
Monopolar Graphs: Complexity of Computing Classical Graph

Parameters?

Michele Barbato∗, Dario Bezzi

Università degli Studi di Milano, Dipartimento di Informatica, OptLab, Via Bramante 65, 26013 Crema
(CR), Italy

Abstract

A graph G = (V,E) is monopolar if V can be partitioned into a stable set and a set inducing
the union of vertex-disjoint cliques. Motivated by an application of the clique partitioning
problem on monopolar graphs to the cosmetic manufacturing, we study the complexity
of computing classical graph parameters on the class of monopolar graphs. We show that
computing the clique partitioning, stability and chromatic numbers of monopolar graphs is
NP-hard. Conversely, we prove that every monopolar graph has a polynomial number of
maximal cliques thus obtaining that a maximum-weight clique can be found in polynomial
time on monopolar graphs.

Keywords: Computational complexity, Monopolar graph, Maximum-weight clique,
Clique partitioning, Stable set, Graph coloring

1. Introduction

We consider simple undirected graphs whose terminology can be found in [3]. Given a
graph G = (V,E), a partition (A,B) of V is monopolar if A is a stable set and G[B], the
graph induced by B in G, is a cluster, that is, the union of vertex-disjoint cliques. The
graph G is monopolar if its vertex set admits a monopolar partition.

Recently, monopolar graphs have been used to detect core-periphery structure of protein
interaction networks [4]. ILP formulations and heuristic methods are given in [4] to extract
a monopolar subgraph from a general graph by removing as few edges as possible. Here, the
input graph represents a protein interaction network measurement affected by independent
stochastic errors and the extracted monopolar subgraph gives a finer approximation of the
real structure of the observed network.

Our interest in monopolar graphs stems from their relation to another real-world prob-
lem, which arises in cosmetic manufacturing and is described at the end of this introduction.

? c© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license cbnd.
Journal version DOI: 10.1016/j.dam.2020.12.023

∗Corresponding author.
Email addresses: michele.barbato@unimi.it (Michele Barbato), dario.bezzi@unimi.it (Dario

Bezzi)

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dam.2020.12.023

From a theoretical perspective, monopolar graphs have been mainly studied in con-
nection with other graph classes, such as polar graphs first defined in [26] and unipolar
graphs treated, e.g., in [8, 12, 25]. All these classes can be concisely described by means of
the following definition used in [18]. Given ΠA and ΠB two graph properties, G = (V,E)
is a (ΠA,ΠB)-graph if V is partitionable into A and B such that G[A] has property ΠA

and G[B] has property ΠB. Monopolar graphs are easily seen to be the (K2-free, P3-free)-
graphs, see e.g., [4]. Similarly, polar graphs can be defined as the (P3-free, P3-free)-graphs
and the unipolar graphs as the (K2-free, P3-free)-graphs. Note that polar graphs generalize
both unipolar and monopolar graphs.

Most of works concerned with monopolar graphs are focused on the monopolarity recog-
nition problem, consisting in deciding whether a given input graph is monopolar. Monopo-
larity recognition is relevant for solving the analogous problem of recognizing polar graphs.
Indeed, for several special classes of input graphs, the monopolarity recognition problem
admits polynomial-time algorithms which are also used as subroutines to efficiently rec-
ognize polar graphs in those classes, see e.g., [6, 10, 11]. Other efficient algorithms for
monopolarity recognition are given if the number of maximal cliques in the cluster induced
by a monopolar partition is treated as a fixed parameter [18], for superclasses of chair-free
and hole-free input graphs, and for classes of input graphs with bounded clique- or tree-
width, see [20] and the references therein. On the other hand, the results in [13] imply
that it is NP-complete to recognize (mono)polar graphs in general and the same holds for
(mono)polarity recognition of K3-free input graphs [7, 19] and K3-free planar input graphs
of maximum degree three [20].

The NP-completeness of recognizing (mono)polar graphs contrasts with the fact that
unipolar graphs can be recognized in polynomial time, as shown in [8, 12, 25]. In fact, [12]
also shows that unipolar graphs are perfect (see e.g., [17, Sect. 9.2] for the definition of
perfect graphs). Hence it is well-known [17, Chapt. 9] that the stability, chromatic, clique
and clique partitioning numbers of unipolar graphs can be computed in polynomial time
and, to this end, specific combinatorial algorithms exploiting the unipolar structure are
provided in [12].

Conversely, little seems to be known about the complexity of determining standard
parameters on monopolar graphs. Results in this sense are obtained after observing that
monopolar graphs generalize both bipartite and split graphs; hence NP-hard problems
for the latter classes of graphs are also NP-hard for the former class. Examples include
computing the edge clique partition number [27] and the dominating and independent dom-
inating numbers [2, 9]. Contrary to bipartite and split graphs though, monopolar graphs
are easily seen to be non-perfect and the complexity of computing the stability, chromatic,
clique and clique partitioning numbers is, to the best of our knowledge, unknown. We are
only aware of polynomial-time algorithms for computing the stability number in monopo-
lar 2P3-free graphs, see [21], and the clique and stability numbers of (mono)polar graphs
which are trivially perfect [23] (see e.g., [16] for the definition of trivially perfect graphs).

Contribution. We contribute to the investigation on the complexity of computing classical
graph parameters on monopolar graphs. We prove that determining the clique partitioning,

2

stability and chromatic numbers on monopolar graphs is NP-hard. The NP-hardness
of the chromatic number computation is derived from the NP-completeness of the 3-
Colorability problem on monopolar graphs. The NP-hardness of computing the clique
partitioning number is proven along with the NP-hardness of recognizing a positive clique
partitioning-stability number gap on monopolar graphs. All these complexity results are
obtained by reductions of classical NP-complete problems and involve graphs whose vertex
set is explicitly partitioned in a monopolar fashion. Hence they hold even if a monopolar
partition is known. Clearly, they also extend to the more general class of polar graphs and
to the weighted versions of the considered problems. Subsequently, we prove that the Max
Weight Clique problem can be solved in polynomial time on monopolar graphs. We
derive this latter result from the fact that the number of maximal cliques of a monopolar
graph is linearly bounded by the number of its vertices and edges.

A Monopolar Graph Model for Manufacturing. We conclude the introduction by describ-
ing the aforementioned real-world problem that can be modelled by means of monopolar
graphs. The problem, which we call Disjoint Covering, is as follows. We are given a set
of ingredients N , a set of containers C = {C1, . . . , Ck} with Ci ⊆ N for every i ∈ {1, . . . , k}
and a set of d cosmetic products, each obtained by combining ingredients in the containers.
Let P = {P1, . . . , Pd} be the set of products, such that Pj ⊆ N for every j ∈ {1, . . . , d},
that is, we identify each product with the list of ingredients it requires. The goal is to
decide whether there exist d subsets S1,S2 . . . ,Sd of C such that:

Pj ⊆
⋃

C∈Sj

C for every j = 1, . . . , d; (Cov)

Sj ∩ S` = ∅ for all distinct j, ` ∈ {1, . . . , d}. (Disj)

The sets N , C and P define a feasible instance of the Disjoint Covering problem
whenever such disjoint subsets exist.

A feasible instance of the manufacturing problem admits an assignment of each con-
tainer to at most one product, since every product requires a series of time-consuming
tasks to be performed on its assigned container that would otherwise introduce delays.
Therefore, the covering condition (Cov) guarantees that every product can be obtained
by using the ingredients in its assigned containers. The disjointness condition (Disj) im-
poses that an ingredient in a container assigned to product Pj with j ∈ {1, . . . , d} cannot
be used to make product P` with ` 6= j, even if Pj does not require that ingredient.

Let I be an instance of the Disjoint Covering problem defined by N , C and P as
above. We model I as a monopolar graph GI = (VI , EI) as follows. The vertex set VI is
given by the union of two sets A and B such that A contains a vertex vC for each element
of C ∈ C and B contains a vertex vi,P for every pair {i, P} with i ∈ N and P ∈ P such that
i ∈ P . The edge set EI is obtained by linking vC and vi,P whenever i ∈ C∩P and by linking
vi,P and vj,P whenever i, j ∈ P . Then (A,B) is a monopolar partition of VI , since A is a
stable set and GI [B] is a cluster whose maximal cliques are in one-to-one correspondence
with the products in P . An example of the above correspondence is given in Fig. 1.1a.

3

vC1 vC2 vC3

v1,P1 v2,P1

H1

v2,P2

v3,P2

v4,P2

H2

(a) A Disjoint Covering instance I with ingredient set N =
{1, 2, 3, 4} represented as a monopolar graph GI . Containers
in C are C1 = {1, 2}, C2 = {2, 3}, C3 = {3, 4}; products in P
are P1 = {1, 2} and P2 = {2, 3, 4}, respectively corresponding
to the maximal cliques H1 and H2 of GI [B].

KC1 KC2 KC3

vC1 vC2 vC3

S1 S2

v1,P1 v1,P2 v2,P2

v3,P2

v4,P2

(b) The shaded triangles give a clique covering of GI and cor-
respond to the solution {S1,S2} to the Disjoint Covering
problem. Note that KC1

and KC3
are not disjoint but a

clique partitioning is obtained by removing v3,P2
from KC3

.

Figure 1.1: Example of correspondence between Disjoint Covering instances and monopolar graphs.
Square vertices are in A, round vertices in B.

In the remainder of this paper, the symbols α(G), χ(G) and ω(G) respectively denote
the stability, chromatic and clique number of a graph G, see e.g., [3] for their definitions.
The clique partitioning number is indicated by χ(G) to emphasize that it equals the chro-
matic number of the complement G, see e.g., [17, Sect. 9.4].

Prop. 1.1 reveals a relation between the Disjoint Covering problem and the clique
partitioning number of monopolar graphs.

Proposition 1.1. Let N , C and P define an instance I of the Disjoint Covering
problem and let GI be its corresponding graph. Then I is feasible if and only if χ(GI) = |C|.

Proof. Throughout the proof we use the notation adopted in the description of GI =
(VI , EI). We observed that A = {vC : C ∈ C} is a stable set of GI and (A,B) with
B = VI \ A is a monopolar partition. For j = 1, . . . , d, let Hj = {vi,Pj

: i ∈ Pj}, be the
maximal clique of GI [B] corresponding to Pj ∈ P (see Fig. 1.1a for an example).

Let us first show that if I is feasible then χ(GI) = |C|. Since A is a stable set of GI , we
get χ(GI) ≥ |C| = |A|. To show that χ(GI) ≤ |C| it is enough to exhibit a clique cover of
GI having cardinality |C|: indeed every clique cover can be turned into a clique partition of
the same cardinality by removing the intersection of two cliques from exactly one of them.

If I is feasible there exist d subsets S1, . . . ,Sd of C satisfying conditions (Cov) and (Disj).
For every C ∈ C we construct a clique KC of GI as follows: if C 6∈ S1 ∪ · · · ∪ Sd we set
KC = {vC}; otherwise, C ∈ Sj for some j ∈ {1, . . . , d} and we define KC as the clique
induced in GI by vC and its neighbors in Hj (see Fig. 1.1b for an illustration). Note that
by (Disj) the clique KC is unique for every C ∈ C. Then K = {KC : C ∈ C} contains
exactly |C| cliques; let us show that together they cover all vertices of GI . First, by defini-
tion, each vertex vC ∈ A is contained in one clique of K. Moreover, if vi,Pj

∈ Hj for some

4

j ∈ {1, . . . , d} then i ∈ Pj and by (Cov) i ∈ C for some C ∈ Sj; from the definition of EI ,
vi,Pj

is a neighbor of vC , hence vi,Pj
∈ KC . This concludes the first implication.

Now, we prove the opposite implication. Let K be a clique partition of GI consisting of
|C| cliques. For every j = 1, . . . , d, let Kj ⊆ K be such that every vertex of Hj belongs to a
clique of Kj. The maximal cliques of GI [B] are vertex-disjoint, so Kj∩K` = ∅ for all distinct
j, ` ∈ {1, . . . , d}. Being K a clique partition, every vertex of A belongs to exactly one clique
ofK. Thus the sets Sj = {C ∈ C : vC ∈ K for some K ∈ Kj} for j = 1, . . . , d satisfy (Disj).
Let j ∈ {1, . . . , d} and i ∈ Pj. Vertex vi,Pj

belongs to one K ∈ Kj. Since K covers V by |C|
cliques and A is a stable set of size |C|, there exists C with vC ∈ K. Then {vC , vi,Pj

} ∈ EI ,
that is, i ∈ C. Since C belongs to Sj, this latter satisfies (Cov). Then I is feasible.

2. NP-Hardness Results

Clique Partitioning Monopolar Graphs and Related Problems. The Disjoint Covering
problem of the introduction is easily seen to be in NP. We now prove that it is NP-
complete. This, together with Prop. 1.1 and the monopolarity of GI for every Disjoint
Covering instance I, implies that it is NP-hard to compute the clique partitioning num-
ber of generic monopolar graphs.

Our construction relies on a reduction from the well-known Minimum Cover problem.
An instance of the Minimum Cover problem is a triple (U , T , `) where U is a set, T is
a collection of k subsets of U such that

⋃
T∈T T = U and ` ≤ k is a positive integer. A

subset T ′ ⊆ T such that
⋃

T∈T ′ T = U is said to cover U , and it is called a feasible cover
if it additionally satisfies |T ′| ≤ `. Deciding whether a generic instance of the Minimum
Cover problem has a feasible cover is NP-complete [14, p. 222].

Given a Minimum Cover instance J = (U , T , `) as above, we construct an instance of
the Disjoint Covering problem described in the introduction as follows. First, let E =
{e1, . . . , ek−`} be a set of dummy elements such that ei 6∈ U for i = 1, . . . , k− `. We define
ingredients N = U ∪E, containers C = {T ∪E : T ∈ T } and P = {U , {ei} : i = 1, . . . k−`}.
Let IJ be the Disjoint Covering instance defined by N , C and P . We observe that the
size of IJ is polynomial in the size of J .

Lemma 2.1. Instance J has a feasible cover if and only if IJ is feasible. Thus, the
Disjoint Covering problem is NP-complete.

Proof. It is not restrictive to assume that a feasible cover T ′ of J consists of ` elements of T .
Let T \ T ′ = {T1, . . . Tk−`}. We consider the partition of C given by the sets Si = {Ti ∪E}
for every i = 1, . . . , k−` and Sk−`+1 = {T ∪E : T ∈ T ′}. We assign Si to product Pi ={ei}
for every i = 1, . . . , k − ` and Sk−`+1 to product Pk−`+1 =U . Then IJ is feasible since
|P| = k − `+ 1 and T ′ covers U .

Conversely, if IJ is feasible, there exist S1,S2, . . . ,Sk−`+1 subsets of C satisfying con-
ditions (Cov) and (Disj). Without loss of generality, for every i = 1, 2, . . . , k − ` the
subset Si satisfies condition (Cov) on product Pi = {ei} while the same condition holds
for Sk−`+1 and product Pk−`+1 = U . Letting Sk−`+1 = {C1, C2, . . . , Ch} for some h ≥ 1
we have that U ⊆

⋃h
i=1Ci. Since S1,S2, . . . ,Sk−`+1 are pairwise disjoint, |C| = k implies

5

h ≤ `. Finally, T ′ = {T1, . . . , Th} defined by Ti = Ci \ E for every i ∈ {1, . . . , h} is a
feasible cover of J , since Ti ⊆ T and ej 6∈ U for j = 1, . . . , k − `, so T ′ covers U . Hence
the Disjoint Covering problem is NP-complete.

Proposition 2.2. Computing the clique partitioning number on the class of monopolar
graphs is NP-hard.

Proof. Immediate from Prop. 1.1 and Lemma 2.1, the graph GI being monopolar for every
Disjoint Covering instance I, as proven in the introduction.

The specific structure of instance IJ constructed for the proof of Lemma 2.1 also allows
us to prove that it is NP-hard to determine whether χ(G) = α(G) for a monopolar
graph G. This latter problem has been shown to be NP-hard on generic graphs in [5]. For
next proposition, we adapt the proof of [5].

Proposition 2.3. Deciding whether χ(G) = α(G) for a generic monopolar graph G is
NP-hard even if some maximum stable set of G is known.

Proof. Given an instance J = (U , T , `) of the Minimum Cover problem, let IJ be the
Disjoint Covering instance constructed as above, with C its set of containers. Let also
GIJ = (VIJ , EIJ) be the graph corresponding to IJ as described in the introduction. Clearly,
GIJ has size polynomial in the size of J . Moreover, VIJ has a monopolar partition (A,B)
with every vertex in A corresponding to an element of C and every maximal clique of GIJ [B]
corresponding to an element of P . In particular, GIJ has a vertex in B for every set {ei}
with i = 1, . . . , k − `. We call F the set of these vertices. Then A ∪ F induces a complete
bipartite subgraph of GIJ . From ` ≥ 1 we get |F | ≤ |A| − 1. By construction, every vertex
in the maximal clique of GIJ [B] corresponding to U is adjacent to at least one vertex in
A, since T covers U . Finally, we observe that |C| = |T |, so α(GIJ) = |A| = |C| = |T |. By
Prop. 1.1 and Lemma 2.1, a polynomial-time algorithm for deciding whether χ(G) = α(G)
for every monopolar graph G allows one to determine whether χ(GIJ) = |T | and, as a
consequence, whether J has a feasible cover. This proves the result.

Stability Number of Monopolar Graphs. We give a reduction of the 3-Colorability
problem on general graphs to the stable set problem on monopolar graphs. In the 3-
Colorability problem we have to decide whether a given input graph admits a proper
coloring with at most three colors. The 3-Colorability problem is NP-complete, see [14,
p. 191].

For our purposes, we consider the gadget shown in Fig. 2.1a. Its vertices of degree one
will be called extreme. Let G = (V,E) be a graph. We construct a graph HG = (VG, EG)
from G by replacing each vertex v ∈ V by three vertices v1, v2 and v3 linked to form
a K3 and by joining the two cliques corresponding to v and w as in Fig. 2.1b whenever
{v, w} ∈ E. More precisely, for every pair {vi, wi} where i = 1, 2, 3 and {v, w} is an edge
of G, we add a gadget having vi and wi as extreme vertices.

Computing α(HG) is enough to solve the 3-Colorability problem on G, as we prove
in next lemma.

6

(a) Gadget used in HG.

v1

w1

v2

w2

v3

w3

(b) Transformation of an edge {v, w} of G into a monopolar subgraph of HG.
Square vertices are a stable set, round vertices induce a cluster.

Figure 2.1

Lemma 2.4. Let G = (V,E) be a graph and HG = (VG, EG) be the associated graph defined
above. Then G is 3-colorable if and only if α(HG) = |V |+ 9|E|.

Proof. Let I = {1, 2, 3}, C = {vi ∈ VG : v ∈ V, i ∈ I} and D = VG \ C. The graph HG[C]
is a cluster consisting of |V | vertex-disjoint K3 graphs, hence α(HG[C]) = |V |. The graph
HG[D] is the union of 3|E| vertex-disjoint cycles of length six, thus α(HG[D]) = 9|E|. Since
C and D partition VG, we get that α(HG) ≤ |V | + 9|E|. The same argument also proves
that the right-hand-side value is reached only by the cardinality of stable sets including
exactly one vertex for each K3 corresponding to a vertex of V and exactly three vertices
per cycle being part of the gadgets corresponding to the edges of G.

So, if S is a maximum stable set of HG of cardinality |V | + 9|E|, we get that vi ∈ S
implies wi 6∈ S whenever {v, w} ∈ E. Otherwise, S would contain at most two vertices
in the cycle of the gadget having vi and wi as extreme vertices. It follows that, whenever
{v, w} ∈ E, if vi ∈ S for some i ∈ I then wj ∈ S for some j ∈ I \ {i}, as S contains one
vertex for each K3 corresponding to a vertex of V . As a consequence, assigning color i ∈ I
to vertex v such that vi ∈ S yields a proper coloring of G using at most three colors.

Conversely, let G be 3-colorable with colors in I. We define the stable set S1 = {vi ∈
VG : v ∈ V has color i ∈ I}. Let us consider the graph H ′G obtained from HG by removing
all vertices in S1 and their neighbors. Since every vertex v ∈ V is assigned a color this
implies that all K3 graphs corresponding to the vertices of G are removed. Moreover, at
most one vertex per gadget is removed since for every edge {v, w} ∈ E vertices v and w
are assigned distinct colors. It follows that H ′G has 3|E| connected components each being
either a path on five vertices or a cycle on six vertices. All these connected components
admit a stable set of size three, hence a maximum stable set S2 of H ′G has size 9|E|. Now,
S = S1 ∪ S2 is a stable set of HG of cardinality |V | + 9|E|, hence it is a maximum stable
set of HG.

Proposition 2.5. Computing the stability number on the class of monopolar graphs is
NP-hard.

7

Proof. The size of HG = (VG, EG) is polynomial in the size of G. By Lemma 2.4 it is enough
to prove that HG is monopolar for every graph G. Let us consider the partition (A,B) of
VG where A contains all vertices of degree three of the gadgets corresponding to the edges
of G, while B contains all other vertices of VG. (Fig. 2.1b illustrates this partition on the
graph HK2 .) By construction of HG the vertices of distinct gadgets corresponding to the
edges of G are not adjacent except for their extreme vertices, thus A is a stable set. The
same argument shows that a P3 in HG[B] can only be induced by three extreme vertices of
the gadgets used in the construction of HG. However, every connected subgraph containing
three extreme vertices is a K3. Hence HG[B] is a cluster and (A,B) a monopolar partition
of VG.

Chromatic Number of Monopolar Graphs. We now prove that the 3-Colorability prob-
lem on monopolar graphs is NP-complete. This immediately proves that computing the
chromatic number of monopolar graphs is NP-hard in general. We adapt a well-known
reduction of the 3-SAT problem to 3-Colorability problem on general graphs [15,
Thm. 2.1].

An instance of the 3-SAT problem is a set of disjunctive clauses each consisting of
three literals from a given set of positive and negated variables. The goal is to determine
the existence of a truth assignment for the instance, i.e., an assignment of boolean values
to the variables making all clauses true. The 3-SAT problem is NP-complete [14, p. 259].

Our reduction relies on two gadgets. The first gadget is constructed by first taking a
diamond obtained from K4 by removing an edge. We call p and q the two vertices of the
diamond of degree two and f and t the other two vertices. For every variable x of the
given instance, we add a cycle of length five having p as a vertex. The neighbors of p in
the cycle of variable x will be referred to as x and x̄. Finally, we link the remaining two
vertices of the cycle to vertex q. In Fig. 2.2a we illustrate this gadget for two variables x
and y.

The second gadget is depicted in Fig. 2.2b and it is the same that is used in [15]. We
call it clause gadget. A vertex of a clause gadget is a literal vertex if it has degree one and
a truth vertex if it has degree two.

Given an instance I of the 3-SAT problem, we construct a graph GI as follows. We
start with a gadget of the first type as above. Subsequently, for every clause C = (`1, `2, `3)
of I we create a clause gadget whose literal vertices are identified with the vertices of the
first gadget corresponding to the same literals. Finally, we link the truth vertex of each
clause gadget to vertices p and f .

Lemma 2.6. The graph GI is monopolar for every instance I of the 3-SAT problem.

Proof. The vertex set of the gadget of first type admits a monopolar partition (A,B) with
f, p ∈ B and x, x̄ ∈ A for every variable x, see Fig. 2.2a. The vertex set of a clause gadget
has a monopolar partition (A,B) in which all literal vertices and the truth vertex belong
to A, see Fig. 2.2b. Hence identifying the literal vertices across gadgets of different type
and linking all truth vertices to p and f does not break the monopolarity.

8

q

tf

p

y

y

x

x

(a) First monopolar gadget. Square vertices are in A, round vertices
in B.

`1

`2

`3

(b) Clause gadget. It is monopolar: square ver-
tices are in A, round vertices in B.

Figure 2.2

We just sketch the proof of next lemma, as the argument is the same as in classical
reductions of the 3-SAT problem to the 3-Colorability problem given in [15, Thm. 2.1].

Lemma 2.7. Given an instance I of the 3-SAT problem, the graph GI is 3-colorable if
and only if there is a truth assignment for I.

Proof. The gadget of first type is 3-colorable. Let F and T be the colors respectively
assigned to f and t and let N be the third color in such a 3-coloring (note that p and q are
colored N). A literal is assigned boolean value true if the corresponding vertex in the first
gadget is colored T , otherwise it is assigned false. It is easy to see that, for every variable
x of I, vertices x and x̄ cannot be colored N and must have distinct colors, so the above
is a consistent assignment of boolean values to the variables. As observed in [15], under
the above 3-coloring, the truth vertex of a clause gadget can be colored T if and only if at
least one literal vertex in the same clause is. Since the truth vertices are all linked to f
and p, the graph GI is 3-colorable if and only if I admits a truth assignment.

The proof of the following proposition is now immediate.

Proposition 2.8. The 3-Colorability problem on monopolar graphs is NP-complete.
Computing the chromatic number on monopolar graphs is NP-hard.

We conclude the section by considering lower and upper bounds for the chromatic
number χ(G) of a monopolar graph G in terms of its clique number ω(G). As for general
graphs, ω(G) ≤ χ(G) for every monopolar graph G. However, in general graphs the
chromatic number can be arbitrarily larger than the clique number, see [3, pp. 376-377].
Instead let us consider a monopolar graph G = (V,E): if (A,B) is a monopolar partition
of V , then the maximal cliques of G[B] can be colored with at most ω(G) colors. Then we
can assign an additional color to all vertices in A to obtain a proper coloring of G. Thus
we have ω(G) ≤ χ(G) ≤ ω(G) + 1 for every monopolar graph G. The clique number of a
monopolar graph can be computed in polynomial time as we show in next section.

9

3. Polynomial-Time Algorithms for Clique Problems on Monopolar Graphs

The main result of this section is that for a monopolar graph G = (V,E) the Max
Weight Clique problem max{c(K) : K is a nonempty clique of G} is solvable in poly-
nomial time, for all vertex weight functions c : V → R. In particular, the clique number
of a monopolar graph can be computed efficiently. In the following we consider both the
cases in which the monopolar partition is not known in advance or it is. Our starting
observation is that in a monopolar graph the number of maximal cliques (i.e., those not
properly contained in a clique) is linearly bounded above by the number of its vertices and
edges.

Lemma 3.1. Let G = (V,E) be a monopolar graph on n vertices and m edges. The number
of maximal cliques of G is in O(n+m).

Proof. Let (A,B) be a monopolar partition of V . The maximal cliques of G[B] are at
most |B|. Every v ∈ A together with its neighborhood in a maximal clique H of G[B]
induces a maximal clique of G, whenever the neighborhood of v in H is nonempty. More-
over, an edge incident to v ∈ A belongs to exactly one such a clique. It follows that there
are O(m) maximal cliques of G with a vertex in A and a vertex in B. Every other maximal
clique of G is either maximal in G[B] or an isolated vertex of A. Since |A| + |B| = n the
above discussion shows that G has O(n+m) maximal cliques.

Proposition 3.2. Let G = (V,E) be a monopolar graph with n vertices and m edges and
let c : V → R be a weight function on V . Then the Max Weight Clique problem defined
by c on G can be solved in O(n2m + nm2) time. In particular, the size ω(G) of a largest
clique of G can be determined in polynomial time.

Proof. First, we can check whether all vertices of G have nonpositive weights, in which
case a maximum-weight clique of G is a singleton vertex. This preprocessing step can
be performed in O(n) by inspection. If at least one vertex has positive weight, we may
remove from G all vertices having c(v) ≤ 0 because, without loss of generality, none of
them belongs to a maximum-weight clique. Vertex removals do not affect monopolarity,
hence the graph resulting from this preprocessing step is again monopolar with at most n
vertices and m edges. The h maximal cliques of a general graph with n vertices and m
edges can be listed in O(hnm) time [24]. For each maximal clique K the maximum-weight
clique contained in K can be found in O(n) time. Lemma 3.1 guarantees that h ∈ O(n+m)
so the Max Weight Clique problem on G can be solved in O(n2m+ nm2) time.

When a monopolar partition is known, the Max Weight Clique problem on a
monopolar graph can be solved more quickly.

Proposition 3.3. Let G = (V,E) be a vertex-weighted monopolar graph with n nodes and
m edges and let (A,B) be a monopolar partition of V . Then the Max Weight Clique
problem on G can be solved in O(n+m) time.

10

Algorithm 1 Computing a maximum-weight clique of a monopolar graph G = (V,E)
with known monopolar partition.

Input: A weight function c : V → R+, a monopolar partition (A,B) of V and for every
v ∈ B its adjacency list adjB(v)
Output: K? and c(K?), a maximum-weight clique of G and its weight

1: K? := ∅ and c(K?) := −1
2: I(v) := 0 ∀v ∈ B . index of maximal B clique containing v
3: adjA(w) := ∅ ∀w ∈ A . adjacency list of w sorted by the indices of the B cliques
4: i = 0
5: for v ∈ B do
6: if I(v) = 0 then
7: Kv = {v} and c(Kv) = c(v) . create new clique
8: i← i+ 1
9: I(v) = i
10: for w ∈ adjB(v) do
11: if w ∈ B then
12: Insert w into Kv

13: c(Kv) = c(Kv) + c(w)
14: I(w) = i

15: if c(Kv) > c(K?) then
16: K? = Kv and c(K?) = c(Kv)

17: for w ∈ adjB(v) do
18: if w ∈ A then
19: Append v to adjA(w)

20: for v ∈ A do
21: if adjA(v) = ∅ and c(v) > c(K?) then
22: K? = {v} and c(K?) = c(v)
23: else
24: l = 0
25: Kv,0 = ∅, c(Kv,0) = −1
26: for w ∈ adjA(v) do
27: if I(w) 6= l then
28: if c(Kv,l) > c(K?) then . check previous clique containing v
29: K? = Kv,l and c(K?) = c(Kv,l)

30: l = I(w)
31: Kv,l = {v} and c(Kv,l) = c(v) . create new clique

32: Insert w into Kv,l

33: c(Kv,l) = c(Kv,l) + c(w)

34: if c(Kv,l) > c(K?) then . check last clique containing v
35: K? = Kv,l and c(K?) = c(Kv,l)

36: return K? and c(K?)

11

Proof. As in the proof of Prop. 3.2, we assume that all vertices of G have positive weights.
Moreover, we assume to be able to check the membership of a vertex to A or B in constant
time and to have the adjacency lists of the vertices in B. Then Algorithm 1 solves the
Max Weight Clique problem on G in O(n+m) time.

The first main for loop in Algorithm 1 (line 5) inspects the maximal cliques of G[B].
It does so in O(n+m) time, because it explores the adjacency list of every vertex of B or
considers singleton cliques, when such lists are empty. Each iteration of the first for loop
keeps track of the maximum-weight clique found so far (lines 15-16). Since the graph G
is monopolar, every vertex of A has its neighborhood only in B. Thus the same for loop
also generates the complete adjacency lists of the vertices in A (lines 17-19). Overall, these
lists are constructed in O(m) time in such a way that all neighbors of v ∈ A belonging
to a same clique of G[B] appear consecutively in the adjacency list of v. Exploiting this
latter property, the second main for loop (line 20) scans in O(n + m) time all maximal
cliques of G having one vertex in A (lines 26-32). Indeed every maximal cliques having
one vertex in A has all other vertices in precisely one maximal clique of G[B]. Also, the
maximum-weight clique is updated as in the previous for loop.

Since all maximal cliques of G are contained among the maximal cliques of G[B] and
those having one vertex in A, our algorithm correctly returns the maximum-weight cliques
of G in O(n+m) time.

We conclude with three remarks concerning related clique problems on monopolar
graphs.

Remark 3.4. At the end of the execution of Algorithm 1, all maximal cliques of G (and
possibly some non-maximal cliques) are generated. Thus the algorithm can be easily
adapted to solve in polynomial time the problem of enumerating all maximal cliques of a
monopolar graph G.

Remark 3.5. Combined with the results shown in [22], Lemma 3.1 also implies that the
problem of partitioning the vertices of a monopolar graph into at most k cliques is poly-
nomially solvable whenever k is constant (i.e., it is not part of the input). We sketch
the overall idea of a polynomial algorithm, referring the reader to [22, p. 133] for a more
detailed treatment. One first shows that only maximal cliques are needed in a k-covering
of the vertices into cliques; next, since k is constant and the number of maximal cliques is
polynomially bounded, enumerating all subsets of maximal cliques of cardinality k can be
done in polynomial time; finally, evaluating whether a set of cliques covers all vertices can
be done in quadratic time and this yields the result.

Remark 3.6. Given a graph G = (V,E), the Max Edge-Weight Clique problem on G
is defined as max{d(K) : K is a nonempty clique of G} where d : E → R is an edge-weight
function. This problem is NP-hard already when d(e) = 1 for all e ∈ E because in this
setting it coincides with the problem of determining the clique number of an arbitrary
graph. If instead G = (V,E) is monopolar, its Max Edge-Weight Clique problem
can be solved in polynomial time whenever d(e) ≥ 0 for all e ∈ E. Indeed, the latter
condition on the weights ensures that a maximum-edge-weight clique of G is also maximal,

12

and Lemma 3.1 guarantees that there are O(m + n) maximal cliques in G, obtainable in
polynomial time. For each clique, computing its edge-weight takes O(m) time then we
have the result.

When the edge-weight function d has arbitrary sign, the Max Edge-Weight Clique
problem is NP-hard also when restricted to complete graphs: indeed, if G = (V,E) is an
arbitrary graph with d(e) = 1 for all e ∈ E, we may obtain a complete graph K from G
by adding the missing edges and weighting them with suitable negative values so that a
maximum-edge-weight clique in K is also a maximum-edge-weight clique in G and vice-
versa. This directly implies that the Max Edge-Weight Clique problem is NP-hard
on monopolar graphs when the weight function takes arbitrary sign.

Acknowledgements

This research is partially funded by Regione Lombardia, grant agreement n. E97F17000000009,
project AD-COM–Advanced Cosmetic Manufacturing [1].

References

[1] AD-COM – Advanced Cosmetic Manufacturing. https://ad-com.net/?lang=en.
Accessed: 2019-01-28.

[2] A. A. Bertossi. Dominating sets for split and bipartite graphs. Information processing
letters, 19(1):37–40, 1984.

[3] J. A. Bondy and U. S. R. Murty. Graph theory, volume 244 of Graduate Texts in
Mathematics. Springer, New York, 2008.

[4] S. Bruckner, F. Hüffner, and C. Komusiewicz. A graph modification approach for find-
ing core–periphery structures in protein interaction networks. Algorithms for Molec-
ular Biology, 10(1):16, 2015.

[5] S. Busygin and D. V. Pasechnik. On NP-hardness of the clique partition-independence
number gap recognition and related problems. Discrete Mathematics, 306(4):460–463,
2006.

[6] R. Churchley and J. Huang. Line-polar graphs: characterization and recognition.
SIAM Journal on Discrete Mathematics, 25(3):1269–1284, 2011.

[7] R. Churchley and J. Huang. On the polarity and monopolarity of graphs. Journal of
Graph Theory, 76(2):138–148, 2014.

[8] R. Churchley and J. Huang. Solving partition problems with colour-bipartitions.
Graphs and Combinatorics, 30(2):353–364, 2014.

[9] D. G. Corneil and Y. Perl. Clustering and domination in perfect graphs. Discrete
Applied Mathematics, 9(1):27–39, 1984.

13

https://ad-com.net/?lang=en

[10] T. Ekim, P. Heggernes, and D. Meister. Polar permutation graphs. In International
Workshop on Combinatorial Algorithms, pages 218–229. Springer, 2009.

[11] T. Ekim, P. Hell, J. Stacho, and D. de Werra. Polarity of chordal graphs. Discrete
Applied Mathematics, 156(13):2469–2479, 2008.

[12] E. M. Eschen and X. Wang. Algorithms for unipolar and generalized split graphs.
Discrete Applied Mathematics, 162:195–201, 2014.

[13] A. Farrugia. Vertex-partitioning into fixed additive induced-hereditary properties is
NP-hard. The Electronic Journal of Combinatorics., 11(1):R46, 2004.
URL: http://www.combinatorics.org/Volume_11/PDF/v11i1r46.pdf.

[14] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York, 1979.

[15] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical computer science, 1(3):237–267, 1976.

[16] M. C. Golumbic. Trivially perfect graphs. Discrete Mathematics, 24(1):105–107, 1978.

[17] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

[18] I. Kanj, C. Komusiewicz, M. Sorge, and E. J. van Leeuwen. Parameterized algo-
rithms for recognizing monopolar and 2-subcolorable graphs. Journal of Computer
and System Sciences, 92:22–47, 2018.

[19] H.-O. Le and V. B. Le. The NP-completeness of (1, r)-subcolorability of cubic graphs.
Information Processing Letters, 81(3):157–162, 2002.

[20] V. B. Le and R. Nevries. Complexity and algorithms for recognizing polar and monopo-
lar graphs. Theoretical Computer Science, 528:1–11, 2014.

[21] V. V. Lozin and R. Mosca. Polar graphs and maximal independent sets. Discrete
Mathematics, 306(22):2901–2908, 2006.

[22] B. Rosgen and L. Stewart. Complexity results on graphs with few cliques. Discrete
Mathematics and Theoretical Computer Science, 9(1):127–136, 2007.

[23] M. Talmaciu and E. Nechita. On polar, trivially perfect graphs. International Journal
of Computers Communications & Control, 5(5):939–945, 2010.

[24] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating
all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

14

http://www.combinatorics.org/Volume_11/PDF/v11i1r46.pdf

[25] R. I. Tyshkevich and A. A. Chernyak. Algorithms for the canonical decomposition
of a graph and recognizing polarity. Izvestia Akad. Nauk BSSR, ser. Fiz.-Mat. Nauk,
6:16–23, 1985.

[26] R. I. Tyshkevich and A. A. Chernyak. Decomposition of graphs. Cybernetics,
21(2):231–242, 1985.

[27] W. D. Wallis and J. Wu. On clique partitions of split graphs. Discrete mathematics,
92(1-3):427–429, 1991.

15

	Introduction
	NP-Hardness Results
	Polynomial-Time Algorithms for Clique Problems on Monopolar Graphs

