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Abstract

The connectivity and edge connectivity of interconnection network deter-

mine the fault tolerance of the network. An interconnection network is usually

viewed as a connected graph, where vertex corresponds processor and edge

corresponds link between two distinct processors. Given a connected graph

G with vertex set V (G) and edge set E(G), if for any two distinct vertices

u, v ∈ V (G), there exist min{dG(u), dG(v)} edge-disjoint paths between u and

v, then G is strongly Menger edge connected. Let m be an integer with m ≥ 1.

If G − Fe remains strongly Menger edge connected for any Fe ⊆ E(G) with

|Fe| ≤ m, then G is m-edge-fault-tolerant strongly Menger edge connected. If

G − Fe is strongly Menger edge connected for any Fe ⊆ E(G) with |Fe| ≤ m

and δ(G−Fe) ≥ 2, then G ism-conditional edge-fault-tolerant strongly Menger

edge connected. In this paper, we consider the n-dimensional bubble-sort star

graph BSn. We show that BSn is (2n−5)-edge-fault-tolerant strongly Menger

edge connected for n ≥ 3 and (6n−17)-conditional edge-fault-tolerant strongly
Menger edge connected for n ≥ 4. Moreover, we give some examples to show

that our results are optimal.

Keywords: fault-tolerance, strong Menger edge connectivity, bubble-sort

star graph

1. Introduction
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The connectivity and edge connectivity are two crucial factors for the intercon-

nection networks since they determine the fault tolerance of the networks. An in-

terconnection network can be viewed as a simple connected graph, where vertex

corresponds processor and edge corresponds link. In the rest of this paper, we only

consider simple connected graphs and we follow the work of [1] for definitions and

notations not defined here.

Let G = (V (G), E(G)) be a simple connected graph. For a vertex v ∈ V (G),

NG(v) = {u | (u, v) ∈ E(G)} is the set of neighbours of v and EG(v) = {(u, v) | (u, v) ∈
E(G)} is the set of edges that are incident with v. Let dG(v) = |NG(v)| be the de-

gree of v and δ(G) = min{dG(v) | v ∈ V (G)} be the minimum degree of G. If

dG(v) = k for every v ∈ V (G), then G is k-regular. G is bipartite if there exist

two vertex subsets V1, V2 with V1 ∩ V2 = ∅ such that V (G) = V1 ∪ V2 and for each

edge (u, v) ∈ E(G), |{u, v} ∩ V1| = |{u, v} ∩ V2| = 1. It is well known that bipar-

tite graphs contain no odd cycles. Let F1, F2 ⊆ V (G) with F1 ∩ F2 = ∅, denote

EG(F1, F2) = {(u, v) ∈ E(G) | u ∈ F1, v ∈ F2}. Let F ⊆ V (G) and Fe ⊆ E(G).

We use G− F to denote the subgraph of G with vertex set V (G)− F and edge set

E(G)− {(u, v) ∈ E(G) | {u, v} ∩ F 6= ∅}. If G− F is disconnected or has only one

vertex, then F is a vertex cut of G. We use G−Fe to denote the subgraph of G with

vertex set V (G) and edge set E(G)−Fe. If G−Fe is disconnected, then Fe is an edge

cut of G. The connectivity (resp. edge connectivity) of G, denoted by κ(G) (resp.

λ(G)), is the minimum size of F (resp. Fe) such that F (resp. Fe) is a vertex cut

(resp. an edge cut) of G. Pk = uv2v3 · · · vk−1v on k distinct vertices u, v2, · · · , vk−1, v
of G is a (u, v)-path if (u, v2) ∈ E(G), (vk−1, v) ∈ E(G), and (vi, vi+1) ∈ E(G) for

every i ∈ {2, · · · , k−2}. F ⊆ V (G)−{u, v} (resp. Fe ⊆ E(G)) is an (u, v)-cut (resp.

(u, v)-edge-cut) if G − F (resp. G − Fe) has no (u, v)-path. Menger’s theorem is a

classical theorem about the connectivity and edge connectivity.

Theorem 1.1 [8] Let G be a graph and u, v ∈ V (G) with u 6= v. Then

(1) the minimum size of an (u, v)-cut equals to the maximum number of disjoint

(u, v)-paths for (u, v) 6∈ E(G);

(2) the minimum size of an (u, v)-edge-cut equals to the maximum number of

edge-disjoint (u, v)-paths.

Motivated by Menger’s theorem, Oh et al. [9] proposed the strong Menger con-

nectivity (also called the maximal local-connectivity) and Qiao et al. [10] introduced

the strong Menger edge connectivity, which are showed in the following definition.

Definition 1.2 Let G be a connected graph and u, v ∈ V (G) be any two distinct

vertices. Then
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(1) G is strongly Menger connected if there exist min{dG(u), dG(v)} disjoint

(u, v)-paths;

(2) G is strongly Menger edge connected if there exist min{dG(u), dG(v)} edge-

disjoint (u, v)-paths.

Since edge faults may occur in real interconnection networks, the edge-fault-

tolerant strong Menger edge connectivity has been proposed.

Definition 1.3 Let m ≥ 1 be an integer, G be a connected graph, and Fe ⊆ E(G)

be any arbitrary edge subset of G with |Fe| ≤ m. Then

(1) G is m-edge-fault-tolerant strongly Menger edge connected if G−Fe is strongly

Menger edge connected;

(2) G is m-conditional edge-fault-tolerant strongly Menger edge connected if G−
Fe is strongly Menger edge connected for any Fe with δ(G− Fe) ≥ 2.

The edge-fault-tolerant strong Menger edge connectivity of many interconnection

networks has been studied. For example, Qiao et al. proved that the folded hyper-

cube is (2n−2)-conditional edge-fault-tolerant strongly Menger edge connected [10].

Li et al. discussed the edge-fault-tolerant strong Menger edge connectivity of the

hypercube-like network [6] and the balanced hypercube [7]. He et al. considered the

strong Menger edge connectivity of the regular network [5].

This paper deals with the edge-fault-tolerant strong Menger edge connectivity of

the n-dimensional bubble-sort star graph BSn [3], which gains many nice properties,

such as vertex transitive and high degree of regularity. Cai et al. showed that BSn

is (2n − 5)-fault-tolerant strongly Menger connected [2]. Wang et al. studied the

2-extra diagnosability [11], the 2-good-neighbor diagnosability [12], and the strong

connectivity [13] of BSn. Gu et al. discussed the pessimistic diagnosability of BSn

[4]. Zhao et al. investigated the generalized connectivity of BSn [14]. Zhu et al. gave

an algorithm to determine the h-extra connectivity of BSn of low dimensions [16].

Zhang et al. considered the structure connectivity and substructure connectivity of

BSn [15].

The remainder of this paper is organized as follows: Section 2 introduces the

definition of BSn and gives some properties of BSn. In section 3, we demonstrate

the edge-fault-tolerant strong Menger edge connectivity of BSn. In section 4, we

discuss the conditional edge-fault-tolerant strong Menger edge connectivity of BSn.

Section 5 concludes this paper.

2. Preliminaries

Let l1, l2 be two integers with 1 ≤ l1 ≤ l2. Set [l1, l2] = {l | l1 ≤ l ≤ l2, l is an integer}.
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Now we give the definition of the n-dimensional bubble-sort star graph BSn.

Definition 2.1 [3] The n-dimensional bubble-sort star graph BSn has vertex set

V (BSn) and edge set E(BSn). A vertex v ∈ V (BSn) if and only if v is a permutation

on [1, n], which is denoted as v = v1v2 · · · vn. Let x = x1x2 · · ·xn ∈ V (BSn), y =

y1y2 · · · yn ∈ V (BSn) with x 6= y. Then (x, y) ∈ E(BSn) if and only if there exists

an integer k with k ∈ [2, n] such that yk−1 = xk, yk = xk−1, and yi = xi for every

i ∈ [1, n]− {k − 1, k} or y1 = xk, yk = x1, and yi = xi for every i ∈ [2, n]− {k}.

By Definition 2.1, BSn is a bipartite and (2n− 3)-regular graph of order n!. Fig.

1 illustrates BS2, BS3, and BS4, respectively.

that the n-dimensional bubble-sort star graph BSn is edge-bipancyclic for n ≥ 3 and

for each even length l with 4 ≤ l ≤ n! and n ≥ 3, every edge of BSn lies on at least

four different cycles of length l.

2. Preliminaries

In this section, we first review bubble-sort star graphs and give some notations

which will be used in the following proof.

Definition 2.1 [7] The n-dimensional bubble-sort star graph BSn has vertex set

that consists of all n! permutations on {1, 2, · · · , n}. A permutation x on {1, 2, · · · , n}
is denoted as x = x1x2 · · ·xn. A vertex x = x1x2 · · ·xn ∈ V (BSn) is adjacent to

vertex y = y1y2 · · · yn ∈ V (BSn) if and only if there exists an integer i with 2 ≤ i ≤ n

such that yi = xi−1, yi−1 = xi and xj = yj for every j ∈ {1, 2, · · · , n} − {i− 1, i} or

y1 = xi, yi = x1 and xj = yj for every j ∈ {2, · · · , n} − {i}.

By Definition 2.1, BSn is a bipartite graph that has n! vertices, each of which is

a permutation on {1, 2, · · · , n} and each vertex has degree 2n−3. Fig. 1 shows BS2,

BS3, and BS4, respectively.
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Fig. 1 Illustration of BSn for n = 2, 3, 4

Let x = x1x2 · · ·xn, y = y1y2 · · · yn ∈ V (BSn), we use ”◦” to denote an operation

such that x = y ◦ (i, j) if and only if xi = yj, xj = yi and xk = yk for every

k ∈ {1, 2, · · · , n} − {i, j}. Then (x, y) ∈ E(BSn) if and only if y = x ◦ (1, i) or

y = x◦ (i−1, i) for some i ∈ {2, 3, · · · , n}. Let x+ = x◦ (1, n) and x− = x◦ (n−1, n)

3

Figure 1: Illustration of BSn for n = 2, 3, 4.

Let integers j, k ∈ [1, n] with j 6= k. Let x = x1x2 · · · xn ∈ V (BSn) and “◦” be

an operation such that y = y1y2 · · · yn = x ◦ (j, k) if and only if xj = yk, xk = yj,

and xi = yi for every i ∈ [1, n] − {j, k}. Thus (x, y) ∈ E(BSn) if and only if

y = x ◦ (k − 1, k) or y = x ◦ (1, k) for some k ∈ [2, n]. Let x− = x ◦ (n − 1, n)

and x+ = x ◦ (1, n) for simplicity. Let BSi
n be the induced subgraph of BSn by the

vertex set V (BSi
n) = {x = x1x2 · · · xn ∈ V (BSn) | xn = i} for every i ∈ [1, n]. By

Definition 2.1, BSi
n
∼= BSn−1 for every i ∈ [1, n]. It is obvious that if x ∈ V (BSi

n),

x− ∈ V (BSj
n), and x+ ∈ V (BSk

n), then i, j, k are three distinct integers in [1, n]. Set

Ei,j(BSn) = {(x, y) ∈ E(BSn) | x ∈ V (BSi
n), y ∈ V (BSj

n)} for any i, j ∈ [1, n] with

i 6= j. For any arbitrary edge set Fe ⊆ E(BSn), denote F i
e = Fe ∩ E(BSi

n) for every

i ∈ [1, n] and let F 0
e = Fe − ∪n

i=1F
i
e . For any L ⊆ [1, n], let BSL

n be the subgraph of

BSn induced by ∪i∈LV (BSi
n).

Now we give some properties of BSn.
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Lemma 2.2 [2] Let n be an integer with n ≥ 3. Then

(1) |Ei,j(BSn)| = 2(n− 2)! for any i, j ∈ [1, n] with i 6= j;

(2) {u+, u−} ∩ {v+, v−} = ∅ for any u, v ∈ V (BSk
n) (k ∈ [1, n]) with u 6= v;

(3) u+ ∈ V (BS[3,n]
n ) or u− ∈ V (BS[3,n]

n ) for any u ∈ V (BS[1,2]
n ).

Lemma 2.3 [13] λ(BSn) = 2n− 3 for n ≥ 3.

Lemma 2.4 [13] Let Fe ⊆ E(BSn) with |Fe| ≤ 4n−9 for n ≥ 3. If BSn−Fe is

disconnected, then BSn−Fe has two components, one of which is an isolated vertex.

Lemma 2.5 Let Fe ⊆ E(BS3) with |Fe| ≤ 4. If BS3 − Fe is disconnected, then

BS3 − Fe has two components, one of which is an isolated vertex or an edge.

Proof. If |Fe| ≤ 3, then the lemma holds by Lemma 2.4. Now we consider

the case that |Fe| = 4 and BS3 − Fe is disconnected. Let H1, H2, · · · , Hk be the k

components of BS3 − Fe with |V (H1)| ≥ |V (H2)| ≥ · · · ≥ |V (Hk)| and k ≥ 2. Since

|V (BS3)| = 3! = 6, 3 ≥ |V (H2)| ≥ · · · ≥ |V (Hk)|. If |V (H2)| = 3, then H2 = P3 as

BS3 is bipartite. Thus |Fe| ≥ 2×2+1 = 5 > 4, a contradiction. Hence |V (H2)| ≤ 2.

Now we claim that k = 2. Suppose, to the contrary, that k ≥ 3. Note that BS3 is

bipartite. If |V (H2)| = |V (H3)| = 1, then |Fe| ≥ 2× 3− 1 = 5 > 4, a contradiction.

If |V (H2)| = |V (H3)| = 2, then |Fe| ≥ 4 × 2 − 2 = 6 > 4, a contradiction. If

|V (H2)| = 2 and |V (H3)| = 1, then |Fe| ≥ 2 × 2 + 3 − 1 = 6 > 4, a contradiction.

Thus k = 2 and the lemma holds.

Lemma 2.6 Let Fe ⊆ E(BS4) with |Fe| ≤ 10. If BS4 − Fe is disconnected, then

BS4 − Fe has a component H with |V (H)| ≥ 4!− 2.

Proof. Suppose that BS4−Fe is disconnected. Without loss of generality, we

assume |F 1
e | ≥ |F 2

e | ≥ |F 3
e | ≥ |F 4

e |. Since n = 4, |Ei,j(BS4)| = 2 × (4 − 2)! = 4 for

i, j ∈ [1, 4] with i 6= j by Lemma 2.2 (1). Since |Fe| ≤ 10, |F 4
e | ≤ 2. Hence BS4

4−F 4
e is

connected by Lemma 2.3. Let H be the component of BS4−Fe containing BS4
4−F 4

e

as a subgraph. Now we will consider the following three cases.

Case 1. |F 1
e | ≥ 5.

In this case, |F 4
e | ≤ |F 3

e | ≤ 2; otherwise |Fe| ≥ 5+2×3 = 11 > 10, a contradiction.

Thus BS3
4 − F 3

e is connected by Lemma 2.3.

Subcase 1.1. |F 2
e | ≥ 3.

In this subcase, |F 0
e | ≤ 10 − 5 − 3 = 2. Since |E3,4(BS4) − Fe| ≥ |E3,4(BS4)| −

|F 0
e | ≥ 4−2 = 2 > 0, BS

[3,4]
4 −Fe is a subgraph of H. Since |F 0

e | ≤ 2, |V (H)| ≥ 4!−2

by Lemma 2.2 (3).

Subcase 1.2. |F 2
e | ≤ 2.

5



In this subcase, |F 0
e | ≤ 10 − 5 = 5 and BSi

4 − F i
e (i = 2, 3, 4) is connected by

Lemma 2.3. We claim that E2,3(BS4) − Fe 6= ∅ or E2,4(BS4) − Fe 6= ∅; otherwise

|F 0
e | ≥ |E2,3(BS4)| + |E2,4(BS4)| = 2 × 4 = 8 > 5, a contradiction. Without loss of

generality, we assume E2,3(BS4)− Fe 6= ∅. Similarly, we can get E2,4(BS4)− Fe 6= ∅
or E3,4(BS4) − Fe 6= ∅. Thus BS

[2,4]
4 − Fe is a subgraph of H. If v ∈ V (BS1

4), then

v+ ∈ V (BS
[2,4]
4 ) and v− ∈ V (BS

[2,4]
4 ). Since |F 0

e | ≤ 5 < 2 × 3, |V (H)| ≥ 4! − 2 by

Lemma 2.2 (2).

Case 2. 3 ≤ |F 1
e | ≤ 4.

We will consider the following subcases.

Subcase 2.1. |F 3
e | ≥ 3.

Since 3 ≤ |F 3
e | ≤ |F 2

e | ≤ |F 1
e | ≤ 4 and |Fe| ≤ 10, we have |F 3

e | = |F 2
e | = 3 and

|F 0
e | ≤ 10− 3× 3 = 1. Hence BSi

4 − F i
e has a component Hi with |V (Hi)| ≥ 3!− 1

for i = 2, 3 by Lemma 2.4. Since |F 1
e | ≤ 4, BS1

4 − F 1
e has a component H1 with

|V (H1)| ≥ 3!− 2 by Lemma 2.5. Since |EBS4(V (Hi), V (BS4
4))− Fe| ≥ |Ei,4(BS4)| −

(3! − |V (Hi)|) − |F 0
e | ≥ 4 − 2 − 1 > 0 for every i ∈ [1, 3], Hi is a subgraph of H. If

BS1
4 − F 1

e is connected, then |V (H)| ≥ 4!− 2. If |V (H1)| ≥ 3!− 1 and BS2
4 − F 2

e or

BS3
4 − F 3

e is connected, then |V (H)| ≥ 4! − 2. If |V (H1)| ≥ 3! − 2, both BS2
4 − F 2

e

and BS3
4 − F 3

e are connected, then |V (H)| ≥ 4!− 2. Hence we just need to consider

the following three conditions.

Subcase 2.1.1. |V (H1)| = |V (H2)| = |V (H3)| = 3!− 1.

Let ui ∈ V (BSi
4) − V (Hi) for every i ∈ [1, 3]. If ui ∈ V (H) for some i ∈ [1, 3],

then the lemma holds. Now we suppose that ui 6∈ V (H) for every i ∈ [1, 3]. Note

that BS4 is bipartite. If u1, u2, u3 are three isolated vertices in BS4 − Fe, then

|Fe| ≥ 3×5−2 = 13 > 10, a contradiction. If u1, u2, u3 form an edge and an isolated

vertex in BS4−Fe, then |Fe| ≥ 2× 4 + 5− 1 = 12 > 10, a contradiction. If u1, u2, u3
form a P3 in BS4 − Fe, then |Fe| ≥ 2× 4 + 3 = 11 > 10, a contradiction.

Subcase 2.1.2. |V (H1)| = 3!− 2, |V (H2)| = |V (H3)| = 3!− 1.

Let ui ∈ V (BSi
4) − V (Hi) for i = 2, 3. Let u11, u12 ∈ V (BS1

4) − V (H1) with

u11 6= u12. Hence |F 1
e | = 4, |F 0

e | = 0, and (u11, u12) ∈ E(BS1
4) − Fe by Lemmas 2.4

and 2.5. If u11 ∈ V (H) or u12 ∈ V (H), then the lemma holds. Now we suppose

that u11 6∈ V (H) and u12 6∈ V (H). Hence {u+11, u−11} = {u2, u3} as |F 0
e | = 0. Thus

{u+12, u−12} ⊆ V (H) by Lemma 2.2 (2). Since |F 0
e | = 0, u12 ∈ V (H), a contradiction.

Subcase 2.1.3. |V (H1)| = 3! − 2, |V (H2)| = 3! − 1, |V (H3)| = 3! or |V (H1)| =

3!− 2, |V (H2)| = 3!, |V (H3)| = 3!− 1.

Without loss of generality, we assume |V (H1)| = 3!−2, |V (H2)| = 3!−1, |V (H3)| =
3!. Let u11, u12 ∈ V (BS1

4)−V (H1) with u11 6= u12 and u2 ∈ V (BS2
4)−V (H2). Hence

|F 1
e | = 4, |F 0

e | = 0, and (u11, u12) ∈ E(BS1
4) − Fe by Lemmas 2.4 and 2.5. Since
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|F 0
e | = 0, u+11 ∈ V (H) or u−11 ∈ V (H). Hence u1 ∈ V (H), the lemma holds.

Subcase 2.2. |F 3
e | ≤ 2.

In this subcase, |F 0
e | ≤ 10− 3 = 7. By Lemma 2.3, BS3

4 − F 3
e is connected. Now

we consider the following three conditions.

Subcase 2.2.1. |F 2
e | ≤ 2.

BS2
4 − F 2

e is connected by Lemma 2.3. We claim that E2,3(BS4) − Fe 6= ∅ or

E2,4(BS4) − Fe 6= ∅; otherwise |F 0
e | ≥ |E2,3(BS4)| + |E2,4(BS4)| = 2 × 4 = 8 > 7, a

contradiction. Without loss of generality, we assume E2,3(BS4)− Fe 6= ∅. Similarly,

we can get E2,4(BS4) − Fe 6= ∅ or E3,4(BS4) − Fe 6= ∅. Hence BS
[2,4]
4 − Fe is a

subgraph of H. Since 3 ≤ |F 1
e | ≤ 4, BS1

4 − F 1
e has a component H1 such that

|V (H1)| ≥ 3!− 2 by Lemma 2.5. Since {u+, u−} ⊆ V (BS
[2,4]
4 ) for every u ∈ V (BS1

4),

|EBS4(V (H1), V (BS
[2,4]
4 ))−Fe| ≥ |E1,2(BS4)|+|E1,3(BS4)|+|E1,4(BS4)|−2|V (BS1

4)−
V (H1)| − |F 0

e | ≥ 3× 4− 2× 2− 7 > 0. Thus H1 is a subgraph of H and the lemma

holds.

Subcase 2.2.2. |F 2
e | = 3.

In this subcase, we have |F 0
e | ≤ 10 − 3 − 3 = 4. If BS2

4 − F 2
e is connected, then

the lemma holds by the same argument as that of Subcase 2.2.1.

Now we suppose that BS2
4 −F 2

e is disconnected. Then by Lemma 2.4, BS2
4 −F 2

e

has a component H2 such that |V (H2)| = 3!−1. Let u2 ∈ V (BS2
4)−V (H2). We claim

that EBS4(V (H2), V (BS3
4)) − Fe 6= ∅ or EBS4(V (H2), V (BS4

4)) − Fe 6= ∅; otherwise

|F 0
e | ≥ |EBS4(V (H2), V (BS3

4))|+ |EBS4(V (H2), V (BS4
4))| ≥ 4− 1 + 4− 1 = 6 > 4, a

contradiction. Without loss of generality, we assume EBS4(V (H2), V (BS3
4))−Fe 6= ∅.

Similarly, we can get EBS4(V (H2), V (BS4
4))− Fe 6= ∅ or E3,4(BS4)− Fe 6= ∅. Hence

both H2 and BS
[3,4]
4 − Fe are subgraphs of H. Since 3 ≤ |F 1

e | ≤ 4, BS1
4 − F 1

e has a

component H1 such that |V (H1)| ≥ 3!− 2 by Lemma 2.5. If |V (H1)| ≥ 3!− 1, then

|EBS4(V (H1), V (BS
[3,4]
4 )) − Fe| ≥ |E1,3(BS4)| + |E1,4(BS4)| − 2|V (BS1

4) − V (H)| −
|F 0

e | ≥ 2 × 4 − 2 × 1 − 4 = 2 > 0, which implies H1 is a subgraph of H and the

lemma holds. Now we consider that |V (H1)| = 3! − 2. Hence |F 1
e | = 4 by Lemmas

2.4 and 2.5. Thus |F 0
e | ≤ 10 − 4 − 3 = 3 and |EBS4(V (H1), V (BS

[3,4]
4 )) − Fe| ≥

|E1,3(BS4)| + |E1,4(BS4)| − 2|V (BS1
4)− V (H)| − |F 0

e | ≥ 2× 4− 2× 2− 3 = 1 > 0,

which implies H1 is a subgraph of H. Let u11, u12 ∈ V (BS1
4)−V (H1) with u11 6= u12.

Then the lemma holds by the same argument as that of Subcase 2.1.1.

Subcase 2.2.3. |F 2
e | = 4.

Since |F 2
e | ≤ |F 1

e |, |F 2
e | = |F 1

e | = 4 and |F 0
e | ≤ 10− 4− 4 = 2. Since |E3,4(BS4)−

Fe| ≥ |E3,4(BS4)| − |F 0
e | ≥ 4 − 2 = 2 > 0, BS

[3,4]
4 − Fe is a subgraph of H. Since

|F 0
e | ≤ 2, the lemma holds by Lemma 2.2 (3).

Case 3. |F 1
e | ≤ 2.
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In this case, BSi
4 − F i

e (i = 1, 2, 3, 4) is connected by Lemma 2.3. Now we

claim that E1,k(BS4) − Fe 6= ∅ for some k ∈ [2, 4]; otherwise |Fe| ≥ |E1,2(BS4)| +
|E1,3(BS4)| + |E1,4(BS4)| = 3 × 4 = 12 > 10, a contradiction. Without loss of

generality, we assume E1,2(BS4)−Fe 6= ∅. Suppose E1,3(BS4)−Fe 6= ∅ or E2,3(BS4)−
Fe 6= ∅. Thus BS

[1,3]
4 −Fe is connected. Similarly, we can get Ek,4(BS4)−Fe 6= ∅ for

some k ∈ [1, 3], which implies H = BS4 − Fe is connected, a contradiction. Hence

E1,3(BS4)− Fe = ∅ and E2,3(BS4)− Fe = ∅. Thus |Fe ∩ (E1,3(BS4) ∪E2,3(BS4))| =
2×4 = 8. Hence |Ek,4(BS4)∩Fe| ≤ 10−8 = 2 and |Ek,4(BS4)−Fe| ≥ 4−2 = 2 > 0

for every k ∈ [1, 3]. Hence H = BS4 − Fe is connected, a contradiction.

Lemma 2.7 Let Fe ⊆ E(BSn) with |Fe| ≤ 6n − 14 for n ≥ 3. If BSn − Fe is

disconnected, then BSn − Fe has a component H with |V (H)| ≥ n!− 2.

Proof. We prove this lemma by induction on n. For n = 3, 4, the result holds

by Lemmas 2.5 and 2.6. Assume n ≥ 5 and BSn − Fe is disconnected. Without

loss of generality, we assume |F 1
e | ≥ |F 2

e | ≥ · · · ≥ |F n
e |. Since |Fe| ≤ 6n − 14,

|F n
e | ≤ · · · ≤ |F 4

e | ≤ 2n − 6; otherwise |Fe| ≥ 4(2n − 5) > 6n − 14 for n ≥ 5, a

contradiction. Hence BSi
n − F i

e is connected for every i ∈ [4, n] by Lemma 2.3. Let

H be the component of BSn − Fe containing BSn
n − F n

e as a subgraph. Now we will

consider the following four cases.

Case 1. |F 1
e | ≥ 6n− 19.

In this case, |F 0
e | ≤ (6n − 14) − (6n − 19) = 5 and |F 3

e | ≤ 2 ≤ 2n − 6 for

n ≥ 5. Hence BS3
n − F 3

e is connected by Lemma 2.3. Since |Ei,j(BSn) − Fe| ≥
|Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − 5 > 0 for i, j ∈ [3, n] with i 6= j and n ≥ 5,

BS[3,n]
n − Fe is a subgraph of H.

Suppose BS2
n − F 2

e is connected. Since |E2,3(BSn)− Fe| ≥ |E2,3(BSn)| − |F 0
e | ≥

2(n − 2)! − 5 > 0 for n ≥ 5, BS2
n − F 2

e is a subgraph of H. Note that {u+, u−} ⊆
V (BS[2,n]

n ) for every u ∈ V (BS1
n). Since |F 0

e | ≤ 5 < 2× 3, we have |V (H)| ≥ n!− 2

by Lemma 2.2 (2).

Now we consider that BS2
n−F 2

e is disconnected. Then 2n− 5 ≤ |F 2
e | ≤ 5, which

implies n = 5, |F 2
e | = 5, and |F 0

e | = 0. Since |F 0
e | = 0, H = BSn − Fe is connected

by Lemma 2.2 (3), a contradiction.

Case 2. 4n− 12 ≤ |F 1
e | ≤ 6n− 20.

In this case, |F 0
e | ≤ (6n− 14)− (4n− 12) = 2n− 2 and |F 3

e | ≤ 2n− 6; otherwise

|Fe| ≥ 2(2n− 5) + (4n− 12) = 8n− 22 > 6n− 14 for n ≥ 5, a contradiction. Thus

BSi
n − F i

e is connected for every i ∈ [3, n] by Lemma 2.3. Since |Ei,j(BSn) − Fe| ≥
|Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − (2n − 2) > 0 for i, j ∈ [3, n] with i 6= j and n ≥ 5,

BS[3,n]
n − Fe is a subgraph of H.
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Suppose BS2
n − F 2

e is connected. Since |E2,3(BSn)− Fe| ≥ |E2,3(BSn)| − |F 0
e | ≥

2(n−2)!−(2n−2) > 0 for n ≥ 5, BS2
n−F 2

e is a subgraph of H. Since 4n−12 ≤ |F 1
e | ≤

6n − 20, BS1
n − F 1

e has a component H1 with |V (H1)| ≥ (n − 1)! − 2 by induction

hypothesis. Since |EBSn(V (H1), V (BS2
n))−Fe| ≥ |E1,2(BSn)|− |V (BS1

n)−V (H1)|−
|F 0

e | ≥ 2(n − 2)! − 2 − (2n − 2) > 0 for n ≥ 5, H1 is a subgraph of H. Thus

|V (H)| ≥ n!− 2.

Now we consider that BS2
n − F 2

e is disconnected. Hence 2n− 5 ≤ |F 2
e | ≤ |F 1

e | ≤
6n− 20 and |F 0

e | ≤ (6n− 14)− (4n− 12)− (2n− 5) = 3. Since |F 0
e | ≤ 3, |V (BSn)−

V (H)| ≤ 3 by Lemma 2.2 (3). If |V (BSn) − V (H)| ≤ 2, then the lemma holds.

Now we suppose |V (BSn) − V (H)| = 3 and V (BSn) − V (H) = {u1, u2, u3}. Note

that BSn is bipartite. If u1, u2, u3 are three isolated vertices in BSn − Fe, then

|Fe| ≥ 3(2n − 3) − 2 = 6n − 11 > 6n − 14, a contradiction. If u1, u2, u3 form an

edge and an isolated vertex in BSn − Fe, then |Fe| ≥ 2(2n − 4) + (2n − 3) − 1 =

6n − 12 > 6n − 14, a contradiction. If u1, u2, u3 form a P3 in BSn − Fe, then

|Fe| ≥ 2(2n− 4) + (2n− 5) = 6n− 13 > 6n− 14, a contradiction.

Case 3. 2n− 5 ≤ |F 1
e | ≤ 4n− 13.

In this case, |F 0
e | ≤ (6n− 14)− (2n− 5) = 4n− 9.

Subcase 3.1. |F 2
e | ≤ 2n− 6.

In this subcase, BSi
n − F i

e is connected for every i ∈ [2, n] by Lemma 2.3. Since

|Ei,j(BSn)−Fe| ≥ |Ei,j(BSn)| − |F 0
e | ≥ 2(n− 2)!− (4n− 9) > 0 for i, j ∈ [2, n] with

i 6= j and n ≥ 5, BS[2,n]
n − Fe is a subgraph of H. Since 2n − 5 ≤ |F 1

e | ≤ 4n − 13,

BS1
n − F 1

e has a component H1 with |V (H1)| ≥ (n − 1)! − 1 by Lemma 2.4. Since

|EBSn(V (H1), V (BS[2,3]
n ))−Fe| ≥ |E1,2(BSn)|+ |E1,3(BSn)| − 2|V (BS1

n)− V (H1)| −
|F 0

e | ≥ 2 × 2(n − 2)! − 2 × 1 − (4n − 9) > 0 for n ≥ 5, H1 is a subgraph of H and

|V (H)| ≥ n!− 1.

Subcase 3.2. 2n− 5 ≤ |F 2
e | ≤ 4n− 13.

In this subcase, |F 0
e | ≤ (6n − 14) − 2(2n − 5) = 2n − 4. If |F 3

e | ≤ 2n − 6, then

BSi
n − F i

e is connected for every i ∈ [3, n] by Lemma 2.3. Since |Ei,j(BSn) − Fe| ≥
|Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − (2n − 4) > 0 for i, j ∈ [3, n] with i 6= j and

n ≥ 5, BS[3,n]
n − Fe is a subgraph of H. Since 2n − 5 ≤ |F 2

e | ≤ |F 1
e | ≤ 4n − 13,

BSk
n − F k

e has a component Hk with |V (Hk)| ≥ (n− 1)!− 1 for k = 1, 2 by Lemma

2.4. Since |EBSn(V (Hk), V (BS3
n))−Fe| ≥ |Ek,3(BSn)| − |V (BSk

n)−V (Hk)| − |F 0
e | ≥

2(n− 2)!− 1− (2n− 4) > 0 for k ∈ [1, 2] and n ≥ 5, both H1 and H2 are subgraphs

of H. Thus |V (H)| ≥ n!− 2.

Suppose |F 3
e | ≥ 2n−5. Then |F 0

e | ≤ (6n−14)−3(2n−5) = 1. Since |Ei,j(BSn)−
Fe| ≥ |Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − 1 > 0 for i, j ∈ [4, n] with i 6= j and n ≥ 5,

BS[4,n]
n −Fe is a subgraph ofH. Since 2n−5 ≤ |F 3

e | ≤ |F 2
e | ≤ |F 1

e | ≤ 4n−13, BSk
n−F k

e
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has a component Hk with |V (Hk)| ≥ (n − 1)! − 1 for every k ∈ [1, 3] by Lemma

2.4. Since |EBSn(V (Hk), V (BS4
n))−Fe| ≥ |Ek,4(BSn)| − |V (BSk

n)−V (Hk)| − |F 0
e | ≥

2(n−2)!−1−1 > 0 for k ∈ [1, 3] and n ≥ 5, Hi is a subgraph of H for every k ∈ [1, 3].

If BSk
n−F k

e is connected for some k ∈ [1, 3], then |V (H)| ≥ n!− 2. Now we consider

that |V (H1)| = |V (H2)| = |V (H3)| = (n − 1)! − 1. Let uk ∈ V (BSk
n) − V (Hk) for

every k ∈ [1, 3]. Then the lemma holds by the same argument as that of Case 2.

Case 4. |F 1
e | ≤ 2n− 6.

In this case, BSi
n − F i

e is connected for every i ∈ [1, n] by Lemma 2.3. We claim

that E1,2(BSn) − Fe 6= ∅ or E1,3(BSn) − Fe 6= ∅; otherwise |Fe| ≥ |E1,2(BSn)| +
|E1,3(BSn)| = 2 × 2(n − 2)! > 6n − 14 for n ≥ 5, a contradiction. Without loss of

generality, we assume E1,2(BSn)− Fe 6= ∅. Similarly, we can get E1,i(BSn)− Fe 6= ∅
or E2,i(BSn) − Fe 6= ∅ for every i ∈ [3, n]. Thus H = BSn − Fe is connected, a

contradiction.

Lemma 2.8 Let Fe ⊆ E(BS4) with |Fe| ≤ 11. If BS4 − Fe is disconnected, then

BS4 − Fe has a component H with |V (H)| ≥ 4!− 3.

Proof. Suppose that BS4−Fe is disconnected. Without loss of generality, we

assume |F 1
e | ≥ |F 2

e | ≥ |F 3
e | ≥ |F 4

e |. Since n = 4, |Ei,j(BS4)| = 2 × (4 − 2)! = 4 for

i, j ∈ [1, 4] with i 6= j by Lemma 2.2 (1). Since |Fe| ≤ 11, |F 4
e | ≤ 2. Hence BS4

4−F 4
e is

connected by Lemma 2.3. Let H be the component of BS4−Fe containing BS4
4−F 4

e

as a subgraph. If |F 1
e | ≤ 2, then the lemma holds by the same argument as that of

Case 3 of Lemma 2.6. Hence we just consider the following two cases.

Case 1. |F 1
e | ≥ 5.

Suppose that |F 3
e | ≥ 3. Since |F 3

e | ≤ |F 2
e | ≤ |F 1

e |, we have |F 3
e | = |F 2

e | = 3,

|F 1
e | = 5, and |F 0

e | = 0. Hence BSi
4 − F i

e has a component Hi with |V (Hi)| ≥ 3!− 1

for i = 2, 3 by Lemma 2.4. Since |EBS4(V (Hi), V (BS4
4)) − Fe| ≥ |Ei,4(BS4)| −

|V (BSi
4) − V (Hi)| − |F 0

e | ≥ 4 − 1 = 3 > 0 for i = 2, 3, both H2 and H3 are

subgraphs of H. If BS3
4 − F 3

e is a subgraph of H, then H = BS4 − Fe is connected

by Lemma 2.2 (3), a contradiction. Thus |V (H3)| = 3!− 1 and there exists a vertex

u3 ∈ V (BS3
4)−V (H). Since |F 0

e | = 0 and u3 6∈ V (H), {u+3 , u−3 } ⊆ V (BS
[1,2]
4 )−V (H)

and |V (H2)| = 3!−1. Let {u+3 , u−3 }∩V (BSi
4) = ui for i = 1, 2. Since BS4 is bipartite

and |V (H2)| = |V (H3)| = 3!− 1, {u+1 , u−1 } ∩ V (H) 6= ∅. Since |F 0
e | = 0, u1 ∈ V (H),

which implies u3 ∈ V (H), a contradiction.

Now we suppose that |F 3
e | ≤ 2. Then BS3

4 − F 3
e is connected by Lemma 2.3.

Hence |V (H)| ≥ 4!− 3 by the same argument as that of Case 1 of Lemma 2.6

Case 2. 3 ≤ |F 1
e | ≤ 4.

We will consider the following subcases.
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Subcase 2.1. |F 3
e | ≥ 3.

Since 3 ≤ |F 3
e | ≤ |F 2

e | ≤ |F 1
e | ≤ 4 and |Fe| ≤ 11, we have |F 3

e | = 3. Hence

BS3
4 − F 3

e has a component H3 such that |V (H3)| ≥ 3!− 1 by Lemma 2.4.

Subcase 2.1.1. |F 2
e | = 4.

In this subcase, |F 1
e | = 4 and |F 0

e | = 0. By Lemma 2.5, BSi
4−F i

e has a component

Hi such that |V (Hi)| ≥ 3! − 2 for i = 1, 2. Since |EBS4(V (Hi), V (BS4
4)) − Fe| ≥

|Ei,4(BS4)| − (3! − |V (Hi)|) − |F 0
e | ≥ 4 − 2 − 0 > 0 for i ∈ [1, 3], Hi is a subgraph

of H for every i ∈ [1, 3]. If BS3
4 − F 3

e is a subgraph of H, then H = BS4 − Fe by

Lemma 2.2 (3), a contradiction. Hence |V (H3)| = 3! − 1 and there exists a vertex

u3 ∈ V (BS3
4)−V (H). Since |F 0

e | = 0 and u3 6∈ V (H), {u+3 , u−3 } ⊆ V (BS
[1,2]
4 )−V (H).

Let {u+3 , u−3 }∩V (BSi
4) = ui for i = 1, 2. Since BS4 is bipartite and |V (H3)| = 3!−1,

there exists a vertex u′2 ∈ V (BS2
4) − V (H) − {u2} such that (u1, u

′
2) ∈ E(BS4).

Thus |V (H2)| = 3! − 2 and (u2, u
′
2) ∈ E(BS2

4) − Fe by Lemma 2.5. Similarly,

there exists a vertex u′1 ∈ V (BS1
4) − V (H) − {u1} such that (u′1, u2) ∈ E(BS4),

|V (H1)| = 3! − 2, and (u1, u
′
1) ∈ E(BS1

4) − Fe. Since |V (H3)| = 3! − 1 and BS4 is

bipartite, {u′+1 , u′−1 } − {u2} ⊆ V (H) by Lemma 2.2 (3). Since |F 0
e | = 0, u′1 ∈ V (H),

which implies u2 ∈ V (H), a contradiction.

Subcase 2.1.2. |F 2
e | = 3.

By Lemma 2.4, BS2
4 − F 2

e has a component H2 such that |V (H2)| ≥ 3!− 1.

Suppose |F 1
e | = 3, then |F 0

e | ≤ 11 − 3 × 3 = 2. By Lemma 2.4, BS1
4 − F 1

e has

a component H1 such that |V (H1)| ≥ 3! − 1. Since |EBS4(V (Hi), V (BS4
4)) − Fe| ≥

|Ei,4(BS4)| − (3!− |V (Hi)|)− |F 0
e | ≥ 4− 1− 2 > 0 for i ∈ [1, 3], Hi is a subgraph of

H for every i ∈ [1, 3]. Thus |V (H)| ≥ 4!− 3.

Suppose |F 1
e | = 4, then |F 0

e | ≤ 11− 4− 2× 3 = 1. By Lemma 2.5, BS1
4 −F 1

e has

a component H1 such that |V (H1)| ≥ 3! − 2. Since |EBS4(V (Hi), V (BS4
4)) − Fe| ≥

|Ei,4(BS4)| − (3! − |V (Hi)|) − |F 0
e | ≥ 4 − 2 − 1 > 0 for i ∈ [1, 3], Hi is a subgraph

of H for every i ∈ [1, 3]. If |V (H1)| ≥ 3!− 1, then |V (H)| ≥ 4!− 3. If |V (H2)| = 3!

or |V (H3)| = 3!, then |V (H)| ≥ 4!− 3. Now we consider that |V (H1)| = 3!− 2 and

|V (H2)| = |V (H3)| = 3! − 1. Let {u11, u12} ⊆ V (BS1
4) − V (H1) with u11 6= u12.

Then (u11, u12) ∈ E(BS1
4) − Fe by Lemma 2.5. If u11 ∈ V (H) or u12 ∈ V (H),

then |V (H)| ≥ 4! − 2. We suppose that u11 6∈ V (H) and u12 6∈ V (H). Since BS4

is bipartite, |V (H2)| = |V (H3)| = 3! − 1, and |F 0
e | ≤ 1, there exists a vertex v ∈

{u+11, u−11, u+12, u−12}∩V (H) such that (u11, v) ∈ E(BS4)−Fe or (u12, v) ∈ E(BS4)−Fe

by Lemma 2.2 (2), which implies u11 ∈ V (H) and u12 ∈ V (H), a contradiction.

Subcase 2.2. |F 3
e | ≤ 2.

In this subcase, |F 0
e | ≤ 11 − 3 = 8. By Lemma 2.3, BS3

4 − F 3
e is connected. If

|F 2
e | = 4, then the lemma holds by the same argument as that of Subcase 2.2.3 of
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Lemma 2.6. Hence we just consider the following two conditions.

Subcase 2.2.1. |F 2
e | ≤ 2.

By Lemma 2.3, BS2
4 − F 2

e is connected.

Suppose BS
[2,4]
4 −Fe is connected. By Lemma 2.5, BS1

4−F 1
e has a component H1

such that |V (H1)| ≥ 3!−2. If |V (H1)| ≥ 3!−1, then |EBS4(V (H1), V (BS
[2,4]
4 ))−Fe| ≥

|E1,2(BS4)|+ |E1,3(BS4)|+ |E1,4(BS4)|−2(3!−|V (H1)|)−|F 0
e | ≥ 3×4−2×1−8 > 0.

Hence H1 is a subgraph of H and |V (H)| ≥ 4!− 1. Now we consider that |V (H1)| =
3!− 2, which implies |F 1

e | = 4 by Lemmas 2.4 and 2.5. Thus |F 0
e | ≤ 11− 4 = 7 and

|EBS4(V (H1), V (BS
[2,4]
4 )) − Fe| ≥ |E1,2(BS4)| + |E1,3(BS4)| + |E1,4(BS4)| − 2(3! −

|V (H1)|) − |F 0
e | ≥ 3 × 4 − 2 × 2 − 7 > 0. Hence H1 is a subgraph of H and

|V (H)| ≥ 4!− 2.

Now we suppose that BS
[2,4]
4 − Fe is disconnected. Without loss of generality,

we assume E2,3(BS4) − Fe = E2,4(BS4) − Fe = ∅. Hence |F 0
e | ≥ |E2,3(BS4)| +

|E2,4(BS4)| = 2 × 4 = 8. Since |Fe| ≤ 11 and 3 ≤ |F 1
e | ≤ 4, we have |F 1

e | = 3,

|F 2
e | = 0, and F 0

e = E2,3(BS4) ∪ E2,4(BS4). Thus E3,4(BS4) − Fe = E3,4(BS4) and

BS
[3,4]
4 − Fe is connected. By Lemma 2.4, BS1

4 − F 1
e has a component H1 such that

|V (H1)| ≥ 3!−1. Since |EBS4(V (H1), V (BS3
4))−Fe| ≥ |E1,3(BS4)|−(3!−|V (H1)|) ≥

4−1 > 0, H1 is a subgraph of H. Since |EBS4(V (H1), V (BS2
4))−Fe| ≥ |E1,2(BS4)|−

(3!− |V (H1)|) ≥ 4− 1 > 0, BS2
4 − F 2

e is a subgraph of H. Thus |V (H)| ≥ 4!− 1.

Subcase 2.2.2. |F 2
e | = 3.

In this subcase, we have |F 0
e | ≤ 11 − 3 − 3 = 5. By Lemma 2.4, BS2

4 − F 2
e

has a component H2 such that |V (H2)| ≥ 3! − 1. By Lemma 2.5, BS1
4 − F 1

e has a

component H1 such that |V (H1)| ≥ 3!− 2.

SupposeBS
[3,4]
4 −Fe is connected. Since |EBS4(V (H2), V (BS

[3,4]
4 ))−Fe| ≥ |E2,3(BS4)|+

|E2,4(BS4)| − 2(3! − |V (H2)|) − |F 0
e | ≥ 2 × 4 − 2 × 1 − 5 > 0, H2 is a subgraph of

H. Since |EBS4(V (H1), V (BS
[3,4]
4 ) ∪ V (H2)) − Fe| ≥ |E1,3(BS4)| + |E1,4(BS4)| +

|E1,2(BS4)| − 2(3! − |V (H1)|) − (3! − |V (H2)|) − |F 0
e | ≥ 3 × 4 − 2 × 2 − 1 − 5 > 0,

H1 is a subgraph of H and |V (H)| ≥ 4!− 3.

Now we suppose that BS
[3,4]
4 − Fe is disconnected. Then |Fe ∩ E3,4(BS4)| =

|E3,4(BS4)| = 4 and |F 0
e−E3,4(BS4)| ≤ 11−3−3−4 = 1. Since |EBS4(V (H2), V (BSi

4))−
Fe| ≥ |E2,i(BS4)| − (3! − |V (H2)|) − |F 0

e − E3,4(BS4)| ≥ 4 − 1 − 1 > 0 for i = 3, 4,

both H2 and BSi
4 − F i

e are subgraphs of H. Since |EBS4(V (H1), V (BS3
4)) − Fe| ≥

|E1,3(BS4)| − (3! − |V (H1)|) − |F 0
e − E3,4(BS4)| ≥ 4 − 2 − 1 > 0, H1 is a subgraph

of H. Thus |V (H)| ≥ 4!− 3.

Lemma 2.9 Let Fe ⊆ E(BSn) with |Fe| ≤ 8n − 21 for n ≥ 3. If BSn − Fe is

disconnected, then BSn − Fe has a component H with |V (H)| ≥ n!− 3.
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Proof. We prove this lemma by induction on n. For n = 3, 4, the result holds

by Lemmas 2.4 and 2.8. Assume n ≥ 5 and BSn − Fe is disconnected. Without

loss of generality, we assume |F 1
e | ≥ |F 2

e | ≥ · · · ≥ |F n
e |. Since |Fe| ≤ 8n − 21,

|F n
e | ≤ · · · ≤ |F 4

e | ≤ 2n − 6; otherwise |Fe| ≥ 4(2n − 5) > 8n − 21 for n ≥ 5, a

contradiction. Hence BSi
n − F i

e is connected for every i ∈ [4, n] by Lemma 2.3. Let

H be the component of BSn−Fe containing BSn
n−F n

e as a subgraph. If |F 1
e | ≤ 2n−6,

then the lemma holds by the same argument as that of Case 4 of Lemma 2.7. Now

we will consider the following four cases.

Case 1. |F 1
e | ≥ 8n− 28.

In this case, |F 0
e | ≤ (8n − 21) − (8n − 28) = 7 and |F 3

e | ≤ 4 ≤ 2n − 6 for

n ≥ 5. Thus BSi
n − F i

e is connected for every i ∈ [3, n] by Lemma 2.3. Since

|Ei,j(BSn)− Fe| ≥ |Ei,j(BSn)| − |F 0
e | ≥ 2(n− 2)!− 7 > 0 for i, j ∈ [3, n] with i 6= j

and n ≥ 5, BS[3,n]
n − Fe is a subgraph of H.

Suppose BS2
n − F 2

e is connected. Since |E2,3(BSn)− Fe| ≥ |E2,3(BSn)| − |F 0
e | ≥

2(n − 2)! − 7 > 0 for n ≥ 5, BS2
n − F 2

e is a subgraph of H. Note that {u+, u−} ⊆
V (BS[2,n]

n ) for every u ∈ V (BS1
n). Since |F 0

e | ≤ 7 < 2× 4, we have |V (H)| ≥ n!− 3

by Lemma 2.2 (2).

Now we consider that BS2
n − F 2

e is disconnected. Then 2n − 5 ≤ |F 2
e | ≤ 7 for

n ≥ 5, which implies 5 ≤ |F 2
e | ≤ 4n− 13 and |F 0

e | ≤ (8n− 21)− (8n− 28)− 5 = 2.

Since |F 0
e | ≤ 2, |V (H)| ≥ n!− 2 by Lemma 2.2 (3).

Case 2. 6n− 19 ≤ |F 1
e | ≤ 8n− 29.

In this case, |F 0
e | ≤ (8n− 21)− (6n− 19) = 2n− 2 and |F 3

e | ≤ 2n− 6; otherwise

|Fe| ≥ 2(2n− 5) + (6n− 19) = 10n− 29 > 8n− 21 for n ≥ 5, a contradiction. Thus

BSi
n − F i

e is connected for every i ∈ [3, n] by Lemma 2.3. Since |Ei,j(BSn) − Fe| ≥
|Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − (2n − 2) > 0 for i, j ∈ [3, n] with i 6= j and n ≥ 5,

BS[3,n]
n − Fe is a subgraph of H.

Suppose BS2
n − F 2

e is connected. Since |E2,3(BSn)− Fe| ≥ |E2,3(BSn)| − |F 0
e | ≥

2(n−2)!−(2n−2) > 0 for n ≥ 5, BS2
n−F 2

e is a subgraph of H. Since |F 1
e | ≤ 8n−29,

BS1
n−F 1

e has a component H1 with |V (H1)| ≥ (n− 1)!− 3 by induction hypothesis.

Since |EBSn(V (H1), V (BS2
n)) − Fe| ≥ |E1,2(BSn)| − |V (BS1

n) − V (H1)| − |F 0
e | ≥

2(n−2)!−3− (2n−2) > 0 for n ≥ 5, H1 is a subgraph of H. Hence |V (H)| ≥ n!−3.

Now we suppose BS2
n − F 2

e is disconnected. Hence 2n − 5 ≤ |F 2
e | ≤ 2n − 2 and

|F 0
e | ≤ (8n − 21) − (6n − 19) − (2n − 5) = 3. Since |F 0

e | ≤ 3, |V (H)| ≥ n! − 3 by

Lemma 2.2 (3).

Case 3. 4n− 12 ≤ |F 1
e | ≤ 6n− 20.

In this case, |F 0
e | ≤ (8n − 21) − (4n − 12) = 4n − 9. Since |Ei,j(BSn) − Fe| ≥

|Ei,j(BSn)| − |F 0
e | ≥ 2(n − 2)! − (4n − 9) > 0 for i, j ∈ [4, n] with i 6= j and n ≥ 5,
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BS[4,n]
n − Fe is a subgraph of H. Since 4n − 12 ≤ |F 1

e | ≤ 6n − 20, BS1
n − F 1

e has a

component H1 with |V (H1)| ≥ (n− 1)!− 2 by Lemma 2.7.

Subcase 3.1. 4n− 12 ≤ |F 2
e | ≤ 6n− 20.

In this subcase, |F 0
e | ≤ (8n − 21) − 2(4n − 12) = 3 and |F 3

e | ≤ 3 ≤ 2n − 6 for

n ≥ 5. Hence BS3
n − F 3

e is connected by Lemma 2.3. Since |E3,4(BSn) − Fe| ≥
|E3,4(BSn)| − |F 0

e | ≥ 2(n − 2)! − 3 > 0 for n ≥ 5, BS[3,n]
n − Fe is a subgraph of H.

Since |F 0
e | ≤ 3, |V (H)| ≥ n!− 3 by Lemma 2.2 (3).

Subcase 3.2. 2n− 5 ≤ |F 2
e | ≤ 4n− 13.

By Lemma 2.4, BS2
n − F 2

e has a component H2 with |V (H2)| ≥ (n− 1)!− 1.

Suppose 2n−5 ≤ |F 3
e | ≤ 4n−13. Then |F 0

e | ≤ (8n−21)−(4n−12)−2(2n−5) = 1.

Since |F 3
e | ≤ 4n − 13, BS3

n − F 3
e has a component H3 with |V (H3)| ≥ (n − 1)! − 1

by Lemma 2.4. Since |EBSn(V (Hi), V (BS4
n)) − Fe| ≥ |Ei,4(BSn)| − (|V (BSi

n)| −
|V (Hi)|)−|F 0

e | ≥ 2(n−2)!−2−1 > 0 for i ∈ [1, 3] and n ≥ 5, Hi is a subgraph of H for

every i ∈ [1, 3]. If |V (H1)| ≥ (n−1)!−1, then |V (H)| ≥ n!−3. If |V (H2)| = (n−1)!

or |V (H3)| = (n − 1)!, then |V (H)| ≥ n! − 3. Now we suppose that |V (H1)| =

(n−1)!−2 and |V (H2)| = |V (H3)| = (n−1)!−1. Let {u11, u12} = V (BS1
n)−V (H1),

u2 ∈ V (BS2
n) − V (H2), and u3 ∈ V (BS3

n) − V (H3). Since |F 0
e | ≤ 1, there exists a

vertex v ∈ ({u+11, u−11, u+12, u−12} − {u2, u3}) ∩ V (H) such that (v, u11) ∈ E(BSn)− Fe

or (v, u12) ∈ E(BSn)− Fe by Lemma 2.2 (2). Hence |V (H)| ≥ n!− 3.

Suppose |F 3
e | ≤ 2n− 6. Then |F 0

e | ≤ (8n− 21)− (4n− 12)− (2n− 5) = 2n− 4.

By Lemma 2,3, BS3
n − F 3

e is connected. Since |E3,4(BSn) − Fe| ≥ |E3,4(BSn)| −
|F 0

e | ≥ 2(n − 2)! − (2n − 4) > 0 for n ≥ 5, BS3
n − F 3

e is a subgraph of H. Since

|EBSn(V (Hi), V (BS4
n)) − Fe| ≥ |Ei,4(BSn)| − (|V (BSi

n)| − |V (Hi)|) − |F 0
e | ≥ 2(n −

2)! − 2 − (2n − 4) > 0 for i = 1, 2 and n ≥ 5, Hi is a subgraph of H. Hence

|V (H)| ≥ n!− 3.

Subcase 3.3. |F 2
e | ≤ 2n− 6.

By Lemma 2.3, BSi
n−F i

e is connected for every i ∈ [2, n]. Since |Ei,j(BSn)−Fe| ≥
|Ei,j(BSn)| − |F 0

e | ≥ 2(n − 2)! − (4n − 9) > 0 for i, j ∈ [2, n] with i 6= j and n ≥ 5,

BS[2,n]
n −Fe is a subgraph of H. Since |EBSn(V (H1), V (BS[2,3]

n ))−Fe| ≥ |E1,2(BSn)|+
|E1,3(BSn)| − 2(|V (BS1

n)| − |V (H1)|)− |F 0
e | ≥ 2× 2(n− 2)!− 2× 2− (4n− 9) > 0,

H1 is a subgraph of H and |V (H)| ≥ n!− 2.

Case 4. 2n− 5 ≤ |F 1
e | ≤ 4n− 13.

By Lemma 2.4, BS1
n − F 1

e has a component H1 with |V (H1)| ≥ (n− 1)!− 1.

Subcase 4.1. |F 3
e | ≥ 2n− 5.

In this subcase, |F 0
e | ≤ (8n− 21)− 3(2n− 5) = 2n− 6. Since |Ei,j(BSn)− Fe| ≥

|Ei,j(BSn)| − |F 0
e | ≥ 2(n − 2)! − (2n − 6) > 0 for i, j ∈ [4, n] with i 6= j and n ≥ 5,
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BS[4,n]
n − Fe is a subgraph of H. Since 2n − 5 ≤ |F 3

e | ≤ |F 2
e | ≤ |F 1

e | ≤ 4n − 13,

BSi
n−F i

e has a component Hi with |V (Hi)| ≥ (n−1)!−1 for i = 2, 3 by Lemma 2.4.

Since |EBSn(V (Hi), V (BS4
n)) − Fe| ≥ |Ei,4(BSn)| − (|V (BSi

n)| − |V (Hi)|) − |F 0
e | ≥

2(n− 2)!− 1− (2n− 6) > 0 for i ∈ [1, 3] and n ≥ 5, Hi is a subgraph of H for every

i ∈ [1, 3]. Thus |V (H)| ≥ n!− 3.

Subcase 4.2. |F 3
e | ≤ 2n− 6 and |F 2

e | ≥ 2n− 5.

In this subcase, |F 0
e | ≤ (8n−21)−2(2n−5) = 4n−11. By Lemma 2.3, BS3

n−F 3
e

is connected. Since |Ei,j(BSn)−Fe| ≥ |Ei,j(BSn)|− |F 0
e | ≥ 2(n− 2)!− (4n− 11) > 0

for i, j ∈ [3, n] with i 6= j and n ≥ 5, BS[3,n]
n −Fe is a subgraph of H. Since 2n− 5 ≤

|F 2
e | ≤ |F 1

e | ≤ 4n− 13, BS2
n − F 2

e has a component H2 with |V (H2)| ≥ (n− 1)!− 1

by Lemma 2.4. Since |EBSn(V (Hi), V (BS4
n)) − Fe| ≥ |Ei,4(BSn)| − (|V (BSi

n)| −
|V (Hi)|) − |F 0

e | ≥ 2(n − 2)! − 1 − (4n − 11) > 0 for i ∈ [1, 2] and n ≥ 5, Hi is a

subgraph of H for every i ∈ [1, 2]. Hence |V (H)| ≥ n!− 2.

Subcase 4.3. |F 2
e | ≤ 2n− 6.

In this subcase, |F 0
e | ≤ (8n−21)−(2n−5) = 6n−16. By Lemma 2.3, both BS2

n−
F 2
e and BS3

n−F 3
e are connected. We claim E2,3(BSn)−Fe 6= ∅ or E2,4(BSn)−Fe 6= ∅;

otherwise |Fe| ≥ |E2,3(BSn)| + |E2,4(BSn)| = 2 × 2(n − 2)! > 8n − 21 for n ≥ 5, a

contradiction. Without loss of generality, we assume E2,3(BSn)− Fe 6= ∅. Similarly,

we can get E2,i(BSn) − Fe 6= ∅ or E3,i(BSn) − Fe 6= ∅ for every i ∈ [4, n]. Thus

BS[2,n]
n −Fe is a subgraph of H. Since |EBSn(V (H1), V (BS[2,3]

n ))−Fe| ≥ |E1,2(BSn)|+
|E1,3(BSn)| − 2(|V (BS1

n)| − |V (H1)|)− |F 0
e | ≥ 2× 2(n− 2)!− 2× 1− (6n− 16) > 0,

H1 is a subgraph of H. Hence |V (H)| ≥ n!− 1.

3. Edge-fault-tolerant strong Menger edge connectivity of
BSn

We will consider the edge-fault-tolerant strong Menger edge connectivity of BSn

in this section.

Theorem 3.1 For n ≥ 3, the bubble-sort star graph BSn is (2n− 5)-edge-fault-

tolerant strongly Menger edge connected and the bound 2n− 5 is sharp.

Proof. Let Fe ⊆ E(BSn) be an arbitrary faulty edge set with |Fe| ≤ 2n − 5.

By Lemma 2.3, BSn − Fe is connected. Let u, v with u 6= v be any two vertices

in BSn and t = min{dBSn−Fe(u), dBSn−Fe(v)}. By Theorem 1.1, it suffices to show

that u and v are connected in BSn − Fe − Ef for any Ef ⊆ E(BSn) − Fe with

|Ef | ≤ t−1. Suppose on the contrary, that u and v are disconnected in BSn−Fe−Ef

for some Ef ⊆ E(BSn) − Fe with |Ef | ≤ t − 1. Since dBSn−Fe(u) ≤ 2n − 3 and

dBSn−Fe(v) ≤ 2n−3, |Ef | ≤ 2n−4. Thus |Fe∪Ef | ≤ (2n−5)+(2n−4) = 4n−9. By

Lemma 2.4, BSn−Fe−Ef has a componentH with |V (H)| ≥ n!−1. Since u and v are
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disconnected in BSn−Fe−Ef , |V (H)| = n!−1 and |{u, v}∩V (H)| = 1. Without loss

of generality, we assume u 6∈ V (H) and v ∈ V (H). Hence EBSn({u}, NBSn−Fe(u)) ⊆
Ef , which implies |Ef | ≥ dBSn−Fe(u), a contradiction to |Ef | ≤ t−1 ≤ dBSn−Fe(u)−1.

Hence BSn is (2n− 5)-edge-fault-tolerant strongly Menger edge connected.

Next, we will show the bound 2n− 5 is sharp. Let u, u1 ∈ V (BSn) with (u, u1) ∈
E(BSn). Let Fe = EBSn(u1)−(u, u1) and v ∈ V (BSn)−NBSn(u1)−{u1} (see Fig.2).

Then |Fe| = 2n−4, dBSn−Fe(u) = dBSn−Fe(v) = 2n−3. Obviously, there are at most

2n− 4 edge-disjoint (u, v)-paths.
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Figure 2: Illustration of Theorem 3.1.

4. Conditional edge-fault-tolerant strong Menger edge con-
nectivity of BSn

We will consider the conditional edge-fault-tolerant strong Menger edge connec-

tivity of BSn in this section.

Theorem 4.1 For n ≥ 4, the bubble-sort star graph BSn is (6n−17)-conditional

edge-fault-tolerant strongly Menger edge connected and the bound 6n− 17 is sharp.

Proof. Let Fe ⊆ E(BSn) be an arbitrary faulty edge set with |Fe| ≤ 6n− 17

and δ(BSn − Fe) ≥ 2. Since |Fe| ≤ 6n − 17 ≤ 6n − 14 and δ(BSn − Fe) ≥ 2,

BSn − Fe is connected by Lemma 2.7. Let u, v with u 6= v be any two vertices

in BSn and t = min{dBSn−Fe(u), dBSn−Fe(v)}. By Theorem 1.1, it suffices to show

that u and v are connected in BSn − Fe − Ef for any Ef ⊆ E(BSn) − Fe with

|Ef | ≤ t−1. Suppose on the contrary, that u and v are disconnected in BSn−Fe−Ef

for some Ef ⊆ E(BSn) − Fe with |Ef | ≤ t − 1. Since dBSn−Fe(u) ≤ 2n − 3 and

dBSn−Fe(v) ≤ 2n−3, |Ef | ≤ 2n−4. Thus |Fe∪Ef | ≤ (6n−17)+(2n−4) = 8n−21.

By Lemma 2.9, BSn−Fe−Ef has a component H with |V (H)| ≥ n!−3. Since u and

v are disconnected in BSn−Fe−Ef , |{u, v}∩V (H)| ≤ 1. Without loss of generality,

we assume u 6∈ V (H). Let H1 be the component in BSn − Fe − Ef containing u. If

dH1(u) = 0, then EBSn({u}, NBSn−Fe(u)) ⊆ Ef , which implies |Ef | ≥ dBSn−Fe(u), a
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contradiction to |Ef | ≤ t− 1 ≤ dBSn−Fe(u)− 1. Suppose that dH1(u) = i (i ∈ [1, 2]).

Since BSn is bipartite, H1 is a path P2 or P3 and there are i vertices in V (H1)−{u}
that have degree one inH1. Since δ(BSn−Fe) ≥ 2, every vertex with degree one inH1

is incident with at least one edge in Ef . Thus |Ef | ≥ dBSn−Fe(u)−i+i = dBSn−Fe(u),

a contradiction to |Ef | ≤ t−1 ≤ dBSn−Fe(u)−1. Hence BSn is (6n−17)-conditional

edge-fault-tolerant strongly Menger edge connected.

Next, we will show the bound 6n − 17 is sharp. Let u, u1, u2, u3 ∈ V (BSn)

with (u, u1), (u1, u2), (u2, u3), (u3, u) ∈ E(BSn) and u11 ∈ NBSn(u1) − {u, u2}. Let

Fe = EBSn(u1) ∪ EBSn(u2) ∪ EBSn(u3) − {(u, u1), (u1, u2), (u2, u3), (u3, u), (u1, u11)}
and v ∈ V (BSn)−NBSn(u1) ∪NBSn(u2) ∪NBSn(u3) (see Fig.3). Then |Fe| = (2n−
6) + 2(2n− 5) = 6n− 16, dBSn−Fe(u) = dBSn−Fe(v) = 2n− 3, and δ(BSn − Fe) ≥ 2

for n ≥ 4. Obviously, there are at most 2n− 4 edge-disjoint (u, v)-paths.
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Figure 3: Illustration of Theorem 4.1.

5. Conclusion

In this paper, we study the edge-fault-tolerant strong Menger edge connectivity

of n-dimensional bubble-sort star graph BSn. We show that every pair of distinct

vertices u and v in BSn are connected by min{dBSn−Fe(u), dBSn−Fe(v)} edge-disjoint

paths in BSn − Fe, where Fe is an arbitrary edge subset of BSn with |Fe| ≤ 2n− 5.

We also show that every pair of distinct vertices u and v in BSn are connected

by min{dBSn−Fe(u), dBSn−Fe(v)} edge-disjoint paths in BSn − Fe, where Fe is an

arbitrary edge subset of BSn with |Fe| ≤ 6n − 17 and δ(BSn − Fe) ≥ 2. Moreover,

we give two examples to show that our results are optimal. The connectivity and

edge connectivity of interconnection network determine the fault tolerance of the

network. They are issues worth studying.
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