Nordhaus-Gaddum type inequality for the fractional matching number of a graph Ting Yang, Xiying Yuan* Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China ## Abstract The fractional matching number of a graph G, written as $\alpha'(G)$, is the maximum size of a fractional matching of G. The following sharp lower bounds for a graph G of order n are proved, and all extremal graphs are characterized in this paper. - (1) $\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n}{2}$ for $n \ge 2$. - (2) If G and \overline{G} are non-empty, then for $n \geq 28$, $\alpha'(G) + \alpha'(\overline{G}) \geq \frac{n+1}{2}$. - (3) If G and \overline{G} have no isolated vertices, then for $n \geq 28$, $\alpha'(G) + \alpha'(\overline{G}) \geq \frac{n+4}{2}$. Keywords: Nordhaus-Gaddum type inequality, Fractional matching number, Fractional Berge's theorem #### 1. Introduction Throughout this paper, all graphs are simple, undirected and finite. Undefined terminologies and notations can be found in [2]. Let G = (V(G), E(G)) be a graph and \overline{G} be its complement. n will always denote the number of vertices of a given graph G. For a vertex $v \in V(G)$, its degree $d_G(v)$ is the number of edges incident to it in G, its neighborhood, denoted by N(v), is the set of vertices, which are adjacent to v. An edge set M of G is called a matching if any two edges in M have no common vertices. The matching number of a graph G, written $\alpha(G)$, is the number of edges in a maximum matching. As in [13], a fractional matching of a graph G is a function $f: E(G) \longrightarrow [0,1]$ such that $f(v) \leq 1$ for each vertex $v \in V(G)$, where f(v) is the sum of f(e) of edges incident to v. The fractional matching number of G, written $\alpha'(G)$, is the maximum value of f(G) over all fractional matchings, where f(G) denotes the sum of f(e) of all edges in G. A fractional perfect matching of a graph G is a fractional matching f with $f(G) = \alpha'(G) = \frac{n}{2}$. Obviously, fractional matching is a generalization of matching. Choi et al. [4] proved the difference and ratio of the fractional matching number and the matching number of graphs and characterized all infinite extremal family of graphs. ^{*}This work was supported by the National Nature Science Foundation of China (Nos. 11871040). ^{*}Corresponding author. Email: xiyingyuan@shu.edu.cn (Xiying Yuan). Email address: yangting_2019@shu.edu.cn (Ting Yang) Nordhaus and Gaddum [11] considered lower and upper bounds on the sum and the product of chromatic number $\chi(G)$ of a graph G and its complement \overline{G} . They showed that $$2\sqrt{n} \le \chi(G) + \chi(\overline{G}) \le n+1.$$ Since then, any bound on the sum or the product of an invariant in a graph G and the same invariant in its complement \overline{G} is called a Nordhaus-Gaddum type inequality. The Nordhaus-Gaddum type inequality of various graph parameters has attracted much attention (see [5][6][7][8][9][12][14]). Anouchiche and Hansen [1] wrote a stimulating survey on this topic, and we refer the reader to that article for additional information. Chartrand and Schuster [3] proved Nordhaus-Gaddum type result for the matching number of a graph. They showed that $\alpha(G) + \alpha(\overline{G}) \geq \lfloor \frac{n}{2} \rfloor$. Laskar and Auerbach [7] improved the bound by considering that G and \overline{G} contain no isolated vertices. They showed that $\alpha(G) + \alpha(\overline{G}) \geq \lfloor \frac{n}{2} \rfloor + 2$. Later, Lin et al. [10] characterized all extremal graphs which attain the lower bounds of the results of Chartrand et al. and Laskar et al.. Motivated by them, we consider Nordhaus-Gaddum type inequality for the fractional matching number of a graph. First we prove some auxiliary results of fractional matching, which are selfcontained. Then we establish lower bounds on the sum of fractional matching number of a graph G and its complement (see Theorem 4.3 and Theorem 4.6). Moreover, we show those bounds are sharp. ## 2. Auxiliary results of fractional matching Based on an optimal fractional matching of graph G, we present a good partition of V(G). We further characterize some properties of this partition. **Lemma 2.1.** ([13]) For any graph G, $2\alpha'(G)$ is an integer. Moreover, there is a fractional matching f for which $$f(G) = \alpha'(G)$$ such that $f(e) \in \{0, \frac{1}{2}, 1\}$ for every edge e of G. An f is called an optimal fractional matching of graph G in this paper, if we have (1) $f(G) = \alpha'(G)$. - (2) $f(e) \in \{0, \frac{1}{2}, 1\}$ for every edge e. - (3) f has the greatest number of edges e with f(e) = 1. In this paper, for a graph G, given a fractional matching f, an unweighted vertex v is a vertex with f(v) = 0. A full vertex v is a vertex with f(vw) = 1 for some edge vw and we may call vertex w is the full neighbour of v. An i-edge e is an edge with f(e) = i. $\frac{1}{2}$ -cycle in a graph G is an odd cycle induced by $\frac{1}{2}$ -edges in G. **Lemma 2.2.** Let f be an optimal fractional matching of graph G. Then we have the following: - (1) ([4]) The maximal subgraph induced by the $\frac{1}{2}$ -edges is the union of odd cycles. - (2) ([4]) The set of the unweighted vertices is an independent set of G. Furthermore, every unweighted vertex is adjacent only to a full vertex. - (3) No $\frac{1}{2}$ -cycle has an unweighted vertex as a neighbour. **Proof** By (2), every unweighted vertex is adjacent only to a full vertex, while every vertex on $\frac{1}{2}$ -cycle is not a full vertex, then no $\frac{1}{2}$ -cycle has an unweighted vertex as a neighbour. **Lemma 2.3.** ([13]) Suppose that f is a fractional matching of graph G. Then f is a fractional perfect matching if and only if f(v) = 1 for every vertex $v \in V(G)$. **Lemma 2.4.** For any graph G, we have a partition $V(G) = V_1 \dot{\cup} V_2$ with $|V_1| = 2\alpha'(G)$, and $G[V_1]$ contains a fractional perfect matching and V_2 is empty or an independent set. **Proof** Suppose f is an optimal fractional matching of G. If $\alpha'(G) = \frac{n}{2}$, we take $V_1 = V(G)$. If $\alpha'(G) < \frac{n}{2}$, set $V_1 = \{v \in V(G) | f(v) > 0\}$ and $V_2 = V(G) \setminus V_1$. We will show that f(v) = 1 for each vertex v in V_1 . Suppose to the contrary that there exists a vertex $v_0 \in V_1$ with $0 < f(v_0) < 1$, i.e., $f(v_0) = \frac{1}{2}$, say $f(v_0v_1) = \frac{1}{2}$ for some vertex $v_1 \in V_1$. By Lemma 2.2 (1), v_0v_1 lies in a $\frac{1}{2}$ -cycle, then there exists a vertex $v_t(\neq v_1)$ such that $f(v_0v_t) = \frac{1}{2}$. Thus $f(v_0) = 1$, which is a contradiction. Thus $G[V_1]$ contains a fractional perfect matching by Lemma 2.3. Since V_2 is a set of the unweighted vertices, V_2 is an independent set by Lemma 2.2 (2). Furthermore, we have $\alpha'(G) = \alpha'(G[V_1]) = \frac{|V_1|}{2}$. For a graph G with $\alpha'(G) = t$, we write $V(G) = V_1 \dot{\cup} V_2$ according to the results of Lemma 2.4, and let s be the maximum number of independent edges in $[V_1, V_2]$. Now we will further decompose $V_1 = V_{11} \dot{\cup} V_{12}$ and $V_2 = V_{21} \dot{\cup} V_{22}$ such that $[V_{11}, V_{21}]$ contains exactly s independent edges. Obviously, $|V_{11}| = |V_{21}| = s$ holds. We call $V(G) = (V_{11} \cup V_{12}) \cup (V_{21} \cup V_{22})$ a good partition of G in this paper (see Figure 1). **Lemma 2.5.** Let $V(G) = (V_{11} \cup V_{12}) \cup (V_{21} \cup V_{22})$ be a good partition of G with $|V_{11}| = s$ and f be the corresponding optimal fractional matching of G. - (1) If f(uv) = 1 for some edge uv in G, then there is no vertex in $V_2 \cap N(u) \cap N(v)$. - (2) If e is an edge in $G[V_{11}]$, then f(e) = 0. - (3) Each vertex in V_{11} is a full vertex. **Proof** (1) Suppose there exists a vertex $w \in V_2 \cap N(u) \cap N(v)$. Since w is an unweighted vertex, we have f(uw) = f(vw) = 0. Now set $f^*(uw) = f^*(vw) = f^*(uv) = \frac{1}{2}$ and other assignments remain unchanged. Then $f^*(G) = \alpha'(G) + \frac{1}{2}$, which is a contradiction. (2) Suppose uv is an edge in $G[V_{11}]$ with f(uv) = a > 0. Let ux and vy be two independent edges in $[V_{11}, V_{21}]$. Now set $f^*(ux) = f^*(vy) = 1$ and $f^*(uz) = f^*(vw) = 0$ Figure 1: A good partition of graph G for any $z \in N(u) \setminus \{x\}$ and $w \in N(v) \setminus \{y\}$ and other assignments remain unchanged. Then $f^*(G) - f(G) \ge a$, which is a contradiction to the choice of f. (3) Suppose $u \in V_{11}$ is not a full vertex. Then there exists a vertex v such that $f(uv) = \frac{1}{2}$. Furthermore, uv lies in a $\frac{1}{2}$ -cycle by Lemma 2.2 (1). While u has a neighbour in V_{21} , which contradicts to Lemma 2.2 (3). From Lemma 2.5 (3), we know that each vertex in V_{11} is a full vertex. Denote by X the set of all full neighbours of vertices in V_{11} , and then $X \subseteq V_{12}$ by Lemma 2.5 (2). It is obvious that $|X| = |V_{11}| = s$. Furthermore, we have the following results. **Lemma 2.6.** (1) If $|X| = s \ge 2$, then X is an independent set of G. (2) There is no edge between V_2 and X in G. **Proof** (1) Suppose there exist two vertices $u, v \in X$ such that $uv \in E(G)$ and f(gu) = f(hv) = 1 for vertices g, h in V_{11} . Let gw and hy be two independent edges in $[V_{11}, V_{21}]$. Now set $f^*(gu) = f^*(hv) = 0$ and $f^*(uv) = f^*(gw) = f^*(hy) = 1$ and other assignments remain unchanged. Then $f^*(G) = \alpha'(G) + 1$, which is a contradiction. (2) Suppose to the contrary that there exists an edge vx with $v \in X$ and $x \in V_{21}$. Then there exists a vertex $u \in V_{11}$ such that $uv \in E(G)$ and f(uv) = 1. We have $ux \notin E(G)$ in virtue of Lemma 2.5 (1). Then there exists a vertex say $y \in V_{21}$ such that uy is one of the independent edges in $[V_{11}, V_{21}]$. Now we may modify f to f^* . Let $f^*(uv) = 0$, $f^*(vx) = f^*(uy) = 1$ and other assignments remain unchanged. Then $f^*(G) = \alpha'(G) + 1$, which is a contradiction. It is obvious that there is no edge between ## 3. Graphs with small fractional matching number In virtue of the fractional Berge's theorem, we will characterize some graphs with small fractional matching number in this section. **Lemma 3.1.** ([13]) For any graph G of order n, we have $$\alpha'(G) = \frac{1}{2} \left(n - \max_{S \subseteq V(G)} \left\{ i \left(G - S \right) - |S| \right\} \right),$$ where i(G-S) denotes the number of isolated vertices of G-S. By the fractional Berge's theorem, we immediately have the following results. **Lemma 3.2.** (1) For a graph G of order n, $\alpha'(G) = 1$ if and only if $G \cong K_{1,k} \cup (n - 1 - k)K_1$, where $k \ge 1$. (2) For a graph G of order n, $\alpha'(G) = \frac{3}{2}$ if and only if $G \cong C_3 \cup (n-3)K_1$. Let $K_2(p,q;\ell)(p \geq q)$ be the graph obtained by attaching p pendent edges at one vertex of K_2 called uv, q pendent edges at the other vertex of K_2 and having ℓ vertices in $N(u) \cap N(v)$. **Lemma 3.3.** For a graph G of order n, $\alpha'(G) = 2$ if and only if one of the following situations occurs: - (1) $2K_2 \cup (n-4)K_1 \subseteq G \subseteq K_4 \cup (n-4)K_1$. - (2) $2K_2 \cup (n-4)K_1 \subseteq G \subseteq K_2(0,0;n-2)$. **Proof** By considering the fact that if $G_1 \subseteq G_2$, then $\alpha'(G_1) \le \alpha'(G_2)$ and $\alpha'(K_4 \cup (n-4)K_1) = \alpha'(K_2(0,0;n-2)) = \alpha'(2K_2 \cup (n-4)K_1) = 2$, the sufficiency part is correct. To show the necessity part, by Lemma 3.1, suppose $S \subseteq V(G)$ such that n-4 = i(G-S) - |S|. Since $i(G-S) \le n - |S|$, it follows that $|S| \le 2$. If |S| = 0, then i(G) = n - 4. $\alpha'(G) = 2$ implies G contains two independent edges. Thus we have $2K_2 \cup (n-4)K_1 \subseteq G \subseteq K_4 \cup (n-4)K_1$. If |S| = 1, then i(G - S) = n - 3, and G - S contains a subgraph $F = K_2$. $\alpha'(G) = 2$ implies that there is an edge between S and $(V(G) \setminus \{S \cup V(F)\})$. Thus $2K_2 \cup (n - 4)K_1$ is a subgraph of G. Since there are at most n - 3 edges in $[S, V(G) \setminus \{S \cup V(F)\}]$ and there are at most two edges in [S, V(F)], G is a subgraph of $K_2(n - 3, 0; 1)$. Thus $2K_2 \cup (n - 4)K_1 \subseteq G \subseteq K_2(n - 3, 0; 1)$. If |S| = 2, then i(G - S) = n - 2. $\alpha'(G) = 2$ implies G contains two independent edges in $[S, V(G) \setminus S]$. Thus we have $2K_2 \cup (n-4)K_1 \subseteq G$. Since there are at most 2(n-2) edges in $[S, V(G) \setminus S]$ and there is at most one edge in S, G is a subgraph of $K_2(0,0;n-2)$. Thus $2K_2 \cup (n-4)K_1 \subseteq G \subseteq K_2(0,0;n-2)$. Noting that $K_2(n-3,0;1) \subseteq K_2(0,0;n-2)$, we have $2K_2 \cup (n-4)K_1 \subseteq G \subseteq K_2(0,0;n-2)$. \square **Lemma 3.4.** Let H be the graph of order n obtained by attaching n-4 pendent edges at one vertex of K_4 . For a graph G of order n, $\alpha'(G) = \frac{5}{2}$ if and only if one of the following situations occurs: - (1) $C_5 \cup (n-5)K_1 \subseteq G \subseteq K_5 \cup (n-5)K_1$. - (2) $C_3 \cup K_2 \cup (n-5)K_1 \subseteq G \subseteq K_5 \cup (n-5)K_1$. - $(3) C_3 \cup K_2 \cup (n-5)K_1 \subseteq G \subseteq H.$ **Proof** The sufficiency part is obvious. To show the necessity part, by Lemma 3.1, suppose $S \subseteq V(G)$ such that n-5=i(G-S)-|S|. Since $i(G-S) \le n-|S|$, it follows that $|S| \le \frac{5}{2}$. Furthermore, |S| = 2 does not occur. Otherwise we have i(G-S) = n-3. While we have $G-S = (n-3)K_1 \cup K_1$, which implies that i(G-S) = (n-2). If |S|=0, then i(G)=n-5. $\alpha'(G)=\frac{5}{2}$ implies G contains an odd cycle. If G contains C_3 as a subgraph, then we have $C_3 \cup K_2 \cup (n-5)K_1 \subseteq G \subseteq K_5 \cup (n-5)K_1$. If G contains C_5 as a subgraph, then we have $C_5 \cup (n-5)K_1 \subseteq G \subseteq K_5 \cup (n-5)K_1$. If |S|=1, then i(G-S)=n-4. $\alpha'(G)=\frac{5}{2}$ implies that G-S contains C_3 as a subgraph, and there exists at least one edge in $[S,V(G)\setminus\{S\cup V(C_3)\}]$. Thus $C_3\cup K_2\cup (n-5)K_1$ is a subgraph of G. Furthermore, we have $G\subseteq H$. Based on the results of Lemma 3.2, Lemma 3.3 and Lemma 3.4, we have the following results. **Lemma 3.5.** Let G be a graph of order n. Then the following statements hold. - (1) If $\alpha'(G) = 1$ and $n \ge 4$, then $\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n+1}{2}$. - (2) If $\alpha'(G) = \frac{3}{2}$ and $n \ge 6$, then $\alpha'(G) + \alpha'(\overline{G}) = \frac{n+3}{2}$. - (3) If $\alpha'(G) = 2$ and G is not isomorphic to $K_2(0,0;\ell)$ for $\ell \geq 2$, then $\alpha'(G) + \alpha'(\overline{G}) \geq \frac{n+3}{2}$ for $n \geq 8$. - (4) If $\alpha'(G) = 2$ and G is isomorphic to $K_2(0,0;\ell)$ for $\ell \geq 2$, then $\alpha'(G) + \alpha'(\overline{G}) = \frac{n+2}{2}$. - (5) If $\alpha'(G) = \frac{5}{2}$ and $n \ge 7$, then $\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n}{2} + 2$. Moreover, the equalities in (1), (3) and (5) hold if and only if G contains exactly one vertex with degree n-1. #### 4. Nordhaus-Gaddum-type bounds for the fractional matching number In this section, we will prove the Nordhaus-Gaddum-type bounds for the fractional matching number (see Theorem 4.3 and Theorem 4.6). In a graph G with $\alpha'(G) = t$, we try to find a collection E of some independent edges in \overline{G} and assign 1 to each edge of E, and then find a long cycle C (having no common vertices with E) and assign $\frac{1}{2}$ to each edge of C. By this way, we get a lower bound of $\alpha'(\overline{G})$. **Lemma 4.1.** Let $V(G) = (V_{11} \cup V_{12}) \cup (V_{21} \cup V_{22})$ be a good partition of graph G of order n with $\alpha'(G) = t \leq \frac{n}{4}$ and $|V_{11}| = s$. Then the following statements hold. (1) $\alpha'(\overline{G}) \geq \frac{n-s}{2} \geq \frac{n-t}{2}$. - (2) If both G and \overline{G} contain no isolated vertices and $s \geq 1$, then $\alpha'(\overline{G}) \geq \frac{n-s+1}{2}$. - (3) If both G and \overline{G} contain no isolated vertices and $s=t\geq 3$, then $\alpha'(\overline{G})\geq \frac{n-s+2}{2}$. **Proof** Since $V(G) = (V_{11} \cup V_{12}) \cup (V_{21} \cup V_{22})$ is a good partition, $\overline{G}[V_2]$ is a clique, and each vertex in V_{12} is adjacent to each vertex in V_{22} in \overline{G} . The assumption $n \geq 4t$ insures $|V_{22}| = n - 2t - s \geq 2t - s$. (1) If n-2t-(2t-s)=0, that is s=0 and $|V_{12}|=|V_{22}|=\frac{n}{2}=2t$, then we may assign number 1 to 2t independent edges in $\overline{G}[V_{12},V_{22}]$ for a fractional matching of \overline{G} . We have $\alpha'(\overline{G}) \geq 2t = \frac{n}{2}$. If n-2t-(2t-s)=[(n-2t-s)-(2t-s)]+s=1, then $s\leq 1$. There exist $u\in V_{12}$ and $v,w\in V_2$ forming a cycle for a fractional matching of \overline{G} . We may assign number 1 to 2t-s-1 independent edges in $\overline{G}[V_{12}\setminus\{u\},V_2\setminus\{v,w\}]$, and $\frac{1}{2}$ to edges of C_3 induced by vertices u,v and w. Thus we have $\alpha'(\overline{G})\geq 2t-s-1+\frac{3}{2}=\frac{n-s}{2}$. If n-2t-(2t-s)=2, then we may choose vertices $u,v\in V_2$ and assign number 1 to edge uv in \overline{G} and 2t-s independent edges in $\overline{G}[V_{12},V_2\setminus\{u,v\}]$ for a fractional matching of \overline{G} . Thus we have $\alpha'(\overline{G})\geq 2t-s+1=\frac{n-s}{2}$. When $n-2t-(2t-s) \geq 3$, we may assign number 1 to 2t-s independent edges in $\overline{G}[V_{12},V_{22}]$, and $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s) in $\overline{G}[V_2]$ for a fractional matching of \overline{G} . Then we have $$\alpha'(\overline{G}) \ge 2t - s + \frac{n - 2t - (2t - s)}{2} = \frac{n - s}{2}.$$ Since $s \le t$, we have $\alpha'(\overline{G}) \ge \frac{n-s}{2} \ge \frac{n-t}{2}$. (2) Now we suppose $s \geq 1$ and \overline{G} contains no isolated vertices. Let u be a vertex in V_{11} and v be one of its neighbours in \overline{G} . First we suppose $v \in V_{12}$. Now we define a fractional matching of \overline{G} . Let $\overline{f}(uv) = 1$ in \overline{G} . Noting that $n - 2t - (2t - s - 1) \geq 2$. If n - 2t - (2t - s - 1) = 2, that is s = 1 and $|V_{12}| = |V_{22}| = 2t - 1 = \frac{n}{2} - 1$, then we may choose vertices $v_1 \in V_{22}$ and $v_2 \in V_{21}$ and assign number 1 to edge v_1v_2 in \overline{G} and 2t - s - 1 independent edges in $\overline{G}[V_{12} \setminus \{v\}, V_{22} \setminus \{v_1\}]$. Thus we have $\alpha'(\overline{G}) \geq 2 + 2t - s - 1 = \frac{n - s + 1}{2}$. When $n-2t-(2t-s-1) \geq 3$, we may assign number 1 to 2t-s-1 independent edges in $\overline{G}[V_{12} \setminus \{v\}, V_{22}]$, and $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s-1) in $\overline{G}[V_2]$ for a fractional matching of \overline{G} . Then we have $$\alpha'(\overline{G}) \ge 1 + (2t - s - 1) + \frac{n - 2t - (2t - s - 1)}{2} = \frac{n - s + 1}{2}.$$ Now suppose v lies in V_{11} or V_2 . If $v \in V_{11}$ or $v \in V_{21}$, then $s \geq 2$. When $v \in V_{22}$, noting G contains no isolated vertices, all possible neighbours of v are in V_{11} and $uv \notin E(G)$, then $|V_{11}| = s \geq 2$. Hence, we have $|X| = |V_{11}| \geq 2$ and there is an edge v_1v_2 in $\overline{G}[X]$ by Lemma 2.6 (1). Noting that $n - 2t - (2t - s - 2) - 1 \geq 1 + s \geq 3$. For a fractional matching of \overline{G} , we may assign number 1 to the edges v_1v_2 , v_2 and $v_1v_2 = v_2 = 1$ independent edges in $\overline{G}[V_{12} \setminus \{v_1, v_2\}, V_{22} \setminus \{v\}]$, and $v_1v_2 = 1$ to each edge of a cycle with length $v_1v_2 = 1$ in $v_2v_1 = 1$ in $v_1v_2 = 1$. Thus we have $$\alpha'(\overline{G}) \ge 1 + 1 + (2t - s - 2) + \frac{n - 2t - (2t - s - 2) - 1}{2} = \frac{n - s + 1}{2}.$$ (3) Now we suppose that $s=t\geq 3$ and \overline{G} contains no isolated vertices. The assumption s=t implies $X=V_{12}$. By Lemma 2.6, we obtain that $\overline{G}[V_{12}]=K_s$ and each vertex in V_{12} is adjacent to each vertex in V_2 in \overline{G} . Let u be a vertex in V_{11} and v be one of its neighbours in \overline{G} . Noting that $n-2t-(2t-s)\geq s\geq 3$. Now we define a fractional matching \overline{f} of \overline{G} . We suppose $v\in V_{11}$. First let $\overline{f}(uv)=1$ in \overline{G} and we may assign number 1 to 2t-s independent edges in $\overline{G}[V_{12},V_{22}]$, and $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s) in $\overline{G}[V_2]$. Thus we have $$\alpha'(\overline{G}) \ge 1 + 2t - s + \frac{n - 2t - (2t - s)}{2} = \frac{n - s + 2}{2}.$$ If $v \in V_2$, then there exists a vertex say $w \neq u \in V_{11}$ such that $wv \in E(G)$. Since $d_G(w) \leq n-2$, there exists a vertex w' such that $ww' \notin E(G)$. If $w' \in V_{11}$, it is the case discussed above. If $w' \in V_{12}$, then let $\bar{f}(uv) = \bar{f}(ww') = 1$ in \overline{G} and we may assign number 1 to 2t-s-1 independent edges in $\overline{G}[V_{12} \setminus \{w'\}, V_2 \setminus \{v\}]$, and $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s-1)-1 in $\overline{G}[V_2]$. Thus we have $$\alpha'(\overline{G}) \ge 2 + (2t - s - 1) + \frac{n - 2t - (2t - s - 1) - 1}{2} = \frac{n - s + 2}{2}.$$ If $w' \in V_2$, then let $\bar{f}(uv) = \bar{f}(ww') = 1$ in \overline{G} . Since $\overline{G}[V_{12}] = K_s$, there exist $x_1, x_2 \in V_{12}$ such that $x_1x_2 \in E(\overline{G})$. Let $\bar{f}(x_1x_2) = 1$ in \overline{G} and we may assign number 1 to 2t - s - 2 independent edges in $\overline{G}[V_{12} \setminus \{x_1, x_2\}, V_2 \setminus \{v, w'\}]$, and $\frac{1}{2}$ to each edge of a cycle with length n - 2t - 2 - (2t - s - 2) in $\overline{G}[V_2]$. Thus we have $$\alpha'(\overline{G}) \ge 3 + 2t - s - 2 + \frac{n - 2t - 2 - (2t - s - 2)}{2} = \frac{n - s + 2}{2}.$$ When $v \in V_{11}$ or $v \in V_2$, we obtain the desired inequality. So in the following, we may assume that $G[V_{11}]$ is a clique and each vertex in V_{11} is adjacent to each vertex in V_2 in G. We suppose v lies in V_{12} . From the definition of set $X(=V_{12})$, we have $v'v \in E(G)$ for some $v' \in V_{11}$. Since v' is not an isolated vertex of \overline{G} , we may assume $v'v'' \in E(\overline{G})$ for some vertex $v'' \in V_{12}$. Now we construct a fractional matching \overline{f} of \overline{G} with $\overline{f}(uv) = \overline{f}(v'v'') = 1$ in \overline{G} and we may assign number 1 to 2t - s - 2 independent edges in $[V_{12} \setminus \{v, v''\}, V_{22}]$ in \overline{G} , and $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s-2) in $\overline{G}[V_2]$. Thus we have $$\alpha'(\overline{G}) \ge 2 + 2t - s - 2 + \frac{n - 2t - (2t - s - 2)}{2} = \frac{n - s + 2}{2}.$$ This completes the proof. **Lemma 4.2.** (1) If $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + \frac{1}{2}$ when $n \equiv 0, 1 \pmod{4}$ or $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + \frac{3}{2}$ when $n \equiv 2, 3 \pmod{4}$, then $\alpha'(\overline{G}) \geq \frac{n}{4} + 3$ for $n \geq 28$. (2) If $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + 1$, then $\alpha'(\overline{G}) \geq \frac{n}{4} + 3$ for $n \geq 28$. **Proof** Recall $V(G) = (V_{11} \cup V_{12}) \cup (V_{21} \cup V_{22})$, $|V_{11}| = s$ and $\alpha'(G) = t$. We will prove $\alpha'(\overline{G}) \geq \frac{n-t}{2}$. When $s \leq 1$, noting that $|V_1| = 2\alpha'(G) > \frac{n}{2}$ and $|V_{12}| = 2t - s > n - 2t - s = |V_{22}|$. Then we may assign number 1 to n - 2t - s independent edges in $\overline{G}[V_{12}, V_{22}]$ for a fractional matching of graph \overline{G} . Thus $$\alpha'(\overline{G}) \ge n - 2t - s \ge \frac{n - t}{2}$$ for $n \geq 20$. When $s \geq 2$, there exist two vertices $v_1, v_2 \in X$ such that $v_1v_2 \notin E(G)$ by Lemma 2.6 (1). We will define a fractional matching \overline{f} of \overline{G} . Noting that $|V_{22}| \geq 3$. (1) If $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + \frac{1}{2}$ when $n \equiv 0, 1 \pmod{4}$ or $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + \frac{3}{2}$ when $n \equiv 2, 3 \pmod{4}$, then s < t and there exists a $\frac{1}{2}$ -cycle in $V_{12} \setminus X$. By Lemma 2.2 (3), from the $\frac{1}{2}$ -cycle of G, we may take two different vertices v', v''. Let $\bar{f}(v'x') = \bar{f}(v''x'') = 1$ in \overline{G} for $\{x', x''\} \subseteq V_{21}$. There are s - 2 independent edges in $\overline{G}[X \setminus \{v_1, v_2\}, V_{21} \setminus \{x', x''\}]$ by Lemma 2.6 (2) and we may assign number 1 to them. Noting that $|V_1| - s - 2 \le |V_2|$, we may assign number 1 to 2t - 2s - 2 independent edges in $\overline{G}[V_{12} \setminus \{X, v', v''\}, V_{22}]$. When n - 2t - (2t - s - 2) = 0, we may assign number 1 to edge v_1v_2 in \overline{G} . Thus $\alpha'(\overline{G}) \ge 1 + 2t - s - 2 = 2t - s - 1 = \frac{n-s}{2} > \frac{n-t}{2}$. If n-2t-(2t-s-2)=1, that is n=4t-s-1 and $|V_{22}|=2t-2s-1$, then we may choose $w\in V_{22}$ and assign number $\frac{1}{2}$ to edges of C_3 induced by v_1,v_2 and w in \overline{G} , and 1 to 2t-2s-2 independent edges in $\overline{G}[V_{12}\setminus\{X,v',v''\},V_{22}]$. Thus we have $\alpha'(\overline{G})\geq \frac{3}{2}+2t-s-2=2t-s-\frac{1}{2}=\frac{n-s}{2}>\frac{n-t}{2}$. If n-2t-(2t-s-2)=2, then we may choose $w,w'\in V_{22}$ and assign number 1 to 2t-2s-2 independent edges in $\overline{G}[V_{12}\setminus\{X,v',v''\},V_{22}\setminus\{w,w'\}]$. Let $\overline{f}(v_1v_2)=\overline{f}(ww')=1$ in \overline{G} . Thus we have $\alpha'(\overline{G})\geq 2+2t-s-2=2t-s=\frac{n-s}{2}>\frac{n-t}{2}$. When $n-2t-(2t-s-2) \geq 3$, we may assign number $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s-2) in $\overline{G}[V_{22}]$. Let $\bar{f}(v_1v_2)=1$ in \overline{G} . Thus $$\alpha'(\overline{G}) \ge 1 + 2t - s - 2 + \frac{n - 2t - (2t - s - 2)}{2} = \frac{n - s}{2} > \frac{n - t}{2}.$$ (2) When $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + 1$ and s = t, by Lemma 2.6 (2), $uv \in E(\overline{G})$ for each vertex $u \in V_{12}$ and $v \in V_2$. Since $|V_{22}| \geq 3$, we may assign number 1 to s - 2 independent edges in $[V_{12} \setminus \{v_1, v_2\}, V_{21}]$ in \overline{G} , and $\frac{1}{2}$ to each edge of a cycle with length n - 2t - (s - 2) in $\overline{G}[V_2]$. For a fractional matching \overline{f} of \overline{G} , let $\overline{f}(v_1v_2) = 1$ in \overline{G} . Thus we have $$\alpha'(\overline{G}) \ge 1 + s - 2 + \frac{n - 2t - (s - 2)}{2} = \frac{n - s}{2} = \frac{n - t}{2}.$$ When s < t and there exists a $\frac{1}{2}$ -cycle in $V_{12} \setminus X$, it can be proved similar to the above in (1). Assume that there is no $\frac{1}{2}$ -cycle in $V_{12} \setminus X$ and there are p edges assigned number 1 in $E[V_{12}]$, where $p \ge 1$ and p is an integer. Since f(v) = 1 for every $v \in V_1$, p = 0 is equivalent to s = t or $G[V_{12} \setminus X]$ is a collection of disjoint $\frac{1}{2}$ -cycles, which has been discussed above. If p = 1, that is t = s + 1 and $|V_{12}| = 2t - s = s + 2$, then there exactly exists an edge say ww_1 assigned number 1 in $G[V_{12} \setminus X]$. Without loss of generality, there exists a vertex x in V_{21} such that $xw \in E(\overline{G})$ by Lemma 2.5 (1). Since $|V_{22}| \geq 3$, let $\overline{f}(v_1v_2) = \overline{f}(xw) = \overline{f}(y_1w_1) = 1$ in \overline{G} , $y_1 \in V_{22}$. Then for each vertex $v \in V_{12} \setminus \{v_1, v_2, w, w_1\}$ and each vertex $u \in V_2 \setminus \{x, y_1\}$, we have $uv \in E(\overline{G})$. We may assign number 1 to s-2 independent edges in $[V_{12} \setminus \{v_1, v_2, w, w_1\}, V_{21} \setminus \{x\}]$, and $\frac{1}{2}$ to each edge of a cycle with length n-2t-s in $\overline{G}[V_2]$. Thus we have $$\alpha'(\overline{G}) \ge 1 + 1 + 1 + (s - 2) + \frac{n - 2t - s}{2} = \frac{n - s}{2} > \frac{n - t}{2}.$$ If $p \geq 2$, then there exist two edges w_1w_2 and w_3w_4 assigned number 1 in $G[V_{12} \setminus X]$. Without loss of generality, there exist two vertices x_1, x_2 in V_{21} such that $x_1w_1, x_2w_3 \in E(\overline{G})$ and let $\overline{f}(x_1w_1) = \overline{f}(x_2w_3) = 1$ in \overline{G} . In \overline{G} , there are s-2 independent edges in $[X \setminus \{v_1, v_2\}, V_{21} \setminus \{x_1, x_2\}]$ by Lemma 2.6 (2) and we may assign number 1 to them. Noting that $n-2t-s \geq 2t-2s-2$, we may assign number 1 to 2t-2s-2 independent edges in $\overline{G}[V_{12} \setminus \{X \cup \{w_1, w_3\}\}, V_{22}]$. If n-2t-(2t-s-2)=0, that is n=4t-s-2 and $|V_{22}|=2t-2s-2$, we may assign number 1 to edge v_1v_2 in \overline{G} . Thus we have $\alpha'(\overline{G}) \geq 1+2t-s-2=2t-s-1=\frac{n-s}{2}>\frac{n-t}{2}$. If n-2t-(2t-s-2)=1, that is n=4t-s-1 and $|V_{22}|=2t-2s-1$, then we may choose $y\in V_{22}$ and assign number $\frac{1}{2}$ to edges of C_3 induced by v_1,v_2 and y in \overline{G} , and 1 to 2t-2s-2 independent edges in $\overline{G}[V_{12}\setminus\{X\cup\{w_1,w_3\}\},V_{22}\setminus\{y\}]$. Thus we have $\alpha'(\overline{G})\geq \frac{3}{2}+2t-s-2=2t-s-\frac{1}{2}=\frac{n-s}{2}>\frac{n-t}{2}$. If n-2t-(2t-s-2)=2, that is n=4t-s and $|V_{22}|=2t-2s$, then we may choose $y_1,y_2\in V_{22}$ and assign number 1 to edges v_1v_2 and y_1y_2 in \overline{G} , and 1 to 2t-2s-2 independent edges in $\overline{G}[V_{12}\setminus\{X\cup\{w_1,w_3\}\},V_{22}\setminus\{y_1,y_2\}]$. Thus we have $\alpha'(\overline{G})\geq 1+2t-s-2+1=2t-s=\frac{n-s}{2}>\frac{n-t}{2}$. When $n-2t-(2t-s-2) \geq 3$, we may assign number $\frac{1}{2}$ to each edge of a cycle with length n-2t-(2t-s-2) in $\overline{G}[V_2]$, and 1 to edge v_1v_2 in \overline{G} . Thus we have $$\alpha'(\overline{G}) \ge 1 + 2t - s - 2 + \frac{n - 2t - (2t - s - 2)}{2} = \frac{n - s}{2} > \frac{n - t}{2}.$$ Therefore, $\alpha'(\overline{G}) \geq \frac{n-t}{2} \geq \frac{n}{4} + 3$ for $n \geq 28$. This completes the proof. Without loss of generality, we may assume that $\alpha'(G) \leq \alpha'(\overline{G})$ as follows. **Theorem 4.3.** Let G be a graph of order $n \geq 28$. If both G and \overline{G} are not empty, then $$\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n+1}{2}$$ with equality holds if and only if $G \cong K_{1,n-1}$. **Proof** Since G is not empty, $\alpha'(G) \geq 1$. By Lemma 3.5 (1)-(5), when $1 \leq \alpha'(G) < 3$, $\alpha'(G) + \alpha'(\overline{G}) \geq \frac{n+1}{2}$. The equality holds if and only if $G \cong K_{1,n-1}$ by Lemma 3.5 (1) and Lemma 3.2 (1). When $3 \le \alpha'(G) \le \frac{n}{4}$, by Lemma 4.1 (1), we have $$\alpha'(G) + \alpha'(\overline{G}) \ge \alpha'(G) + \frac{n - \alpha'(G)}{2} = \frac{n + \alpha'(G)}{2} \ge \frac{n+3}{2} > \frac{n+1}{2}.$$ Then we only need to consider the case that $\frac{n}{4} < \alpha'(G) \leq \frac{n}{2}$. If $n \equiv 0, 1 \pmod{4}$, then $\frac{n+1}{4} \leq \lfloor \frac{n}{4} \rfloor + \frac{1}{2} \leq \alpha'(G) \leq \frac{n}{2}$. So we have $$\alpha'(G) + \alpha'(\overline{G}) \ge 2\alpha'(G) \ge 2(\lfloor \frac{n}{4} \rfloor + \frac{1}{2}) \ge \frac{n+1}{2}.$$ The equality holds if and only if $n \equiv 1 \pmod{4}$ and $\alpha'(G) = \alpha'(\overline{G}) = \lfloor \frac{n}{4} \rfloor + \frac{1}{2}$, which is a contradiction to Lemma 4.2 (1) in virtue of $\lfloor \frac{n}{4} \rfloor + \frac{1}{2} < \frac{n}{4} + 3$. If $n \equiv 2, 3 \pmod{4}$, $\frac{n}{4} < \lfloor \frac{n}{4} \rfloor + 1 \le \alpha'(G) \le \frac{n}{2}$. When $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + 1$, by Lemma 4.2 (2), $\alpha'(\overline{G}) \ge \frac{n}{4} + 3$. Thus $\alpha'(G) + \alpha'(\overline{G}) \ge \lfloor \frac{n}{4} \rfloor + 1 + \frac{n}{4} + 3 \ge \frac{n}{2} + 3 > \frac{n+1}{2}$. When $\frac{n+2}{4} < \lfloor \frac{n}{4} \rfloor + \frac{3}{2} \le \alpha'(G) \le \frac{n}{2}$, we have $$\alpha'(G) + \alpha'(\overline{G}) \ge 2\alpha'(G) \ge 2(\lfloor \frac{n}{4} \rfloor + \frac{3}{2}) > \frac{n+2}{2} > \frac{n+1}{2}.$$ Therefore, $\alpha'(G) + \alpha'(\overline{G}) > \frac{n+1}{2}$. This completes the proof. \Box The following result is implied by Theorem 4.3. **Lemma 4.4.** For a graph of order $n, n \ge 2$, we have $$\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n}{2}$$ with equality holds if and only if G is an empty graph or G is a complete graph. The following result is deduced by Lemma 3.3, Lemma 3.4 and Lemma 3.5. **Lemma 4.5.** If $\alpha'(G) = 2$ or $\alpha'(G) = \frac{5}{2}$, \overline{G} contains no isolated vertices, then $\alpha'(\overline{G}) = \frac{n}{2}$ for $n \geq 10$. **Theorem 4.6.** If both G and \overline{G} contain no isolated vertices and $n \geq 28$. Then $$\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n+4}{2}$$ and the equality holds if and only if $G \cong K_2(p,q;\ell)$ or $K_{1,m} \cup K_{1,n-2-m} \subseteq G \subseteq K_{2,n-2}$, where p,q,ℓ,m are non-negative integers, $q \ge 1$ and $1 \le p,m \le n-3$. **Proof** Since both G and \overline{G} contain no isolated vertices, by Lemma 3.2, we have $\alpha'(G)$ and $\alpha'(\overline{G}) \geq 2$. When s = 0, since G contains no isolated vertices, V_2 is empty and $G[V_1]$ contains a fractional perfect matching by Lemma 2.4. The assumption $\alpha'(G) \leq \alpha'(\overline{G})$ implies $\alpha'(\overline{G}) = \alpha'(G) = \frac{n}{2}$. Thus $\alpha'(G) + \alpha'(\overline{G}) = \frac{n}{2} + \frac{n}{2} = n > \frac{n+4}{2}$. When $\alpha'(G) = 2$ or $\frac{5}{2}$, by Lemma 4.5, $\alpha'(\overline{G}) = \frac{n}{2}$. It follows that $\alpha'(G) + \alpha'(\overline{G}) \ge \frac{n+4}{2}$. The equality holds when $\alpha'(G) = 2$. When $\alpha'(G) = 3$, if s = 1 or 2, we have $\alpha'(\overline{G}) \geq \frac{n-s+1}{2}$ by Lemma 4.1 (2). It follows that $\alpha'(G) + \alpha'(\overline{G}) \ge 3 + \frac{n-s+1}{2} > \frac{n+4}{2}$. If s = t = 3, we have $\alpha'(\overline{G}) \ge \frac{n-3}{2} + 1 = \frac{n-1}{2}$ by Lemma 4.1 (3), and then $\alpha'(G) + \alpha'(\overline{G}) \ge 3 + \frac{n-1}{2} = \frac{n+5}{2} > \frac{n+4}{2}$. When $\alpha'(G) = \frac{7}{2}$, then $1 \le s \le 3$. By Lemma 4.1 (2), we have $\alpha'(\overline{G}) \ge \frac{n-s+1}{2}$. It follows that $\alpha'(G) + \alpha'(\overline{G}) \ge \frac{7}{2} + \frac{n-s+1}{2} \ge \frac{7}{2} + \frac{n-3+1}{2} = \frac{n+5}{2} > \frac{n+4}{2}$. When $4 \le \alpha'(G) = t \le \frac{n}{4}$, since $s \ge 1$, $\alpha'(\overline{G}) \ge \frac{n-s+1}{2}$ by Lemma 4.1 (2). Thus $$\alpha'(G) + \alpha'(\overline{G}) \ge t + \frac{n-s+1}{2} \ge t + \frac{n-t+1}{2} = \frac{n+t+1}{2} \ge \frac{n+5}{2} > \frac{n+4}{2}.$$ Then we only need to consider the case that $\frac{n}{4} < \alpha'(G) \le \frac{n}{2} \le \alpha'(\overline{G})$. If $n \equiv 0, 1 \pmod{4}$, then $\lfloor \frac{n}{4} \rfloor + \frac{1}{2} \leq \alpha'(G) \leq \frac{n}{2}$. When $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + \frac{1}{2}$ or $\lfloor \frac{n}{4} \rfloor + 1$, by Lemma 4.2, $\alpha'(\overline{G}) \ge \frac{n}{4} + 3$. Thus $$\alpha'(G) + \alpha'(\overline{G}) \ge \lfloor \frac{n}{4} \rfloor + \frac{1}{2} + \frac{n}{4} + 3 > \frac{n}{2} + 3 > \frac{n+4}{2}.$$ When $\alpha'(G) \geq \lfloor \frac{n}{4} \rfloor + \frac{3}{2} > \frac{n+4}{4}$, we obtain $\alpha'(G) + \alpha'(\overline{G}) \geq 2\alpha'(G) \geq 2\lfloor \frac{n}{4} \rfloor + 3 > \frac{n+4}{2}$. If $n \equiv 2, 3 \pmod{4}$, $\lfloor \frac{n}{4} \rfloor + 1 \leq \alpha'(G) \leq \frac{n}{2}$. When $\alpha'(G) = \lfloor \frac{n}{4} \rfloor + 1$ or $\lfloor \frac{n}{4} \rfloor + \frac{3}{2}$, by Lemma 4.2, $\alpha'(\overline{G}) \ge \frac{n}{4} + 3$. Thus we have $\alpha'(G) + \alpha'(\overline{G}) \ge \lfloor \frac{n}{4} \rfloor + 1 + \frac{n}{4} + 3 > \frac{n}{2} + 3 > \frac{n+4}{2}$. When $\alpha'(G) \ge \lfloor \frac{n}{4} \rfloor + 2 > \frac{n+4}{4}$, we have $$\alpha'(G) + \alpha'(\overline{G}) \ge 2\alpha'(G) \ge 2(\lfloor \frac{n}{4} \rfloor + 2) > \frac{n+4}{2}.$$ Therefore, $\alpha'(G) + \alpha'(\overline{G}) > \frac{n+4}{2}$. If $\alpha'(G) + \alpha'(\overline{G}) = \frac{n+4}{2}$, then $\alpha'(G) = 2$. By Lemma 3.3 and both G and \overline{G} contain no isolated vertices, we have $G \cong K_2(p,q;\ell)$ or $K_{1,m} \cup K_{1,n-2-m} \subseteq G \subseteq K_{2,n-2}$, where p,q,ℓ,m are non-negative integers, $q \ge 1$ and $1 \le p,m \le n-3$. Therefore, we complete the proof. ## References - [1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations. Discrete Appl. Math. 161(2013): 466-546. - [2] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, Elsevier North Holland, New York, 1976. - [3] G. Chartrand, S. Schuster, On the independence number of complementary graphs. Trans NY Acad Sci Ser II. 36(1974): 247-251. - [4] I. Choi, J. Kim, S. O, The difference and ratio of the fractional matching number and the matching number of graphs, Discrete Math. 339(4)(2016): 1382-1386. - [5] W. Goddard, M. A. Henning, H. C. Swart, Some Nordhaus-Gaddum-type results, J. Graph Theory. 16(3) (1992): 221-231. - [6] K. Huang, K. Lih, Nordhaus-Gaddum-type relations of three graph coloring parameters. *Discrete Appl. Math.* 162(2014): 404-408. - [7] R. Laskar, B. Auerbach, On complementary graphs with no isolated vertices. *Discrete Math.* 24(1978): 113-118. - [8] D. Li, B. Wu, X. Yang, X. An, Nordhaus-Gaddum-type theorem for Wiener index of graphs when decomposing into three parts. *Discrete Appl. Math.* 159(2011): 1594-1600. - [9] X. Li, Y. Mao, Nordhaus-Gaddum-type results for the generalized edge-connectivi--ty of graphs. *Discrete Appl. Math.* 185(2015): 102-112. - [10] H. Lin, J. Shu, B. Wu, Nordhaus-Gaddum type result for the matching number of a graph. *J Comb Optim.* 34(2017): 916-930. - [11] E. Nordhaus, J. Gaddum, On complementary graphs, Am. Math. Mon. 63 (1956): 175-177. - [12] E. Shan, C. Dang, L. Kang, A note on Nordhaus-Gaddum inequalities for domination. *Discrete Appl. Math.* 136(2004): 83-85. - [13] E. R. Scheinerman, D. H. Ullman, Fractional Graph Theory: A Rational Approach to the Theory of Graphs, Wiley&Sons, 2008. - [14] G. Su, L. Xiong, Y. Sun, D. Li, Nordhaus-Gaddum-type inequality for the hyper-Wiener index of graphs when decomposing into three parts. *Theoretical Computer Science*. 471(2013): 74-83.