DP-3-coloring of planar graphs without certain cycles

Mengjiao Rao Tao Wang^{*}

Institute of Applied Mathematics Henan University, Kaifeng, 475004, P. R. China

Abstract

DP-coloring is a generalization of list-coloring, which was introduced by Dvořák and Postle. Zhang showed that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is 3-choosable. Liu et al. showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we show that every planar graph with neither adjacent triangles nor 5-, 6-, 9-cycles is DP-3-colorable, which generalizes these results. Yu et al. gave three Bordeaux-type results by showing that: (i) every planar graph with the distance of triangles at least three and no 4-, 5-cycles is DP-3-colorable; (ii) every planar graph with the distance of triangles at least two and no 4-, 5-, 6-cycles is DP-3-colorable; (iii) every planar graph with the distance of triangles at least two and no 5-, 6-, 7-cycles is DP-3-colorable. We also give two Bordeaux-type results in the last section: (i) every planar graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable; (ii) every planar graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. A planar graph is a graph that can be embedded into the plane so that its edges meet only at their ends. A plane graph is a particular embedding of a planar graph into the plane. We set a plane graph G = (V, E, F) where V, E, F are the sets of vertices, edges, and faces of G, respectively. A vertex v and a face f are **incident** if $v \in V(f)$. Two faces are **adjacent** if they have at least one common edge. Call $v \in V(G)$ a k-vertex, or a k⁺-vertex, or a k⁻-vertex if its degree is equal to k, or at least k, or at most k, respectively. The notions of a k-face, a k⁺-face and a k⁻-face are similarly defined.

A proper k-coloring of a graph G is a mapping $f: V(G) \longrightarrow [k]$ such that $f(u) \neq f(v)$ whenever $uv \in E(G)$, where $[k] = \{1, 2, ..., k\}$. The smallest integer k such that G has a proper k-coloring is called the **chromatic number** of G, denoted by $\chi(G)$. Vizing [21], and independently Erdős, Rubin, and Taylor [5] introduced list-coloring as a generalization of proper coloring. A **list-assignment** L gives each vertex v a list of available colors L(v). A graph G is L-colorable if there is a proper coloring ϕ of G such that $\phi(v) \in L(v)$ for each $v \in V(G)$. A graph G is k-choosable if G is L-colorable for each L with $|L(v)| \ge k$. The minimum integer k such that G is k-choosable is called the **list-chromatic number** $\chi_{\ell}(G)$.

For ordinary coloring, since every vertex has the same color set [k], the operation of vertex identification is allowed. For list-coloring, the vertices may have different lists, so it is infeasible to identify vertices in general. To overcome this difficulty, Dvořák and Postle [4] introduced DP-coloring under the name "correspondence coloring", showing that every planar graph without cycles of lengths 4 to 8 is 3-choosable.

^{*}Corresponding author: wangtao@henu.edu.cn; iwangtao8@gmail.com

Definition 1. Let G be a simple graph and L be a list-assignment for G. For each vertex $v \in V(G)$, let $L_v = \{v\} \times L(v)$; for each edge $uv \in E(G)$, let \mathscr{M}_{uv} be a matching between the sets L_u and L_v , and let $\mathscr{M} = \bigcup_{uv \in E(G)} \mathscr{M}_{uv}$, called the **matching assignment**. The matching assignment is called k-matching assignment if L(v) = [k] for each $v \in V(G)$. A cover of G is a graph $H_{L,\mathscr{M}}$ (simply write H) satisfying the following two conditions:

- (C1) the vertex set of H is the disjoint union of L_v for all $v \in V(G)$;
- (C2) the edge set of H is the matching assignment \mathcal{M} .

Note that the matching \mathcal{M}_{uv} is not required to be a perfect matching between the sets L_u and L_v , and possibly it is empty. The induced subgraph $H[L_v]$ is an independent set for each vertex $v \in V(G)$.

Definition 2. Let G be a simple graph and H be a cover of G. An \mathcal{M} -coloring of H is an independent set \mathcal{I} in H such that $|\mathcal{I} \cap L_v| = 1$ for each vertex $v \in V(G)$. The graph G is **DP**-k-colorable if for any list-assignment $|L(v)| \ge k$ and any matching assignment \mathcal{M} , it has an \mathcal{M} -coloring. The **DP**-chromatic number $\chi_{\text{DP}}(G)$ of G is the least integer k such that G is DP-k-colorable.

We mainly concentrate on DP-coloring of planar graphs in this paper. Dvořák and Postle [4] noticed that $\chi_{DP}(G) \leq 5$ if G is a planar graph, and $\chi_{DP}(G) \leq 3$ if G is a planar graph with girth at least five. Several groups have given sufficient conditions for a planar graph to be DP-3-colorable, which extends the 3-choosability of such graphs.

Theorem 1.1 (Liu et al. [16]). A planar graph is DP-3-colorable if it satisfies one of the following conditions:

- (1) it contains no 3, 6, 7, 8-cycles.
- (2) it contains no 3, 5, 6-cycles.
- (3) it contains no 4, 5, 6, 9-cycles.
- (4) it contains no 4, 5, 7, 9-cycles.
- (5) the distance of triangles is at least two and it contains no 5, 6, 7-cycles.

Theorem 1.2 (Liu et al. [15]). If a and b are distinct values from $\{6, 7, 8\}$, then every planar graph without 4-, a-, b-, 9-cycles is DP-3-colorable.

Zhang and Wu [32] showed that every planar graph without 4-, 5-, 6- and 9-cycles is 3-choosable. Zhang [28] generalized this result by showing that every planar graph with neither adjacent triangles nor 5-, 6- and 9-cycles is 3-choosable. Liu et al. [16] showed that every planar graph without 4-, 5-, 6- and 9-cycles is DP-3-colorable. In this paper, we first extend these results by showing the following theorem.

Theorem 1.3. Every planar graph with neither adjacent triangles nor 5-, 6- and 9-cycles is DP-3-colorable.

The distance of two triangles T and T' is defined as the value $\min\{\operatorname{dist}(x, y) : x \in T \text{ and } y \in T'\}$, where $\operatorname{dist}(x, y)$ is the distance of the two vertices x and y. In general, we use $\operatorname{dist}^{\nabla}$ to denote the minimum distance of two triangles in a graph. Yin and Yu [26] gave the following Bordeaux condition for planar graphs to be DP-3-colorable.

Theorem 1.4 (Yin and Yu [26]). A planar graph is DP-3-colorable if it satisfies one of the following two conditions:

(1) the distance of triangles is at least three and it contains no 4, 5-cycles.

$\operatorname{dist}^{\nabla}$	3	4	5	6	7	8	9	10	list-3-coloring	DP-3-colorable
	X	X	-				-	-	Thomassen, 1995 [20]	Dvořák, Postle, 2018 [4]
	X		X	X					Lam, Shiu, Song, 2005 [8]	Liu et al. 2019 [16]
	X			X	X				Dvořák et al. 2010 [3]	?
	X			X	X		X		Zhang, Xu, 2004 [33]	
	X			X	X	×			Lidický, 2009 [12]	Liu et al. 2019 [16]
	X				X	×			Dvořák et al. 2009 $[2]$?
		X	×	X	X	×			Dvořák, Postle, 2018 $[4]$?
		X	X	ø			X		Zhang, Wu, 2005 [32]	Liu et al. 2019 [16]
		X	X		X		X		Zhang, Wu, 2004 [31]	Liu et al. 2019 [16]
		X	X		X			X	Zhang, 2012 [27]	?
		X	X			×	X		Wang, Lu, Chen, 2010 [23]	?
		X		ø	X		X		Wang, Lu, Chen, 2008 [22]	Liu et al. 2019 [15]
		X		X		×	X		Shen, Wang, 2007 [19]	Liu et al. 2019 [15]
		X			X	×	X		Wang, Wu, Shen, 2011 [25]	Liu et al. 2019 [15]
		X	X			×		X	Wang, Wu, 2011 [24]	?
≥ 3		X	X						derived from [26]	Yin, Yu, 2019 [26]
≥ 2		X	X	X					derived from [26]	Yin, Yu, 2019 [26]
≥ 2			X	ø	X				Li, Chen, Wang, 2016 [9]	Liu et al. 2019 [16]
≥ 2			X	X		×			Zhang, Sun, 2008 [30]	this paper
≥ 3			X	ø				X	Zhang, 2016 [29]	
≥ 3		X			X		X		Li, Wang, 2016 [11]	
≥ 2		X	X		X				Han, 2009 [6]	this paper

Table 1: List-3-coloring and DP-3-coloring.

(2) the distance of triangles is at least two and it contains no 4, 5, 6-cycles.

Theorem 1.4 implies the following new results on 3-choosability.

Corollary 1.5. A planar graph is 3-choosable if it satisfies one of the following conditions:

- (1) the distance of triangles is at least three and it contains no 4, 5-cycles.
- (2) the distance of triangles is at least two and it contains no 4, 5, 6-cycles.

The following are two Bordeaux-type results on 3-choosability.

Theorem 1.6 (Zhang and Sun [30]). Every planar graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is 3-choosable.

Theorem 1.7 (Han [6]). Every planar graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is 3-choosable.

In the last section, we give two Bordeaux-type results on DP-3-coloring. The first one improves Theorem 1.6 and the second one improves Theorem 1.7.

Theorem 1.8. Every planar graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable.

Theorem 1.9. Every planar graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is DP-3-colorable.

It is observed that every k-degenerate graph is DP-(k+1)-colorable. Theorem 1.9 can be derived from the following Theorem 1.10.

Theorem 1.10. Every planar graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is 2-degenerate.

For more results on DP-coloring of planar graphs, we refer the reader to [1, 7, 10, 13, 14, 17]. For convenience, we collect some results on list-3-coloring and DP-3-coloring in Table 1. If uv is incident with a 7⁺-face and a 4⁻-face, then we say uv controls the 4⁻-face. Similarly, if uv is on a 7⁺-cycle and a 4⁻-cycle, then we say uv controls the 4⁻-cycle. A vertex v on a 7⁺-face f is rich to f if none of the two incident edges on f control a 4⁻-face, semi-rich if exactly one of the two incident edges on f controls a 4⁻-face. A 3-vertex v is weak if v is incident with a 3-face, semi-weak if v is incident with a 4-face, and strong if v is incident with no 4⁻-face.

For a face $f \in F$, if all the vertices on f in a cyclic order are v_1, v_2, \ldots, v_k , then we write $f = v_1 v_2 \ldots v_k$, and call f a $(d(v_1), d(v_2), \ldots, d(v_k))$ -face. A face is called a *k*-regular face if every vertex incident with it is a *k*-vertex. A (d_1, d_2, \ldots, d_t) -path $v_1 v_2 \ldots v_t$ on a face g is a set of consecutive vertices along the facial walk of g such that $d(v_i) = d_i$ and the vertices are different. The notions of d^+ (or d^-) are similarly for $d(v) \ge d$ (or $d(v) \le d$).

2 Preliminary

In this short section, some preliminary results are given, and these results can be used separately elsewhere. Liu et al. [16] showed the "nearly (k - 1)-degenerate" subgraph is reducible for DP-k-coloring.

Lemma 2.1 (Liu et al. [16]). Let $k \ge 3$, K be a subgraph of G and G' = G - V(K). If the vertices of K can be ordered as v_1, v_2, \ldots, v_t such that the following hold:

- (1) $|V(G') \cap N_G(v_1)| < |V(G') \cap N_G(v_t)|;$
- (2) $d_G(v_t) \leq k$ and $v_1 v_t \in E(G)$;
- (3) for each $2 \le i \le t 1$, v_i has at most k 1 neighbors in $G \{v_{i+1}, v_{i+2}, \dots, v_t\}$,

then any DP-k-coloring of G' can be extended to a DP-k-coloring of G.

A graph is **minimal non-DP**-*k*-colorable if it is not DP-*k*-colorable but every subgraph with fewer vertices is DP-*k*-colorable. We give more specific reducible "nearly 2-degenerate" configuration for DP-3-coloring.

Lemma 2.2. Suppose that G is a minimal non-DP-3-colorable graph and it has no adjacent 4⁻-cycles. Let \mathcal{C} be an m-cycle $v_1v_2\ldots v_m$, let $X = \{i : d(v_i) = 4, 1 \le i \le m\}$ and $E^+ = \{v_iv_{i+1} : i \in X\} \cup \{v_mv_1\}$. If v_m is a 3-vertex and v_mv_1 controls a 3-cycle v_mv_1u or a 4-cycle v_mv_1uw , then G contains no configuration satisfying all the following conditions:

- (i) every edge e in E^+ controls a 4⁻-cycle C_e ;
- (ii) all the vertices on C and the other vertices on cycles controlled by E^+ are distinct;
- (iii) every vertex on C is a 4⁻-vertex;

- (iv) every vertex on cycles controlled by E^+ but not on C is a 3-vertex;
- (v) the vertex u has a neighbor neither on \mathcal{C} nor on the cycles controlled by E^+ .

Proof. Suppose to the contrary that there exists such a configuration. For the path $P = v_1 v_2 \dots v_m$, replace each edge $v_i v_{i+1}$ in $E(P) \cap E^+$ by the other part of the controlled cycle, and append $v_m u$ (when $v_m v_1 u$ is the controlled 3-cycle) or $v_m w u$ (when $v_m v_1 u w$ is the controlled 4-cycle) at the end. This yields a path starting at v_1 and ending at u. This path trivially corresponds to a sequence of vertices, and the sequence satisfies the condition of Lemma 2.1 with k = 3, a contradiction.

By the definition of minimal non-DP-k-colorable, it is easy to obtain the following lemma.

Theorem 2.1. If G is a minimal non-DP-k-colorable graph, then $\delta(G) \ge k$.

The following structural result for minimal non-DP-k-colorable graphs is a consequences of Theorem in [18].

Theorem 2.2. Let G be a graph and B be a 2-connected induced subgraph of G with $d_G(v) = k$ for all $v \in V(B)$. If G is a minimal non-DP-k-colorable graph, then B is a cycle or a complete graph.

3 Proof of Theorem 1.3

Recall that our first main result is the following.

Theorem 1.3. Every planar graph with neither adjacent triangles nor 5-, 6- and 9-cycles is DP-3-colorable.

Proof. Let G be a counterexample to the theorem with fewest number of vertices. We may assume that G has been embedded in the plane. Thus, it is a minimal non-DP-3-colorable graph with $\delta(G) \geq 3$, and

- (1) G is connected;
- (2) G is a plane graph without adjacent triangles and 5-, 6-, 9-cycles;
- (3) G is not DP-3-colorable;
- (4) any subgraph with fewer vertices is DP-3-colorable.

A poor face is a 10-face incident with ten 3-vertices, adjacent to one 4-face and four 3-faces. A **bad face** is a 10-face incident with ten 3-vertices and adjacent to five 3-faces. A **bad vertex** is a 3-vertex on a bad face. A **bad edge** is an edge on the boundary of a bad face. A **special face** is a (3, 3, 3, 3, 3, 4, 3, 3, 4, 3)-face adjacent to six 3-faces. A **semi-special face** is a (3, 3, 3, 3, 3, 4, 3, 3, 4, 3)-face adjacent to five 3-faces and one 4-face as depicted in Fig. 1d. An illustration of these faces is in Fig. 1.

By Theorem 2.2, we can easy obtain the following structural result.

Lemma 3.1. Let f be a 10-face bounded by a cycle in G. If f is incident with ten 3-vertices and it controls a 4⁻-face, then the controlled 4⁻-face is incident with at least one 4⁺-vertex.

By Lemma 3.1 and the definitions of poor faces and bad faces, we have the following consequences.

Lemma 3.2.

- (i) There are no adjacent poor faces.
- (ii) There are no adjacent bad faces.

Fig. 2: A 7-face adjacent to a 4⁻-face.

(iii) There are no poor faces adjacent to bad faces.

The following structural results will be frequently used.

Lemma 3.3.

- (a) Every 7⁻-cycle is chordless.
- (b) Every 3-cycle is not adjacent to 6⁻-cycle.
- (c) Every 7-face is adjacent to at most one 4⁻-face; the possible situations see Fig. 2. Consequently, there are no bad faces adjacent to 7-faces.
- (d) No 8-face is adjacent to a 3-face; no 9-face is adjacent to a 3-face.
- (e) There are no adjacent 6^- -faces; thus every 3-vertex is adjacent to at most one 4^- -face.

Proof. (a) If a 4-cycle has a chord, then there are two adjacent triangles. Note that 5-cycles and 6-cycles are excluded in G. If a 7-cycle has a chord, then there is a 5- or 6-cycle, a contradiction.

(b) Note that 5-cycles and 6-cycles are excluded in G. If a 3-cycle is adjacent to a 3- or 4-cycle, then it contradicts Lemma 3.3(a).

(c) Let f be a 7-face and C be its boundary. (i) Suppose that C is a cycle. If $w_1w_2w_3w_4$ is on the boundary and w_2w_3 is incident with a 4-face $u_1w_2w_3u_4$, then none of u_1 and u_4 is on C because C is chordless and $\delta(G) \geq 3$, but C and $u_1w_2w_3u_4$ form a 9-cycle, a contradiction. Suppose that f is adjacent to two 3-faces uvwand u'v'w' with uv, u'v' on C. If w = w', then there are two adjacent triangles or a 5-cycle, a contradiction; and if $w \neq w'$, then there is a 9-cycle, a contradiction. (ii) Suppose that C is not a cycle, and thus it consists of a 3-cycle and a 4-cycle. Hence, f cannot be adjacent to any 3-face by Lemma 3.3(b). If f is adjacent to a 4-face, then it can only be shown in Fig. 2b. Therefore, f is adjacent to at most one 4⁻-face.

(d) If an 8-face is bounded by a cycle, then it cannot be adjacent to a 3-face, otherwise they form a 9-cycle or a 8-cycle with two chords, a contradiction. Suppose that the boundary of an 8-face is not a cycle but it is adjacent to a 3-face. By Lemma 3.3(b), the boundary of the 8-face must contain a 7⁺-cycle, but this is impossible.

Since there is no 9-cycle, the boundary of a 9-face is not a cycle. Suppose the boundary of a 9-face is adjacent to a 3-face. By Lemma 3.3(b), the boundary of the 9-face must contain a 7⁺-cycle, but this is impossible.

(e) Since there is no 6-cycle, the boundary of a 6-face consists of two triangles. It is easy to check that there are no adjacent 6^- -faces.

Lemma 3.4. Each $(3, 3, 3^+, 4^+)$ -face f is adjacent to at most one poor face.

Proof. Since every poor face is incident with ten 3-vertices, f can only be adjacent to poor faces via (3, 3)edges. Let $f = v_1 v_2 v_3 v_4$ with $d(v_1) = d(v_2) = 3$, $d(v_3) \ge 3$ and $d(v_4) \ge 4$. If $d(v_3) \ge 4$, then f is incident
with exactly one (3, 3)-edge, and then it is adjacent to at most one poor face. Suppose that $d(v_3) = 3$ and fis adjacent to two poor faces f_1 and f_2 via $v_1 v_2$ and $v_2 v_3$. Since v_2 is a 3-vertex, the poor face f_1 is adjacent
to the poor face f_2 , but this contradicts Lemma 3.2.

Lemma 3.5. Each bad face is adjacent to at most two special faces.

Proof. Let $f = v_1v_2 \dots v_{10}$ be a bad face and incident with five 3-faces $v_1v_2u_1, v_3v_4u_3, v_5v_6u_5, v_7v_8u_7, v_9v_{10}u_9$. Suppose that f is adjacent to f_i via edge v_iv_{i+1} for $1 \le i \le 10$, where the subscripts are taken modulo 10. Suppose to the contrary that f is adjacent to at least three special faces. Then there exist two special faces f_m and f_n such that |m - n| = 2 or 8, where $\{m, n\} \subset \{2, 4, 6, 8, 10\}$. Without loss of generality, assume that f_2 and f_4 are the two special faces. By Lemma 2.2 and the definition of special face, $d(u_1) = d(u_3) = 4$. Let x_3 and x_4 be the neighbors of u_3 other than v_3 and v_4 . Since f_2 and f_4 are special faces, we have that $x_3x_4 \in E(G)$ and $d(x_3) = d(x_4) = 3$, but this contradicts Lemma 2.2.

Lemma 3.6. Suppose that f is a 10⁺-face and it is not a bad face. Let t be the number of incident bad edges, and $t \ge 1$. Then $3t \le d(f)$. Moreover, if d(f) > 3t, then f is incident with at least (t+1) 4⁺-vertices (repeated vertices are counted as the number of appearance on the boundary).

Proof. Suppose that f is adjacent to a bad face through uv. Let x be the neighbor of u on f and y be the neighbor of v on f. Then u and v are bad vertices and the faces controlled by f through xu and vy are all 3-faces. By Lemma 3.1 and the definition of bad face, $d(x) \ge 4$ and $d(y) \ge 4$. It is observed that two bad edges are separated by at least two other edges along the boundary of f, this implies that $3t \le d(f)$.

By the above discussion, every bad vertex has a 4⁺-neighbor along the boundary. Since 3t < d(f), there are two bad edges separated by at least two 4⁺-vertices, thus f is incident with at least (t+1) 4⁺-vertices. \Box

To prove the theorem, we are going to use discharging method. Define the initial charge function $\mu(x)$ on $V \cup F$ to be $\mu(v) = d(v) - 6$ for $v \in V$ and $\mu(f) = 2d(f) - 6$ for $f \in F$. By Euler's formula, we have the following equality,

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2d(f) - 6) = -12.$$

We design suitable discharging rules to change the initial charge function $\mu(x)$ to the final charge function $\mu'(x)$ on $V \cup F$ such that $\mu'(x) \ge 0$ for all $x \in V \cup F$, this leads to a contradiction and completes the proof.

The following are the needed discharging rules.

- **R1** Each 4-face sends $\frac{1}{2}$ to each incident 3-vertex.
- R2 Each 6-face sends 1 to each incident vertex.
- **R3** Each 7-face sends $\frac{3}{2}$ to each incident semi-rich 3-vertex, 1 to each other incident vertex.

- **R4** Each 8-face sends $\frac{5}{4}$ to each incident vertex.
- **R5** Each 9-face sends $\frac{4}{3}$ to each incident vertex.
- **R6** Suppose that v is a 3-vertex incident with a 10^+ -face f and two other faces g and h.
 - (a) If v is incident with three 5^+ -faces, then f sends 1 to v.
 - (b) If v is incident with a 4-face, then f sends $\frac{5}{4}$ to v;
 - (c) If f is a bad face, g is a 3-face and h is not a special face, then f sends $\frac{4}{3}$ to v and h sends $\frac{5}{3}$ to v.
 - (d) Otherwise, f sends $\frac{3}{2}$ to v.
- **R7** Let v be a 4-vertex on a 10^+ -face f.
 - (a) If v is a rich vertex or a poor vertex of f, then f sends 1 to v.
 - (b) Otherwise, f sends $\frac{1}{2}$ to v.
- **R8** Let v be a 5-vertex on a 10^+ -face f.
 - (a) If v is incident with two 4⁻-face, then f sends $\frac{1}{3}$ to v.
 - (b) If v is incident with exactly one 4⁻-face, then f sends $\frac{1}{4}$ to v.
 - (c) Otherwise, f sends $\frac{1}{5}$ to v.
- **R9** Each $(3, 3, 3^+, 4^+)$ -face sends $\frac{1}{2}$ to adjacent poor face.

R10 Each $(3, 4, 3^+, 4^+)$ -face and $(3, 4, 4^+, 3^+)$ -face send $\frac{1}{4}$ to each adjacent semi-special face.

It remains to check that the final charge of every element in $V \cup F$ is nonnegative.

(1) Let v be an arbitrary vertex of G.

By Theorem 2.1, G has no 2⁻-vertices. If v is a 6⁺-vertex, then $\mu'(v) \ge \mu(v) = d(v) - 6 \ge 0$. We may assume that $3 \le d(v) \le 5$.

Suppose that v is a 3-vertex. By Lemma 3.3(e), v is incident with at most one 4⁻-face. If v is incident with no 4⁻-face, then it receives at least 1 from each incident face, and then $\mu'(v) \ge 3-6+3\times 1=0$. If v is incident with a 4-face, then it receives at least $\frac{5}{4}$ from each incident 7⁺-face, and then $\mu'(v) \ge 3-6+2\times \frac{5}{4}+\frac{1}{2}=0$. If v is incident with a 3-face and a 7-face, then the other incident face is not a bad face by Lemma 3.3(c), and then $\mu'(v) = 3-6+2\times \frac{3}{2}=0$. By Lemma 3.3(d), if v is incident with a 3-face, then it is not incident with a 3-face. If v is incident with a 3-face and two 10⁺-faces, then $\mu'(v) \ge 3-6+\min\{\frac{4}{3}+\frac{5}{3},2\times\frac{3}{2}\}=0$.

Suppose that v is a 4-vertex. By Lemma 3.3(e), v is incident with at most two 4⁻-faces. If v is incident with exactly one 4⁻-face, then $\mu'(v) \ge 4 - 6 + 2 \times \frac{1}{2} + 1 = 0$. If v is incident with two 4⁻-faces, then $\mu'(v) \ge 4 - 6 + 2 \times 1 = 0$. If v is incident with no 4⁻-face, then $\mu'(v) \ge 4 - 6 + 4 \times 1 > 0$.

Suppose that v is a 5-vertex. By Lemma 3.3(e), v is incident with at most two 4⁻-faces. If v is incident with no 4⁻-face, then it receives at least $\frac{1}{5}$ from each incident 5⁺-face, and $\mu'(v) \ge 5 - 6 + 5 \times \frac{1}{5} = 0$. If v is incident with exactly one 4⁻-face, then it receives at least $\frac{1}{4}$ from each incident 5⁺-face, and $\mu'(v) \ge 5 - 6 + 4 \times \frac{1}{4} = 0$. If v is incident with two 4⁻-faces, then it receives at least $\frac{1}{3}$ from each incident 5⁺-face, and $\mu'(v) \ge 5 - 6 + 4 \times \frac{1}{4} = 0$. If v is incident with two 4⁻-faces, then it receives at least $\frac{1}{3}$ from each incident 5⁺-face, and $\mu'(v) \ge 5 - 6 + 3 \times \frac{1}{3} = 0$.

(2) Let f be an arbitrary face in F(G).

If f is a 3-face, then $\mu'(f) = \mu(f) = 0$. Suppose that f is a 4-face. If f is incident with four 3-vertices, then $\mu'(f) = 2 - 4 \times \frac{1}{2} = 0$. If f is incident with exactly one 4⁺-vertex, then it is adjacent to at most one poor face by Lemma 3.4, and then $\mu'(f) \ge 2 - 3 \times \frac{1}{2} - \frac{1}{2} = 0$. If f is a $(3, 3, 4^+, 4^+)$ -face, then it is adjacent

to at most one poor face and at most two semi-special faces, and then $\mu'(f) \ge 2 - 2 \times \frac{1}{2} - \frac{1}{2} - 2 \times \frac{1}{4} = 0$. If f is a $(3, 4^+, 3, 4^+)$ -face, then it sends at most $\frac{1}{4}$ to each adjacent face, and $\mu'(f) \ge 2 - 2 \times \frac{1}{2} - 4 \times \frac{1}{4} = 0$. If f is incident with exactly three 4⁺-vertices, then it is adjacent to at most two semi-special faces, and $\mu'(f) \ge 2 - \frac{1}{2} - 2 \times \frac{1}{4} > 0$. If f is incident with four 4⁺-vertices, then $\mu'(f) = \mu(f) = 2$.

If f is a 6-face, then $\mu'(f) = 6 - 6 \times 1 = 0$. Suppose that f is a 7-face. By Lemma 3.3(c), f is adjacent to at most one 4⁻-face. If f is adjacent to a 4⁻-face (see Fig. 2), then f is incident with at most two semi-rich 3-vertices, which implies that $\mu'(f) \ge 8 - 2 \times \frac{3}{2} - 5 \times 1 = 0$. If f is not adjacent to any 4⁻-face, then f sends 1 to each incident vertex, and $\mu'(f) = 8 - 7 \times 1 > 0$. If f is an 8-face, then $\mu'(f) = 10 - 8 \times \frac{5}{4} = 0$. If f is a 9-face, then $\mu'(f) = 12 - 9 \times \frac{4}{3} = 0$.

Suppose that f is a 10⁺-face. Let t be the number of incident bad edges. Hence, f is incident with exactly 2t bad vertices. By Lemma 3.6, f is incident with at least t 4⁺-vertices. Thus, $\mu'(f) \ge 2d(f) - 6 - 2t \times \frac{5}{3} - t \times 1 - (d(f) - 3t) \times \frac{3}{2} = \frac{1}{2}d(f) - 6 + \frac{t}{6}$. If $d(f) \ge 12$, then $\mu'(f) \ge 12 \times \frac{1}{2} - 6 + \frac{t}{6} \ge 0$. So it suffices to consider 10-faces and 11-faces.

Suppose that f is an 11-face. (i) t = 0. It follows that f is not incident with any bad vertex, and it sends at most $\frac{3}{2}$ to each incident vertex. If f is incident with a 4⁺-vertex, then $\mu'(f) \ge 16 - 10 \times \frac{3}{2} - 1 = 0$. Suppose that f is a 3-regular face. By Lemma 3.3(e), every vertex on f is incident with at most one 4⁻-face. Since d(f) is odd, f must be incident with a rich 3-vertex. This implies that $\mu'(f) \ge 16 - 10 \times \frac{3}{2} - 1 = 0$. (ii) $t \ge 1$. It follows that f is incident with exactly 2t bad vertices and at least (t+1) 4⁺-vertices, and then $\mu'(f) \ge 16 - 2t \times \frac{5}{3} - (t+1) \times 1 - (11 - (3t+1)) \times \frac{3}{2} = \frac{t}{6} > 0$.

Finally we may assume that f is a 10-face. If f is a special face, then $\mu'(f) = 14 - 8 \times \frac{3}{2} - 2 \times 1 = 0$. If f is a bad face, then it is adjacent to at most two special faces by Lemma 3.5, which implies that $\mu'(f) \ge 14 - 4 \times \frac{3}{2} - 6 \times \frac{4}{3} = 0$.

So we may assume that f is neither a bad face nor a special face. By Lemma 3.6, $t \leq \lfloor \frac{d(f)}{3} \rfloor = 3$.

• t = 0. It follows that f is not incident with any bad vertex. Hence, f sends at most $\frac{3}{2}$ to each incident 3-vertex, at most 1 to each incident 4-vertex, and at most $\frac{1}{3}$ to each incident 5-vertex. If f is incident with a 5⁺-vertex, then $\mu'(f) \ge 14 - 9 \times \frac{3}{2} - \frac{1}{3} > 0$. If f is incident with at least two 4-vertices, then $\mu'(f) \ge 14 - 8 \times \frac{3}{2} - 2 \times 1 = 0$.

So we may assume that f is incident with at most one 4-vertex and no 5⁺-vertices. If f is incident with a semi-rich 4-vertex, then $\mu'(f) \ge 14 - 9 \times \frac{3}{2} - \frac{1}{2} = 0$. If f is incident with a rich 4-vertex and nine 3-vertices, then at least one of the incident 3-vertices is rich, and then $\mu'(f) \ge 14 - 1 - 8 \times \frac{3}{2} - 1 = 0$. If f is incident with a poor 4-vertex, then there exists a rich 3-vertex incident with f, and $\mu'(f) \ge 14 - 1 - 8 \times \frac{3}{2} - 1 = 0$.

Suppose that f is incident with ten 3-vertices. If f is adjacent to at most four 4⁻-faces, then $\mu'(f) \ge 14 - 8 \times \frac{3}{2} - 2 \times 1 = 0$. If f is adjacent to at least two 4-faces, then $\mu'(f) \ge 14 - 6 \times \frac{3}{2} - 4 \times \frac{5}{4} = 0$. If f is adjacent to four 3-faces and one 4-face, then f must be a poor face and the 4-face must be $(3, 3, 3^+, 4^+)$ -face, and then $\mu'(f) = 14 - 8 \times \frac{3}{2} - 2 \times \frac{5}{4} + \frac{1}{2} = 0$. If f is adjacent to five 3-faces, then it is a bad face, so we are done.

• t = 1. It follows that f is incident with exactly two bad vertices and at least two 4⁺-vertices. If f is incident with a rich 3-vertex or at least three 4-vertices, then $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 3 \times 1 - 5 \times \frac{3}{2} > 0$. If f is incident with a 5⁺-vertex, then $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 1 - \frac{1}{3} - 6 \times \frac{3}{2} > 0$. If f is incident with a semi-rich 4-vertex, then $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 1 - \frac{1}{2} - 6 \times \frac{3}{2} > 0$. So we may assume that f is incident with two poor 4-vertices and eight semi-rich 3-vertices. Thus f is a (3, 4, 3, 3, 4, 3, 3, 3, 3)-face $w_1w_2 \dots w_{10}$, where w_3w_4 is a bad edge, each of w_2w_3 and w_4w_5 controls a 3-face, each of w_1w_2 and w_5w_6 controls a 4⁻-face. If f controls at least one 4-face by a (3,3)-edge, then $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 2 \times 1 - 2 \times \frac{5}{4} - 4 \times \frac{3}{2} > 0$. So we may further assume that each of w_7w_8 and w_9w_{10} controls a 3-face. If each of w_1w_2 and w_5w_6 controls a 4-face, then $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 2 \times 1 - 2 \times \frac{5}{4} - 4 \times \frac{3}{2} > 0$. So we may

Fig. 3: Certain 7-faces in Theorem 1.8.

must be a special face, a contradiction. If exactly one of w_1w_2 and w_5w_6 controls a 4-face, then f must be a semi-special face. In this case the controlled 4-face must be a $(3, 4, 3^+, 4^+)$ -face or $(3, 4, 4^+, 3^+)$ -face due to Lemma 2.2. Thus $\mu'(f) \ge 14 - 2 \times \frac{5}{3} - 2 \times 1 - \frac{5}{4} - 5 \times \frac{3}{2} + \frac{1}{4} \ge 0$.

• t = 2. It follows that f is incident with exactly four bad vertices and at least three 4⁺-vertices. If f is incident with at least four 4⁺-vertices, then $\mu'(f) \ge 14 - 4 \times \frac{5}{3} - 4 \times 1 - (10 - 4 - 4) \times \frac{3}{2} > 0$. Thus, f is incident with exactly four bad vertices and exactly three 4⁺-vertices. If there is a semi-rich 4⁺-vertex, then $\mu'(f) \ge 14 - 4 \times \frac{5}{3} - 2 \times 1 - \frac{1}{2} - 3 \times \frac{3}{2} > 0$. Therefore, the three 4⁺-vertices are all poor, so there must be a rich 3-vertex. This implies that $\mu'(f) \ge 14 - 4 \times \frac{5}{3} - 3 \times 1 - 2 \times \frac{3}{2} - 1 > 0$.

• t = 3. It follows that f is incident with six bad vertices and four 4⁺-vertices. Thus, $\mu'(f) \ge 14 - 6 \times \frac{5}{3} - 4 \times 1 = 0$.

4 Distance of triangles at least two

In this section, we give two Bordeaux type results on planar graphs with distance of triangles at least two.

4.1 Planar graphs without 5-, 6- and 8-cycles

Recall that our second main result is the following.

Theorem 1.8. Every planar graph with neither 5-, 6-, 8-cycles nor triangles at distance less than two is DP-3-colorable.

Proof. Suppose to the contrary that G is a counterexample with the number of vertices as small as possible. We may assume that G has been embedded in the plane. Thus, G is a minimal non-DP-3-colorable graph.

Lemma 4.1.

- (a) There are no 5-faces and no 6-faces.
- (b) A 3-face cannot be adjacent to an 8⁻-face.
- (c) There are no adjacent 6⁻-faces.

Proof. Since every 5-face is bounded by a 5-cycle, but there is no 5-cycles in G, this implies that there is no 5-faces in G. Since there is no 6-cycles in G, the boundary of every 6-face consists of two triangles, thus the distance of these triangles is zero, a contradiction. Therefore, there is no 5-faces and no 6-faces in G.

It is easy to check that every 7⁻-cycle is chordless. Let f be a 3-face. If f is adjacent to a 4-face g, then they form a 5-cycle with a chord, a contradiction. Suppose that g is a 7-face. Then g may be bounded by a cycle or a closed walk with a cut-vertex. If g is bounded by a cycle and it is adjacent to f, then these two cycles form an 8-cycle with a chord, a contradiction. If the boundary of g contains a cut-vertex, then the boundary consists of a 3-cycle and a 4-cycle, and neither the 3-cycle nor the 4-cycle can be adjacent to the 3-face f. If g is an 8-face, then the boundary of g consists of two 4-cycles, or two triangles and a cut-edge, but no edge on such boundary can be adjacent to the 3-face f.

By the hypothesis and fact that a 3-face cannot be adjacent to an 8^- -face, it suffices to prove that there is no adjacent 4-faces. Since every 4-cycle has no chords, two adjacent 4-faces must form a 6-cycle with a chord, a contradiction.

A 7-face f is **special** if f is incident with six semi-weak 3-vertices and a poor 4-vertex, see Fig. 3a. A 7-face f is **poor** if f is incident with six semi-weak 3-vertices and a strong 3-vertex, see Fig. 3b. Note that a 7-face is not adjacent to any 3-face by Lemma 4.1(b).

Lemma 4.2. Each poor 7-face is adjacent to three $(3, 3, 3^+, 4^+)$ -faces.

Proof. Suppose that $f = w_1 w_2 \dots w_7$ is a poor 7-face and it is adjacent to a 4-face $g = u_1 w_2 w_3 u_4$. Since f is incident with seven 3-vertices, it must be bounded by a 7-cycle. Note that every 7-cycle has no chords, we have that $\{u_1, u_2\} \cap \{w_1, w_2, \dots, w_7\} = \emptyset$. The subgraph induced by $\{w_1, w_2, \dots, w_7\} \cup \{u_1, u_2\}$ is 2-connected, and it is neither a complete graph nor a cycle. By Theorem 2.2, g must be incident with a 4⁺-vertex.

Applying Lemma 2.2 to a special 7-face, we get the following result.

Lemma 4.3. If f is a special 7-face and it controls a (3,3,3,3)-face, then each of the face controlled by (3,4)-edge has at least two 4⁺-vertices.

Define the initial charge function $\mu(x)$ on $V \cup F$ to be $\mu(v) = d(v) - 6$ for $v \in V$ and $\mu(f) = 2d(f) - 6$ for $f \in F$. By Euler's formula, we have the following equality,

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2d(f) - 6) = -12.$$

We give some discharging rules to change the initial charge function $\mu(x)$ to the final charge function $\mu'(x)$ on $V \cup F$ such that $\mu'(x) \ge 0$ for all $x \in V \cup F$, which leads to a contradiction.

The following are the discharging rules.

- **R1** Each 4-face sends $\frac{1}{2}$ to each incident 3-vertex.
- **R2** Each 7⁺-face sends $\frac{3}{2}$ to each incident weak 3-vertex, $\frac{5}{4}$ to each incident semi-weak 3-vertex, 1 to each incident strong 3-vertex.
- **R3** Each 7⁺-face sends 1 to each incident poor 4-vertex, $\frac{3}{4}$ to each incident semi-rich 4-vertex, $\frac{1}{2}$ to each incident rich 4-vertex.
- **R4** Each 7⁺-face sends $\frac{1}{3}$ to each incident 5-vertex.
- **R5** Each $(3, 3, 3^+, 4^+)$ -face sends $\frac{1}{4}$ to each adjacent poor 7-face and each adjacent special 7-face through (3, 3)-edge, respectively.
- $\textbf{R6} \ \text{Each} \ (3,4,3^+,4^+) \text{-face and} \ (3,4,4^+,3^+) \text{-face sends} \ \tfrac{1}{4} \ \text{to each adjacent special 7-face through} \ (3,4) \text{-edge.} \ (3$

It remains to check that the final charge of every element in $V \cup F$ is nonnegative.

(1) Let v be an arbitrary vertex of G.

By Theorem 2.1, G has no 2⁻-vertices. If v is a 6⁺-vertex, then it is not involved in the discharging procedure, hence $\mu'(v) = \mu(v) = d(v) - 6 \ge 0$. Next, we may assume that $3 \le d(v) \le 5$.

Fig. 4: A 9-face incident with exactly five weak 3-vertices.

Suppose that v is a 3-vertex. If v is incident with no 4⁻-face, then it is incident with three 7⁺-faces, and then $\mu'(v) = \mu(v) + 3 \times 1 = 0$. If v is incident with a 3-face, then the other two incident faces are 9⁺-faces by Lemma 4.1(b), and then $\mu'(v) = \mu(v) + 2 \times \frac{3}{2} = 0$. If v is incident with a 4-face, then the other two incident faces are 7⁺-faces by Lemma 4.1(c), and then $\mu'(v) = \mu(v) + 2 \times \frac{3}{2} = 0$.

Suppose that v is a 4-vertex. By Lemma 4.1(c), v is incident with at most two 4⁻-faces. If v is incident with no 4⁻-face, then it is incident with four 7⁺-faces, and then $\mu'(v) = \mu(v) + 4 \times \frac{1}{2} = 0$. If v is incident with exactly one 4⁻-face, then $\mu'(v) = \mu(v) + 2 \times \frac{3}{4} + \frac{1}{2} = 0$. If v is incident with exactly two 4⁻-faces, then $\mu'(v) = \mu(v) + 2 \times \frac{3}{4} + \frac{1}{2} = 0$. If v is incident with exactly two 4⁻-faces, then $\mu'(v) = \mu(v) + 2 \times \frac{3}{4} + \frac{1}{2} = 0$.

Suppose that v is a 5-vertex. By Lemma 4.1(c), v is incident with at most two 4⁻-faces. Therefore, it is incident with at least three 7⁺-faces, and $\mu'(v) \ge \mu(v) + 3 \times \frac{1}{3} = 0$.

(2) Let f be an arbitrary face in F(G).

Since the distance of triangles is at least two, each k-face is adjacent to at most $\lfloor \frac{k}{3} \rfloor$ triangular-faces, thus f contains at most $2 \times \lfloor \frac{k}{3} \rfloor$ weak 3-vertices. As observed above, G has no 5-face and 6-face. If f is a 3-face, then it is not involved in the discharging procedure, and then $\mu'(f) = \mu(f) = 0$.

Suppose that f is a 4-face. If f is incident with four 3-vertices, then $\mu'(f) = \mu(f) - 4 \times \frac{1}{2} = 0$. If f is incident with exactly one 4⁺-vertex, then f sends at most $\frac{1}{4}$ through each incident (3,3)-edge, and then $\mu'(f) \ge \mu(f) - 3 \times \frac{1}{2} - 2 \times \frac{1}{4} = 0$. If f is incident with at least two 4⁺-vertices, then $\mu'(f) \ge \mu(f) - 2 \times \frac{1}{2} - 4 \times \frac{1}{4} = 0$.

If f is an 8-face, then it is not adjacent to any 3-face and it sends at most $\frac{5}{4}$ to each incident vertex, and then $\mu'(f) \ge \mu(f) - 8 \times \frac{5}{4} = 0$.

Suppose that f is a 9-face. Recall that f is incident with at most six weak 3-vertices. If f is incident with exactly six weak 3-vertices, then f sends at most 1 to each other incident vertex, and then $\mu'(f) \ge \mu(f) - 6 \times \frac{3}{2} - (9 - 6) \times 1 = 0$. If f is incident with exactly five weak 3-vertices, then f must be adjacent to three 3-faces and one of the six incident vertices on triangles must be a 4⁺-vertex (see Fig. 4), and then $\mu'(f) \ge \mu(f) - 5 \times \frac{3}{2} - 1 - \frac{5}{4} - 2 \times 1 > 0$. If f is incident with exactly four weak 3-vertices and at least one 4⁺-vertex, then $\mu'(f) \ge \mu(f) - 4 \times \frac{3}{2} - 1 - (9 - 4 - 1) \times \frac{5}{4} = 0$. If f is incident with exactly four weak 3-vertices and at least one 4⁺-vertex, then $\mu'(f) \ge \mu(f) - 4 \times \frac{3}{2} - 1 - (9 - 4 - 1) \times \frac{5}{4} = 0$. If f is incident with exactly four weak 3-vertices and at least one 4⁺-vertex, then f is incident with at least one strong 3-vertex and at most four semi-weak 3-vertices, and then $\mu'(f) \ge \mu(f) - 4 \times \frac{3}{2} - 4 \times \frac{5}{4} - 1 = 0$. If f is incident with at most three weak 3-vertices, then $\mu'(f) \ge \mu(f) - 3 \times \frac{3}{2} - (9 - 3) \times \frac{5}{4} = 0$.

If f is a 10⁺-face, then $\mu'(f) \ge \mu(f) - 2 \times \lfloor \frac{d(f)}{3} \rfloor \times \frac{3}{2} - \left(d(f) - 2 \times \lfloor \frac{d(f)}{3} \rfloor \right) \times \frac{5}{4} \ge 0.$

Suppose that f is a 7-face. By Lemma 4.1(b), f is not incident with any weak 3-vertex. It is observed that f is incident with at most six semi-weak 3-vertices. If there is an incident vertex receives at most $\frac{1}{2}$ from f, then $\mu'(f) \ge \mu(f) - \frac{1}{2} - (7-1) \times \frac{5}{4} = 0$. So we may assume that f is incident with seven 4⁻-vertices and no rich 4-vertex. If f is incident with at most four semi-weak 3-vertices, then $\mu'(f) \ge \mu(f) - 4 \times \frac{5}{4} - 3 \times 1 = 0$. So we may further assume that f is incident with at least five semi-weak 3-vertices and at most two 4-vertices. If f is incident with two semi-rich 4-vertices, then $\mu'(f) = \mu(f) - 2 \times \frac{3}{4} - (7-2) \times \frac{5}{4} > 0$. If f is incident

with a semi-rich 4-vertex and a poor 4-vertex, then $\mu'(f) = \mu(f) - \frac{3}{4} - 1 - (7-2) \times \frac{5}{4} = 0$. It is impossible that f is incident with five semi-weak 3-vertices and two poor 4-vertices.

In the following, assume that f is incident with at most one 4-vertex and at least five semi-weak 3-vertices. If f is incident with a semi-rich 4-vertex, then it is incident with at most five semi-weak 3-vertices, and then $\mu'(f) \ge \mu(f) - \frac{3}{4} - 5 \times \frac{5}{4} - 1 = 0$. Suppose that f is incident with a poor 4-vertex, then it must be adjacent to six semi-weak 3-vertices, i.e., f is a special 7-face, see Fig. 3a. If f controls two $(3, 3, 3^+, 4^+)$ -faces through (3, 3)-edges, then $\mu'(f) = \mu(f) - 1 - 6 \times \frac{5}{4} + 2 \times \frac{1}{4} = 0$. Then we may assume that f controls at least one (3, 3, 3, 3)-face. By Lemma 4.3, f controls two 4-faces incident with at least two 4⁺-vertices through (3, 4)-edges, thus $\mu'(f) = \mu(f) - 1 - 6 \times \frac{5}{4} + 2 \times \frac{1}{4} = 0$. Finally, we may assume that f is incident with three $(3, 3, 3^+, 4^+)$ -faces, thus $\mu'(f) = \mu(f) - 1 - 6 \times \frac{5}{4} + 2 \times \frac{1}{4} = 0$. Finally, we may assume that f is incident with three $(3, 3, 3^+, 4^+)$ -faces, thus $\mu'(f) = \mu(f) - 1 - 6 \times \frac{5}{4} + 3 \times \frac{1}{4} > 0$.

4.2 Planar graphs without 4-, 5- and 7-cycles

The third main result can be derived from the following theorem on degeneracy.

Theorem 1.10. Every planar graph with neither 4-, 5-, 7-cycles nor triangles at distance less than two is 2-degenerate.

Proof. Suppose that G is a planar graph satisfying all the hypothesis but the minimum degree is at least three. Without loss of generality, we may assume that G is connected and it has been embedded in the plane.

Lemma 4.4.

- (a) There is no 4-, 5-, 7-faces. Every 6-face is bounded by a 6-cycle.
- (b) A 3-face cannot be adjacent to a 7⁻-face.

Proof. (a) Since every 4-face must be bounded by a 4-cycle, but there is no 4-cycles in G, this implies that there is no 4-faces in G. Similarly, there is no 5-faces in G. Since there is no 7-cycles in G, there is no 7-face bounded by a cycle, and then the boundary of every 7-face must consist of a triangle and a 4-cycle, but this contradicts the absence of 4-cycles. If the boundary of a 6-face is not a cycle, then it must consist of two triangles, and the distance of these two triangles is zero, a contradiction. Therefore, every 6-face is bounded by a 6-cycle.

(b) It is easy to check that every 8^- -cycle is chordless. Since there is no two triangles at distance less than two, there is no two adjacent 3-faces. Every 6-face is bounded by a 6-cycle and it is chordless, thus a 3-face cannot be adjacent to a 6-face, for otherwise they form a 7-cycle with a chord, a contradiction.

Define the initial charge function $\mu(x)$ on $V \cup F$ to be $\mu(v) = d(v) - 6$ for $v \in V$ and $\mu(f) = 2d(f) - 6$ for $f \in F$. By Euler's formula, we have the following equality,

$$\sum_{v \in V(G)} (d(v) - 6) + \sum_{f \in F(G)} (2d(f) - 6) = -12.$$

Next, we define some discharging rules to change the initial charge function $\mu(x)$ to the final charge function $\mu'(x)$ on $V \cup F$ such that $\mu'(x) \ge 0$ for all $x \in V \cup F$. This leads to a contradiction, and then we complete the proof.

R1 Each 6⁺-face sends 1 to each incident strong 3-vertex, $\frac{1}{2}$ to each incident rich 4-vertex, $\frac{1}{4}$ to each incident 5-vertex.

R2 Each 8⁺-face sends $\frac{3}{2}$ to each incident weak 3-vertex, $\frac{3}{4}$ to each incident semi-rich 4-vertex.

It remains to check that the final charge of every element in $V \cup F$ is nonnegative.

• Let v be an arbitrary vertex of G.

If v is a 6⁺-vertex, then it is not involved in the discharging procedure, hence $\mu'(v) = \mu(v) = d(v) - 6 \ge 0$. We may assume that $3 \le d(v) \le 5$. Since there is no two triangles at distance less than two, every vertex is incident with at most one 3-face.

Suppose that v is a 3-vertex. If v is not incident with any 3-face, then it is incident with three 6⁺-faces, and then $\mu'(v) = \mu(v) + 3 \times 1 = 0$. If v is incident with a 3-face, then the other two incident faces are 8⁺-faces by Lemma 4.4(b), and then $\mu'(v) = \mu(v) + 2 \times \frac{3}{2} = 0$.

Suppose that v is a 4-vertex. If v is not incident with any 3-face, then it is incident with four 6⁺-faces, and then $\mu'(v) = \mu(v) + 4 \times \frac{1}{2} = 0$. If v is incident with a 3-face, then $\mu'(v) = \mu(v) + 2 \times \frac{3}{4} + \frac{1}{2} = 0$.

Suppose that v is a 5-vertex. Since v is incident with at most one 3-face, it is incident with at least four 6⁺-faces, so $\mu'(v) \ge \mu(v) + 4 \times \frac{1}{4} = 0$.

• Let f be an arbitrary face in F(G).

Note that there is no 4-, 5-, 7-faces. Since every 3-face f is not involved in the discharging procedure, we have that $\mu'(f) = \mu(f) = 0$. By Lemma 4.4(b), every 6-face f is adjacent to six 6⁺-faces, thus $\mu'(f) \ge \mu(f) - 6 \times 1 = 0$. Suppose that f is a d-face with $d \ge 8$. Since the distance of triangles is at least two, we have that f is adjacent to at most $\lfloor \frac{d}{3} \rfloor$ triangular-faces, thus it is incident with at most $2 \times \lfloor \frac{d}{3} \rfloor$ weak 3-vertices. Hence, $\mu'(f) \ge 2d - 6 - 2 \times \lfloor \frac{d}{3} \rfloor \times \frac{3}{2} - (d - 2 \times \lfloor \frac{d}{3} \rfloor) \times 1 = d - 6 - \lfloor \frac{d}{3} \rfloor \ge 0$.

Acknowledgments. This work was supported by the National Natural Science Foundation of China and partially supported by the Fundamental Research Funds for Universities in Henan (YQPY20140051).

References

- L. Chen, R. Liu, G. Yu, R. Zhao and X. Zhou, DP-4-colorability of two classes of planar graphs, Discrete Math. 342 (11) (2019) 2984–2993.
- [2] Z. Dvořák, B. Lidický and R. Škrekovski, Planar graphs without 3-, 7-, and 8-cycles are 3-choosable, Discrete Math. 309 (20) (2009) 5899–5904.
- [3] Z. Dvořák, B. Lidický and R. Škrekovski, 3-choosability of triangle-free planar graphs with constraints on 4-cycles, SIAM J. Discrete Math. 24 (3) (2010) 934–945.
- [4] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38–54.
- [5] P. Erdős, A. L. Rubin and H. Taylor, Choosability in graphs, in: Proceedings of the West Coast Conference on Combinatorics, Graph Theory and Computing (Humboldt State Univ., Arcata, Calif., 1979), Congress. Numer., XXVI, Utilitas Math., Winnipeg, Man., 1980, pp. 125–157.
- [6] Y. Han, A note on 3-choosability of planar graphs, J. Xinjiang Univ. Nat. Sci. 26 (3) (2009) 281–283.
- [7] S.-J. Kim and K. Ozeki, A sufficient condition for DP-4-colorability, Discrete Math. 341 (7) (2018) 1983–1986.
- [8] P. C. B. Lam, W. C. Shiu and Z. M. Song, The 3-choosability of plane graphs of girth 4, Discrete Math. 294 (3) (2005) 297–301.

- [9] X. Li, M. Chen and Y. Wang, On 3-choosability of planar graphs without 5-, 6- or 7-cycles, Adv. Math. (China) 45 (4) (2016) 491–499.
- [10] R. Li and T. Wang, DP-4-coloring of planar graphs with some restrictions on cycles, arXiv:1909.08511, https://arxiv.org/abs/1909.08511.
- [11] X. Li and Y. Wang, A note on 3-choosability of planar graphs, J. Zhejiang Norm. Univ. Nat. Sci. 39 (1) (2016) 13–17.
- [12] B. Lidický, On 3-choosability of plane graphs having no 3-, 6-, 7- and 8-cycles, Australas. J. Combin. 44 (2009) 77–86.
- [13] R. Liu and X. Li, Every planar graph without 4-cycles adjacent to two triangles is DP-4-colorable, Discrete Math. 342 (3) (2019) 623–627.
- [14] R. Liu and X. Li, Every planar graph without adjacent cycles of length at most 8 is 3-choosable, European J. Combin. 82 (2019) 102995.
- [15] R. Liu, S. Loeb, M. Rolek, Y. Yin and G. Yu, DP-3-coloring of planar graphs without 4, 9-cycles and cycles of two lengths from {6,7,8}, Graphs Combin. 35 (3) (2019) 695–705.
- [16] R. Liu, S. Loeb, Y. Yin and G. Yu, DP-3-coloring of some planar graphs, Discrete Math. 342 (1) (2019) 178–189.
- [17] F. Lu, Q. Wang and T. Wang, 3-choosable planar graphs with some precolored vertices and no 5⁻-cycles normally adjacent to 8⁻-cycles, arXiv:1908.04902v2, https://arxiv.org/abs/1908.04902v2.
- [18] F. Lu, Q. Wang and T. Wang, Cover and variable degeneracy, arXiv:1907.06630, https://arxiv.org/ abs/1907.06630.
- [19] L. Shen and Y. Wang, A sufficient condition for a planar graph to be 3-choosable, Inform. Process. Lett. 104 (4) (2007) 146–151.
- [20] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1) (1995) 101–107.
- [21] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Analiz. 29 (1976) 3–10, 101.
- [22] Y. Wang, H. Lu and M. Chen, A note on 3-choosability of planar graphs, Inform. Process. Lett. 105 (5) (2008) 206–211.
- [23] Y. Wang, H. Lu and M. Chen, Planar graphs without cycles of length 4, 5, 8 or 9 are 3-choosable, Discrete Math. 310 (1) (2010) 147–158.
- [24] Y. Wang and Q. Wu, Planar graphs without cycles of length 4, 5, 8 or 10 are 3-choosable, Adv. Appl. Math. Sci. 10 (3) (2011) 297–305.
- [25] Y. Wang, Q. Wu and L. Shen, Planar graphs without cycles of length 4, 7, 8, or 9 are 3-choosable, Discrete Appl. Math. 159 (4) (2011) 232–239.
- [26] Y. Yin and G. Yu, Planar graphs without cycles of lengths 4 and 5 and close triangles are DP-3-colorable, Discrete Math. 342 (8) (2019) 2333–2341.
- [27] H. Zhang, A sufficient condition for a toroidal graph to be 3-choosable, Ars Combin. 105 (2012) 193–203.

- [28] H. Zhang, Corrigendum to "On 3-choosability of planar graphs with neither adjacent triangles nor 5-,
 6- and 9-cycles" [Information Processing Letters 110 (24) (2010) 1084–1087], Inform. Process. Lett. 113 (2013) 354–356.
- [29] H. Zhang, A note on 3-choosability of planar graphs related to Montanssier's conjecture, Canad. Math. Bull. 59 (2) (2016) 440–448.
- [30] H. Zhang and Z. Sun, On 3-choosability of planar graphs without certain cycles, Inform. Process. Lett. 107 (3-4) (2008) 102–106.
- [31] L. Zhang and B. Wu, Three-choosable planar graphs without certain small cycles, Graph Theory Notes N. Y. 46 (2004) 27–30.
- [32] L. Zhang and B. Wu, A note on 3-choosability of planar graphs without certain cycles, Discrete Math. 297 (1-3) (2005) 206–209.
- [33] H. Zhang and B. Xu, On 3-choosability of plane graphs without 6-, 7- and 9-cycles, Appl. Math. J. Chinese Univ. Ser. B 19 (1) (2004) 109–115.