 1
5 t′(z) = t(z) +Hi+j(sij(z))
6 Set t(z) as the representative polynomial of t′(z)

7 return t(z)

Lemma 2. Let F1 and F2 be two families of subsets of U . Let F denote the
collection {S1∪S2| S1 ∈ F1, S2 ∈ F2 and S1∩S2 = ∅}. Then, pψ(F1)?pψ(F2)
computed by Algorithm 3.1 is pψ(F).

Proof. Define q(z) = pψ(F1), r(z) = pψ(F2) and t(z) = q(z) ? r(z). Let
S1 ∈ F1 and S2 ∈ F2 be sets such that S1 ∩ S2 = ∅. Define S = S1 ∪ S2 and
let φ1, φ2 and φ be the characteristic vectors of S1, S2, and S respectively. We
claim that the term zval(φ) is present in t(z). For a vector φ and an integer i ∈
[n], let φ[i] denote the ith bit in φ. As φ[i] is 1 if and only if exactly one of the
two bits φ1[i], φ2[i] is 1, it follows that there is no carry at any position (and
hence no overflow) while adding φ1 and φ2. Therefore, φ = φ1+φ2 is a binary

8

string of n bits and H(φ) = H(φ1) + H(φ2). Now, as q(z) contains zval(φ1)

and r(z) contains zval(φ2), in the execution of Algorithm 3.1, for i = |S1| and
j = |S2|, polynomials si(z) and sj(z) contain zval(φ1) and zval(φ2) respectively.
Step 4 multiplies si(z) and sj(z) using Fast Fourier Transformation to obtain
sij(z). As H(φ1) = i, H(φ2) = j and H(φ1) +H(φ2) = i+ j, sij(z) contains
the term zval(φ) = zval(φ1)+val(φ2). Moreover, zval(φ) is present in Hi+j(sij(z))
and hence it is a monomial in t(z) as Step 6 ensures that every monomial in
t(z) is of the form zd for some integer d.

Next, we show that for every monomial zd in t(z), there is a set S ∈ F such
that d = val(ψ(S)). Let i and j be integers such that Hi+j(sij(z)) contains
the term zd. As t(z) was initialized to 0, zd was obtained as the product
of two terms zd1 , zd2 in si(z) and sj(z) respectively such that d1 + d2 = d.
Let S1 ∈ F1 be the set such that ψ(S1) is the binary representation of d1.
Similarly, let S2 ∈ F2 be the set such that ψ(S2) is the binary representation
of d2. Let φ1 and φ2 be the characteristic vectors of S1 and S2 respectively.
Then, |S1| = i, |S2| = j and there is no integer k between 1 and n such that
φ1[k] = φ2[k] = 1. Therefore, S1 ∩ S2 = ∅ and zd = zval(S1∪S2). Hence, the
claimed set S is S1 ∪ S2 which is in F as S1 ∩ S2 = ∅.

Corollary 1. Given a polynomial p(z) of degree at most 2n, there is an
algorithm that computes p(z)` in O(2nn3 log n · l) time.

Proof. By Lemma 1, an execution of the Fast Fourier multiplication algo-
rithm takes O(2nn log n) time. As the for loop of Algorithm 3.1 is executed
n2 times, the total time to compute p(z)` is O(2nn3 log n).

We now prove a result which correlates the existence of a partition of a set
with the presence of a monomial in a polynomial associated with it.

Lemma 3. Consider a universe U and a family F of its subsets with char-
acteristic polynomial p(z). For any W ⊆ U , W is the disjoint union of ` sets
from F if and only if there exists a monomial zval(ψ(W)) in p(z)`.

Proof. Let W be the disjoint union of S1, S2, . . . , S` such that Si ∈ F for all
i ∈ [`]. For any j ∈ [n], the jth bit of ψ(W) is 1 if and only if there is exactly
one Si such that jth bit of ψ(Si) is 1. Thus, val(ψ(W)) = val(ψ(S1)) +
val(ψ(S2)) + · · · + val(ψ(S`)). Now, for every Si there is a term zval(ψ(Si))

in p(z). Further, as the Si’s are pairwise disjoint, the monomial zval(ψ(S1)) ?
zval(ψ(S2)) ? · · · ? zval(ψ(S`)) which is equal to zval(ψ(W)) is present in p(z)`.

9

We prove the converse by induction on `. For ` = 1, the statement is
vacuously true and for ` = 2, the claim holds from the proof of Lemma 2.
Assume that the claim holds for all the integers which are smaller than `, that
is, if there exists a monomial zval(ψ(W)) in p(z)`−1 then W can be partitioned
into ` − 1 disjoint sets from F . If there exists a monomial zval(ψ(W)) in
p(z)` = p(z)`−1 ? p(z) then it is the product of two monomials, say zval(ψ(W1))

in p(z)`−1 and zval(ψ(W2)) in p(z) respectively with W1∩W2 = ∅. By induction
hypothesis, W1 is the disjoint union of S1, S2, . . . , S`−1 such that Si ∈ F for
all i ∈ [` − 1]. Also, W2 is in F and since W1 ∩W2 = ∅, Si ∩W2 = ∅ for
each i. Therefore, W can be partitioned into sets S1, S2, . . . , S`−1,W2 each
of which belong to F .

Now we are in a position to prove the main theorem of this section.

Theorem 2. Given a graph G on n vertices, there is an algorithm which
finds its cd-chromatic number in O(2nn4 log n) time.

Proof. Fix an arbitrary ordering on V (G). With V (G) as the universe, we
define the family F of its subsets as follows.

F := {X ⊆ V (G)| X is an independent set and ∃ y ∈ V (G) s.t. X ⊆ N(y)}

Note that every set in F is an independent set and there exists a vertex
which dominates it. That is, F is the collection of the possible color classes
in any cd-coloring of G. Let p(z) be the characteristic polynomial of F . By
Lemma 3, if there exists a monomial zval(ψ(V (G))) in p(z)` then V (G) can be
partitioned into ` sets each belonging to F . Hence the smallest integer ` for
which there exists a monomial zval(ψ(V (G))) in p(z)` is χcd(G). By Corollary 1,
p(z)` can be computed in O(2nn3 log n · l) time. As the cd-chromatic number
of a graph is upper bounded by n, the claimed running time bound for the
algorithm follows.

4. FPT Algorithms for cd-Chromatic Number

Determining whether a graph G has cd-chromatic number at most q is
NP-hard on general graphs for q ≥ 4. This implies that the cd-Coloring
problem parameterized by the number of colors is para-NP-hard on gen-
eral graphs. Thus this necessitates the search for special classes of graphs
where cd-Coloring is FPT. In this section we give FPT algorithms for
cd-Coloring on chordal graphs and graphs of girth at least 5.

10

We start by proving that cd-Coloring parameterized by the number
of colors and treewidth of the graph is FPT. Towards this, we will use Cour-
celle’s powerful theorem which interlinks the fixed parameter tractability of
a certain graph property with its expressibility as an MSO formula. We
can write many graph theoretical properties as an MSO formula. Following
are three examples which we will use in writing an MSO formula to check
whether a graph has cd-chromatic number at most q.

• To check whether V1, V2, . . . , Vq is a partition of V (G).

Part(V1, V2, . . . , Vq) ≡ ∀u ∈ V (G)[∃i ∈ [q][(u ∈ Vi)∧(∀j ∈ [q][i 6= j ⇒ u 6∈ Vj)]]]

• To check whether a given vertex set Vi is an independent set or not.

IndSet(Vi) ≡ ∀u ∈ Vi[∀v ∈ Vi[¬adj(u, v)]]

• To check whether given vertex set Vi is dominated by some vertex or
not.

Dom(Vi) ≡ ∃u ∈ V (G)[∀v ∈ Vi[adj(u, v)]]

We use φ(G, q) to denote the MSO formula which states that G has cd-
chromatic number at most q. We use the formulas defined above as macros
in φ(G, q).

φ(G, q) ≡ ∃V1, V2, . . . , Vq ⊆ V (G)[Part(V1, V2, . . . , Vq)∧
IndSet(V1) ∧ · · · ∧ IndSet(Vq) ∧ Dom(V1) ∧ · · · ∧ Dom(Vq)]

It is easy to see that the length of φ(G, q) is upper bounded by a linear
function of q. By applying Theorem 1 we obtain the following result.

Theorem 3. cd-Coloring parameterized by the number of colors and the
treewidth of the input graph is FPT.

4.1. Chordal Graphs

As the graph gets more structured, we expect many NP-hard problems to
get easier in some sense on the restricted class of graphs having that struc-
ture. For example, Chromatic-Coloring is NP-hard on general graphs
but it is polynomial time solvable on chordal graphs. However, cd-Coloring
is NP-hard even on the chordal graphs and we show that it is FPT when pa-
rameterized by the number of colors on chordal graphs.

11

Theorem 4. cd-Coloring parameterized by the number of colors is FPT
on chordal graphs.

Proof. For a chordal graph G, tw(G) = ω(G)− 1 where ω(G) is the size of a
maximum clique in G [35]. Since, a cd-coloring is also a proper coloring, no
two vertices in a clique can be in the same color class. Thus, if ω(G) ≥ k then
we can conclude that (G, k) is NO instance of cd-Coloring. Otherwise,
ω(G) ≤ k which implies that tw(G) ≤ k. This bound and Theorem 3 imply
that cd-Coloring parameterized by the number of colors is FPT on chordal
graphs.

4.2. Graphs with girth at least 5

In this section, we show that cd-coloring on graphs of girth at least five
is FPT with respect to the solution size as the parameter. By Observation 1,
we can assume that the input graph G is connected. We can define cd-
coloring of a connected graph as a proper coloring such that every color class
is contained in the open neighbourhood of some vertex. In other words, we do
not allow a vertex to dominate itself. One can verify that the two definitions
of cd-coloring are identical on connected graphs. We now define the notion
of a total-dominating set of a graph G. A set S ⊆ V (G) is called a total-
dominating set if V (G) =

⋃
v∈S N(v). That is, for every vertex v ∈ V (G),

there exists a vertex u ∈ S, u 6= v, such that v ∈ N(u). Our interest in
total-dominating set is because of its relation to cd-coloring in graphs that
do not contain triangles, that is, graphs of girth at least 4. In particular, we
need the following lemma. The first proof of this has appeared in [21]. For
the sake of completeness, we present a proof here.

Lemma 4 (Theorem 4 in [21]). If g(G) ≥ 4, then the size of a minimum
total dominating set is equal χcd(G).

Proof. Let φ be a cd-coloring of G that uses χcd(G) colors and let V1, . . . , Vq
be the color classes in this coloring. Then, for every color class Vi, there is a
vertex vi such that Vi ⊆ N(vi). Let X denote the set of these vertices. Then,
X has at most q vertices and by definition, it is a total dominating set of G.
Hence, the size of a minimum total dominating set of a graph is at most the
cd-chromatic number of the graph.

Suppose X = {v1, v2, . . . , vk} is a minimum total dominating set of G.
We construct a cd-coloring of G using at most k colors. We define the color
classes in the following way. Let V1 = N(v1) and for i = 2, . . . , k, define

12

Vi = N(vi) \ (V1 ∪ V2 ∪ · · · ∪ Vi−1). Note that V1, . . . , Vq forms a partition
of V (G). Since, g(G) ≥ 4, it follows that each Vi is an independent set.
Furthermore, since X is a total dominating set, for each i ∈ [k], we have a
vertex vi ∈ X such that Vi ⊆ N(vi). Hence, this gives a cd-coloring of G.
Therefore, the cd-chromatic number of a graph is at most the cardinality of
a minimum total dominating set. Now the lemma follows by combining the
above two inequalities.

Lemma 4 shows that to prove that cd-Coloring is FPT on graphs of
girth at least four, it suffices to show that finding a total dominating set of
size at most k is FPT on these graphs. This leads to the Total Dominating
Set problem. Given a graph G and an integer k, the Total Dominating
Set problem asks whether there exists a total dominating set of size at most
k. Observe that we can test whether G has a total dominating set of size at
most k by enumerating all subsets S of V (G) of size at most k and checking
whether any of them forms a total-dominating set. This immediately gives
an algorithm with running time nO(k) for cd-Coloring on graphs with girth
at least 4, as the checking part can be done in polynomial time. It is not
hard to modify the reduction given in [36] to show that Total Dominating
Set is W [2] hard on bipartite graphs. Thus, Lemma 4 implies that even cd-
Coloring is W [2] hard on bipartite graphs. Hence, if we need to show that
cd-Coloring is FPT, we must assume that the girth of the input graph is
at least 5. In the rest of this section, we show that cd-Coloring is FPT
on graphs with girth at least 5 by showing that Total Dominating Set
is FPT on those graphs. Before proceeding further, we note some simple
properties of graphs with girth at least 5.

Observation 3. For a graph G, if g(G) ≥ 5 then for any v in V (G), N(v)
is an independent set and for any u, v in V (G), |N(v) ∩N(u)| ≤ 1.

Raman and Saurabh [36] defined a variation of Set Cover problem,
namely, Bounded Intersection Set Cover. An input to the problem
consists of a universe U , a collection F of subsets of U and a positive integer k
with the property that for any two Si, Sj in F , |Si∩Sj| ≤ c for some constant
c and the objective is to check whether there exists a sub-collection F0 of F of
size at most k such that

⋃
S∈F0

= U . In the same paper, the authors proved
that the Bounded Intersection Set Cover is FPT when parameterized
by the solution size. Total Dominating Set on (G, k) where G has girth
at least 5 can be reduced to Bounded Intersection Set Cover with

13

U = V (G) and F = {N(v)| ∀v ∈ V (G)}. By Observation 3, we can fix the
constant c to be 1. Hence we have the following lemma.

Lemma 5. On graphs with girth at least 5, Total Dominating Set is
FPT when parameterized by the solution size.

We now prove that the problem has a polynomial kernel and use it to
design another FPT algorithm.

Lemma 6. Total Dominating Set admits a kernel on O(k3) vertices on
the class of graphs with girth at least 5.

Proof. We start the proof with the following claim which says that every
high degree vertex should be included in every total dominating set of size
at most k.

Claim 4.1. In a graph G with g(G) ≥ 5, if there is a vertex u with degree at
least k + 1, then any total dominating set of size at most k contains u.

Proof. Suppose there exists a total dominating set X of G of size at most
k which does not contain u. Since N(u) (having size at least k + 1) is
dominated by X and no vertex can dominate itself, by the Pigeon Hole
Principle, there exists a vertex, say w, in X which is adjacent to at least
two vertices, say, v1, v2 in N(u). This implies that w, v1, v2, u form a cycle of
length 4, contradicting the fact that girth of G is at least 5.

Suppose G has a total dominating set of size at most k. Construct a
tri-partition of V (G) as follows:

H = {u ∈ V (G) | |N(u)| ≥ k + 1};
J = {v ∈ V (G) | v /∈ H, ∃u ∈ H such that (u, v) ∈ E(G)};
R = V (G) \ (H ∪ J)

By the above claim, H is contained in every total dominating set of size at
most k. Hence, the size of H is upper bounded by k. Note that there is no
edge between a vertex in H and a vertex in R. Thus, R has to be dominated
by at most k vertices from J ∪ R. However, the degree of vertices in J ∪ R
is at most k and hence |R| ≤ O(k2) and |J ∩ N(R)| is upper bounded by
O(k3). We will now bound the size of J? = J \ N(R). For that, we first
apply the following reduction rule on the vertices in J?.

14

Reduction Rule 1. For u, v ∈ J?, if N(u) ∩H ⊆ N(v) ∩H then delete u.

The correctness of this reduction follows from the observation that all the
vertices in J have been dominated by the vertices in H. The only reason any
vertex in J? is part of a total dominating set is because that vertex is used
to dominate some vertex in H. If this is the case then the vertex u in the
solution can be replaced by the vertex v. In the reverse direction, if X is
a total dominating set of G − {u} and |X| ≤ k, then H ⊆ X. Hence u is
dominated by x ∈ X ∩H in G too. That is, X is a total dominating set of
G.

All that remains is to bound the size of J?. We partition J? into two
sets namely J1 and J2. The set J1 is the set of vertices which are adjacent
to exactly one vertex in H whereas each vertex in J2 is adjacent to at least
two vertices in H. After exhaustive application of Reduction Rule 1, no two
vertices in J1 can be adjacent to one vertex in H and hence |J1| ≤ |H| ≤ k.
Any vertex in J2 is adjacent to at least two vertices inH. For every vertex u in
J2, we assign a pair of vertices in H to which u is adjacent. By Observation 3,
no two vertices in J2 can be assigned to the same pair and hence the size of
J2 is upper bounded by

(
k
2

)
≤ k2. Combining all the bounds, we get a kernel

with O(k3) vertices.

Combining Lemmas 4 and 6 we obtain the following theorem.

Theorem 5. On graphs with girth at least 5, cd-Coloring admits an al-
gorithm running in O(2O(q

3)q12 log q3) time and an O(q3) sized vertex kernel,
where q is number of colors.

5. Complexity of CD-Partization

In this section, we study the complexity of cd-Partization. As rec-
ognizing graphs with cd-chromatic number at most q is NP-hard on general
graphs for q ≥ 4, the deletion problem is also NP-hard on general graphs for
such values of q. For q = 1, the problem is trivial as χcd(G) = 1 if and only
if G is the graph on one vertex. In this section, we show NP-hardness for
q ∈ {2, 3}. We remark that G = {G | χcd(G) ≤ q} is not a hereditary graph
class and so the generic result of Lewis and Yannakakis [37] does not imply
the claimed NP-hardness.

15

5.1. Para-NP-hardness in General Graphs

Consider the following problem.

Partization
Input: Graph G, integers k and q
Question: Does there exist S ⊆ V (G), |S| ≤ k, such that χ(G−S) ≤ q?

Once again if q is fixed, we refer to the problem as q-Partization.
Observe that the classical NP-complete problems Vertex Cover [38] and
Odd Cycle Transversal [38] are 1-Partization and 2-Partization,
respectively. Now, we proceed to show the claimed hardness.

Theorem 6. q-cd-Partization is NP-complete for q ∈ {2, 3}.

Proof. The problem is in NP as determining if the cd-chromatic number of a
graph is at most q ∈ {1, 2, 3} is polynomial-time solvable. Given an instance
(G, k) of q-Partization where q ∈ {1, 2}, we construct the instance (G′, k)
of (q + 1)-cd-Partization as follows: G′ is obtained from G by adding a
new vertex v adjacent to every vertex in V (G) and adding k + q + 2 new
vertices v1, · · · , vk+q+2 adjacent to v. We claim that G has a set of k vertices
whose deletion results in a q-colorable graph if and only if G′ has a set of k
vertices whose deletion results in a (q + 1)-cd-colorable graph.

Consider a set S of k vertices such that χ(G − S) ≤ q. Then, G′ − S
is (q + 1)-cd-colorable as a new color can be assigned to v and any of the q
colors of G−S can be assigned to v1, · · · , vk+q+2. The color class containing
v is a singleton set. This class is dominated by all vertices in G′− (S \ {v}).
Further, v dominates each of the other q color classes as v is a universal
vertex in G′.

Conversely, let S ′ ⊆ V (G′) be a minimal set of at most k vertices such
that χcd(G

′ − S ′) ≤ q + 1. Now, if v ∈ S ′, then vertices v1, · · · , vk+q+2 are
isolated in G − {v} implying that either |{v1, · · · , vk+q+2} ∩ S ′| ≥ k + 1 or
χcd(G

′ − S ′) > q + 1. So, we can assume that v /∈ S ′. Further, as S ′ is
minimal, it follows that {v1, · · · , vk+q+2} ∩ S ′ = ∅. Also, as v is a universal
vertex in G′, we have that χ(G− (S ′ \ {v})) ≤ q. So, S ′ is a subset of V (G)
of size at most k such that G− S ′ is q-colorable.

5.2. NP-hardness and Fixed-Parameter Tractability in Split Graphs

A graph is a split graph if its vertex set can be partitioned into a clique
and an independent set. As split graphs are perfect (clique number is equal

16

to the chromatic number for every induced subgraph), we have the following
observation.

Observation 7. A split graph G is r-colorable if and only if ω(G) ≤ r.

The following result is known for the corresponding deletion problem.

Theorem 8 ([39, 40]). Partization on Split Graphs is NP-complete.

This hardness was shown by a reduction from Set Cover [38]. We
modify this reduction to show that cd-Partization is NP-complete on split
graphs. The problem is in NP as the cd-chromatic coloring of a split graph
can be verified in polynomial time due to the following result.

Theorem 9 ([18]). If G is a connected split graph G, then ω(G) = χcd(G).
Furthermore, there is an O(|V (G)|2) time algorithm that returns a minimum
cd-coloring of G.

Theorem 10. cd-Partization on split graphs is NP-hard.

Proof. Consider a Set Cover instance (U,F , k) where U = {x1, · · · , xn} is
a finite set and F is a family {S1, · · · , Sm} of subsets of U . The problem is to
determine if there is a collection of at most k sets in F such that each element
of U is in at least one set of the collection. The corresponding instance of
cd-Partization is (G, k′ = m−k, q = k+1) where G is a split graph on the
vertex set C ∪ I ∪ {w0, w1, · · · , wk+k′+2} where C = {ui | Si ∈ F} and I =
{vi | xi ∈ U}. Also, (vi, uj) ∈ E(G) if and only if xi /∈ Sj and w0 is adjacent
to every vertex in C ∪ I ∪ {w1, · · · , wk+k′+2}. Further, I ∪ {w1, · · · , wk+k′+2}
and C induce an independent set and a clique, respectively, in G. We claim
that a set F ′ ⊆ F of size k is a set cover if and only if G−S ′ is q-cd-colorable
where S ′ = {ui ∈ C | Si ∈ F \ F ′} and |S ′| = k′.

Consider a set cover F ′ ⊂ F of size k. If there is a clique Q (without loss
of generality assume w0 ∈ Q) of size k + 2 in G − S ′, then Q must contain
an element vi ∈ I that is adjacent to k vertices in C \ S ′. However, since
F ′ is a set cover, vi is non-adjacent to at least one uj in C \ S ′ leading to
a contradiction. Thus, S ′ has a non-empty intersection with every (k + 2)-
clique in G. As G is a split graph, it is (k + 1)-colorable due to Observation
7. Further, G− S ′ is (k + 1)-cd-colorable as the color class containing {w0}
is a singleton set (since it is an universal vertex) which is dominated by itself
and the other color classes are dominated by w0.

17

Conversely, consider a minimal subset S ′ of k′ vertices such that G − S ′
is (k + 1)-cd-colorable. Now, if w0 ∈ S ′, then vertices w1, · · · , uk+k′+2 are
isolated in G − {w0} implying that either |{w1, · · · , wk+k′+2} ∩ S ′| ≥ k′ + 1
or χcd(G − S ′) > k + 1. So, we can assume that w0 /∈ S ′. Further, as S ′ is
minimal, it follows that {w1, · · · , wk+k′+2} ∩ S ′ = ∅. Now, all vertices in S ′

must belong to C. If there exists vi ∈ S ′ ∩ I, there is a clique of size k+ 2 in
G−S ′ as C is a clique. Also, no vertex in I is adjacent to all nodes in C \S ′
as if there is such a vertex vi then there is a (k + 2)-clique in G− S ′. Thus,
every vertex in I is nonadjacent to at least one element in C \ S ′ implying
that {si ∈ F | ui ∈ C \ S ′} is a set cover of (U,F) of size at most k.

As Set Cover parameterized by solution size is W[2]-hard [25], we have
the following result.

Corollary 2. cd-Partization on split graphs parameterized by q is W[2]-
hard.

Now, we show that the problem is FPT with respect to q and k.

Theorem 11. cd-Partization on split graphs is FPT with respect to pa-
rameters q and k. Furthermore, the problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

Proof. Compute a maximum clique Q of G in polynomial time. If |Q| ≤ q,
then the input instance is an YES instance as χcd(G) ≤ q from Theorem
9. Otherwise, choose an arbitrary subset of size q + 1 from Q. Since any
solution contains at least one of the q+ 1 vertices, a straightforward branch-
ing algorithm runs in O∗((q + 1)k) time. Now, we move on to the kernel-
ization hardness. Set Cover is known not to admit a polynomial kernel
when parameterized by the solution size k′ and family size m as combined
parameters unless NP ⊆ coNP/poly [25]. The reduction in Theorem 10 pro-
duces instances of cd-Partization where solution size k is m − k′ and q
is k′ + 1 implying that q + k is m + 1. Therefore, an (q + k)O(1) kernel for
cd-Partization implies an mO(1) kernel for Set Cover which is unlikely.

6. Deletion to 3-cd-Colorable Graphs

In a graph G, an edge e = (u, v) is said to be a dominating edge if
N(u) ∪ N(v) = V (G). Let N [v] denote the set V (G) \ N [v]. The following
characterization of 3-cd-colorable graphs is known from [18].

18

Theorem 12 ([18]). A connected graph G satisfies χcd(G) ≤ 3 if and only if
G is one of the following types.
(Type 0) G is a graph on at most 3 vertices.
(Type 1) G is a bipartite graph with a dominating edge.
(Type 2) G has a vertex v such that G− v is a bipartite graph with a domi-
nating edge.
(Type 3) G has an ordered pair (x, y) of adjacent vertices such that,

• V (G) = {x, y}]X] Y ,

• G[X ∪ {y}] is a bipartite graph with at least one edge,

• Y ∪ {x} is an independent set, Y ∪ {x} ⊆ N(y) and X ∪ {y} ⊆ N(x).

(Type 4) G has an ordered set (x, y, z) of vertices inducing a triangle such
that,

• V (G) = {x, y, z}]X] Y] Z,

• X ⊆ N(x), Y ⊆ N(y) and Z ⊆ N(z),

• X ∪ {y}, Y ∪ {z} and Z ∪ {x} are independent sets.

(Type 5) G has an ordered triple (x, y, z) of vertices such that,

• V (G) = {x, y}]X] Y] Z,

• z ∈ X ∪ Y , (x, y) /∈ E(G) and (x, z), (y, z) ∈ E(G),

• X ⊆ N(x), Y ⊆ N(y) and Z ⊆ N(z),

• X, Y , Z ∪ {x} and Z ∪ {y} are independent sets.

We refer to the ordered sets in Types 3, 4 and 5 as dominators. In
[18], they are called as d-pair, cd-triangle and NB-triplet respectively. Now,
we proceed to solve 3-cd-Partization. Let G be the input graph on n
vertices, m edges and k be a positive integer. Consider a set S ⊆ V (G) such
that H = G − S is 3-cd-colorable. Then, H is of one of the types listed
in Theorem 12. Before we proceed to describe algorithms for each of these
types, we list the following well-known results on Vertex Cover and Odd
Cycle Transversal that we use in our algorithms.

Theorem 13 ([41]). Given a graph G and a positive integer k, there is an
algorithm running in O∗(1.2738k) time that determines if G has a vertex
cover of size at most k or not.

19

Theorem 14 ([42]). Given a graph G and a positive integer k, there is an
algorithm running in O∗(2.3146k) time that determines if G has an odd cycle
transversal of size at most k or not.

Here we use notation O∗ to suppress functions which are polynomial in
size of input. As we would subsequently show, our algorithms reduce the
problem of finding an optimum deletion set into finding appropriate vertex
covers and constrained odd cycle transversals. The current best parame-
terized algorithm for finding a vertex cover can straightaway be used as a
subroutine in our algorithm while the one for finding an odd cycle transversal
requires the following results. Consider a graph G and let v be a vertex in
G. Define the graph G′ to be the graph obtained from G by deleting v and
adding a new vertex vij for each pair vi, vj of neighbors of v; further vij is
adjacent to vi and vj.

Lemma 7. G has a minimal odd cycle transversal of size at most k that
excludes vertex v if and only if G′ has a minimal odd cycle transversal of size
at most k.

Proof. Consider an odd cycle transversal O of G excluding v and let (X, Y)
be a bipartition of G−O. Without loss of generality, let v ∈ X. Then, every
vertex in N(v) is either in O or in Y . Thus, X ′ = (X \{v})∪ (V (G′)\V (G))
is an independent set in G′. Consequently, (X ′, Y) is a bipartition of G′−O
implying that O is an odd cycle transversal of G′. Conversely, any odd cycle
transversal O′ of G′ can be modified to one that excludes each vertex in
{vij ∈ V (G′) | vi, vj ∈ N(v)} without increasing the size since any induced
odd cycle through vij is also an induced odd cycle through vi and vj. Then,
it follows that O′ is an odd cycle transversal of G that excludes v.

Let P,Q ⊆ V (G) be two disjoint sets. Let G′′ be the graph constructed
from G by adding an independent set IP of k+ 1 new vertices each of which
is adjacent to every vertex in P and an independent set IQ of k + 1 new
vertices each of which is adjacent to every vertex in Q. Further, every vertex
in IP is adjacent to every vertex in IQ.

Lemma 8. G has a minimal odd cycle transversal O of size at most k such
that G − O has a bipartition (X, Y) with P ⊆ X and Q ⊆ Y if and only if
G′′ has a minimal odd cycle transversal of size at most k.

20

Proof. Suppose G−O has a bipartition (X, Y) such that P ⊆ X and Q ⊆ Y .
Then, G′′−O has a bipartition (X ′, Y ′) where X ′ = X∪IQ and Y ′ = Y ∪IP .
Thus, O is an odd cycle transversal of G′′ too. Conversely, consider a minimal
odd cycle transversal O′ of size k of G′′. Clearly, O′ excludes at least one
vertex a from IP and at least one vertex b from IQ. Consider an arbitrary
bipartition (A,B) of G′′ − O′ and let a ∈ A and b ∈ B. Then, as O′ is
minimal IP ⊆ A and IQ ⊆ B. That is, O′ ∩ (IP ∪ IQ) = ∅. Further, as
any two vertices p ∈ IP and q ∈ IQ are adjacent, IP ∩ V (G′′ − O′) ⊆ A and
IQ ∩ V (G′′ −O′) ⊆ B. Thus, P ⊆ B and Q ⊆ A.

6.1. Deletion to Types 0, 1 and 2

It is trivial to check if G has a solution whose deletion results in a graph
H with at most 3 vertices. So, deletion to Type 0 is easy. Now, suppose H
is of Type 1. Then, we need to identify an edge of G that is a dominating
edge for H. We describe an algorithm based on this observation.

Algorithm 6.1: Deletion-to-Type1(G, k)

Input : A graph G and a positive integer k.
Output: S ⊆ V (G), |S| ≤ k such that G− S is of Type 1 (if one

exists).

22 for each edge (x, y) in G do

3 Let X ′ = N(x) ∩N [y] and Y ′ = N(y) ∩N [x].
4 Let S ′ be V (G) \ (X ′ ∪ Y ′) and decrease k by |S ′|.
66 for each k1 and k2 such that k1 + k2 ≤ k do
88 Compute a vertex cover S1 of G[X ′] with |S1| ≤ k1 (if one

exists).
9 /* (X ′ \ S1) ∪ {y} is an independent set */

1111 Compute a vertex cover S2 of G[Y ′] with |S2| ≤ k2 (if one
exists).

12 /* (Y ′ \ S2) ∪ {x} is an independent set */
13 if S1 and S2 are non-empty sets then
14 return S ′ ∪ S1 ∪ S2

Lemma 9. Algorithm 6.1 runs in O∗(1.2738k) time.

Proof. The outer loop (step 1) is executed at most m times (once for each
edge) and the inner loop (step 2) is executed at most k2 times. Let (x, y)

21

be an edge in G. We need to extend {x} and {y} into independent sets Y
and X respectively, such that X is dominated by x and Y is dominated by
y. Clearly, neighbors of x and non-neighbors of y cannot be in Y . Similarly,
neighbors of y and non-neighbors of x cannot be in X. No common neighbor
of x and y can be in either X or Y . Thus, the candidates for X and Y
are X ′ = N(x) ∩ N [y] and Y ′ = N(y) ∩ N [x] respectively. All vertices in
V (G) \ (X ′ ∪ Y ′) are in any solution. Let k′ = k− |V (G) \ (X ′ ∪ Y ′)|. Then,
G has a 3-cd-partization solution S of size at most k such that G − S is of
Type 1 with (u, v) as a dominating edge if and only if there exists integers
k1, k2 with k1 + k2 ≤ k′ such that G[X ′] has a vertex cover of size at most
k1 and G[Y ′] has a vertex cover of size at most k2. Now, Steps 3 and 4
take O∗(1.2738k) time from Theorem 13. Thus, the overall running time is
O∗(1.2738k).

Suppose H is of Type 2. Then, for each vertex v of G, we simply run
Algorithm 6.1 on G− {v} with parameter k.

Algorithm 6.2: Deletion-to-Type2(G, k)

Input : A graph G and a positive integer k.
Output: S ⊆ V (G), |S| ≤ k such that G− S is of Type 2 (if one

exists).

22 for each vertex x in G do
3 Deletion-to-Type1(G− {x}, k).

Lemma 10. Algorithm 6.2 runs in O∗(1.2738k) time.

Proof. As Algorithm 6.2 calls Algorithm 6.1 at most n times, its running
time is O∗(1.2738k).

6.2. Deletion to Type 3

Suppose H is of Type 3 with dominator (x, y). Then, the following holds.

Observation 15 ([18]). NH [x] is an independent set and NH [x] ⊆ NH(y).
Further, NH(x) induces a bipartite graph with at least one edge.

22

This observation leads to the following algorithm.

Algorithm 6.3: Deletion-to-Type3(G, k)

Input : A graph G and a positive integer k.
Output: S ⊆ V (G), |S| ≤ k such that G− S is of Type 3 (if one

exists).

22 for each ordered pair (x, y) of adjacent vertices in G do

3 Let Y ′ = N(y) ∩N [x] and X ′ = N(x).
4 Let S ′ be V (G) \ (X ′ ∪ Y ′) and decrease k by |S ′|.
66 for each k1 and k2 such that k1 + k2 ≤ k do
88 Compute a vertex cover S1 of G[Y ′] with |S1| ≤ k1 (if one

exists).
9 /* (Y ′ \ S1) ∪ {x} is an independent set */

1111 Compute a minimal odd cycle transversal S2 of at most k2
vertices (if one exists) in G[X ′] such that y /∈ S2.

12 if S1 and S2 are non-empty sets then
13 return S ′ ∪ S1 ∪ S2

Lemma 11. Algorithm 6.3 runs in O∗(2.3146k) time.

Proof. The outer loop (step 1) is executed at most 2m times (as there are
two ordered pairs for each edge) and the inner loop (step 2) is executed at
most k2 times. Consider an edge (x, y) in G. If (x, y) is a dominator in H,
then we need to extend {x} into an independent set Y that is dominated by
y and extend {y} into an induced bipartite graph B (with at least one edge)
such that V (B) is dominated by x. Observe that Y contains only neighbors
of y and V (B) contains only neighbors of x. Further, a neighbor of y that
is not adjacent to x cannot be in V (B) and a neighbor of y that is adjacent
to x cannot be in Y . Thus, the candidates for V (B) and Y are X ′ = N(x)
and Y ′ = N(y) ∩ N [x] respectively. All vertices in V (G) \ (X ′ ∪ Y ′) are in
any solution. Let k′ = k− |V (G) \ (X ′ ∪Y ′)|. Now, G has a 3-cd-partization
solution S of size at most k such that G − S is of Type 3 with (x, y) as a
dominator if and only if there exists integers k1 and k2 with k1 +k2 ≤ k′ such
that G[Y ′] has a vertex cover of size at most k1 and G[X ′] has an odd cycle
transversal of size k2 not containing y such that the resultant bipartite graph
is non-edgeless. Clearly step 3 takes O∗(1.2738k) time. For step 4, we need
to find a minimal odd cycle transversal that excludes vertex y. We construct

23

a graph G′ obtained from G[X ′] by deleting y and adding a new vertex yij
for each pair yi, yj of neighbors of y; further yij is adjacent to yi and yj.
From Lemma 7, we have that G[X ′] has a minimal odd cycle transversal of
size at most k2 not containing y if and only if G′ has a minimal odd cycle
transversal of size at most k2. Now, by using Theorem 14, it follows that
step 4 takes O∗(2.3146k) time and this gives us the claimed running time of
the algorithm.

6.3. Deletion to Type 4

Suppose H is of Type 4 and has (x, y, z) as a dominator. Then, we have
the following observation.

Observation 16 ([18]). NH(x) ∩NH(y) ∩NH(z) = ∅ and NH [x] ∩NH [y] ∩
NH [z] = ∅. Further, X = NH(x) ∩ NH [y], Y = NH(y) ∩ NH [z] and Z =
NH(z) ∩NH [x].

Now, we have the following algorithm.

Algorithm 6.4: Deletion-to-Type4(G, k)

Input : A graph G and a positive integer k
Output: S ⊆ V (G), |S| ≤ k such that G− S is of Type 4 (if one

exists)

22 for each ordered triple (x, y, z) of pairwise adjacent vertices of G do

3 Let X ′ = N(x) ∩N [y], Y ′ = N(y) ∩N [z] and Z ′ = N(z) ∩N [x].
4 Let S ′ be V (G) \ (X ′ ∪ Y ′ ∪ Z ′) and decrease k by |S ′|.
66 for each k1, k2 and k3 such that k1 + k2 + k3 ≤ k do
88 Compute a vertex cover S1 of G[X ′] with |S1| ≤ k1 (if one

exists).
9 /* (X ′ \ S1) ∪ {y} is an independent set */

1111 Compute a vertex cover S2 of G[Y ′] with |S2| ≤ k2 (if one
exists).

12 /* (Y ′ \ S2) ∪ {z} is an independent set */
1414 Compute a vertex cover S3 of G[Z ′] with |S3| ≤ k3 (if one

exists).
15 /* (Z ′ \ S3) ∪ {x} is an independent set */
16 if S1, S2 and S3 are non-empty sets then
17 return S ′ ∪ S1 ∪ S2 ∪ S3

24

Lemma 12. Algorithm 6.4 runs in O∗(1.2738k) time.

Proof. The outer loop (step 1) is executed at most n3 times and the inner
loop (step 2) is executed at most k3 times. Consider a triangle {x, y, z} in
G. If (x, y, z) is a dominator in H, then we need to extend {x}, {y}, {z}
into independent sets Y , Z, X dominated by y, z and x respectively. Thus,
the candidates for X, Y and Z are sets X ′ = N(x)∩N [y], Y ′ = N(y)∩N [z]
and Z ′ = N(z) ∩N [x]. All vertices in S ′ = V (G) \ (X ′ ∪ Y ′ ∪ Z ′) are in any
solution. Let k′ = k−|V (G)\S ′|. Then, G has a 3-cd-partization solution S
of size at most k such that G− S is of Type 4 with (x, y, z) as a dominator
if and only if there exists integers k1, k2 and k3 with k1 + k2 + k3 ≤ k′ such
that G[Y ′] has a vertex cover of size at most k1, G[Z ′] has a vertex cover of
size at most k2 and G[Z ′] has a vertex cover of size at most k3. Steps 3, 4
and 5 take O∗(1.2738k) time from Theorem 13 and the overall running time
is O∗(1.2738k).

6.4. Deletion to Type 5

Suppose H is of Type 5 and has (x, y, z) as a dominator. Then, we have
the following observation.

Observation 17 ([18]). NH [x] ∩NH [y] is an independent set. Further, z ∈
NH(x) ∪ NH(y) and NH [x] ∩ NH [y] ⊆ NH(z). Moreover, in G − Z, N [x] ∪
N [y] = V (G− Z), N(x) \N(y) ⊆ X and N(y) \N(x) ⊆ Y .

Now, we have the following algorithm.

Lemma 13. Algorithm 6.5 runs in O∗(2.3146k) time.

Proof. Consider an ordered triple (x, y, z) of vertices in G. If (x, y, z) is
a dominator in H, then we need to extend {x, y} into an independent set
Z that is dominated by z and extend {z} into a bipartite graph B with
bipartition (X, Y) such that X is dominated by x and Y is dominated by
y. Thus, the candidates for Z and V (B) are Z ′ = N(z) ∩ (N [y] ∩N [x]) and
B′ = {z}∪ ((N(x)∪N(y)) \ (N(y)∩N(z)) \N(x)) respectively. All vertices
in V (G) \ (Z ′ ∪ B′) are in any solution. Let k′ = k − |V (G) \ (Z ′ ∪ B′)|.
Then, G has a 3-cd-partization solution S of size at most k such that H =
G − S is of Type 5 with (x, y, z) as a dominator if and only if there exists
integers k1 and k2 with k1 + k2 ≤ k′ such that G[Z ′] has a vertex cover
of size at most k1 and G[B′] has an odd cycle transversal of size k2 not
containing z such that the resultant bipartite graph has a bipartition (X, Y)

25

Algorithm 6.5: Deletion-to-Type5(G, k)

Input : A graph G and a positive integer k
Output: S ⊆ V (G), |S| ≤ k such that G− S is of Type 5 (if one

exists)

22 for each ordered triple (x, y, z) of vertices of G such that
(x, y) /∈ E(G) and (x, z), (y, z) ∈ E(G) do

3 Let Z ′ be the set N(z) ∩ (N [y] ∩N [x]).
4 Let S ′ be (N(y) ∩N(z)) \N(x).
5 Let B′ be the set {z} ∪ (((N(x) ∪N(y)) \ S ′).
6 Let S ′′ be V (G) \ (Z ′ ∪B′) and decrease k by |S ′′|.
88 for each k1 and k2 such that k1 + k2 ≤ k do

1010 Compute a vertex cover S1 of G[Z ′] with |S1| ≤ k1 (if one
exists).

11 /* (Z ′ \ S1) ∪ {x, y} is an independent set */
1313 Compute a minimal odd cycle transversal S2 of G[B′] with

|S2| ≤ k2 not containing z (if one exists) such that the
resultant bipartite graph has a bipartition (X, Y) such that
X ⊆ N(x), Y ⊆ N(y) and z ∈ Y .

14 if S1 and S2 are non-empty sets then
15 return S ′′ ∪ S1 ∪ S2

such that X ⊆ N(x), Y ⊆ N(y) and z ∈ Y . Step 3 takes O∗(1.2738k)
time. For step 4, we use Lemmas 7 and 8. Let G′ be the graph obtained
from G[B′] by deleting z and adding a new vertex zij for each pair zi, zj of
neighbors of z, adjacent to zi and zj. Now, a minimal odd cycle transversal
of G′ corresponds to a minimal odd cycle transversal of G[B′] not containing
z. However, we also need the additional constraint that such an odd cycle
transversal results in a bipartite graph B which has a bipartition (X, Y) such
that X ⊆ N(x) and Y ⊆ N(y). The possible vertices in B are from the set
{z} ∪ (((N(x) ∪N(y)) \ (N(y) ∩N(z)) \N(x)). The following observations
on vertices from this set are easy to verify.

• Nx = N(x) \ (N(y) ∪ N(z)) cannot be dominated by y and Ny =
N(y) \ (N(x) ∪N(z)) cannot be dominated by x.

• Nzx = (N(x) ∩ N(z)) \ N(y) and Nxyz = N(x) ∩ N(y) ∩ N(z) cannot

26

be in a part of the bipartition that contains z.

It follows that we need an odd cycle transversal (of size at most k2) of G[B′]
after deleting which the resultant bipartite graph has a 2-coloring in which
any vertex from P = {z} ∪ Ny receives color 1 and any vertex from Q =
Nx ∪ Nzx ∪ Nxyz receives color 2. This is achieved by constructing graph
G′′ from G′ by adding an independent set IP of k2 + 1 new vertices each of
which is adjacent to every vertex in P and an independent set IQ of k2 + 1
new vertices each of which is adjacent to every vertex in Q. Further, every
vertex in IP is adjacent to every vertex in IQ. Now, G[B′] has a minimal odd
cycle transversal of size at most k2 not containing z such that the resultant
bipartite graph has a bipartition (X, Y) such that X ⊆ N(x), Y ⊆ N(y) and
z ∈ Y if and only if G′′ has a minimal odd cycle transversal of size at most
k2. Now, using Theorem 14, it follows that step 4 takes O∗(2.3146k) time
and the overall running time is dominated (upto polynomial factors) by this
computation.

From Lemmata 9, 10, 11, 12 and 13, we have the following result.

Theorem 18. Given a graph G and an integer k, there is an algorithm that
determines if there is a set S of size k whose deletion results in a graph H
with χcd(H) ≤ 3 in O∗(2.3146k) time.

7. Concluding Remarks

In this work, we described exact and FPT algorithms for problems as-
sociated with cd-coloring. We also explored the complexity of finding the
cd-chromatic number in graphs of girth at least 5 and chordal graphs. On
the former graph class, we described a polynomial kernel. The kernelization
complexity on other graph classes and whether the problem is FPT parame-
terized by only treewidth are natural directions for further study. It is also
interesting to get an exact function when parameterized by treewidth and
the number of colors.

References

[1] A. Björklund, T. Husfeldt, M. Koivisto, Set Partitioning via Inclusion-
Exclusion, SIAM J. Comput. 39 (2) (2009) 546–563.

27

[2] S. Gaspers, D. Kratsch, M. Liedloff, I. Todinca, Exponential Time Al-
gorithms for the Minimum Dominating Set Problem on Some Graph
Classes, ACM Trans. Algorithms 6 (1) (2009) 9:1–9:21.

[3] S. Gaspers, M. Liedloff, A Branch-and-Reduce Algorithm for Finding a
Minimum Independent Dominating Set, Discrete Mathematics & Theo-
retical Computer Science 14 (1) (2012) 29–42.

[4] D. Kratsch, Exact Algorithms for Dominating Set, in: Encyclopedia of
Algorithms, Springer, 2008, pp. 284–286.

[5] E. Lawler, A Note on the Complexity of the Chromatic Number Prob-
lem, Information Processing Letters 5 (3) (1976) 66–67.

[6] J. M. M. van Rooij, H. L. Bodlaender, Exact Algorithms for Dominating
Set, Discrete Applied Mathematics 159 (17) (2011) 2147–2164.

[7] A. Blum, D. R. Karger, An Õ(n3/14)-coloring Algorithm for 3-colorable
Graphs, Inf. Process. Lett. 61 (1) (1997) 49–53.

[8] S. Guha, S. Khuller, Improved Methods for Approximating Node
Weighted Steiner Trees and Connected Dominating Sets, Inf. Comput.
150 (1) (1999) 57–74.

[9] D. Kim, Z. Zhang, X. Li, W. Wang, W. Wu, D. Z. Du, A Better Approx-
imation Algorithm for Computing Connected Dominating Sets in Unit
Ball Graphs, IEEE Transactions on Mobile Computing 9 (8) (2010)
1108–1118.

[10] C. Lenzen, R. Wattenhofer, Minimum Dominating Set Approximation
in Graphs of Bounded Arboricity, in: Distributed Computing, 24th In-
ternational Symposium, DISC 2010, 2010, pp. 510–524.

[11] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks, R. Niedermeier, Fixed
Parameter Algorithms for Dominating Set and Related Problems on
Planar Graphs, Algorithmica 33 (4) (2002) 461–493.

[12] N. Alon, S. Gutner, Linear Time Algorithms for Finding a Dominating
Set of Fixed Size in Degenerated Graphs, Algorithmica 54 (4) (2009)
544–556.

28

[13] L. Cai, Parameterized Complexity of Vertex Colouring, Discrete Applied
Mathematics 127 (3) (2003) 415–429.

[14] R. G. Downey, M. R. Fellows, C. McCartin, F. A. Rosamond, Parame-
terized Approximation of Dominating Set Problems, Inf. Process. Lett.
109 (1) (2008) 68–70.

[15] R. Gera, C. Rasmussen, S. Horton, Dominator Colorings and Safe Clique
Partitions, Congressus Numerantium 181 (7-9) (2006) 19–32.

[16] R. Gera, On Dominator Colorings in Graphs, Graph Theory Notes of
New York LII (2007) 25–30.

[17] M. Chellali, F. Maffray, Dominator Colorings in Some Classes of Graphs,
Graphs and Combinatorics 28(1) (2012) 97–107.

[18] M. A. Shalu, T. P. Sandhya, The cd-coloring of Graphs, in: International
Conference on Algorithms and Discrete Applied Mathematics, 2016, pp.
337–348.

[19] Y. B. Venkatakrishnan, V. Swaminathan, Color Class Domination Num-
ber of Middle Graph and Center Graph of K1,n, Cn, Pn, Advanced Mod-
eling and Optimization 12 (2010) 233–237.

[20] A. M. Abid, T. R. Rao, Dominated coloring of mycielskian graphs, In-
ternational Journal of Pure and Applied Mathematics 119 (13) (2018)
21–29.

[21] H. B. Merouane, M. Haddad, M. Chellali, H. Kheddouci, Dominated
colorings of graphs, Graphs and combinatorics 31 (3) (2015) 713–727.

[22] M. Shalu, S. Vijayakumar, T. Sandhya, A lower bound of the cd-
chromatic number and its complexity, in: Conference on Algorithms
and Discrete Applied Mathematics, Springer, 2017, pp. 344–355.

[23] M. Shalu, S. Vijayakumar, T. Sandhya, On the complexity of cd-coloring
of graphs, Discrete Applied Mathematics 280 (2020) 171–185.

[24] F. Choopani, A. Jafarzadeh, A. Erfanian, D. A. Mojdeh, On dominated
coloring of graphs and some nordhaus–gaddum-type relations, Turkish
Journal of Mathematics 42 (5) (2018) 2148–2156.

29

[25] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms,
Springer-Verlag, 2015.

[26] R. G. Downey, M. R. Fellows, Fundamentals of Parameterized Complex-
ity, Springer-Verlag London, 2013.

[27] J. Flum, M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[28] R. Niedermeier, Invitation to Fixed Parameter Algorithms, Oxford Uni-
versity Press, USA, 2006.

[29] V. V. Lozin, M. Kaminski, Coloring Edges and Vertices of Graphs With-
out Short or Long Cycles, Contributions to Discrete Mathematics 2 (1)
(2007) 61–66.

[30] R. Diestel, Graph Theory, Springer-Verlag Berlin Heidelberg, 2006.

[31] B. Courcelle, The Monadic Second-Order Logic of Graphs. I. Recogniz-
able Sets of Finite Graphs, Inf. Comput. 85 (1) (1990) 12–75.

[32] B. Courcelle, The Monadic Second-order Logic of Graphs III: Tree-
decompositions, Minor and Complexity Issues, ITA 26 (1992) 257–286.

[33] F. Panolan, G. Philip, S. Saurabh, B-Chromatic Number: Beyond NP-
Hardness, in: 10th International Symposium on Parameterized and Ex-
act Computation, IPEC 2015, 2015, pp. 389–401.

[34] D. D. A. Schönhage, V. Strassen, Schnelle Multiplikation Grosser
Zahlen, Computing 7 (3-4) (1971) 281–292.

[35] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Second
Edition, Elsevier Science B.V., 2004.

[36] V. Raman, S. Saurabh, Short Cycles Make W-hard Problems Hard:
FPT Algorithms for W-hard Problems in Graphs With No Short Cycles,
Algorithmica 52 (2) (2008) 203–225.

[37] J. M. Lewis, M. Yannakakis, The Node-Deletion Problem for Hereditary
Properties is NP-Complete, Journal of Computer and System Sciences
20 (2) (1980) 219–230.

30

[38] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H.Freeman and Company, 1979.

[39] D. G. Corneil, J. Fonlupt, The Complexity of Generalized Clique Cov-
ering, Discrete Applied Mathematics 22 (2) (1989) 109–118.

[40] M. Yannakakis, F. Gavril, The Maximum k-colorable Subgraph Problem
for Chordal Graphs, Information Processing Letters 24 (2) (1987) 133–
137.

[41] J. Chen, I. Kanj, G. Xia, Improved Upper Bounds for Vertex Cover,
Theoretical Computer Science 411 (40-42) (2010) 3736–3756.

[42] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan,
S. Saurabh, Faster Parameterized Algorithms Using Linear Program-
ming, ACM Trans. Algorithms 11 (2) (2014) 15:1–15:31.

31

	1 Introduction
	2 Preliminaries
	3 Exact Algorithm for cd-Chromatic Number
	4 FPT Algorithms for cd-Chromatic Number
	4.1 Chordal Graphs
	4.2 Graphs with girth at least 5

	5 Complexity of CD-Partization
	5.1 Para-NP-hardness in General Graphs
	5.2 NP-hardness and Fixed-Parameter Tractability in Split Graphs

	6 Deletion to 3-cd-Colorable Graphs
	6.1 Deletion to Types 0, 1 and 2
	6.2 Deletion to Type 3
	6.3 Deletion to Type 4
	6.4 Deletion to Type 5

	7 Concluding Remarks

