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Abstract

We show algorithms for computing representative families for matroid intersections and use them in fixed-parameter
algorithms for set packing, set covering, and facility location problems with multiple matroid constraints. We
complement our tractability results by hardness results.
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1. Introduction

Matroids are an important tool in the development of fixed-parameter algorithms [27] and many of these algorithms are
based on the fast construction of so-called representative families [14–16, 23, 25, 31]. Generalizing these, we present
algorithms to compute representative families not for single matroids, but for intersections of multiple matroids.

Using this generalization, we derive fixed-parameter algorithms for packing, covering and facility location problems
with multiple matroid constraints. Herein, our algorithms for packing and covering problems generalize and unify
several fixed-parameter algorithms for covering problems known in the literature [6, 24, 25]. In the context of facility lo-
cation problems, matroid constraints can model natural facility location scenarios like “open at most ki facilities of type i”
[10], even if types are not disjoint, moving facilities [30], but also problems in social network analysis [5, Section 3].

Organization of this work. In Section 2 we provide basic definitions from parameterized complexity and matroid
theory. Section 3 presents our algorithms for constructing representative families for matroid intersections. Sections 4
and 5 present our fixed-parameter algorithm for set packing and facility location problems with multiple matroid
constraints, respectively. Related work and context for each result is provided in the respective subsections.

2. Preliminaries

2.1. Parameterized complexity
The main idea of fixed-parameter algorithms is to accept the exponential running time seemingly inherent to solving
NP-hard problems, yet to confine the combinatorial explosion to a parameter of the problem, which can be small in
applications [11]. A problem is fixed-parameter tractable if it can be solved in f (k) · poly(n) time on inputs of length n
and some function f depending only on some parameter k. Note that this requirement is stronger than an algorithm that
merely runs in polynomial time for fixed k, say, in O(nk) time, which is inapplicable even for small values of k, say
k = 10. The parameterized analog of NP and NP-hardness is the W-hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ . . .W[P] ⊆ XP
and W[t]-hardness, where FPT is the class of fixed-parameter tractable decision problems and all inclusions are
conjectured to be strict. If some W[t]-hard problem is in FPT, then FPT = W[t] [11].
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2.2. Sets and set functions

By N, we denote the natural numbers including zero. By Fp, we denote the field on p elements. Usually, we study set
systems over a universe U = {1, . . . , n}. By A ] B, we denote the union of sets A and B that we require to be disjoint.
By convention, the intersection of no sets is the whole universe and the union of no sets is the empty set.

Definition 2.1 (partition). We call Z1, . . . ,Z` a partition of a set A if Z1]· · ·]Z` = A and Zi , ∅ for each i ∈ {1, . . . , `}.

Definition 2.2 (γ-family). We call A ⊆ 2U an γ-family if each set in A has cardinality exactly γ.

Definition 2.3 (additive and submodular set functions). A set function w : 2U → R is additive if, for any subsets A∪
B ⊆ U, one has

w(A ∪ B) = w(A) + w(B) − w(A ∩ B).

If “≤” holds instead of equality, then w is called submodular.

Definition 2.4 (coverage function). A set function

w : 2U → N, S 7→
∣∣∣∣⋃
u∈S

u
∣∣∣∣,

where U = 2V , is a coverage function.

Coverage functions are non-decreasing and submodular [28, Section 44.1a].

2.3. Matroid fundamentals

For proofs of the following propositions and for illustrative examples of the following definitions, we refer to the book
by Oxley [26].

Definition 2.5 (matroid). A pair (U,I), where U is the ground set and I ⊆ 2U is a family of independent sets, is a
matroid if the following holds:

• ∅ ∈ I,

• If A′ ⊆ A and A ∈ I, then A′ ∈ I.

• If A, B ∈ I and |A| < |B|, then there is an x ∈ B \ A such that A ∪ {x} ∈ I.

Definition 2.6 (basis, rank). An inclusion-wise maximal independent set A ∈ I of a matroid M = (U,I) is a basis.
The cardinality of the bases of M is called the rank of M.

Definition 2.7 (free matroid). A free matroid is a matroid (U, 2U) in which every set is independent.

Proposition 2.8 (matroid union, direct sum). The union

M1 ∨ M2 = (U1 ∪ U2, {J1 ∪ J2 | J1 ∈ I1, J2 ∈ I2})

of two matroids M1 = (U1, I1) and M2 = (U2, I2) is a matroid. If U1 ∩U2 = ∅, we write M1 ⊕ M2 := M1 ∨ M2 and call
their union direct sum.

Definition 2.9 (uniform, partition, and multicolored matroids). A uniform matroid of rank r is a matroid (U,I)
such that I := {S ⊆ U | |S | ≤ r}. The direct sum of uniform matroids is called partition matroid. We call the direct sum
of uniform matroids of rank one a multicolored matroid.

Partition matroids are useful to model constraints of type “at most ki items of type i”.
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2.4. Matroid representations

In our work, we will use two different ways of representing matroids. The most general representation of matroids is an
independence oracle, which in constant time decides whether a given set is independent in a given matroid. One can
imagine it as an algorithm that decides independence quickly. We will also use linear representations:

Definition 2.10 (linear matroids). An (r×n)-representation of a matroid M = (U,I) over a field F is a matrix A ∈ Fr×n

whose columns are labeled by the n elements of U such that S ∈ I if and only if the columns of A with labels in S are
linearly independent over F. A matroid is linear or representable over a field F if it has a representation over F.

One can transform a representation of a matroid with rank r over a field F into a representation over F with r rows
[26, Section 2.2] and we will always assume to work with linear representations of this form. Not all matroids are
representable over all fields [26, Theorem 6.5.4]. Some are not representable over any field [26, Example 1.5.14]. If
Ai is a (ai × bi)-representation of a matroid Mi over field F for i ∈ {1, . . . ,m}, then a (

∑m
i=1 ai ×

∑m
i=1 bi)-representation

of
⊕m

i=1 Mi over F is computable in time of O(
∑m

i=1 ai ·
∑m

i=1 bi) operations over F [26, Exercise 6, p. 132]. Uniform
matroids of rank r on a universe of size n are representable over all fields with at least n elements [25, Section 3.5].
The uniform matroid of rank one is trivially representable over all fields. Thus, so are multicolored matroids.

Lemma 2.11. Given an (r × n)-representation A for a matroid M over a field F, a representation of M ∨ (X, 2X) over F
is computable in time of (n + |X|)(r + |X|) operations over F.

Proof. Let M = (U,I). If U ∩ X , ∅, consider the restriction M′ = (U \ X, {J ⊆ U \ X | J ∈ I}) of M to U \ X,
which is again a matroid [26, Section 1.3]. If U ∩ X = ∅, then we get M′ = M. A linear representation A′ for M′

can be obtained from a linear representation of A for M by removing the columns labeled by elements in X. The free
matroid (X, 2X) is representable by the identity matrix over any field. Thus, M ∨ (X, 2X) = M′ ∨ (X, 2X) = M′ ⊕ (X, 2X)
is a direct sum of two matroids with known linear representations. The linear representation of this direct sum can
therefore be easily obtained in the claimed time [26, Exercise 6, p. 132]. �

2.5. Matroids truncations

Definition 2.12 (truncation). The k-truncation of a matroid (U,I) is a matroid (U,I′) with I′ = {S ⊆ U | S ∈
I ∧ |S | ≤ k}. Moreover, if A is a linear representation of a matroid and A′ is a linear representation of its truncation,
we will also call A′ a truncation of A.

Proposition 2.13 (Lokshtanov et al. [23, Theorem 3.15]). Let A be an (r × n)-matrix of rank r over a finite field Fpd ,
where p is a prime number which is polynomially upper-bounded by the length of the encoding of A as a binary string.
For any k ∈ {1, . . . , r}, we can compute a k-truncation of A over a finite field extension K ⊇ F in time of a polynomial
number of field operations over F, where K = Fprkd .

Remark 2.14. The proof of Lokshtanov et al. [23, Theorem 3.15] shows that the field extension K ⊇ F := Fpd in
Proposition 2.13 can be chosen as K = Fpsd for any integer s ≥ rk. The time for computing the truncation consists of
computing a truncation over the field of fractions F(X) using O(nkr) operations over F via Theorem 3.14 of Lokshtanov
et al. [23] and then computing an irreducible polynomial of degree s over F in s4d2 √p · polylog(s, p, d) operations
over F [29].

Proposition 2.13 applied according to Remark 2.14 immediately yields:

Corollary 2.15. For i ∈ {1, . . . ,m}, let Ai be (ri×n)-matrices over Fpd . Given a natural number k ≤ min{ri | 1 ≤ i ≤ m},
k-truncations of the Ai over the same finite field extension Fprkd ⊇ F are computable in O(mnkr) + r4k4d2 √p ·
polylog(r, k, p, d) operations over F, where r = max{ri | 1 ≤ i ≤ m}.

Herein, the additive running time is due to the fact that we only have to construct the irreducible polynomial of degree rk
once in order to represent the truncated matroids over the same field extension Fprkd .
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3. Representative families for matroid intersections

Intuitively, a representative of some set family S for a matroid M is a subfamily Ŝ ⊆ S such that, if S contains a set X
that can be extended to a basis of M by adding adding a set Y , then Ŝ contains a set X̂ that can also be extended to a
basis of M by adding Y . Herein, the representative Ŝ may be significantly smaller than the original family S, so that
algorithms can gain a speed-up by working on Ŝ instead of S.

Marx [25] first used representative families in randomized fixed-parameter algorithms for the NP-hard Matroid
Intersection problem, where the task is to decide whether a set is independent in several given matroids. Representative
families have subsequently been generalized to weighted sets by Fomin et al. [14] and their construction has been
derandomized by Lokshtanov et al. [23]. We generalize this concept to representative families for matroid intersections:

Definition 3.1 (max intersection q-representative family). Given matroids {(U,Ii)}mi=1, a family S ⊆ 2U , and a
function w : S → R, we say that a subfamily Ŝ ⊆ S is max intersection q-representative for S with respect to w if, for
each set Y ⊆ U of size at most q, it holds that: if there is a set X ∈ S with X ] Y ∈

⋂m
i=1 Ii, then there is a set X̂ ∈ Ŝ

with X̂ ] Y ∈
⋂m

i=1 Ii and w(X̂) ≥ w(X). If m = 1, then we call Ŝ a max q-representative family of S.

In this section, we will show how to compute max intersection representative families for matroids {(U,Ii)}mi=1. More
generally, for someH ⊆ 2U , we will compute max intersection representatives for subsets of the family

B(H) :=
{ i⊎

j=1

H j

∣∣∣∣ i ∈ N, H1, . . . ,Hi ∈ H
}

in a time that will grow merely linearly in |H|, whereas the size of B(H) is generally exponential in |H|. For this to
work, we require the weights of the sets in B(H) to be computable from weights of sets inH using inductive union
maximizing functions, which we introduce in Section 3.1. In Section 3.2, we show how to compute representatives with
respect to inductive union maximizing set functions in a single matroid. In Section 3.3, we generalize this result to max
intersection representative families (for multiple matroids).

3.1. Inductive union maximizing functions
Definition 3.2 (inductive union maximizing function). Let H ⊆ 2U . A set function w : B(H) → R is called an
inductive union maximizing function if there is a function g : R ×H → R that is non-decreasing in its first argument
and such that, for each X , ∅,

w(X) = max
H∈H ,S∈B(H)

S]H=X

g(w(S ),H).

An inductive union maximizing function w is fully determined by the value w(∅) and the function g. We thus also
say that g generates w. Inductive union maximizing functions resemble primitive recursive functions on natural
numbers, where S ] H plays the role of the “successor” of S in primitive recursion. We take the maximum over all
partitions S ] H = X since the partition of X into a set in H and a set in B(H) is not unique. We now show some
examples and counterexamples for inductive union maximizing functions.

Example 3.3. LetH ⊆ 2U and w : H → R. The function w determined by w(∅) = 0 and g : (k,H) 7→ k + w(H) is an
inductive union maximizing function. Concretely, for ∅ , X ⊆ B(H), one gets

wΣ(X) := w(X) = max
X=H1]···]Hi
H1 ,...,Hi∈H

i∑
j=1

w(H j)

due to the associativity and commutativity of the maximum and sum.

Inductive union maximizing functions generalize additive set functions:

Example 3.4. Any additive set function w : 2U → R is inductive union maximizing since, for the inductive union
maximizing function wΣ in Example 3.3, one has wΣ(X) =

∑i
j=1 w(H j) = w(X) for any partition X = H1 ] · · · ] H j.

4



However, submodular functions are generally not inductive union maximizing:

Example 3.5. Let f : 2U → R be a coverage function (cf. Definition 2.4) on U = {u1, v1, u2, v2} with

u1 = {a}, v1 = {c}, u2 = {a, b}, and v2 = {c, d}.

Assume that f is inductive union maximizing forH = {{u1}, {v1}, {u2}, {v2}}. The only partition of {u1, v2} into sets inH
is {u1} ] {v2}. Thus, f ({u1, v2}) = g( f ({u1}), {v2}) or f ({u1, v2}) = g( f ({v2}), {u1}), whichever is larger. In the first case,
we get the contradiction

3 = f ({u1, v2}) = g( f ({u1}), {v2}) = g(1, {v2}) = g( f ({v1}), {v2}) ≤ f ({v1, v2}) = 2.

Otherwise, in the second case, we get the contradiction

3 = f ({u1, v2}) = g( f ({v2}), {u1}) = g(1, {u1}) = g( f ({u2}), {u1}) ≤ f ({u1, u2}) = 2.

We see that coverage functions are not inductive union maximizing since the function g generating w in Definition 3.2
is allowed to depend only on w(S ) in the first argument, not on S itself. We will indeed see that this requirement is
crucial and presume that inductive union maximizing functions are the most general class of functions with respect to
which we can prove the results in Sections 3.2 and 3.3.

3.2. Computing representative families for unions of disjoint sets
In this section, we show how to compute a representative of subfamilies of B(H) with respect to inductive union
maximizing set functions in a single matroid. We generalize it to multiple matroids in Section 3.3.

Proposition 3.6. Let M = (U,I) be a linear matroid of rank r = (α + β)γ ≥ 1 with α, β ∈ N,H ⊆ 2U be a γ-family of
size t, and w : B(H)→ R be an inductive union maximizing function (cf. Definition 3.2) generated by w(∅) and the
function g : R ×H → R non-decreasing in the first argument.

Given α ∈ N, a representation A of M over a field F, the value w(∅), and the function g, one can compute a max
βγ-representative Ŝ of size

(
r
αγ

)
for the family

S = {S = H1 ] · · · ] Hα | S ∈ I and H j ∈ H for j ∈ {1, . . . , α}}

with respect to w in time of O(2ωr · t) operations over F and calls to the function g, where ω ≥ 2 is any constant such
that two (n × n)-matrices can be multiplied in O(nω

′

) time for ω′ < ω.

Before proving Proposition 3.6, we provide some context. The main feature of Proposition 3.6 is that it allows us to
compute max intersection representatives of the family S, whose size may be exponential in the size of H , in time
growing merely linearly in the size ofH . The literature uses several implicit ad-hoc proofs of variants of Proposition 3.6
in algorithms for concrete problems [14, 15, 25]. These proofs usually use non-negative additive functions in place
of w. Our Proposition 3.6 does not require additivity, yet, as shown by Example 3.4, works perfectly fine for all additive
weight functions.

As shown by Example 3.5, submodular functions are not necessarily inductive union maximizing and, indeed, we
now show that generalizing Proposition 3.6 even to coverage functions would yield FPT = W[2]. The proof also makes
for an illustration of Definition 3.1 and Proposition 3.6:

Observation 3.7. If Proposition 3.6 holds for coverage functions w, then FPT = W[2].

Proof. Consider a coverage function w : 2U → N. The problem of finding a set S ⊆ U with |S | ≤ r maximizing w(S )
is known as Maximum Coverage and W[2]-hard parameterized by r [11].

Now, assume that we could apply Proposition 3.6 with a uniform matroid M = (U,I) of rank r, α = r, β = 0, γ = 1,
and the γ-familyH = {{u} | u ∈ U} to compute a 0-representative Ŝ of size

(
r
αγ

)
= 1 of the family

S = {S = H1 ] · · · ] Hα | S ∈ I and H j ∈ H for j ∈ {1, . . . , α}} = {S ⊆ U | |S | = r}

with respect to w in time of 2O(r) · |H| = 2O(r)n operations over F, where M is representable over F = F2d for d = dlog re.
Then Ŝ only contains the set S with |S | = r maximizing w(S ). Since each operation over F2d can be carried out in
poly(d) ∈ poly(n) time, we thus solve the W[2]-hard Maximum Coverage problem in 2O(r) · poly(n) time, which implies
FPT = W[2]. �
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Algorithm 3.1 for the proof of Proposition 3.6.
Input: α ∈ N, a γ-familyH ⊆ 2U of size t, a representation A of a matroid M = (U,I) of rank r = (α + β) · γ ≥ 1 over

F, a function g : R ×H → R non-decreasing in the first argument, and w(∅).
Output: A max βγ-representative Ŝ of size

(
r
αγ

)
for the family S := {S = H1 ] · · · ] Hα | S ∈ I and H j ∈ H for j ∈

{1, . . . , α}} with respect to the inductive union maximizing function w generated by w(∅) and g.

1: Ŝ0 ← {∅} .
2: w0(∅)← w(∅) .
3: for each i ∈ {1, . . . , α} do
4: Ri ← ∅.
5: wi : 2U → R, S 7→ −∞.
6: for each H ∈ H , S ∈ Ŝi−1,H ∩ S = ∅,H ∪ S ∈ I do
7: Ri ← Ri ∪ {H ] S }.
8: wi(H ] S )← max{wi(H ] S ), g(wi−1(S ),H)}.
9: Ŝi ← max (r − γi)-representative of Ri with respect to wi of size at most

(
r
γi

)
using Proposition 3.8.

10: return Ŝα.

We now prove Proposition 3.6. Like its implicit ad-hoc proofs in the literature [14, 15, 25], we will prove it by iterative
application of the following known result.

Proposition 3.8 (Fomin et al. [14, Theorem 3.7]). Let M = (U,I) be a linear matroid of rank r = α + β, S =

{S 1, . . . , S t} be an α-family of independent sets, and w : S → R.1 Then, there exists a max β-representative Ŝ ⊆ S of
size at most

(
r
α

)
. Given a representation of M over a field F, Ŝ can be found using

O

(r
α

)
tαω + t

(
r
α

)ω−1 operations over F,

where ω is any constant such that two (n × n)-matrices can be multiplied in O(nω) time.

Algorithm 3.1 computes the representative families required by Proposition 3.6 by iteratively applying Proposition 3.8.
Proposition 3.6 follows from the correctness proof of Algorithm 3.1 in Lemma 3.9 and its running time analysis in
Lemma 3.10.

Lemma 3.9. Algorithm 3.1 is correct.

Proof. We prove by induction that,

(i) in line 9 of Algorithm 3.1, Ŝi is max (r − γi)-representative with respect to w for

Si = {S = H1 ] · · · ] Hi | S ∈ I and H j ∈ H for j ∈ {1, . . . , i}}.

(ii) To this end, we simultaneously show that wi(X) = w(X) for X ∈ Ri.

The lemma then follows since Algorithm 3.1 returns Ŝα in line 10, which has size
(

r
αγ

)
by construction in line 9.

Both (i) and (ii) hold for i = 1 since S1 = R1 = H ∩ I and w(X) = g(w(∅), X) = w1(X) for all X ∈ H by
Definition 3.2. For the induction step, assume that (i) and (ii) hold for i − 1 and observe that

(a) by construction, Ŝi ⊆ Ri ⊆ Si for all i ∈ {1, . . . , k} and

1Fomin et al. [14] require the weight function to be non-negative. Yet their proof does not exploit non-negativity. Moreover, one can always
transform the weight function so that it is non-negative and then transform it back.
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(b) sinceH is a γ-family and every subset of an independent set is independent, for all X = H ] S ∈ Si with H ∈ H
and S ∈ B(H), one has S ∈ Si−1.

We first prove (ii). For each set X added to Ri by Algorithm 3.1 in line 7,

wi(X) = max{g(wi−1(S ),H) | H ∈ H , S ∈ Ŝi−1, X = H ] S }.

Since, by induction, wi−1(X) = w(X) for all X ∈ Ŝi−1 ⊆ Ri−1, we have

wi(X) = max{g(w(S ),H) | H ∈ H , S ∈ Ŝi−1, X = H ] S }.

Since, by induction, Ŝi−1 is max representative for Si−1 with respect to w, since g is non-decreasing in its first argument,
and due to (b), we have

wi(X) = max{g(w(S ),H) | H ∈ H , S ∈ Si−1, X = H ] S }

= max{g(w(S ),H) | H ∈ H , S ∈ B(H), X = H ] S } = w(X),

where the last equality is due to Definition 3.2.
We now show (i). In line 9, using Proposition 3.8, we create a max (r − γi)-representative Ŝi of Ri with respect

to wi, which coincides with w on Ri by (ii). The claim now is that Ŝi is max (r − γi)-representative for Si with respect
to w.

First, let Y ⊆ U with |Y | = r − γi be such that there is an X ∈ Si with Y ] X ∈ I. Since w is an inductive union
maximizing function (cf. Definition 3.2), there is a partition S ] H = X with H ∈ H , S ∈ B(H) such that

w(X) = g(w(S ),H). (1)

Since X ∈ Si, one has S ∈ Si−1 by (b). By induction, Ŝi−1 is max (r− γ(i− 1))-representative for Si−1 with respect to w.
Thus, there is a set S ′ ∈ Ŝi−1 with (Y ] H) ] S ′ ∈ I, and w(S ′) ≥ w(S ). By construction of Ri in line 7, S ′ ] H ∈ Ri.
Since, by line 9, Ŝi is max (r − γi)-representative for Ri with respect to wi, there finally is an X′ ∈ Ŝi with Y ] X′ ∈ I,
and w(X′) = wi(X′) ≥ wi(S ′ ] H) = w(S ′ ] H). Since g is non-decreasing in its first argument and by (1), we get
w(X′) ≥ w(S ′ ] H) ≥ g(w(S ′),H) ≥ g(w(S ),H) = w(X).

Finally, consider Y ⊆ U with |Y | < r − γi such that there is an X ∈ Si with Y ] X ∈ I. Since matroid M has rank r,
there is a superset Y ′ ⊇ Y with |Y ′| = r − γi such that Y ′ ] X ∈ I. Thus, there exists X′ ∈ Ŝi such that Y ′ ] X′ ∈ I, and
w(X′) ≥ w(X) and both properties hold when replacing Y ′ by Y . �

Having shown that Algorithm 3.1 is correct, to prove Proposition 3.6, it remains to show that Algorithm 3.1 runs in the
claimed time.

Lemma 3.10. Algorithm 3.1 runs in time of O(2ωr · t) operations over F and calls to the function g, where ω ≥ 2 is
any constant such that two (n × n)-matrices can be multiplied in O(nω

′

) time for ω′ < ω.

Proof. Without loss of generality, U = {1, . . . , n}. We represent subsets of U as sorted lists. Since the input sets
inH have cardinality γ, we can initially sort each of them in O(γ log γ) time. The sorted union and intersection of a
sorted list of length a and a sorted list of length b can be computed in O(a + b) time [3, Section 4.4]. We thus get a
representation of sets as words of length r over an alphabet of size n. We can thus store and look up the weight of a
set of size at most r in a trie in O(r) time [3, Section 5.3]. Note that we do not have the time to completely initialize
the O(t) size-n arrays in the trie nodes. Instead, we will initialize each array cell of a trie node at the first access: to
keep track of the already initialized array positions, we use a data structure for sparse sets over a fixed universe U that
allows membership tests, insertion, and deletion of elements in constant time [7].

The running time of Algorithm 3.1 is dominated by the α ≤ r iterations of the for-loop starting in line 3. We
analyze the running time of iteration i of this loop. The familyH consists of t sets of size γ. The family Ŝi−1 consists
of

(
r

γ(i−1)

)
sets of size γ(i − 1) by construction and Proposition 3.8. Thus, the for-loop starting in line 6 makes at most

2r · t iterations:

7



(i) H ∩ S = ∅ can be checked in O(γi) ⊆ O(r) time.

(ii) We check H ] S ∈ I by testing |H ] S | ≤ r columns of matrix A of height r for linear independence in time
O(rω

′

) [8].

(iii) The running time of lines 7 and 8 is dominated by looking up and storing weights of sets of size at most r in
O(r) time using a trie, and a call to g.

Thus, the for-loop in line 6 runs in time of O(2rrω
′

· t) operations over F and calls to g. Finally, in line 9, we build a
max (r − γi)-representative of the γi-family Ri. Since |Ri| ≤ 2r · t, by Proposition 3.8, this works in time of

O

( r
γi

)
(γi)ω

′

+

(
r
γi

)ω′−1 · |Ri|

 ⊆ O((2rrω
′

+ 2r(ω′−1)) · 2r · t) ⊆ O((22rrω
′

+ 2ω
′r) · t) ⊆ O(2ω

′rrω
′

· t)

operations over F, which dominates the running time of the for-loop in line 6. Thus, Algorithm 3.1 runs in time of
O
(
r · 2ω

′rrω
′

· t
)
⊆ O(2ωr · t) operations over F and calls to g, �

3.3. Computing intersection representative families

In this section, we generalize Proposition 3.6 from representatives for a single matroid to matroid intersections.

Theorem 3.11. Let {Mi = (U,Ii)}mi=1 be linear matroids of rank r := (α + β)γ ≥ 1, H ⊆ 2U be a γ-family of
size t, and w : B(H)→ R be an inductive union maximizing function (cf. Definition 3.2) generated by w(∅) and the
function g : R ×H → R non-decreasing in the first argument.

Given α ∈ N, a representation Ai of Mi for each i ∈ {1, . . . ,m} over the same field F, the value w(∅), and the
function g, one can compute a max intersection βγ-representative of size at most

(
rm
αγm

)
of the family

S =
{
S = H1 ] · · · ] Hα

∣∣∣∣ S ∈
m⋂

i=1

Ii and H j ∈ H for j ∈ {1, . . . , α}
}

with respect to w in time of O(2ωrm · (t + n)) operations over F and calls to the function g, where ω ≥ 2 is any constant
such that two (n × n)-matrices can be multiplied in O(nω

′

) time for ω′ < ω.

To prove Theorem 3.11, we reduce the m matroid constraints to a single matroid constraint. To this end, we use a
folklore construction sketched by Lawler [21, page 359] in a reduction of the Matroid Intersection to the Matroid
Parity problem. It works at the expense of replacing each universe element by a “block” of m copies that is only
allowed to be completely included in or excluded from an independent set. We then use our Proposition 3.6 to compute
a representative of the family of independent sets that can be obtained as unions of these “blocks”. We now present the
folklore construction and then prove Theorem 3.11.

Lemma 3.12. Let {Mi = (U,Ii)}mi=1 be linear matroids of rank r andH ⊆ 2U ,

U⊕ := {u(1), . . . , u(m) | u ∈ U}, and

f : 2U → 2U⊕ , X 7→ {u(1), . . . , u(m) | u ∈ X}.

Then, for all S , S ′ ⊆ U,

(i) S , S ′ ⇐⇒ f (S ) , f (S ′), that is, f is injective,

(ii) f (S ) ∪ f (S ′) = f (S ∪ S ′),

(iii) S ∩ S ′ = ∅ ⇐⇒ f (S ) ∩ f (S ′) = ∅,

and given (r × n)-representations Ai of Mi for all i ∈ {1, . . . ,m} over the same field F, one can, in time of O(m2 · r ·
n) operations over F, compute a (rm × nm)-representation A⊕ of a matroid M⊕ = (U⊕,I⊕) over F such that
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Algorithm 3.2 for the proof of Theorem 3.11.
Input: α ∈ N, a γ-familyH ⊆ 2U of size t, representations {Ai}

m
i=1 of matroids {Mi = (U,Ii)}mi=1 of rank r := (α+β)γ ≥

1 over the same field F, a function g : R ×H → R non-decreasing in the first argument, and w(∅).
Output: A max intersection βγ-representative of size at most

(
rm
αγm

)
for S = {S = H1] · · · ]Hα | S ∈

⋂m
i=1 Ii and H j ∈

H for j ∈ {1, . . . , α}} w. r. t. to the inductive union maximizing function w generated by w(∅) and g.

1: A⊕ ← representation of the matroid M⊕ = (U⊕,I⊕) created from {Ai}
m
i=1 by Lemma 3.12 over F.

2: H⊕ ← { f (X) | X ∈ H} for the injective function f : 2U → 2U⊕ from Lemma 3.12.
3: Ŝ⊕ ← Algorithm 3.1 on α, γm-familyH⊕, A⊕, w⊕(∅) = w(∅), and g⊕ : R ×H⊕ → R, (k, f (H)) 7→ g(k,H).
4: return {S ⊆ U | f (S ) ∈ Ŝ⊕}.

(iv) for all S ⊆ U, S ∈
m⋂

i=1

Ii ⇐⇒ f (S ) ∈ I⊕.

Proof. We choose M⊕ to be the direct sum of pairwise disjoint copies M′i of Mi:

M⊕ = (U⊕,I⊕) =

m⊕
i=1

M′i , where M′i = (Ui,I
′
i) with

Ui := {u(i) | u ∈ U} and I′i := {{u(i)
1 , . . . , u

(i)
j } | {u1, . . . , u j} ∈ Ii}.

We get a (rm × nm)-representation A⊕ over F of M⊕ in time of O(m2 · r · n) operations over F [26, Exercise 6, p. 132].
Properties (i)–(iii) obviously hold by construction. It remains to prove (iv). Let S = {u1, . . . , u j} ⊆ U and, for

an arbitrary i ∈ {1, . . . ,m}, let S i = f (S ) ∩ Ui. Then, S i = {u(i)
1 , . . . , u

(i)
j } and S ∈ Ii if and only if S i ∈ I

′
i . Thus, if

S ∈
⋂m

i=1 Ii, then S i ∈ I
′
i for all i ∈ {1, . . . ,m} and, hence,

⋃m
i=1 S i = f (S ) ∈ I⊕ by Proposition 2.8 on direct sums.

Conversely, if f (S ) ∈ I⊕, then S i ∈ I
′
i for all i ∈ {1, . . . ,m} and, therefore, S ∈

⋂m
i=1 Ii. �

Theorem 3.11 now follows from the following lemma.

Lemma 3.13. Algorithm 3.2 is correct and runs in time of O(2ωrm · (t + n)) operations over F and calls to g. If A⊕ in
line 1 is given (for example, precomputed), then Algorithm 3.2 runs in time of O(2ωrm · t) operations over F and calls
to g, where ω ≥ 2 is any constant such that two (n × n)-matrices can be multiplied in O(nω

′

) time for ω′ < ω.

Proof. In line 1, from the linear representations {Ai}
m
i=1 of the matroids {Mi}

m
i=1, Algorithm 3.2 computes a (rm × nm)-

representation A⊕ of the matroid M⊕ = (U⊕,I⊕) of rank rm = (α + β)γm from Lemma 3.12 in time of O(m2 ·

r · n) operations over F. In line 2, it computes the γm-family H⊕. By Lemma 3.9, the result of line 3 is a max
βγm-representative Ŝ⊕ of size

(
rm
αγm

)
for

S⊕ := { f (S ) | S ∈ S} = { f (S ) = f (H1) ] · · · ] f (Hα) | f (Hi) ∈ H⊕ and f (S ) ∈ I⊕},

where equality is due to Lemma 3.12(ii) and (iv), with respect to the inductive union maximizing function w⊕ determined
by w⊕(∅) = w(∅) and the non-decreasing in its first argument function g⊕. By Lemma 3.10, line 3 is executed in time of
O(2ωrm · t) operations over F and calls to g⊕. Hence, together with applying the transformation from Lemma 3.12, we
take the time of O(2ωrm · (t + n)) operations over F and calls to g⊕. Herein, one call to g⊕ is one call to g. Also, since
g⊕(k, f (H)) = g(k,H) for all k ∈ R and all f (H) ∈ H⊕, one has w⊕( f (X)) = w(X) for all f (X) ∈ B(H⊕). This allows us
to show that the result returned in line 4,

Ŝ := {S ⊆ U | f (S ) ∈ Ŝ⊕} =
{
H1 ] · · · ] Hα

∣∣∣∣ Hi ∈ H and
α⊎

i=1

f (Hi) ∈ Ŝ⊕
}
,

which has size |Ŝ⊕|, is max βγ-intersection representative of S with respect to w. Note that Ŝ can be constructed in
αγm · |Ŝ⊕| time by simply iterating over the sets in Ŝ⊕, replacing a group of elements u(1), . . . , u(m) by element u.
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To see that Ŝ is max βγ-intersection representative of S with respect to w, consider set Y ⊆ U with |Y | ≤ βγ
and X ∈ S with Y ] X ∈

⋂m
i=1 Ii. Then f (Y) ] f (X) ∈ I⊕ by Lemma 3.12(iii) and (iv). Moreover, f (X) ∈ S⊕. By

Definition 3.1, there is a set X′ ∈ Ŝ⊕ such that f (Y) ] X′ ∈ I⊕, and w⊕(X′) ≥ w⊕( f (X)). By construction of Ŝ, there is
an X′′ ∈ Ŝ with f (X′′) = X′. Note that Y ∩ X′′ = ∅ by Lemma 3.12(iii) since f (Y)∩ f (X′′) = f (Y)∩ X′ = ∅. Moreover,
Y ∪ X′′ ∈

⋂m
i=1 Ii by Lemma 3.12(iv) since f (Y) ] f (X′′) = f (Y) ] X′ ∈ I⊕. Finally, w(X′′) = w⊕( f (X′′)) = w⊕(X′) ≥

w⊕( f (X)) = w(X). �

4. Set packing with multiple matroid constraints

In this section, we apply the results from Section 3 to obtain a fixed-parameter algorithm for the following problem.

Problem 4.1 (Set Packing withMatroid Constraints (SPMC)).
Input: Matroids {(U,Ii)}mi=1, a familyH ⊆ 2U , w : H → R, and α ∈ N.
Task: Find sets H1, . . . ,Hα ∈ H such that

α⊎
i=1

Hi ∈

m⋂
i=1

Ii maximizing
α∑

i=1

w(Hi).

SPMC is a generalization of the Matroid Parity and Matroid Matching problems introduced by Lawler [21] as
generalization of the 2-Matroid Intersection problem. In Matroid Parity and MatroidMatching, there is only one
input matroid and all input sets inH have size exactly two. In Matroid Parity, all input sets are additionally required
to be pairwise disjoint. Both problems are solvable in polynomial-time on linear matroids, but not on general matroids
[28, Section 43.9]. Lee et al. [22] studied approximation algorithms for the variant Matroid HypergraphMatching with
one input matroid and unweighted (but possibly intersecting) input sets. Finally, Marx [25] and Lokshtanov et al. [23]
obtained fixed-parameter tractability results for Matroid γ-Parity, in which only one matroid is given in the input and
the input set family consists of pairwise non-intersecting unweighted sets of size γ. We generalize the fixed-parameter
algorithms of Marx [25] and Lokshtanov et al. [23] to SPMC.

Theorem 4.2. SPMC with sets of size at most γ and m matroids of rank at most r with given representations over a
field F = Fpd is solvable in time of 2O(αγm) · |H|2 · poly(r) + m2n · poly(r, α, γ, p, d) operations over F.

Proof. We will prove the theorem using Algorithm 4.1, which computes weight of an optimal solution to SPMC. The
actual solution can then be retrieved via self-reduction, calling Algorithm 4.1 as most |H| times. However, note that for
the repeated application of Algorithm 4.1, it is enough to compute the matroid representations {A∗i }

m
i=1, {A′i}

m
i=1, and A⊕ in

Algorithm 3.2 called in line 8 once, as they do not depend onH . Thus, we will only once account for the time of their
computation and analyze the running time of |H| calls of Algorithm 4.1 under the assumption that they are precomputed.

First, in lines 1 to 4, Algorithm 4.1 constructs a familyH ′ fromH in which each set has size exactly γ. This step
can be executed in |H|αγ time. In line 6, for each i ∈ {1, . . . ,m} and ri being the rank of Mi = (U,Ii), we compute
a representation A∗i of matroid M∗i = (U∗,I∗i ) of rank ri + |D| = ri + αγ in O((ri + αγ)(n + αγ)) operations over F by
Lemma 2.11. Note that |U∗| = n + |D| = n + αγ and

there are sets H1, . . . ,Hα ∈ H with
α⊎

i=1

Hi ∈

m⋂
i=1

Ii if and only if

there are sets H(1)
1 , . . . ,H(α)

α ∈ H
′ with

α⊎
i=1

H(i)
i ∈

m⋂
i=1

I∗i .

(2)

In line 7, we compute αγ-truncations {A′i}
m
i=1 of the {A∗i }

m
i=1 using Corollary 2.15 in time of

O(m · (n + αγ) · αγ · (r + αγ)) + (r + αγ)4 · (αγ)4 · d2 √p · polylog(r + αγ, p, d)
⊆ mn · poly(r, α, γ, p, d) operations over F
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Algorithm 4.1 for the proof of Theorem 4.2.
Input: Representations {Ai}

m
i=1 of matroids {Mi}

m
i=1 over a field F, a familyH ⊆ 2U of sets of size at most γ, w : H → R,

and α ∈ N.
Output: The weight of an optimal solution to SPMC, if it exists.

1: Create a set D = D1 ] · · · ] Dα of αγ dummy elements with D ∩ U = ∅ and |Di| = γ for i ∈ {1, . . . , α}.
2: for each H ∈ H and i ∈ {1, . . . , α} do
3: H(i) ← H with additional γ − |H| dummy elements chosen arbitrarily from Di.
4: H ′ ← {H(i) | H ∈ H , i ∈ {1, . . . , α}}.
5: for each i ∈ {1, . . . ,m} do
6: A∗i ← linear representation of M∗i := Mi ⊕ (D, 2D).
7: A′i ← truncation of A∗i to rank αγ.
8: Ŝ ← Algorithm 3.2 with α, γ-family H ′, representations {A′i}

m
i=1, w(∅) = 0 and g : R × H ′ → R, (k,H) 7→

k + w(H \ D).
9: if Ŝ = ∅ then return No solution exists.

10: else return w(H \ D) for the only set H ∈ Ŝ.

and obtain an (αγ × (n + αγ))-representation A′i of M′i over F′ := Fp(r+αγ)αγd for each i ∈ {1, . . . ,m}. Note that any
operation over F′ can be executed using poly(r, α, γ) operations over F.

In line 8, we apply Algorithm 3.2 to the linear representations {A′i}
m
i=1 of the matroids {M′i }

m
i=1, all of rank αγ. By

Lemma 3.13, the result will be a max 0-representative Ŝ of size
(
αγm
αγm

)
= 1 of the family

S :=
{
S = H1 ] · · · ] Hα

∣∣∣∣ S ∈
m⋂

i=1

I′i and Hi ∈ H
′ for i ∈ {1, . . . , α}

}
with respect to the inductive union maximizing function determined by w(∅) = 0 and g : R × H ′ → R, (k,H) 7→
k +w(H \D). By Lemma 3.13, this takes time of 2O(αγm) · |H| operations over F′ and calls to g if the A⊕ in Algorithm 3.2
is precomputed. The overall running time of solving SPMC is thus |H| applications of line 8 in 2O(αγm) ·poly(r) · |H|2 op-
erations over F and calls to g, plus m2n · poly(r, α, γ, p, d) operations over F for computing A⊕ from Lemma 3.12, the
{A∗i }

m
i=1, and the {A′i}

m
i=1 once.

We finally prove that line 10 returns the weight of an optimal solution to our input SPMC instance if and only if
that instance has a feasible solution. The weight function on S generated by w(∅) = 0 and g is

wΣ(X) := max
X=H1]···]Hα
H1 ,...,Hα∈H

′

α∑
i=1

w′(Hi), with w′(Hi) := w(Hi \ D). (3)

(≥) Let S ∗ :=
⊎α

i=1 Hi ∈
⋂m

i=1 Ii be an optimal solution to SPMC. One has S :=
⊎α

i=1 H(i)
i ∈

⋂m
i=1 I

∗
i by (2). Since

|S | = αγ, S ∈
⋂m

i=1 I
′
i . Thus, S ∈ S. Since Ŝ is max 0-representative, there is an S ′ ∈ Ŝ with

wΣ(S ′) ≥ wΣ(S ) ≥
α∑

i=1

w′(H(i)
i ) =

α∑
i=1

w(Hi).

(≤) For S ∈ Ŝ, there are H(1)
1 , . . . ,H(α)

α ∈ H
′ such that

⊎α
i=1 H(i)

i ∈
⋂m

i=1 I
′
i and

wΣ(S ) =

α∑
i=1

w′(H(i)
i ) =

α∑
i=1

w(Hi),

which is at most the weight of an optimal solution to SPMC, because the Hi are a feasible solution:
⊎α

i=1 H(i)
i ∈

⋂m
i=1 I

∗
i .

Thus, by (2),
⊎α

i=1 Hi ∈
⋂m

i=1 Ii. �

11



5. Facility location with multiple matroid constraints

Facility location problems are a classical topic studied in operations research [20]: each facility u has an opening
cost cu, serving client v by facility u costs puv, and the task is to decide which facilities to open in order to minimize
the total cost of serving all clients. Fellows and Fernau [12] show that this problem is fixed-parameter tractable when
parameterized by an upper bound on the optimum solution cost, yet W[2]-hard when parameterized by the number
of facilities that may be opened. Krishnaswamy et al. [19] and Swamy [30] study approximation algorithms for
the problem variant where the set of facilities is required to be independent in a single matroid and show several
applications. Kalhan [17] additionally studies capacity constraints on facilities.

We study facility location problems where not all clients have to be served, but where both the set of clients and
the set of facilities are required to be independent in multiple matroids. In this case, the minimization problem is
meaningless: it would be optimal not serve any clients and not open any facilities. Thus, we study the problem of
maximizing income minus facility opening costs.

Problem 5.1 (Uncapacitated facility location with matroid constraints (UFLP-MC)).
Input: A universe U with n := |U |, for each pair u, v ∈ U a profit puv ∈ N obtained when a facility at u serves a

client at v, for each u ∈ U a cost cu ∈ N for opening a facility at u, facility matroids {(Ui, Ai)}ai=1, and client
matroids {(Vi,Ci)}ci=1, where Ui ∪ Vi ⊆ U.

Task: Find two disjoint sets A ]C ⊆ U that maximize the profit

∑
v∈C

max
u∈A

puv −
∑
u∈A

cu such that A ∈
a⋂

i=1

Ai and C ∈
c⋂

i=1

Ci. (4)

By convention, the intersection of no sets is the whole universe. Thus, if a = 0 or c = 0, this is the same as giving
matroids in which any set of facilities or clients is feasible. For UFLP-MC without matroid constraints, Ageev and
Sviridenko [2] showed a 0.828-approximation algorithm and that there is no polynomial-time approximation scheme.

UFLP-MC with multiple matroid constraints can model natural facility location scenarios like “open at most
ki facilities of type i” [10], even if types are not disjoint, moving facilities [30], moving clients, yet can also model
problems in social network analysis [5, Section 3]. It also generalizes fundamental covering problems:

Example 5.2. Using UFLP-MC with a = 1 facility matroid and c = 0 client matroids, one can model the classical
NP-hard Set Cover problem [18] of covering a maximum number of elements of a set V using at most r sets
of a collection H ⊆ 2V . To this end, choose the universe U = V ∪ H , a single facility matroid (H , A1) with
A1 := {H ⊆ H | |H| ≤ r}, cu = 0 for each u ∈ U, and, for each u, v ∈ U,

puv =

1 if u ∈ H such that v ∈ u,
0 otherwise.

From Example 5.2 and the W[2]-hardness of Set Cover [11], it immediately follows that UFLP-MC is W[2]-hard
parameterized by r even for zero costs, binary profits, and a single uniform facility matroid. Hence, when the set of
clients is unconstrained, the problem of optimally placing a small number r of facilities is hard. However, facility
location problems have also been studied with a small number of clients [1] and occur in several plausible scenarios [5].
We use the tools developed in Sections 3 and 4 to analyze the parameterized complexity of UFLP-MC with a small
number of clients.

Theorem 5.3. UFLP-MC is

(i) W[1]-hard parameterized by r for a single client matroid of rank r, even with unit costs, binary profits, and
without facility matroids,

(ii) solvable in 2O(r log r) · n2 time for a single uniform client matroid of rank r and any a single facility matroid given
as an independence oracle,
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(iii) fixed-parameter tractable parameterized by a + c + r, where r is the minimum rank of the client matroids
and representations of all matroids over the same finite field Fpd are given, where p is a prime polynomially
upper-bounded by the input size.

Before proving Theorem 5.3, we put it into context. Theorem 5.3 generalizes and unifies several fixed-parameter
tractability results from the literature. Marx [25] showed that a common independent set of size r in m matroids can
be found in f (r,m) · poly(n) time. Our Theorem 5.3(iii) is a direct generalization of this result. Bonnet et al. [6]
showed that the problem of covering at least p elements of a set V using at most k sets of a given familyH ⊆ 2V is
fixed-parameter tractable parameterized by p. This result also follows from our Theorem 5.3(ii) using Example 5.2 with
an additional uniform client matroid of rank p. Earlier, Marx [24] showed that Partial Vertex Cover (can one cover at
least p edges of a graph by at most k vertices?) is fixed-parameter tractable by p. Our Theorem 5.3(ii) generalizes this
result and, indeed, is based on the color coding approach in Marx’s [24] algorithm.

We now prove Theorem 5.3: (i) is proved in Section 5.1, whereas (ii) and (iii) are proved in Section 5.2.

5.1. W[1]-hardness for general client matroids (proof of Theorem 5.3(i))
To prove Theorem 5.3(i), we exploit that the Clique problem is W[1]-hard parameterized by k [11]:

Problem 5.4 (Clique).
Input: A graph G = (V, E) and integer k ∈ N.
Question: Does G contain a clique on k vertices?

To transfer the W[1]-hardness of Clique parameterized by k to UFLP-MC parameterized by the client matroid rank,
we reduce the problem of finding a clique of size k to UFLP-MC with a client matroid of rank 2k. The reduction is
inspired by the proof that Matroid Parity is generally not polynomial-time solvable when matroids are given using an
independence oracle [28, Section 43.9].

Construction 5.5. Let (G, k) with G = (V, E) be an instance of Clique. We construct an instance of UFLP-MC as
follows. For each vertex u ∈ V, let Du := {u′, u′′} such that Du ∩ V = ∅, let L := {Du | u ∈ V}, and S :=

⋃
u∈V Du. Our

UFLP-MC instance consists of the universe U = V ] S , and, for all u, v ∈ U,

cu =

1, if u ∈ V,
0, otherwise,

puv =

1, if u ∈ V and v ∈ Du,
0, otherwise.

(5)

We do not use a facility matroid. As client matroid, we use the known matroid (S ,IC) [28, Section 43.9] with

IC = {J ⊆ S | |J| ≤ 2k − 1}
∪ {J ⊆ S | |J| = 2k and J is not the union of any k pairs in L}

∪
{
J ⊆ S

∣∣∣∣ A ⊆ V, |A| = k, J =
⊎
u∈A

Du, and G[A] is a clique
}
.

Proof (of Theorem 5.3(i)). Construction 5.5 works in polynomial time and creates an UFLP-MC instance with unit
costs and binary profits as claimed in Theorem 5.3(i). Moreover, the rank of the client matroid is 2k. We now show that
there is a clique of size k in G = (V, E) if and only if there is a solution to the created UFLP-MC instance with profit k.

(⇒) Let A ⊆ V , |A| = k, G[A] be a clique, and C :=
⊎

u∈A Du. Since |C| = 2k, it follows that C ∈ IC . Hence,
A ]C is a feasible solution to UFLP-MC. Since each u ∈ A has cu = 1 and each v ∈ C has puv = 1 for the u ∈ A with
v ∈ Du, the profit of A ]C given by (4) is∑

v∈C

max
u∈A

puv −
∑
u∈A

cu = 2k − k = k.

(⇐) Let A ]C be an inclusion-minimal solution with profit at least k to the created UFLP-MC instance. Since each
facility u ∈ A has cu = 1 and since puv = 1 if and only if v ∈ Du ∩C, the profit of A ]C given by (4) is

−
∑
u∈A

cu +
∑
v∈C

max
u∈A

puv = −|A| +
∑
u∈A

|Du ∩C| ≥ k. (6)
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Hence, if there is an u ∈ A with |Du ∩ C| ≤ 1, then (A \ {u}) ] (C \ Du) is a solution with at least the same profit,
contradicting the minimality of A ]C. Thus, for each u ∈ A, we have Du ⊆ C. Moreover, |C| ≤ 2k since C ∈ IC and
the client matroid (S ,IC) has rank 2k. Combining this with (6), we thus get

2k ≥
∑
u∈A

|Du ∩C| = 2|A| ≥ k + |A|,

which means |A| = k. Thus, C =
⊎

u∈A Du, |C| = 2k, C ∈ IC , and we conclude that G[A] is a clique of size k. �

5.2. Fixed-parameter algorithms for linear client matroids (proof of Theorem 5.3(ii) and (iii))
One major difficulty in solving UFLP-MC is that the profit from opening a facility depends on which facilities are
already open. To name an extreme example: when opening only facility u, it induces cost cu and yields profit from
serving all the clients. However, when some other facility v is already open, then additionally opening u induces cost cu

yet might not yield any profit if all clients are more profitably already served by v. To avoid such interference between
facilities, we reduce UFLP-MC to problem variant with matroid and color constraints (UFLP-MCC).

Problem 5.6 (UFLP-MCC).
Input: A universe U, a coloring col : U → {1, . . . , k + `}, a partition Z1 ] · · · ] Z` = {` + 1, . . . , ` + k}, for each

pair u, v ∈ U a profit puv ∈ N gained when a facility at u serves a client at v, for each u ∈ U a cost cu ∈ N for
opening a facility at u, facility matroids {(Ui, Ai)}ai=1, and client matroids {(Vi,Ci)}ci=1, where Ui ∪ Vi ⊆ U.

Task: Find two sets A ]C ⊆ U such that

(i) for each i ∈ {1, . . . , `}, there is exactly one facility u ∈ A with col(u) = i,

(ii) for each i ∈ {` + 1, . . . , ` + k}, there is exactly one client v ∈ C with col(v) = i,

(iii) A ∈
a⋂

i=1

Ai and C ∈
c⋂

i=1

Ci,

and that maximizes ∑
u∈A

(
−cu +

∑
v∈C∩Z(u)

puv

)
, where Z(u) := {v ∈ U | col(v) ∈ Zcol(u)}. (7)

We call A ]C a feasible solution if it satisfies (i)–(iii), not necessarily maximizing (7). In UFLP-MCC, a facility u of
color i gets profit only from clients in Z(u), that is, from clients with a color in Zi. Moreover, there can be only one
facility of color i and the clients with a color in Zi are only served by facilities of color i. Thus, the contribution of a
facility u to the goal function of UFLP-MCC is independent from the contributions of other facilities, which makes
UFLP-MCC significantly easier than UFLP-MC. We prove the following lemma.

Lemma 5.7. If UFLP-MCC is solvable in t(k + `) time, then UFLP-MC is solvable in 2O(r log r)(t(2r) + n) log n time,
where r is the minimum rank of the client matroids.

To prove Lemma 5.7, we will prove that

(a) any feasible solution to UFLP-MCC is a feasible solution with at least the same profit for UFLP-MC and

(b) for any optimal solution A]C to UFLP-MC, we can sufficiently quickly find a coloring and a partition Z1]· · ·]Z`
such that A ]C is a feasible solution with at least the same profit for UFLP-MCC.

Towards (b), note that we cannot simply try out all partitions and colorings; for example, there are O(rn) colorings—too
many for Lemma 5.7. However, since there is a client matroid of rank r, there is an optimal solution to UFLP-MC such
that |C| = k and |A| = ` for some ` ≤ k ≤ r. Thus, without loss of generality assuming U = {1, . . . , n}, the colorings in a
(n, k + `)-perfect hash family as defined below will contain a coloring such that the elements of A ] C get pairwise
distinct colors:
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Algorithm 5.1 for the proof of Lemma 5.7.
Input: An UFLP-MC instance: universe U = {1, . . . , n}, profits puv ∈ N for each u, v ∈ U, costs cu ∈ N for each u ∈ U,

facility matroids {(Ui, Ai)}ai=1, and client matroids {(Vi,Ci)}ci=1 of minimum rank r, where Ui ∪ Vi ⊆ U.
Output: An optimal solution A ]C to UFLP-MC.

1: for each 1 ≤ ` ≤ k ≤ r do
2: F ← (n, ` + k)-perfect hash family.
3: for each f ∈ F do
4: for each X ⊆ {1, . . . , ` + k} with |X| = ` do
5: bijectively rename colors in f and X so that X = {1, . . . , `}.
6: for each partition Z1 ] · · · ] Z` = {` + 1, . . . , ` + k} do
7: Solve UFLP-MCC with universe U, coloring f , partition Z1 ] · · · ] Z`,

profits (puv)u,v∈U , costs (cu)u∈U , matroids {(Ui, Ai)}ai=1 and {(Vi,Ci)}ci=1.
8: return maximum-profit UFLP-MCC solution found in any iteration.

Definition 5.8 ((n, s)-perfect hash family [11, Definition 5.17]). An (n, s)-perfect hash family is a set F of func-
tions f : {1, . . . , n} → {1, . . . , s} such that, for any S ⊆ {1, . . . , n} with |S | ≤ s, there is a function f ∈ F injective
on S .

Proposition 5.9 ([11, Theorem 5.18]). An (n, s)-perfect hash family of size essO(log s) log n can be computed in essO(log s)n log n time.

In the following, we will prove that Algorithm 5.1 correctly solves UFLP-MC.

Lemma 5.10. Any UFLP-MCC solution A ]C is also an UFLP-MC solution with at least the same profit.

Proof. Let A]C be any UFLP-MCC solution. Obviously, it is also feasible for UFLP-MC. Its profit as an UFLP-MCC
solution is given by (7) and, denoting p̄uv := puv if v ∈ Z(u) and p̄uv := 0 otherwise, is∑

u∈A

(
−cu +

∑
v∈C∩Z(u)

puv

)
=

∑
u∈A

(
−cu +

∑
v∈C

p̄uv

)
= −

∑
u∈A

cu +
∑
v∈C

∑
u∈A

p̄uv.

Since, for each v ∈ C, there is exactly one u ∈ A with v ∈ Z(u), this is

≤ −
∑
u∈A

cu +
∑
v∈C

max
u∈A

puv,

which is exactly the cost of A ]C as a solution to UFLP-MC as given by (4). �

Lemma 5.11. Algorithm 5.1 is correct.

Proof. Let A ]C be an optimal solution to UFLP-MC such that A is of minimum size. We show that Algorithm 5.1
outputs a solution to UFLP-MC of equal profit.

Since one of the client matroids has rank r, one has |A| = ` and |C| = k such that 1 ≤ ` ≤ k ≤ r. Algorithm 5.1 tries
these ` and k in line 1. Thus, the (n, k + `)-perfect hash family F generated in line 2 contains a function col : U →
{1, . . . , k + `} that is bijective restricted to A ]C. Algorithm 5.1 tries this function col in line 3. Since |A| = ` contains
elements of pairwise distinct colors, Algorithm 5.1 in line 4 iterates over the color set X of A and renames all colors
so that X = {1, . . . , `}. We get that A contains exactly one element of each color of X = {1, . . . , `} and that C contains
exactly one element of each color of {` + 1, . . . , ` + k}.

Now, recall that U = {1, . . . , n} and, for each v ∈ C, let m(v) ∈ A be the facility with minimum index that serves v
with maximum profit, that is,

m(v) := min{u ∈ A | puv = max
w∈A

pwv}.

Then, for each u ∈ A, there is a v ∈ C such that m(v) = u: otherwise, we can rewrite the goal function (4) of UFLP-MC
as ∑

v∈C

max
u∈A

puv −
∑
u∈A

cu =
∑
v∈C

pm(v),v −
∑
u∈A

cu,
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and removing u from A would yield a solution to UFLP-MC with at least the same profit but smaller A, contradicting
the minimality of A. Thus, for each i ∈ {1, . . . , `}, the set Zi of colors of the clients v served by a facility m(v) of color i,
that is,

Zi := {col(v) | v ∈ C,m(v) = u, col(u) = i},

is nonempty. Hence, Z1 ] · · · ] Z` = {` + 1, . . . , ` + k} is a partition:

• Equality follows since C contains exactly one element of each color of {` + 1, . . . , ` + k} and m(v) is defined for
each v ∈ C.

• Pairwise disjointness follows since m(v) for each client v ∈ C is unique.

Since Z1 ] · · · ] Z` is a partition, Algorithm 5.1 in line 6 iterates over this partition and A ]C is a feasible solution to
the UFLP-MCC instance in this iteration. We show that its profit as an UFLP-MCC solution, given by (7), is the same
as the profit as an UFLP-MC solution, given by (4). To this end, denote

p̄uv :=

puv if m(v) = u, and
0 otherwise,

and observe that, for u ∈ A and v ∈ C, one has m(v) = u if and only if col(v) ∈ Zcol(u). By choice in (7), this is if and
only if v ∈ C ∩ Z(u). Thus, the cost of A ]C as a solution to UFLP-MC is∑

v∈C

max
u∈A

puv −
∑
u∈A

cu =
∑
v∈C

∑
u∈A

p̄uv −
∑
u∈A

cu =
∑
u∈A

∑
v∈C∩Z(u)

puv −
∑
u∈A

cu,

which is exactly the profit (7) of A ]C as a solution to the UFLP-MCC instance given solved in this iteration. Thus,
in line 8, Algorithm 5.1 will return an UFLP-MCC solution with at least this profit. By Lemma 5.10, this will be an
UFLP-MC solution of at least the same profit. Since A ] C is an optimal UFLP-MC solution, we conclude that the
solution returned by Algorithm 5.1 is also optimal. �

We can now complete the reduction of UFLP-MC to UFLP-MCC.

Proof (of Lemma 5.7). We have shown in Lemma 5.11 that Algorithm 5.1 correctly solves UFLP-MC. It remains to
analyze the running time.

The loop in line 1 makes r ·(r+1)/2 iterations. Observe that `+k ≤ 2r. By Proposition 5.9, the perfect hash family in
line 2 is computable in e`+k ·(`+k)O(log(`+k)) ·n log n time and the loop in line 3 makes e`+k ·(`+k)O(log(`+k)) ·log n iterations.
Line 5 works in O(n) time, whereas line 7 works in t(k + `) time by assumption. There are at most ``+k variants to
chose X ] Z1 ] · · · ] Z`. Thus, the overall running time of the algorithm is 2O(r log r)(t(2r) + n) log n. �

5.2.1. One arbitrary facility matroid and one uniform client matroid
We now prove Theorem 5.3(ii): an algorithm that solves UFLP-MC in 2O(r log r) ·n2 time if there is only one, yet arbitrary
(not necessarily linear) facility matroid and one uniform client matroid of rank r. To this end, we show:

Proposition 5.12. UFLP-MCC is solvable in O(`n2) time if there is one facility matroid given as an independence
oracle and one client matroid that is uniform.

Then, Theorem 5.3(ii) follows from Proposition 5.12 and Lemma 5.7. To present the algorithm for the proof of
Proposition 5.12, we introduce the following notation:

Definition 5.13. For a universe U with coloring col : U → {1, . . . , k + `}, we denote by U(i) := {u ∈ U | col(u) = i}
the elements of color i.
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Algorithm 5.2 for the proof of Proposition 5.12.
Input: An UFLP-MCC instance: a universe U = {1, . . . , n}, profits puv ∈ N for each u, v ∈ U, costs cu ∈ N for

each u ∈ U, a coloring col : U → {1, . . . , k + `}, a facility matroid (U1, A1), a uniform client matroid (V1,C1) of
rank r, where U1 ∪ V1 ⊆ U, and a partition Z1 ] · · · ] Z` = {` + 1, . . . , ` + k}.

Output: An optimal solution A ]C to UFLP-MCC.

1: if k > r then return No solution exists.
2: if {` + 1, . . . , ` + k} * {col(v) | v ∈ V1} then return No solution exists.
3: for each u ∈ U1 do
4: F(u)←

{
arg max
v∈V1∩U( j)

puv

∣∣∣∣ j ∈ Zcol(u)

}
.

5: w(u)← −cu +
∑

v∈F(u) puv.
6: Compute A ∈ A1 maximizing

∑
u∈A w(u) and containing exactly one element of each color in {1, . . . , `}.

7: if A not found then return No solution exists.
8: C ←

⋃
u∈A F(u).

9: return A ]C.

To prove Proposition 5.12, we use Algorithm 5.2, which solves UFLP-MCC as follows. In line 4, for each facility u,
it computes a set F(u) containing of each color in Zcol(u) exactly one client v ∈ V1 that maximizes puv. The intuition
is that if facility u will be part of a solution, then the clients F(u) will follow u into the solution. In line 5, it assigns
to each facility u a weight w(u), which is the profit gained from serving the clients in F(u) by u minus the cost for
opening facility u. Finally, in line 6, it computes a maximum-weight set A ∈ A1 containing exactly one facility of
each color {1, . . . , `} and chooses C :=

⋃
u∈A F(u). The crucial point herein is that the set A can be computed as the

maximum-weight common independent set of size ` of two matroids, which can be done in polynomial time [28,
Sections 41.3 and 41.3a]. In the following, we prove the correctness and the running time of Algorithm 5.2.

Lemma 5.14. Algorithm 5.2 is correct.

Proof. First, assume that Algorithm 5.2 returns some A ] C in line 9. We show that A ] C is a feasible solution to
the input UFLP-MCC instance. By construction of A in line 6, A ∈ A1 and contains exactly one element of each
color {1, . . . , `}. Thus, Problem 5.6(i) is satisfied. Since Z1 ] · · · ] Z` is a partition of {` + 1, . . . , ` + k} and line 2
has been passed, C =

⋃
u∈A F(u) for the sets F(u) ⊆ V1 computed in line 4 contains exactly one element of each

color {` + 1, . . . , ` + k} and (ii) is satisfied. Thus, C ⊆ V1 and |C| = k. Moreover, k ≤ r since line 1 has been passed.
Thus, since (V1,C1) is a uniform matroid of rank r, it follows that C ∈ C1 and (iii) is satisfied. We conclude that
A ]C is a feasible solution.

Now assume that there is an optimal solution A∗]C∗ to UFLP-MCC. We show that Algorithm 5.2 returns a solution
with the same profit. First, since C∗ contains exactly one vertex of each color in {` + 1, . . . , ` + k} by Problem 5.6(ii),
we get |C∗| = k. Second, since C∗ ∈ C1 by (iii), we get C∗ ⊆ V1 and k = |C∗| ≤ r. Thus, the tests in lines 1 and 2 pass.
Thus, line 6 of Algorithm 5.2 computes a set A ∈ A1 containing exactly one element of each color {1, . . . , `} (by (i),
A∗ witnesses the existence of such a set), a corresponding set C =

⋃
u∈A F(u) in line 8, and finally returns A ] C in

line 9, which we already proved to be a feasible solution for UFLP-MCC. It remains to compare the profit of A ]C to
that of A∗ ]C∗. To this end, the goal function (7) for A∗ ]C∗ can be rewritten as∑

u∈A∗
w′(u) for w′(u) := −cu +

∑
v∈C∗∩Z(u)

puv.

In comparison, consider the weight w(u) assigned to each u ∈ A∗ as in line 5 of Algorithm 5.2. Since, for each u ∈ A
with col(u) = i,

w(u) = −cu +
∑

v∈F(u)

puv = −cu +
∑
j∈Zi

max
v∈V1∩U( j)

puv,

one has w(u) ≥ w′(u). Since A computed in line 6 maximizes
∑

u∈A w(u),∑
u∈A∗

w′(u) ≤
∑
u∈A

w(u) =
∑
u∈A

(
−cu +

∑
v∈F(u)

puv

)
=

∑
u∈A

(
−cu +

∑
v∈C∩Z(u)

puv

)
,
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which is exactly the profit of solution A ]C to UFLP-MCC. �

Having shown the correctness of Algorithm 5.2, we now analyze its running time.

Lemma 5.15. Algorithm 5.2 can be run in O(`n2) time if the matroid (U1, A1) is given as an independence oracle.

Proof. Lines 1 to 5, 8, and 9 are easy to implement in O(n2) time. We show how to execute line 6 efficiently. To
this end, consider the partition matroid (U′1, B) in which a subset of U1 is independent if it contains at most one
element of each color {1, . . . , `} and no elements of other colors. Line 6 is then computing a set A of maximum weight
and cardinality ` that is independent in both matroids (U1, A1) and (U1, B). This can be done in O(`n2) time [28,
Sections 41.3 and 41.3a]. �

Lemmas 5.7, 5.14 and 5.15 together finish the proof of Theorem 5.3(ii).

5.2.2. Facility and client matroids representable over the same field
In this section, we prove Theorem 5.3(iii): UFLP-MC is fixed-parameter tractable parameterized by the number of
matroids and the minimum rank over all client matroids if all matroids are representable over the same field. To this
end, we prove the following, which, together with Lemma 5.7, yields Theorem 5.3(iii).

Proposition 5.16. An optimal solution to an UFLP-MCC instance I can be found in f (a + c + k + `) · poly(|I|) time
if representations of the a facility matroids and c client matroids over the same field Fpd are given for some prime p
polynomially upper-bounded by |I|.

The algorithm for Proposition 5.16 is more involved than Algorithm 5.2, which breaks in the presence of client matroids,
even a single one: we cannot guarantee that the sets F(u) chosen in line 4 of Algorithm 5.2 are independent in the client
matroids or that their union will be. Ideally, one would we able to choose from all possible subsets F(u) ⊆ Z(u) of
clients that could be served by u, yet there are too many. Here the max intersection representative families that we
construct in Section 3.3 come into play: using Theorem 3.11, we compute a family F̂ (u) so that, if there is any set of
clients that can be served by u and that is independent in all client matroids together with the clients served by other
facilities, then F̂ (u) contains at least one such subset yielding at least the same profit. Using Theorem 4.2, we can then
compute disjoint unions of these sets maximizing profit. To describe the algorithm, we introduce some notation.

Definition 5.17. For a universe U with coloring col : U → {1, . . . , k + `} and U(i) as in Definition 5.13, we denote by

UA :=
⋃̀
i=1

U(i) is the set of facilities, and

UC :=
`+k⋃

i=`+1

U(i) is the set of clients.

Algorithm 5.3 now solves UFLP-MCC as follows. In line 1, it constructs a multicolored matroid MP that will ensure
that any independent set of k facilities and ` clients fulfills Problem 5.6(i) and (ii). In line 2, it computes a familyM
of matroids that contains MP and all facility and client matroids, which are extended so that a set A ] C ⊆ U is
independent in all of them if and only if A is independent in all facility matroids and C is independent in all client
matroids. Now, if one of the matroids inM has rank less than k + `, then there is no common independent set of
` facilities and k clients, which is checked in line 3. The truncation in line 4 thus results in each matroid inM having
rank exactly k + `, which is needed to apply Theorem 3.11 in line 6. In line 6, we construct for each u ∈ UA with
col(u) = i a max intersection (k + ` − |Zi|)-representative F̂ (u) for the family F (u) of all sets of clients that could
potentially be served by u in a solution. Afterwards, in line 8, we construct a family of sets, each consisting of one
facility u ∈ UA and a potential client set from F̂ (u). Finally, in line 9, we will use Theorem 4.2 to combine ` of such
sets into a set that is independent in all matroids inM and yields maximum profit. To prove Proposition 5.16, we now
show that Algorithm 5.3 is correct and analyze its running time.

Lemma 5.18. Any solution output by Algorithm 5.3 is feasible for UFLP-MCC.
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Algorithm 5.3 for the proof of Proposition 5.16.
Input: An UFLP-MCC instance: universe U = {1, . . . , n}, partition Z1]· · ·]Z` = {`+1, . . . , `+k}, coloring col : U →

{1, . . . , k + `}, profits puv ∈ N for each u, v ∈ U, costs cu ∈ N for each u ∈ U, facility matroidsA = {(Ui, Ai)}ai=1,
client matroids C = {(Vi,Ci)}ci=1, all given as representations over the same finite field, where Ui,Vi ⊆ U.

Output: An optimal solution A ]C to UFLP-MCC.

1: MP ← (U, {I ⊆ U | I has at most one element of each color in {1, . . . , k + `}).
2: M← {MP} ∪ {M ∨ (UC , 2UC ) | M ∈ A} ∪ {M ∨ (UA, 2UA ) | M ∈ C}.
3: if any matroid inM has rank less than k + ` then return No solution exists.
4: Truncate all matroids inM to rank k + ` (using Corollary 2.15).
5: for each u ∈ UA and i := col(u) do
6: F̂ (u)← max intersection (k + ` − |Zi|)-representative for the family

F (u) := {I ⊆ Z(u) | I is independent in each ofM and |I| = |Zi|}

with respect to weights wu : 2U → N, I 7→
∑

v∈I puv (via Theorem 3.11).
7: F̂ [u]← {X ∪ {u} | X ∈ F̂ (u)}.
8: F̂ ←

⋃
u∈UA
F̂ [u].

9: S 1, . . . , S ` ← solution to SPMC with matroidsM, family F̂ , and weights w : F̂ → Z, X 7→ wu(X \ {u}) − cu,
where {u} = X ∩ UA (via Theorem 4.2).

10: if not found then return No solution exists.
11: A← UA ∩ (S 1 ∪ · · · ∪ S `).
12: C ← UC ∩ (S 1 ∪ · · · ∪ S `).
13: return A ]C.

Proof. If Algorithm 5.3 outputs a solution in line 13, then, in line 9, it founds sets S 1, . . . , S ` ∈ F̂ such that
S = S 1 ] · · · ] S ` is independent in all matroidsM. We show that A ]C for A = S ∩UA and C = S ∩UC is a feasible
solution for UFLP-MCC, that is, it satisfies properties Problem 5.6(i)–(iii).

(i) and (ii): Observe that each set in F̂ (constructed in line 8) contains exactly one facility u ∈ UA and |Zi| elements
from UC for i = col(u). Thus,

|S | =
∑̀
i=1

|S i| = ` +
∑̀
i=1

|Zi| = ` + k

since Z1]· · ·]Z` = {`+ 1, . . . , `+ k}. Since S is independent in the multicolored matroid MP, it follows that S contains
exactly one facility and exactly one client of each color. Since A = S ∩ UA and C = S ∩ UC , (i) and (ii) hold.

(iii): Since A is independent in all matroids ofM, it is independent in all matroids of {M ∨ (UC , 2UC ) | M ∈ A}.
Since A ⊆ UA and thus A ∩ UC = ∅, it follows that A is independent in all matroids inA. Analogously, it follows that
C is independent in all matroids in C. �

Lemma 5.19. Given a feasible UFLP-MCC instance, Algorithm 5.3 outputs a solution of maximum profit.

Proof. Let S = A ] C be an optimal solution to UFLP-MCC. We show that Algorithm 5.3 outputs a solution of
UFLP-MCC with the same profit.

Since S contains exactly one facility of each color in {1, . . . , `} by Problem 5.6(i) and exactly one client of each
color in {` + 1, . . . , ` + k} by (ii), it is independent in the colorful matroid MP constructed in line 1. Moreover, by
(iii), C is independent in all matroids in C and trivially in (UC , 2UC ). Similarly, A is independent in all matroids inA
and (UA, 2UA ). Thus, by Proposition 2.8 about matroid unions, A ] C is independent in all matroids in the set M
constructed in line 2. Since |A]C| = k + `, it follows that each matroid inM has rank at least k + ` and line 3 is passed.
It follows that after line 4, all matroids inM have rank exactly k + `.

Now, consider an arbitrary facility u ∈ A and i := col(u). For the set Z(u) in (7) and the set F (u) constructed in
line 6, one has Cu := C ∩ Z(u) ∈ F (u) and

wu(Cu) =
∑
v∈Cu

puv.
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Moreover, one has |A ]C| = k + `, |Cu| = |Zi|, and

A ]C = A ]
⊎
w∈A

Cw = (A ]
⊎

w∈A\{u}

Cw) ]Cu.

Since F̂ (u) is max intersection (k + ` − |Zi|)-representative with respect to wu, by Definition 3.1, there is C′u ∈ F̂ (u)
with wu(C′u) ≥ wu(Cu) and such that

A ]C′ = (A ]
⊎

w∈A\{u}

Cw) ]C′u

is independent in all matroids ofM. Consequently, {u} ]C′u ∈ F̂ in line 8 and

A ]C′′ =
⊎
u∈A

({u} ]C′u)

is a feasible solution to the SPMC instance in line 9. Thus, Algorithm 5.3 in line 9 finds an optimal SPMC solu-
tion S 1, . . . , S ` ∈ F̂ for the weights w : F̂ → Z, X 7→ wu(X \ {u}) − cu, where {u} = X ∩ UA. It returns A∗ ] C∗ for
A∗ = UA ∩ (S 1 ] · · · ] S `) and C∗ = UC ∩ (S 1 ] · · · ] S `) in line 13, which is a feasible solution for UFLP-MCC by
Lemma 5.18. Finally, since each such set S i ∈ F̂ consists of one facility u ∈ UA and |Zcol(u)| elements of Z(u) with
pairwise distinct colors, the profit of A∗ ]C∗ as a solution to UFLP-MCC given by (7) is∑

u∈A∗
(−cu +

∑
v∈C∗∩Z(u)

puv) =
∑̀
j=1

w(S j) ≥
∑
u∈A

w({u} ]C′u)

=
∑
u∈A

(−cu + wu(C′u)) ≥
∑
u∈A

(−cu + wu(Cu)) =
∑
u∈A

(−cu +
∑
v∈Cu

puv),

which is exactly the profit of the optimal solution A ]C. �

Lemma 5.20. Given representations of all matroids over the same field F, where F = Fpd such that p is a prime
polynomially upper-bounded in the input size, Algorithm 5.3 can be executed in 2O(`k(a+c)) · poly(x) time, where a is the
number of facility matroids, c is the number of client matroids, k + ` is the number of colors, and x is the input size.

Proof. First, we compute a ((k + `) × n)-representation B = (bi j) of the multicolored matroid MP in line 1 of
Algorithm 5.3 over F in O(nk) time: bi j = 1 if element j ∈ U has color i, and bi j = 0 otherwise. By Lemma 2.11, we
can compute the setM of matroids and their representations over F in line 2 in time of a polynomial number of field
operations over F.

Due to line 3, all matroids inM have rank at least k + `. In line 4, we use Corollary 2.15 to compute (k + `)-
truncations of all matroids inM over a field extension F′ ⊇ F, in a polynomial number of field operations over F.
Herein, F′ = Fpd′ with d′ = (k + `) · rd ∈ poly(n + d) since ` ≤ k ≤ n and r is the maximum rank of the input matroids.

Let m = |M| = a+c+1. Using Theorem 3.11 with γ = 1,H := {{v} | v ∈ F (u)}, and weight function wu : 2U → N to
implement line 6, we can execute the for-loop starting at line 5 in time of 2O((k+`)·m) ·n2 operations over F′: sinceH is a 1-
family and, thus, the partition of any subset of U into sets ofH is unique, the function wu is a inductive union maximizing
function generated by wu(∅) = 0 and the constant-time computable function g : N × H → N, (k, {v}) 7→ k + puv (cf.
Example 3.3).

In line 7, for each u ∈ UA, it holds that |F̂ [u]| ≤ |F̂ (u)| ≤
(

(k+`)m
km

)
≤ 2(k+`)m by Theorem 3.11. Thus, in line 8, we

have |F̂ | ≤ n2(k+`)m. Moreover, each set in F̂ has size at most k + 1. Therefore, by Theorem 4.2, line 9 can be executed
in time of 2O(`(k+1)m) · n · poly(p, d′) operations over F′.

Since we initially get the representations of the input matroids over the field Fpd with pd elements, we need at
least d log p bits to encode an element of the field. Thus, d log p is less than the input size. Therefore, d and d′ are
polynomially bounded by the input size. Since each element of the field Fpd′ can be encoded using d′ log p bits, each
field operation over F′ (and therefore over F) can be executed in poly(d′ log p) time, which is polynomial in the input
size. Thus, Algorithm 5.3 can be executed in 2O(`k(a+c)) · poly(x) time. �

Proposition 5.16 now follows from Lemmas 5.18 to 5.20. Finally, Theorem 5.3(iii) follows from Proposition 5.16
and Lemma 5.7.
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6. Conclusion

The complexity of UFLP-MC seems to be determined by the client matroids: it is fixed-parameter tractable parameter-
ized by the minimum rank of the client matroids in case when the facility matroid is arbitrary and the client matroid is
uniform, or when all matroids are linear. The problem becomes W[1]-hard for general client matroids, even without
facility matroids. It would be interesting to settle the complexity of UFLP-MC with one arbitrary facility matroid
parameterized by the rank of a single linear client matroid.

We point out that the algorithms in Theorem 5.3(ii) and (iii) are easy to implement: the construction of perfect
hash families using Proposition 5.9 can be replaced by coloring the universe uniformly at random with k + ` colors
[4] and the truncation of matroids using Corollary 2.15, involving large field extensions and generation of irreducible
polynomials, can be replaced by a very simple randomized algorithm that does not enlarge fields [25, Proposition 3.7].
Doing so, when aiming for an error probability of at most ε ∈ (0, 1), the asymptotic running time of our algorithms
increases by a factor ln(1/ε).

For future research, we point out that our algorithm for Theorem 5.3(ii) works in polynomial space, whereas
Theorem 5.3(iii) requires exponential space due to Theorems 3.11 and 4.2. It is interesting whether this is avoidable.
Moreover, given that approximation algorithms are known for UFLP without matroid constraints [2], for the minimiza-
tion variant of UFLP with a single facility matroid [19, 30], as well as for other optimization problems under matroid
constraints [9, 13, 22], it is canonical to study approximation algorithms for UFLP-MC.
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