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Abstract

The connectivity and edge connectivity of interconnection network deter-
mine the fault tolerance of the network. An interconnection network is usually
viewed as a connected graph, where vertex corresponds processor and edge
corresponds link between two distinct processors. Given a connected graph
G with vertex set V(G) and edge set E(G), if for any two distinct vertices
u,v € V(Q), there exist min{dg(u),de(v)} edge-disjoint paths between u and
v, then G is strongly Menger edge connected. Let m be an integer with m > 1.
If G — F, remains strongly Menger edge connected for any F, C E(G) with
|Fe| < m, then G is m-edge-fault-tolerant strongly Menger edge connected. If
G — F, is strongly Menger edge connected for any F, C E(G) with |F.| < m
and §(G—F,) > 2, then G is m-conditional edge-fault-tolerant strongly Menger
edge connected. In this paper, we consider the n-dimensional bubble-sort star
graph BS,,. We show that BS,, is (2n —5)-edge-fault-tolerant strongly Menger
edge connected for n > 3 and (6n— 17)-conditional edge-fault-tolerant strongly
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Menger edge connected for n > 4. Moreover, we give some examples to show
that our results are optimal.

Keywords: fault-tolerance, strong Menger edge connectivity, bubble-sort
star graph

1. Introduction
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The connectivity and edge connectivity are two crucial factors for the intercon-
nection networks since they determine the fault tolerance of the networks. An in-
terconnection network can be viewed as a simple connected graph, where vertex
corresponds processor and edge corresponds link. In the rest of this paper, we only
consider simple connected graphs and we follow the work of [I] for definitions and
notations not defined here.

Let G = (V(G), E(G)) be a simple connected graph. For a vertex v € V(G),
Ne(v) ={u] (u,v) € E(G)} is the set of neighbours of v and E¢(v) = {(u,v) | (u,v) €
E(G)} is the set of edges that are incident with v. Let dg(v) = |Ng(v)| be the de-
gree of v and §(G) = min{dg(v) | v € V(G)} be the minimum degree of G. If
dg(v) = k for every v € V(G), then G is k-regular. G is bipartite if there exist
two vertex subsets Vi, Vo with V3 NV, = @) such that V(G) = V3 UV; and for each
edge (u,v) € E(G), {u,v} N V1| = [{u,v} NV,| = 1. Tt is well known that bipar-
tite graphs contain no odd cycles. Let Fi, F, C V(G) with F; N Fy = (), denote
Eq(F1, Fy) = {(u,v) € E(G) | u € Fi, v e F}. Let F CV(G) and F, C E(G).
We use G — F to denote the subgraph of G with vertex set V(G) — F' and edge set
E(G) —{(u,v) € E(GQ) | {u,v} N F # (}. If G — F is disconnected or has only one
vertex, then F'is a vertex cut of G. We use G — F, to denote the subgraph of G with
vertex set V(G) and edge set E(G) — F,.. If G—F, is disconnected, then F, is an edge
cut of G. The connectivity (resp. edge connectivity) of G, denoted by k(G) (resp.
A(G)), is the minimum size of F' (resp. F.) such that F' (resp. F) is a vertex cut
(resp. an edge cut) of G. Py = uvyus - - - vp_1v on k distinct vertices u, vo, -+, vp_1, v
of G is a (u,v)-path if (u,ve) € E(G), (vg_1,v) € E(G), and (v;,vi41) € E(G) for
every i € {2,---,k—2}. F CV(G)—A{u,v} (resp. F, C E(G)) is an (u,v)-cut (resp.
(u,v)-edge-cut) if G — F (resp. G — F.) has no (u,v)-path. Menger’s theorem is a
classical theorem about the connectivity and edge connectivity.

Theorem 1.1 [8] Let G be a graph and u,v € V(G) with u # v. Then

(1) the minimum size of an (u,v)-cut equals to the maximum number of disjoint
(u,v)-paths for (u,v) & E(G);

(2) the minimum size of an (u,v)-edge-cut equals to the maximum number of
edge-disjoint (u,v)-paths.

Motivated by Menger’s theorem, Oh et al. [9] proposed the strong Menger con-
nectivity (also called the maximal local-connectivity) and Qiao et al. [10] introduced
the strong Menger edge connectivity, which are showed in the following definition.

Definition 1.2 Let G be a connected graph and u,v € V(G) be any two distinct
vertices. Then



(1) G is strongly Menger connected if there exist min{dg(u),dq(v)} disjoint
(u, v)-paths;

(2) G is strongly Menger edge connected if there exist min{dg(u),ds(v)} edge-
disjoint (u,v)-paths.

Since edge faults may occur in real interconnection networks, the edge-fault-
tolerant strong Menger edge connectivity has been proposed.

Definition 1.3 Let m > 1 be an integer, G be a connected graph, and F, C E(G)
be any arbitrary edge subset of G with |F.| < m. Then

(1) G is m-edge-fault-tolerant strongly Menger edge connected if G—F, is strongly
Menger edge connected;

(2) G is m-conditional edge-fault-tolerant strongly Menger edge connected if G —
F, is strongly Menger edge connected for any F. with 6(G — F,) > 2.

The edge-fault-tolerant strong Menger edge connectivity of many interconnection
networks has been studied. For example, Qiao et al. proved that the folded hyper-
cube is (2n — 2)-conditional edge-fault-tolerant strongly Menger edge connected [10].
Li et al. discussed the edge-fault-tolerant strong Menger edge connectivity of the
hypercube-like network [6] and the balanced hypercube [7]. He et al. considered the
strong Menger edge connectivity of the regular network [5].

This paper deals with the edge-fault-tolerant strong Menger edge connectivity of
the n-dimensional bubble-sort star graph B.S,, [3], which gains many nice properties,
such as vertex transitive and high degree of regularity. Cai et al. showed that BS,
is (2n — b)-fault-tolerant strongly Menger connected [2]. Wang et al. studied the
2-extra diagnosability [L1], the 2-good-neighbor diagnosability [12], and the strong
connectivity [I3] of BS,,. Gu et al. discussed the pessimistic diagnosability of BS,,
[]. Zhao et al. investigated the generalized connectivity of BS,, [14]. Zhu et al. gave
an algorithm to determine the h-extra connectivity of B.S,, of low dimensions [16].
Zhang et al. considered the structure connectivity and substructure connectivity of
BS, [15].

The remainder of this paper is organized as follows: Section 2 introduces the
definition of B.S,, and gives some properties of BS,,. In section 3, we demonstrate
the edge-fault-tolerant strong Menger edge connectivity of BS,. In section 4, we
discuss the conditional edge-fault-tolerant strong Menger edge connectivity of BS,,.
Section 5 concludes this paper.

2. Preliminaries

Let 1, l5 be two integers with 1 < Iy < ly. Set [l1,ls] = {l|l; <1 <5, lis an integer}.



Now we give the definition of the n-dimensional bubble-sort star graph B.S,,.

Definition 2.1 [3] The n-dimensional bubble-sort star graph BS,, has vertex set
V(BS,) and edge set E(BS,). A vertex v € V(BS,,) if and only if v is a permutation
on [1,n], which is denoted as v = vivy - v,. Let © = xy29--- 2, € V(BS,), y =
Y1Y2 - Yo € V(BS,) with z # y. Then (z,y) € E(BS,) if and only if there exists
an integer k with k € [2,n] such that yy_1 = zk, yr = Tx_1, and y; = x; for every

€ [1,n] —{k—1,k} or y; =z, yp = 21, and y; = x; for every i € [2,n] — {k}.

By Definition 2.1, BS,, is a bipartite and (2n — 3)-regular graph of order n!. Fig.
1 illustrates BSsy, BSs, and BSy, respectively.
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Figure 1: Tllustration of B.S, for n = 2,3, 4.

Let integers j,k € [1,n] with j # k. Let x = zy29--- 2, € V(BS,,) and “o” be
an operation such that y = y1y2-- -y, = x o (j,k) if and only if z; = yi, zx = y;,
and z; = y; for every i € [1,n] — {j,k}. Thus (z,y) € E(BS,) if and only if
y==xo0(k—1k)ory =xzo(lk) for some k € [2,n]. Let x= = x o (n — 1,n)
and ™ = x o (1,n) for simplicity. Let BS! be the induced subgraph of BS,, by the
vertex set V(BS.) = {z = xyz9- -z, € V(BS,) | x, = i} for every i € [1,n]. By
Definition 2.1, BS! = BS,_; for every i € [1,n]. It is obvious that if x € V(BS?),
x~ € V(BS), and zt € V(BSF), then i, j, k are three distinct integers in [1,n]. Set
E; ;(BS,) ={(z,y) € E(BS,) | x € V(BS.), y € V(BS?)} for any i, j € [1,n] with
i # j. For any arbitrary edge set F, C E(BS,), denote F! = F, N E(BS") for every
i € [1,n] and let F? = F, — U, F?. For any L C [1,n], let BSE be the subgraph of
BS,, induced by U;c,V(BS?).

Now we give some properties of BS,,.



Lemma 2.2 [2] Let n be an integer with n > 3. Then

(1) |E; ;(BS,)| = 2(n —2)! for any i, j € [1,n] with i # j;

(2) {ut,u=}n{vt o7} =0 for any u,v € V(BSY) (k € [1,n]) with u # v;
(3) ut € V(BSE™) or u= € V(BSE™) for any u € V(BSH).

Lemma 2.3 [13] A(BS,)=2n—3 forn > 3.

Lemma 2.4 [13] Let F, C E(BS,,) with |F.| <4n—9 forn > 3. If BS,, — F, is
disconnected, then BS, — F. has two components, one of which is an isolated vertex.

Lemma 2.5 Let F, C E(BSs3) with |F,| < 4. If BSs — F, is disconnected, then
BS; — F, has two components, one of which is an isolated vertex or an edge.

Proof. If |F.| < 3, then the lemma holds by Lemma 2.4. Now we consider
the case that |F,| = 4 and BS3 — F, is disconnected. Let Hy, Hs, -, Hy be the k
components of BSs — F, with |V (H;)| > |V (Hz2)| > --- > |V(Hy)| and k > 2. Since
\V(BS3)| =3!=6,3> |V(Hy)| > - > |V(Hg)|. If |V(Hy)| =3, then Hy, = P as
BSj is bipartite. Thus |F,| > 2x 241 =5 > 4, a contradiction. Hence |V (H,)| < 2.
Now we claim that k& = 2. Suppose, to the contrary, that & > 3. Note that BSj5 is
bipartite. If |V (Hz)| = |V (H3)| = 1, then |F,| > 2 x 3 —1=5 >4, a contradiction.
If |V(Hy)| = |V(H3)| = 2, then |F,| > 4x2—2 =6 > 4, a contradiction. If
|V(Hs)| = 2 and |V (H3)| = 1, then |F,| > 2x2+3—1=6 > 4, a contradiction.
Thus k = 2 and the lemma holds. ]

Lemma 2.6 Let F, C E(BSy) with |F,.| <10. If BSy — F. is disconnected, then
BSy — F, has a component H with |V (H)| > 4! — 2.

Proof. Suppose that BS,; — F, is disconnected. Without loss of generality, we
assume |F}| > |F2| > |F3| > |F}|. Since n = 4, |E; j(BSy)| =2 x (4 —2)! =4 for
i,j € [1,4] with ¢ # j by Lemma 2.2 (1). Since |F.| < 10, |F?| < 2. Hence BS;—F%is
connected by Lemma 2.3. Let H be the component of BS, — F, containing BS} — F*
as a subgraph. Now we will consider the following three cases.

Case 1. |F}| > 5.

In this case, |F}| < |F2| < 2; otherwise |F,| > 5+2x3 = 11 > 10, a contradiction.
Thus BS} — F? is connected by Lemma 2.3.

Subcase 1.1. |F?| > 3.

In this subcase, |[F?| < 10 — 5 — 3 = 2. Since |F34(BSy) — F.| > |E34(BS,)| —
|FO| >4-2=2>0, BSE _F, is a subgraph of H. Since |FO| <2, |V(H)| >4!—2
by Lemma 2.2 (3).

Subcase 1.2. |F?| < 2.



In this subcase, |F?| < 10 —5 = 5 and BS! — F! (i = 2,3,4) is connected by
Lemma 2.3. We claim that Eo3(BSy) — F. # 0 or Ea4(BSs) — F. # 0; otherwise
|FO| > |Ey3(BS4)| + |Faa(BSs)| = 2 x 4 =8 > 5, a contradiction. Without loss of
generality, we assume Es3(BSy) — F, # (). Similarly, we can get Es 4(BSy) — F. # ()
or B3 4(BSy) — F. # 0. Thus BS™Y — F, is a subgraph of H. If v € V(BSL), then
vt € V(BSEY) and v= € V(BSEY). Since |[FO| <5 <2 x 3, [V(H)| > 4/ — 2 by
Lemma 2.2 (2).

Case 2. 3 < |F}| <4.

We will consider the following subcases.

Subcase 2.1. |F3| > 3.

Since 3 < |F?| < |F?| < |F} < 4 and |F,| < 10, we have |F3| = |F?| = 3 and
|F?| <10 — 3 x 3 =1. Hence BS; — F! has a component H; with |V (H;)| > 3! —1
for i = 2,3 by Lemma 2.4. Since |F!| < 4, BS; — F! has a component H; with
|V (Hy)| > 3! — 2 by Lemma 2.5. Since |Eps,(V(H;),V(BS})) — F.| > |E;4(BS,)| —
(B! = |V(H)|) — |F°| >4—2—1> 0 for every i € [1,3], H; is a subgraph of H. If
BS} — F! is connected, then |V (H)| > 4! — 2. If |V(H,)| > 3! — 1 and BS? — F? or
BS? — F? is connected, then |V(H)| > 4! — 2. If |V(H;)| > 3! — 2, both BS? — F?
and BS; — F? are connected, then |V (H)| > 4! — 2. Hence we just need to consider
the following three conditions.

Subcase 2.1.1. |V(H,)| = |V(Hs)| = |V (H3)| = 3! — 1.

Let u; € V(BS)) — V(H;) for every i € [1,3]. If u; € V(H) for some i € [1,3],
then the lemma holds. Now we suppose that u; ¢ V(H) for every i € [1,3]. Note
that BS, is bipartite. If wy,us, us are three isolated vertices in BS; — F,, then
|F.| >3x5—2=13 > 10, a contradiction. If u;, us, u3 form an edge and an isolated
vertex in BSy — F,, then |F,| > 2x4+45—1=12 > 10, a contradiction. If uy, us, us
form a P3 in BSy — F,, then |F,| > 2 x 443 =11 > 10, a contradiction.

Subcase 2.1.2. |V(H,)| =3! -2, |V(H)| = |V(H;)| =3! — 1.

Let w; € V(BSY) — V(H;) for i = 2,3. Let uj,u1o € V(BS)) — V(H;) with
uyy # ujp. Hence |F}| =4, |[F?| =0, and (uy1,u12) € E(BS}) — F,. by Lemmas 2.4
and 2.5. If uyy € V(H) or ujs € V(H), then the lemma holds. Now we suppose
that uy, & V(H) and w19 & V(H). Hence {uf},u;;} = {us,u3z} as |[F°] = 0. Thus
{ufy,un} € V(H) by Lemma 2.2 (2). Since |F°| =0, ujy € V(H), a contradiction.

Subcase 2.1.3. |V(H;)| = 3! —2,|V(Hs)| =3! — 1,|V(Hs)| = 3! or |V(Hy)| =
31— 2, |V(Hy)| =3\, |V(H3)| = 3! — 1.

Without loss of generality, we assume |V (Hy)| = 3!-2, |V (Hy)| = 3!—1, |V (H3)| =
3!. Let uyp,u1o € V(BS}) —V(Hy) with uy; # uyp and uy € V(BS?) -V (H,). Hence
|F} = 4, |F?| = 0, and (uy1,u12) € E(BS}) — F. by Lemmas 2.4 and 2.5. Since



|FO| =0, uj; € V(H) or uy; € V(H). Hence uy € V(H), the lemma holds.
Subcase 2.2. |F3| < 2.

In this subcase, |F°| <10 —3 = 7. By Lemma 2.3, BS} — F? is connected. Now
we consider the following three conditions.

Subcase 2.2.1. |F?| < 2.

BS? — F? is connected by Lemma 2.3. We claim that Fy3(BS)) — F. # 0 or
FEy4(BSy) — F. # 0; otherwise |F?| > |Fa3(BSs)| + |Faa(BSs)| =2%x4=8>17 a
contradiction. Without loss of generality, we assume FEs 3(BSy) — F. # ). Similarly,
we can get Fy4(BSy) — F. # 0 or E34(BSy) — F. # (. Hence BSEA] — F,is a
subgraph of H. Since 3 < |F!| < 4, BS} — F! has a component H; such that
IV (Hy)| > 3! — 2 by Lemma 2.5. Since {u™,u~} C V(BSE) for every u € V(BS),
|Eps,(V(HL), V(BSP™) = F.| > |E1o(BSy)|+|Ey 5(BS)|+ By a(BSs)|—2|V(BS}H) -
V(Hy)| —|F°| >3%x4—2x2—7>0. Thus H; is a subgraph of H and the lemma
holds.

Subcase 2.2.2. |F?| = 3.

In this subcase, we have |F°| < 10 — 3 — 3 = 4. If BS? — F? is connected, then
the lemma holds by the same argument as that of Subcase 2.2.1.

Now we suppose that BS? — F? is disconnected. Then by Lemma 2.4, BS? — F?
has a component Hj such that |V (Hy)| = 3!—1. Let uy € V(BS?)—V (H,). We claim
that Egg, (V(Hs),V(BS?)) — F. # 0 or Eps,(V(Hs),V(BS})) — F. # (; otherwise
|F2| = |Eps, (V(Ha), V(BS))| + |Eps, (V(H2), V(BS}))| 24— 1+4-1=6>4,a
contradiction. Without loss of generality, we assume Egg, (V(H,),V(BS3))—F. # 0.
Similarly, we can get Egs, (V(Ha),V(BS})) — F. # 0 or E34(BS,) — F. # 0. Hence
both Hy and BSY™ — F, are subgraphs of H. Since 3 < |F!| < 4, BS! — F! has a
component H; such that |V (H;)| > 3! — 2 by Lemma 2.5. If |V(H;)| > 3! — 1, then
|Eps,(V(Hy), V(BSY™M)) = F.| > |E3(BSy)| + |EBra(BSy)| — 2|V(BS}) — V(H)| -
|FO) > 2x4—2x1—4=2>0, which implies H; is a subgraph of H and the
lemma holds. Now we consider that |V (H;)| = 3! — 2. Hence |F!| = 4 by Lemmas
2.4 and 2.5. Thus [F°| < 10 — 4 — 3 = 3 and |Egs, (V(H,),V(BSPY) — F.| >
|E13(BSy)| + |Era(BSy)| —2|V(BS}) —V(H)| — |[F)| >2x4—-2x2-3=1>0,
which implies H; is a subgraph of H. Let uyy,u1o € V(BS}) —V (H;) with uyy # ups.
Then the lemma holds by the same argument as that of Subcase 2.1.1.

Subcase 2.2.3. |F?| = 4.

Since |F?| < |F!|, |[F?| = |F}| =4 and |F?| < 10 —4—4 = 2. Since |F34(BS,) —
F.| > |E34(BSy)| — |F)| >4—-2=2>0, BSE’A] — F, is a subgraph of H. Since
|F?] < 2, the lemma holds by Lemma 2.2 (3).

Case 3. |F!| <2.



In this case, BS} — F! (i = 1,2,3,4) is connected by Lemma 2.3. Now we
claim that Ej ,(BSy) — F. # 0 for some k € [2,4]; otherwise |F.| > |E12(BSy)| +
|E1 3(BSy)| + |E14(BSs)| = 3 x 4 = 12 > 10, a contradiction. Without loss of
generality, we assume E) o(BSy)—F, # (). Suppose E; 35(BSy)—F. # () or E53(BSy)—
F, # (. Thus BSE’?’} — F, is connected. Similarly, we can get Ey4(BSy) — F. # 0 for
some k € [1,3], which implies H = BS, — F, is connected, a contradiction. Hence
E13(BSy) — F. =0 and E53(BSy) — F. = 0. Thus |F, N (E13(BS4) U Ey3(BS,))| =
2x4 =8. Hence |Ey4(BSs)NF,| <10—8 =2and |Ep4(BSy) —F.| >4-2=2>0
for every k € [1,3]. Hence H = BSy — F, is connected, a contradiction. "

Lemma 2.7 Let F, C E(BS,) with |F.| < 6n — 14 forn > 3. If BS, — F, is
disconnected, then BS, — F. has a component H with |V (H)| > n! — 2.

Proof. We prove this lemma by induction on n. For n = 3,4, the result holds
by Lemmas 2.5 and 2.6. Assume n > 5 and BS, — F, is disconnected. Without
loss of generality, we assume |F}| > |F?| > --- > |F"|. Since |F,| < 6n — 14,
|F'| < -+« < |F} < 2n — 6; otherwise |F,| > 4(2n —5) > 6n — 14 for n > 5, a
contradiction. Hence BS! — F! is connected for every i € [4,n] by Lemma 2.3. Let
H be the component of BS,, — F. containing BS] — F" as a subgraph. Now we will
consider the following four cases.

Case 1. |F}| > 6n — 19.

In this case, |F?] < (6n — 14) — (6n — 19) = 5 and |F?| < 2 < 2n — 6 for
n > 5. Hence BS? — F? is connected by Lemma 2.3. Since |E;;(BS,) — F.| >
|E;ij(BS,)| — |[F°| > 2(n—2)! =5 > 0 for 4,5 € [3,n] with i # j and n > 5,
BSBM — F, is a subgraph of H.

Suppose BS2? — F? is connected. Since |Fy3(BS,) — F.| > |Ea3(BS,)| — |F?] >
2(n —2)l =5 >0 for n > 5, BS? — F? is a subgraph of H. Note that {u™,u"} C
V(BSE2M) for every u € V(BS!). Since |F°| <5 < 2 x 3, we have |V (H)| > n! — 2
by Lemma 2.2 (2).

Now we consider that BS? — F? is disconnected. Then 2n — 5 < |F2| < 5, which
implies n = 5, |F?| = 5, and |F°| = 0. Since |F°| =0, H = BS,, — F. is connected
by Lemma 2.2 (3), a contradiction.

Case 2. 4n — 12 < |F}] < 6n — 20.

In this case, |F2| < (6n —14) — (4n — 12) = 2n — 2 and |F?| < 2n — 6; otherwise
|F.| > 2(2n —5) + (4n — 12) = 8n — 22 > 6n — 14 for n > 5, a contradiction. Thus
BS! — F! is connected for every i € [3,n] by Lemma 2.3. Since |E; ;(BS,) — F.| >
|E; j(BS,)| — |F2| > 2(n —2)! — (2n — 2) > 0 for i,j € [3,n] with i # j and n > 5,
BSBm — F, is a subgraph of H.



Suppose BS2 — FZ is connected. Since |Fy3(BS,) — F.| > |Ea3(BS,)| — |FY] >
2(n—2)!—(2n—2) > 0 forn > 5, BS?—F? is a subgraph of H. Since 4n—12 < |F}| <
6n — 20, BS! — F! has a component H; with |V (H;)| > (n — 1)! — 2 by induction
hypothesis. Since |Egs, (V(H1),V(BS:)) — Fe| > [E12(BS,)| —[V(BS,) =V (H1)| -
|FO) > 2(n —2)! =2 — (2n —2) > 0 for n > 5, H;y is a subgraph of H. Thus
V(H)| = n!—2.

Now we consider that BS? — F2 is disconnected. Hence 2n — 5 < |F2| < |F}| <
6n — 20 and |F?| < (6n —14) — (4n —12) — (2n— 5) = 3. Since |F?| < 3, |V(BS,) —
V(H)| < 3 by Lemma 2.2 (3). If |V(BS,) — V(H)| < 2, then the lemma holds.
Now we suppose |V (BS,) — V(H)| = 3 and V(BS,) — V(H) = {uy,us,us}. Note
that BS,, is bipartite. If wuq,us,u3 are three isolated vertices in BS, — F,, then
|F.| > 3(2n —3) —2 = 6n — 11 > 6n — 14, a contradiction. If uy,us,us form an
edge and an isolated vertex in BS,, — F¢, then |F.| > 2(2n —4)+ (2n —3) — 1 =
6n — 12 > 6n — 14, a contradiction. If uy,us,u3 form a P; in BS, — F,, then
|F.| > 2(2n —4) 4+ (2n — 5) = 6n — 13 > 6n — 14, a contradiction.

Case 3. 2n — 5 < |F!| < 4n —13.

In this case, |F?| < (6n —14) — (2n —5) = 4n — 9.

Subcase 3.1. |F?| < 2n — 6.

In this subcase, BS! — F! is connected for every i € [2,n] by Lemma 2.3. Since
|E; ;(BS,) — F.| > |E; j(BS,)| — |F2] > 2(n—2)! — (4n—9) > 0 for ¢, j € [2,n] with
i #jand n > 5, BS>" — F, is a subgraph of H. Since 2n — 5 < |F}| < 4n — 13,
BS! — F! has a component H; with |V (H;)| > (n — 1)! — 1 by Lemma 2.4. Since
|Eps, (V(H1), V(BS2Y)) = Fo| > | E12(BS,)| + | Evs(BS,)| = 2|V(BS,) = V(H))| -
|FO| >2x2(n—2)=2%x1—(4n—9) > 0 for n > 5, H; is a subgraph of H and
\V(H)| >n!—1.

Subcase 3.2. 2n — 5 < |F?| < 4n — 13.

In this subcase, |F?| < (6n — 14) — 2(2n — 5) = 2n — 4. If |F3| < 2n — 6, then
BS! — F! is connected for every i € [3,n] by Lemma 2.3. Since |E; ;(BS,) — F.| >
|Eij(BS,)| — |[F°] > 2(n —2)! — (2n —4) > 0 for 4,5 € [3,n] with i # j and
n > 5, BSB" — F, is a subgraph of H. Since 2n — 5 < |F?| < |F!| < 4n — 13,
BS* — F¥ has a component Hj, with |V (H)| > (n — 1)! — 1 for k = 1,2 by Lemma
2.4 Since | Eps, (V(Hy), V(BSY) — | > | Bey(BS,)| — [V(BSE) -V (Hy) | - |FO| >
2(n—2)—1—(2n—4) > 0 for k € [1,2] and n > 5, both H; and H, are subgraphs
of H. Thus |V(H)| > n! —2.

Suppose |F2| > 2n—>5. Then |F?| < (6n—14)—3(2n—>5) = 1. Since |E; ;(BS,)—
F.| > |E;;(BS,)| —|F% > 2(n—2)!—1>0fori,j € [4,n] with i # j and n > 5,
BSHm _F,is a subgraph of H. Since 2n—5 < |F3| < |F?| < |F}| < 4n—13, BSk—FF



has a component Hy with |V (Hy)| > (n — 1)! — 1 for every k € [1,3] by Lemma
2.4. Since | Egs, (V(Hy), V(BSY)) - | > |Bra(BSy)| — [V(BSE) — V(Hy)| - |F| >
2(n—2)!—1—1>0for k € [1,3] and n > 5, H; is a subgraph of H for every k € [1, 3].
If BS* — F* is connected for some k € [1, 3], then |V (H)| > n!—2. Now we consider
that |V (H,)| = |V(Hy)| = |V(H3)| = (n —1)! — 1. Let uy, € V(BS¥) — V(H,,) for
every k € [1,3]. Then the lemma holds by the same argument as that of Case 2.

Case 4. |F}| <2n —6.

In this case, BS! — F! is connected for every i € [1,n] by Lemma 2.3. We claim
that Ey9(BS,) — F. # 0 or Ey3(BS,) — F. # 0; otherwise |F.| > |E12(BS,)| +
|E13(BS,)| =2 x2(n—2)! >6n— 14 for n > 5, a contradiction. Without loss of
generality, we assume Ej5(BS,,) — F. # (). Similarly, we can get E ;(BS,) — F. # ()
or Ey;(BS,) — F. # 0 for every i € [3,n]. Thus H = BS,, — F, is connected, a
contradiction. [

Lemma 2.8 Let F, C E(BS,) with |F.| < 11. If BS,; — F, is disconnected, then
BSy — F, has a component H with |V (H)| > 4! — 3.

Proof. Suppose that BS; — F, is disconnected. Without loss of generality, we
assume |F}| > |F?| > |F3| > |F}|. Since n = 4, |E; j(BS4)| =2 x (4 —2)! = 4 for
i,j € [1,4] with ¢ # j by Lemma 2.2 (1). Since |F.| < 11, |F?}| < 2. Hence BS;—F*is
connected by Lemma 2.3. Let H be the component of BS; — F, containing BSj — F*
as a subgraph. If |F}| < 2, then the lemma holds by the same argument as that of
Case 3 of Lemma 2.6. Hence we just consider the following two cases.

Case 1. |F}| > 5.

Suppose that |F23| > 3. Since |F?| < |F?| < |F}|, we have |F3| = |F?| = 3,
|F!| =5, and |F°| = 0. Hence BS% — F! has a component H; with |[V(H;)] > 3! —1
for i = 2,3 by Lemma 2.4. Since |Eps,(V(H;),V(BS})) — F.| > |E;4(BSy)| —
\V(BS}) — V(H;)| — |F°] > 4—1 =3 > 0 for i = 2,3, both Hy and Hj are
subgraphs of H. If BS? — F? is a subgraph of H, then H = BS; — F, is connected
by Lemma 2.2 (3), a contradiction. Thus |V (Hjz)| = 3! — 1 and there exists a vertex
us € V(BS3)—V(H). Since |F| = 0 and us & V(H), {uf,uz } C V(BSI"®) =V (H)
and |V (Hy)| = 3!—1. Let {uj,u3 }NV(BS}) = u; for i = 1,2. Since BS, is bipartite
and |V (Hy)| = |V (H3)| = 3! — 1, {uf,u; y NV (H) # 0. Since |F0| =0, u; € V(H),
which implies uz € V(H), a contradiction.

Now we suppose that |[F?| < 2. Then BS; — F? is connected by Lemma 2.3.
Hence |V(H)| > 4! — 3 by the same argument as that of Case 1 of Lemma 2.6

Case 2. 3 < |F}| < 4.

We will consider the following subcases.
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Subcase 2.1. |F3| > 3.

Since 3 < |F3| < |F?| < |F}| < 4 and |F,| < 11, we have |F?| = 3. Hence
BS% — F3 has a component Hj such that |[V(H3)| > 3! — 1 by Lemma 2.4.

Subcase 2.1.1. |F?| = 4.

In this subcase, |F!| = 4 and |F?| = 0. By Lemma 2.5, BS; — F" has a component
H; such that |V (H;)| > 3! — 2 for i = 1,2. Since |Egs,(V(H;),V(BS})) — F.| >
|E;4(BSy)| — (3! = |V(Hy)|) — |F°| >4 —2—0> 0 for i € [1,3], H; is a subgraph
of H for every i € [1,3]. If BS} — F? is a subgraph of H, then H = BS, — F, by
Lemma 2.2 (3), a contradiction. Hence |V (H3)| = 3! — 1 and there exists a vertex
us € V(BS3)—V(H). Since |FO| = 0 and us ¢ V(H), {uf,uz } € V(BSI =V (H).
Let {u3,uz } NV (BS:) = u; for i = 1,2. Since BSy is bipartite and |V (H3)| = 3! -1,
there exists a vertex uy, € V(BS?) — V(H) — {us} such that (u;,uy) € E(BS,).
Thus |V (H)| = 3! — 2 and (ug,u)) € E(BS?) — F. by Lemma 2.5. Similarly,
there exists a vertex uj € V(BS}) — V(H) — {u;} such that (u},uy) € E(BS,),
|V (H,)| = 3! — 2, and (uy,u)) € E(BS}) — F.. Since |V(Hs3)| = 3! — 1 and BS, is
bipartite, {u}", u"} — {us} € V(H) by Lemma 2.2 (3). Since |F?| =0, u} € V(H),
which implies us € V(H), a contradiction.

Subcase 2.1.2. |F?| = 3.

By Lemma 2.4, BS? — F? has a component Hy such that |V (Hy)| > 3! — 1.

Suppose |F}| = 3, then |F°| < 11 — 3 x 3 = 2. By Lemma 2.4, BS} — F! has
a component H; such that |V (H;)| > 3! — 1. Since |Egg, (V(H;),V(BSY})) — F.| >
|Eia(BSy)| — (3! = |V(H))|) — |F2| >4—1—2>0for i €[1,3], H; is a subgraph of
H for every i € [1,3]. Thus |V(H)| > 4! — 3.

Suppose |Fl| =4, then |F°| <11 -4 —2x 3 = 1. By Lemma 2.5, BS} — F! has
a component H; such that |V (H;)| > 3! — 2. Since |Egg, (V(H;),V(BS})) — F.| >
|Ei4(BSy)| — (3! = |[V(H;)|) = |F2| >4—2—1> 0 for i € [1,3], H; is a subgraph
of H for every i € [1,3]. If [V(H;)| > 3! — 1, then |V (H)| > 4! — 3. If |V(H>)| = 3!
or |V(Hj;)| = 3!, then |V(H)| > 4! — 3. Now we consider that |V (H;)| = 3! — 2 and
\V(Hy)| = |V(H3)] = 3! — 1. Let {uy,un} C V(BS}) — V(H;) with uy; # uss.
Then (uyy,u2) € E(BS}) — F. by Lemma 2.5. If uy; € V(H) or uys € V(H),
then |V(H)| > 4! — 2. We suppose that uyy ¢ V(H) and w2 ¢ V(H). Since BS,
is bipartite, |V(Hz)| = |[V(H3)| = 3! — 1, and |F?| < 1, there exists a vertex v €
{ufy, uiy, ufy, uip } NV (H) such that (uyy,v) € E(BS,)—F, or (u12,v) € E(BSy)—F,
by Lemma 2.2 (2), which implies uy; € V(H) and w2 € V(H), a contradiction.

Subcase 2.2. |F?| < 2.

In this subcase, |[F?| < 11 — 3 = 8. By Lemma 2.3, BS} — F? is connected. If
|F2| = 4, then the lemma holds by the same argument as that of Subcase 2.2.3 of
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Lemma 2.6. Hence we just consider the following two conditions.
Subcase 2.2.1. |F?| < 2.
By Lemma 2.3, BS? — F? is connected.

Suppose BSEA] — F, is connected. By Lemma 2.5, BS} — F! has a component H;
such that |V (Hy)| > 31=2. If |V (Hy)| > 31—1, then |Egg, (V(Hy), V(BSE)) - F| >
|E12(BSs)|+|E13(BS4)|+|E14(BSy)|—2(3! = |V (Hy)|) — |F2| > 3x4—2x1—-8 > 0.
Hence H; is a subgraph of H and |V (H)| > 4! — 1. Now we consider that |V (H;)| =
3! — 2, which implies |F!| = 4 by Lemmas 2.4 and 2.5. Thus |F?| < 11 —4 =7 and
|Eps, (V(Hy), V(BSP™)) = Fo| > |Eva(BS)| + [Evs(BSa)| + [Eva(BSy)| — 2(3! -
\V(Hy)|) — |F°| > 3x4—2x%x2—7 > 0. Hence H; is a subgraph of H and
V(H)| = 4! —2.

Now we suppose that BSEA} — F, is disconnected. Without loss of generality,
we assume Fo3(BSy) — F. = Fy4(BS)) — F. = 0. Hence |F?| > |Ey3(BS,)| +
|Fo4(BSs)| = 2 x4 = 8. Since |F,| < 11 and 3 < |F}| < 4, we have |F!| = 3,
|F2| =0, and F? = FE53(BS4) U Fy4(BSy). Thus Es4(BS,) — F, = FE34(BS,) and
BSPY — F, is connected. By Lemma 2.4, BS! — F! has a component H; such that
|V (H1)| > 3! 1. Since |Eps, (V(H1), V(BS])) = Fe| > |Ev3(BSa)|—(3!= |V (H1)|) >
4—1> 0, H; is a subgraph of H. Since |Egs,(V(H,),V(BS3))—F.| > |E12(BSy)| —
(3!'—|V(Hy)|) >4—1>0, BS; — F? is a subgraph of H. Thus |[V(H)| > 4! — 1.

Subcase 2.2.2. |F?| = 3.

In this subcase, we have |F°] < 11 — 3 — 3 = 5. By Lemma 2.4, BS? — F?
has a component Hy such that |V (Hy)| > 3! — 1. By Lemma 2.5, BS} — F! has a
component H; such that |V (H;)| > 3! — 2.

Suppose BS{—F, is connected. Since |Epg, (V(Hs), V(BSY*)—F.| > |E93(BSy)|+
|Ea4(BSs)| — 23! = |[V(H)|) = |[F2] > 2x4—2x1—5>0, Hy is a subgraph of
H. Since |Egs,(V(Hy),V(BSP™) UV (Hy)) — F.| > |Evs(BSy)| + |Era(BSy)| +
| By 5(BSy)| — 203! — [V(Hy)|) — (3! = [V(Hy)|) — |F?) > 3x4—2%x2—1—5>0,
H, is a subgraph of H and |V (H)| > 4! — 3.

Now we suppose that BSE”A‘} — F, is disconnected. Then |F, N E54(BSy)| =
|F34(BSy)| = 4 and |FO—FE3 4(BS,)| < 11-3—3—4 = 1. Since |Eps,(V(Hz), V(BS))—
Fo| > |Eoi(BSs)| = (3! = [V(Ha)|) = |[FY = E34(BSy)| 24— 11> 0 fori = 3,4,
both Hy and BS) — F! are subgraphs of H. Since |Egs,(V(H,),V(BS3)) — F.| >
|E13(BSy)| — (3! = [V (Hy)|) — |F? — E34(BS4)| >4 —2—1> 0, Hy is a subgraph
of H. Thus |V(H)| > 4! — 3. n

Lemma 2.9 Let F, C E(BS,) with |F.| < 8n— 21 forn > 3. If BS, — F, is
disconnected, then BS, — F, has a component H with |V (H)| > n! — 3.
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Proof. We prove this lemma by induction on n. For n = 3,4, the result holds
by Lemmas 2.4 and 2.8. Assume n > 5 and BS,, — F, is disconnected. Without
loss of generality, we assume |F}| > |F?| > --- > |F"|. Since |F,| < 8n — 21,
|F'| < -+« < |FY < 2n — 6; otherwise |F,| > 4(2n —5) > 8n — 21 for n > 5, a
contradiction. Hence BS! — F! is connected for every i € [4,n] by Lemma 2.3. Let
H be the component of BS,,—F, containing BS" —F™ as a subgraph. If |F!| < 2n—6,
then the lemma holds by the same argument as that of Case 4 of Lemma 2.7. Now
we will consider the following four cases.

Case 1. |F}| > 8n — 28.

In this case, |F°] < (8n —21) — (8 — 28) = 7 and |F?3| < 4 < 2n — 6 for
n > 5. Thus BS! — F! is connected for every ¢ € [3,n] by Lemma 2.3. Since
|E; j(BS,) — F.| > |E; ;(BS,)| = |FO| > 2(n — 2)! =7 > 0 for i, € [3,n] with i # j
and n > 5, BSB" — F, is a subgraph of H.

Suppose BS2 — FZ is connected. Since |Fy3(BS,) — F.| > |Ea3(BS,)| — |F2] >
2(n —2)! =7 >0 for n > 5, BS? — F? is a subgraph of H. Note that {u™,u~} C
V(BSE™) for every u € V(BS!). Since |F°| <7 < 2 x 4, we have |V(H)| > n! — 3
by Lemma 2.2 (2).

Now we consider that BS? — F? is disconnected. Then 2n — 5 < |F?| < 7 for
n > 5, which implies 5 < |F?| < 4n — 13 and |F?| < (8n —21) — (8n — 28) — 5 = 2.
Since |F?| < 2, [V(H)| > n! — 2 by Lemma 2.2 (3).

Case 2. 6n — 19 < |F!| < 8n — 29.

In this case, |F?| < (8n —21) — (6n — 19) = 2n — 2 and |F?| < 2n — 6; otherwise
|F.| >2(2n —5) 4+ (6n —19) = 10n — 29 > 8n — 21 for n > 5, a contradiction. Thus
BS! — F! is connected for every ¢ € [3,n] by Lemma 2.3. Since |E; ;(BS,) — F.| >
|E; j(BS,)| — |F°] > 2(n —2)! — (2n — 2) > 0 for i,j € [3,n] with i # j and n > 5,
BSBn — F, is a subgraph of H.

Suppose BS? — F? is connected. Since |Fy3(BS,) — F.| > |Ea3(BS,)| — |F?| >
2(n—2)!—(2n—2) > 0 forn > 5, BS?—F? is a subgraph of H. Since |F}| < 8n—29,
BS! — F! has a component H; with |V (H;)| > (n—1)! — 3 by induction hypothesis.
Since |Eps, (V(H1),V(BSY)) = Fe| = |E12(BS,)| — [V(BS,) — V(H)| - [F| >
2(n—2)!—3—(2n—2) > 0 for n > 5, H; is a subgraph of H. Hence |V(H)| > n! —3.

Now we suppose BS? — F? is disconnected. Hence 2n — 5 < |F?| < 2n — 2 and
|FO| < (8n —21) — (6n —19) — (2n — 5) = 3. Since |FY| < 3, |[V(H)| > n! — 3 by
Lemma 2.2 (3).

Case 3. 4n — 12 < |F!| < 6n — 20.

In this case, |F?| < (8n — 21) — (4n — 12) = 4n — 9. Since |E; ;(BS,) — F.| >
|E; j(BS,)| — |[F2| > 2(n—2)! — (4n —9) > 0 for 4,5 € [4,n] with ¢ # j and n > 5,
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BSnl — F, is a subgraph of H. Since 4n — 12 < |F}| < 6n — 20, BS! — F! has a
component H; with |V (Hy)| > (n — 1)! — 2 by Lemma 2.7.

Subcase 3.1. 4n — 12 < |F?| < 6n — 20.

In this subcase, |F?| < (8n —21) —2(4n — 12) = 3 and |F3| < 3 < 2n — 6 for
n > 5. Hence BS? — F? is connected by Lemma 2.3. Since |E34(BS,) — F.| >
|E3.4(BS,)| — |F°| > 2(n —2)! =3 > 0 for n > 5, BSB" — F, is a subgraph of H.
Since |F°| < 3, |[V(H)| > n! — 3 by Lemma 2.2 (3).

Subcase 3.2. 2n — 5 < |F?| < 4n — 13.

By Lemma 2.4, BS? — F? has a component Hy with |[V(Hy)| > (n —1)! — 1.

Suppose 2n—5 < |F3| < 4n—13. Then |F?| < (8n—21)—(4n—12)—2(2n—5) = 1.
Since |F3| < 4n — 13, BS? — F3 has a component Hj with |V(H3)\ (n—1)!-1
by Lemma 2.4. Since |E35n(V(HZ),V(353)) F.| > |Ei4(BS,)| — ([V(BS:)| —
\V(H)|)—|F?| > 2(n—2)!-2—1 > 0fori € [1,3] and n > 5, H; is a subgraph of H for
every i € [1,3]. If [V(Hy)| > (n—1)! =1, then |V (H)| > n!=3. If |V(H,)| = (n—1)!
or [V(Hs3)| = (n — 1)!, then |V(H)| > n! — 3. Now we suppose that |V (H;)| =
(n—1)!—=2and |V(Hy)| = |V(H3)| = (n—1)! = 1. Let {uy1, w12} = V(BS})—V(H,),
uy € V(BS?) — V(H,), and uz € V(BS2) — V(Hz). Since |F?| < 1, there exists a
vertex v € ({uf;, uiy, ufy, uin} — {ug, uz}) NV (H) such that (v,uy;) € F(BS,) — F,
or (v,ujp) € E(BS,) — F. by Lemma 2.2 (2). Hence |V(H)| > n! — 3.

Suppose |F?| < 2n — 6. Then |F?| < (8n —21) — (4n — 12) — (2n — 5) = 2n — 4.
By Lemma 2,3, BS? — F3 is connected. Since |F34(BS,) — F.| > |E34(BS,)| —
|FO| > 2(n —2)! — (2n — 4) > 0 for n > 5, BS? — F3 is a subgraph of H. Since
|Eps, (V(Hy), V(BS)) = Fo| = |Eia(BSy)| — (V(BS,)| = [V(H)|) = [FY| = 2(n -
2l —2—-(2n—4) > 0 for i = 1,2 and n > 5, H; is a subgraph of H. Hence
\V(H)| > n!—3.

Subcase 3.3. |F?| < 2n — 6.

By Lemma 2.3, BS!, — F! is connected for every i € [2,n]. Since |E; ;j(BS,)—F.| >
|E; j(BS,)| — |F°] > 2(n —2)! — (4n — 9) > 0 for i,j € [2,n] with i # j and n > 5,
BSI2" — F, is a subgraph of H. Since |Epg, (V(H,), V(BSZ3))~F,| > |E,2(BS,)|+
|E13(BS,)| —2(|V(BS)| — |V(HY)|) = |[F2| >2%x2(n—2)!—2x2—(4n—9) > 0,
H, is a subgraph of H and |V (H)| > n! — 2.

Case 4. 2n — 5 < |F!| < 4n —13.

By Lemma 2.4, BS} — F! has a component H; with |[V(H;)| > (n —1)! — 1.

Subcase 4.1. |F2| > 2n — 5.

In this subcase, [F?| < (8n —21) — 3(2n — 5) = 2n — 6. Since |E; ;(BS,) — F.| >
|E;;j(BS,)| — |F°) > 2(n —2)! — (2n — 6) > 0 for i,j € [4,n] with i # j and n > 5,
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BSWn — F, is a subgraph of H. Since 2n — 5 < |F3| < |F?| < |F}| < 4n — 13,
BS! — F! has a component H; with |V (H;)| > (n—1)!—1 for i = 2,3 by Lemma 2.4.
Since |Eps, (V(H,), V(BSY) — F.| > |E(BS,) — (V(BSY)| — [V(H)]) - |FY] >
2(n—2)!'=1—(2n—6) > 0 for i € [1,3] and n > 5, H; is a subgraph of H for every
i€[1,3]. Thus |V(H)| > nl—3.

Subcase 4.2. |F3| <2n—6 and |F?| > 2n — 5.

In this subcase, |F?| < (8n—21) —2(2n—5) = 4n—11. By Lemma 2.3, BS3 — F?3
is connected. Since |E; j(BS,,) — F.| > |E; ;(BS,)| —|F?] > 2(n—2)! — (4n—11) > 0
fori,j € [3,n] with i # j and n > 5, BS" — F, is a subgraph of H. Since 2n —5 <
|F2| < |F} < 4n — 13, BS? — F? has a component H, with |V (Hy)| > (n —1)! — 1
by Lemma 2.4. Since |Eps,(V(H;),V(BS:)) — F.| > |E;4(BS,)| — ([V(BS5)| —
\V(H)|) — |F?| >2(n—2)!—1—(4n—11) > 0 for i € [1,2] and n > 5, H; is a
subgraph of H for every i € [1,2]. Hence |V(H)| > n! — 2.

Subcase 4.3. |F?| < 2n — 6.

In this subcase, |F°| < (8n—21)—(2n—>5) = 6n—16. By Lemma 2.3, both BS? —
F? and BS2— F3 are connected. We claim Fy3(BS,)—F. # 0 or Fy4(BS,)—F. # 0;
otherwise |F.| > |Ey3(BS,)| + |E24(BS,)| =2 %x2(n—2)! >8n —21 forn > 5, a
contradiction. Without loss of generality, we assume Es3(BS,,) — F, # (). Similarly,
we can get Ey;(BS,) — F. # 0 or E3;(BS,) — F. # 0 for every i € [4,n]. Thus
BSI2M — F, is a subgraph of H. Since |Egs, (V (Hy), V(BS2?))—~F,| > |E12(BS,)|+
|E13(BS,)| —2(|[V(BSH)| = |[V(Hy)|) = |F?] > 2%x2(n—2) —2%x1—(6n—16) > 0,
H, is a subgraph of H. Hence |V (H)| > n! — 1. n

3. Edge-fault-tolerant strong Menger edge connectivity of
BS,

We will consider the edge-fault-tolerant strong Menger edge connectivity of B.S,
in this section.

Theorem 3.1 For n > 3, the bubble-sort star graph BS,, is (2n — 5)-edge-fault-
tolerant strongly Menger edge connected and the bound 2n — 5 is sharp.

Proof. Let F, C E(BS,) be an arbitrary faulty edge set with |F,| < 2n — 5.
By Lemma 2.3, BS, — F, is connected. Let u,v with u # v be any two vertices
in BS, and t = min{dps,_r,(u),dps,_r, (v)}. By Theorem 1.1, it suffices to show
that u and v are connected in BS,, — F. — Ey for any Ey C E(BS,) — F, with
|E¢| <t—1. Suppose on the contrary, that u and v are disconnected in BS,, —F.— Ey
for some E; C E(BS,) — F. with |Ef| < t—1. Since dps,—r.(u) < 2n — 3 and
dps,—r,(v) < 2n—3, |Es| <2n—4. Thus |[F,UE¢| < (2n—5)+(2n—4) = 4n—9. By
Lemma 2.4, BS,,—F.—E; has a component H with |V (H)| > nl—1. Since v and v are
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disconnected in BS,,—F,—Ey, [V(H)| =n!—1and [{u,v}NV(H)| = 1. Without loss
of generality, we assume u ¢ V(H) and v € V(H). Hence Egg, ({u}, Nps,_r,(u)) C
E¢, which implies |Ef| > dps, —r.(u), a contradiction to |Ef| < t—1 < dgg,_p, (u)—1.
Hence BS,, is (2n — 5)-edge-fault-tolerant strongly Menger edge connected.

Next, we will show the bound 2n — 5 is sharp. Let u,u; € V(BS,,) with (u,u;) €
E(BS,). Let F. = Egg, (u1)— (u,uy) and v € V(BS,,) — Nps, (u1) —{u1 } (see Fig.2).
Then |F,| = 2n—4, dgs, —r,(u) = dgs,—r,(v) = 2n— 3. Obviously, there are at most
2n — 4 edge-disjoint (u, v)-paths. n

2n-4

Figure 2: Illustration of Theorem 3.1.

4. Conditional edge-fault-tolerant strong Menger edge con-
nectivity of BS,

We will consider the conditional edge-fault-tolerant strong Menger edge connec-
tivity of B.S,, in this section.

Theorem 4.1 Forn > 4, the bubble-sort star graph BS,, is (6n — 17)-conditional
edge-fault-tolerant strongly Menger edge connected and the bound 6n — 17 is sharp.

Proof. Let F, C E(BS,) be an arbitrary faulty edge set with |F.| < 6n — 17
and 6(BS, — F.) > 2. Since |F,| < 6n — 17 < 6n — 14 and §(BS, — F.) > 2,
BS,, — F, is connected by Lemma 2.7. Let u,v with v # v be any two vertices
in BS, and t = min{dps, _r, (u),dps,_r, (v)}. By Theorem 1.1, it suffices to show
that u and v are connected in BS,, — F. — Ey for any £y C E(BS,) — F, with
|E¢| <t—1. Suppose on the contrary, that u and v are disconnected in BS,,—F.—Ey
for some E; C E(BS,) — F. with |Ef| < t—1. Since dpg,—r.(u) < 2n — 3 and
dps,—r,(v) <2n—3, |Es| <2n—4. Thus |[FLUE;| < (6n—17)4+(2n—4) = 8n —21.
By Lemma 2.9, BS,, — F, — E; has a component H with |V (H)| > n!—3. Since u and
v are disconnected in BS,, — F, — Ey, [{u,v} NV (H)| < 1. Without loss of generality,
we assume u € V(H). Let Hy be the component in BS,, — F, — E; containing u. If
dm, (u) = 0, then Egg, ({u}, Nps,—r,(u)) C Ef, which implies |Ef| > dps,—r.(u), a
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contradiction to |Ey| <t —1 <dgg,_r, (u) — 1. Suppose that dy, (v) =1 (i € [1,2]).
Since BS,, is bipartite, H; is a path P, or Py and there are i vertices in V(H;) — {u}
that have degree one in H;. Since §(BS,—F,) > 2, every vertex with degree one in H;
is incident with at least one edge in Ey. Thus |Ef| > dps,—r,(u) —i+i = dgg,_r, (u),
a contradiction to |Ey| <t—1 < dpg,_p,(u) —1. Hence BS, is (6n — 17)-conditional
edge-fault-tolerant strongly Menger edge connected.

Next, we will show the bound 6n — 17 is sharp. Let u,u;,us,us € V(BS,)
with (u,uq), (ug, us), (ug, us), (us,u) € E(BS,) and uy; € Npgg, (u1) — {u,us}. Let
F. = Eps,(u1) U Epg, (u2) U Egg, (ug) — {(u,u1), (u1,u2), (u2, us), (us, u), (ui, uiq)}
and v € V(BS,,) — Ngs, (u1) U Npg, (u2) U Npg, (u3) (see Fig.3). Then |F,| = (2n —
6) +2(2n — 5) = 6n — 16, dgs, _r,(u) = dps,_r.(v) = 2n — 3, and §(BS,, — F.) > 2
for n > 4. Obviously, there are at most 2n — 4 edge-disjoint (u, v)-paths. m

2n-5

Figure 3: Illustration of Theorem 4.1.

5. Conclusion

In this paper, we study the edge-fault-tolerant strong Menger edge connectivity
of n-dimensional bubble-sort star graph B.S,,. We show that every pair of distinct
vertices u and v in BS,, are connected by min{dgs, —r.(u),dps,—r.(v)} edge-disjoint
paths in BS,, — F,, where F, is an arbitrary edge subset of BS, with |F.| < 2n — 5.
We also show that every pair of distinct vertices w and v in BS, are connected
by min{dps, _r, (u),dps,—r, (v)} edge-disjoint paths in BS, — F., where F, is an
arbitrary edge subset of BS,, with |F.| < 6n — 17 and §(BS,, — F.) > 2. Moreover,
we give two examples to show that our results are optimal. The connectivity and
edge connectivity of interconnection network determine the fault tolerance of the
network. They are issues worth studying.
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