Rainbow triangles in arc-colored digraphs *

Wei Li ${ }^{a, b}$, Shenggui Zhang ${ }^{b \dagger}$ Ruonan Li ${ }^{b}$
${ }^{a}$ College of Mathematics and Statistics, Guangxi Normal University, Guilin, 541004, China
${ }^{b}$ Department of Applied Mathematics, School of Sciences, Northwestern Polytechnical University, Xi'an, 710029, China

October 16, 2018

Abstract

Let D be an arc-colored digraph. The arc number $a(D)$ of D is defined as the number of arcs of D. The color number $c(D)$ of D is defined as the number of colors assigned to the arcs of D. A rainbow triangle in D is a directed triangle in which every pair of arcs have distinct colors. Let $f(D)$ be the smallest integer such that if $c(D) \geq f(D)$, then D contains a rainbow triangle. In this paper we obtain $f\left(\overleftrightarrow{K}_{n}\right)$ and $f\left(T_{n}\right)$, where $\overleftrightarrow{K}_{n}$ is a complete digraph of order n and T_{n} is a strongly connected tournament of order n. Moreover we characterize the arc-colored complete digraph $\overleftrightarrow{K}_{n}$ with $c\left(\overleftrightarrow{K}_{n}\right)=f\left(\overleftrightarrow{K}_{n}\right)-1$ and containing no rainbow triangles. We also prove that an arc-colored digraph D on n vertices contains a rainbow triangle when $a(D)+c(D) \geq a\left(\overleftrightarrow{K}_{n}\right)+f\left(\overleftrightarrow{K}_{n}\right)$, which is a directed extension of the undirected case.

Keywords: arc-colored digraph, rainbow triangle, color number, complete digraph, strongly connected tournament

1 Introduction

In this paper we only consider finite digraphs without loops or multiple arcs. For terminology and notations not defined here, we refer the readers to [2] and 3.

[^0]Let $D=(V, A)$ be a digraph. We use $a(D)$ to denote the number of arcs of D. If $u v \in A(D)$, then we say that u dominates v (or v is dominated by u) and $u v$ is an in-arc of v (or $u v$ is an out-arc of u). For a vertex v of D, the in-neighborhood $N_{D}^{-}(v)$ of v is the set of vertices dominating v, and the out-neighborhood $N_{D}^{+}(v)$ of v is the set of vertices dominated by v. The in-degree $d_{D}^{-}(v)$ and out-degree $d_{D}^{+}(v)$ of v are defined as the cardinality of $N_{D}^{-}(v)$ and $N_{D}^{+}(v)$, respectively. The degree $d_{D}(v)$ of v is defined as the sum of $d_{D}^{-}(v)$ and $d_{D}^{+}(v)$. A complete digraph is a digraph obtained from a complete graph K_{n} by replacing each edge $x y$ of K_{n} with a pair of arcs $x y$ and $y x$, denoted by $\overleftrightarrow{K}_{n}$. A complete bipartite digraph is a digraph obtained from a complete bipartite graph $K_{m, n}$ by replacing each edge $x y$ of $K_{m, n}$ with a pair of arcs $x y$ and $y x$, denoted by $\overleftrightarrow{K}_{m, n}$. A tournament is a digraph obtained from a complete graph K_{n} by replacing each edge $x y$ of K_{n} with exactly one of the arcs $x y$ and $y x$. A digraph D is strongly connected if, for each pair of distinct vertices x and y in D, there exists an (x, y)-path. The subdigraph of D induced by $S \subseteq V(D)$ is denoted by $D[S]$. An arc-coloring of D is a mapping $C: A(D) \rightarrow \mathbb{N}$, where \mathbb{N} is the set of natural numbers. We call D an arc-colored digraph if it is assigned such an arc-coloring C. We use $C(D)$ and $c(D)$ (called the color number of D) to denote the set and the number of colors assigned to the arcs of D, respectively. If $c(D)=k$, then we call D a k-arc-colored digraph. Let D be an arc-colored digraph and i a color in $C(D)$. We use D^{i} to denote the arc-colored subdigraph of D induced by all the arcs of color i. For a vertex $v \in D$, we use $C N_{D}^{-}(v)$ and $C N_{D}^{+}(v)$ to denote the set of colors assigned to the in-arcs and the out-arcs of v, respectively. The color neighbor $C N_{D}(v)$ of v is defined as $C N_{D}(v)=C N_{D}^{-}(v) \bigcup C N_{D}^{+}(v)$. The in-color degree $d_{D}^{-c}(v)$ and the out-color degree $d_{D}^{+c}(v)$ of v are the cardinality of $C N_{D}^{-}(v)$ and $C N_{D}^{+}(v)$, respectively. If there is no ambiguity, we often omit the subscript D in the above notations. A rainbow digraph is a digraph in which every pair of arcs have distinct colors. A rainbow triangle is a directed triangle which is rainbow.

The existence of rainbow subgraphs has been widely studied, see the survey papers [7. 11. In particular, the existence of rainbow triangles attracts much attention during the past decades. For an edge-colored complete graph K_{n}, Gallai 8$]$ characterized the coloring structure of K_{n} containing no rainbow triangles. Gyárfás and Simonyi 9 showed that each edge-colored K_{n} with $\Delta^{\text {mon }}\left(K_{n}\right)<\frac{2 n}{5}$ contains a rainbow triangle and this bound is tight. Fujita et al. [6] proved that each edge-colored K_{n} with $\delta^{c}\left(K_{n}\right)>\log _{2} n$ contains a rainbow triangle and this bound is tight. For a general edge-colored graph G of order n, Li and Wang [14] proved that if $\delta^{c}(G) \geq \frac{\sqrt{7}+1}{6} n$, then G contains a rainbow triangle.

Li [13] and Li et al. [12] improved the condition to $\delta^{c}(G)>\frac{n}{2}$ independently, and showed that this bound is tight. Li et al. [15] further proved that if G is an edge-colored graph of order n satisfying $d^{c}(u)+d^{c}(v) \geq n+1$ for every edge $u v \in E(G)$, then it contains a rainbow triangle. In [16], Li et al. gave some maximum monochromatic degree conditions for an arc-colored strongly connected tournament T_{n} to contain rainbow triangles, and to contain rainbow triangles passing through a given vertex. For more results on rainbow cycles, see 1, 4, 4, 5, 10.

In this paper, we mainly study the existence of rainbow triangles in arc-colored digraphs. Let D be an arc-colored digraph on n vertices. Sridharan [18] proved that the maximum number of arcs among all digraphs of order n with no directed triangles is $\left\lfloor\frac{n^{2}}{2}\right\rfloor$. Thus D contains a rainbow triangle if $c(D) \geq\left\lfloor\frac{n^{2}}{2}\right\rfloor+1$. This lower bound is sharp by considering the complete bipartite digraph $\overleftrightarrow{K}_{\left\lfloor\frac{n}{2}\right\rfloor,\left\lceil\frac{n}{2}\right\rceil}$ with arcs assigned pairwise distinct colors.

For an edge-colored graph G, we use $e(G)$ and $c(G)$ to denote the number of edges of G and the number of colors assigned to the edges of G, respectively. Let $f(G)$ be the smallest integer such that if $c(G) \geq f(G)$, then G contains a rainbow triangle. In 9], the authors proved that $f\left(K_{n}\right)=n$. Li et al. [12] proved that if $e(G)+c(G) \geq \frac{n(n+1)}{2}$, then G contains a rainbow triangle. Note that $\frac{n(n+1)}{2}=\frac{n(n-1)}{2}+n=e\left(K_{n}\right)+f\left(K_{n}\right)$. Motivated by this result, we wonder whether an arc-colored digraph D on n vertices contains a rainbow triangle when

$$
a(D)+c(D) \geq a\left(\overleftrightarrow{K}_{n}\right)+f\left(\overleftrightarrow{K}_{n}\right)
$$

First we calculate $f\left(\overleftrightarrow{K}_{n}\right)$ for $n \geq 3$.
Theorem 1. Let $\overleftrightarrow{K}_{n}$ be an arc-colored complete digraph of order $n \geq 3$ and $f\left(\overleftrightarrow{K}_{n}\right)$ be the smallest integer such that $\overleftrightarrow{K}_{n}$ with $c\left(\overleftrightarrow{K}_{n}\right) \geq f\left(\overleftrightarrow{K}_{n}\right)$ contains a rainbow triangle. Then

$$
f\left(\overleftrightarrow{K}_{n}\right)= \begin{cases}\left\lfloor\frac{n^{2}}{4}\right\rfloor+3, & n=3,4 \\ \left\lfloor\frac{n^{2}}{4}\right\rfloor+2, & n \geq 5\end{cases}
$$

We also investigate the structure of the arc-colored complete digraphs $\overleftrightarrow{K}_{n}$ with $c\left(\overleftrightarrow{K}_{n}\right)=$ $f\left(\overleftrightarrow{K}_{n}\right)-1$ and containing no rainbow triangles.

Theorem 2. Let \mathcal{G}_{n} be the class of arc-colored complete digraphs of order n such that for each $D \in \mathcal{G}_{n}, c(D)=f(D)-1$ and D contains no rainbow triangles. Then each D in \mathcal{G}_{3} can be decomposed into two arc-disjoint 2-arc-colored triangles Δ_{1} and Δ_{2} such that $C\left(\Delta_{1}\right) \cap C\left(\Delta_{2}\right)=\emptyset$. For each D in \mathcal{G}_{4}, there exists a permutation of the vertex set of D,
say $v_{1} v_{2} v_{3} v_{4}$, such that

$$
\left\{\begin{array}{l}
C\left(v_{1} v_{2}\right)=C\left(v_{2} v_{3}\right)=C\left(v_{3} v_{4}\right)=C\left(v_{4} v_{1}\right)=a, \\
C\left(v_{1} v_{4}\right)=C\left(v_{4} v_{3}\right)=C\left(v_{3} v_{2}\right)=C\left(v_{2} v_{1}\right)=b, \\
C\left(v_{1} v_{3}\right)=c, \quad C\left(v_{3} v_{1}\right)=d, \\
C\left(v_{2} v_{4}\right)=e, \quad C\left(v_{4} v_{2}\right)=f,
\end{array}\right.
$$

where a, b, c, d, e, f are pairwise distinct colors.
Each D in $\mathcal{\mathcal { G } _ { 5 }}$ belongs to one of the following three types of digraphs:

- Type I: There is a vertex $v \in V(D)$ such that all arcs incident to v are colored by a same color $c, D-v \in \mathcal{G}_{4}$ and $c \notin C(D-v)$;
- Type II: The vertex set of D can be partitioned into two subsets $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ such that the spanning subdigraph H of D with $A(H)=\left\{a_{i} b_{j} \mid i=1,2 ; j=1,2,3\right\}$ (or $A(H)=\left\{b_{j} a_{i} \mid i=1,2 ; j=1,2,3\right\}$) is rainbow and all arcs in $A(D) \backslash A(H)$ are colored by a same new color;
- Type III: The vertex set of D can be partitioned into two subsets $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ such that $C\left(D\left[\left\{a_{1}, a_{2}\right\}\right]\right)=\{a, b\}, D\left[\left\{b_{1}, b_{2}, b_{3}\right\}\right] \in \mathcal{G}_{3}, C\left(D\left[\left\{b_{1}, b_{2}, b_{3}\right\}\right]\right)=$ $\{c, d, e, f\}$ and all arcs between $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}, b_{3}\right\}$ are colored by g, where a, b, c, d, e, f, g are pairwise distinct colors.

For each $D \in \mathcal{G}_{n}, n \geq 6$, the vertex set of D can be partitioned into two subsets $\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{\left\lceil\frac{n}{2}\right\rceil}\right\}$ such that the spanning subdigraph H of D with

$$
A(H)=\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}
$$

or

$$
A(H)=\left\{b_{j} a_{i} \mid i=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}
$$

is rainbow and all arcs in $A(D) \backslash A(H)$ are colored by a same new color.
Furthermore, we study the " $a(D)+c(D)$ " condition for the existence of rainbow triangles in arc-colored digraphs (not necessarily complete).

Theorem 3. Let D be an arc-colored digraph on n vertices. If

$$
a(D)+c(D) \geq \begin{cases}n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+3, & n=3,4 \\ n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+2, & n \geq 5\end{cases}
$$

then D contains a rainbow triangle.

Remark 1. By the definition of $f\left(\overleftrightarrow{K}_{n}\right)$ and Theorem $\mathbb{1}$ we can see that the bound of $a(D)+c(D)$ in Theorem 3 is sharp.

Finally, we give a color number condition for the existence of rainbow triangles in strongly connected tournaments.

Theorem 4. Let D be an arc-colored strongly connected tournament on n vertices. If $c(D) \geq \frac{n(n-1)}{2}-n+3$, then D contains a rainbow triangle.

Remark 2. The bound of $c(D)$ in Theorem 4 is sharp. Let D be a digraph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc set $A=\left(\left\{v_{i} v_{j} \mid 1 \leq i<j \leq n\right\} \backslash\left\{v_{1} v_{n}\right\}\right) \bigcup\left\{v_{n} v_{1}\right\}$. Then D is a strongly connected tournament. Color all the arcs incident to v_{1} by a same color and color the remaining arcs by pairwise distinct new colors. Then $c(D)=\frac{n(n-1)}{2}-(n-1)+1=$ $\frac{n(n-1)}{2}-n+2$. But there is no rainbow triangle in D.

2 Proofs of the theorems

Let v be a vertex in D, and c a color in $C(D)$. If all the arcs with color c are incident to v, then we call c a color saturated by v. We use $C^{s}(v)$ to denote the set of colors saturated by v and define $d^{s}(v)=\left|C^{s}(v)\right|$. If a color in $C(D)$ is not saturated by v, then it is also a color in $C(D-v)$. This implies that $c(D-v)=c(D)-d^{s}(v)$.

Observation 1. Let D be an arc-colored complete digraph. For a vertex $v \in D$, if there are two vertices $u \neq w$ such that $C(u v) \neq C(v w)$ and $C(u v), C(v w) \in C^{s}(v)$, then uvwu is a rainbow triangle.

Proof. Since the arc $w u$ is not incident to v, we have $C(w u) \notin C^{s}(v)$. Namely, $C(u v)$, $C(v w)$ and $C(w u)$ are pairwise distinct colors. Thus, $u v w u$ is a rainbow triangle.

Before presenting the proof of Theorem 1, we first prove the following lemmas.
Lemma 1. Let D be an arc-colored digraph of order $n \geq 4$ without rainbow triangles. For a vertex $v \in D$, if $D-v \cong \overleftrightarrow{K}_{n-1}$ and $d^{s}(v) \geq 3$, then $C N^{-}(v) \cap C^{s}(v)=\emptyset$ or $C N^{+}(v) \bigcap C^{s}(v)=\emptyset$. Moreover, if $D \cong \overleftrightarrow{K}_{4}$, then $c(D) \leq 5$.

Proof. Let $C^{s}(v)=\{1,2, \ldots, k\}, k \geq 3$. If $C N^{+}(v) \bigcap C^{s}(v) \neq \emptyset$, without loss of generality, assume that $C(v w)=1$. We will show that $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$. By contradiction, assume that there is a vertex $u \neq w$ such that $C(u v) \in C^{s}(v) \backslash\{1\}$, then $u v w u$ is a rainbow triangle, a contradiction. Suppose that $C(w v) \in C^{s}(v) \backslash\{1\}$, such as $C(w v)=2$. Since
$d^{s}(v) \geq 3$, there is an arc colored by 3 incident to v. By the above argument, this arc must be an out-arc of v, so we can assume that $C(v u)=3$. But now wvuw is a rainbow triangle, a contradiction. Thus $C N^{-}(v) \bigcap\left(C^{s}(v) \backslash\{1\}\right)=\emptyset$. Namely, $2 \in C N^{+}(v)$, by similar analysis we have $C N^{-}(v) \bigcap\left(C^{s}(v) \backslash\{2\}\right)=\emptyset$. Hence, we have $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$.

If $n=4$, then assume that $V(D)=\{v, x, y, z\},\{1,2,3\} \subseteq C^{s}(v), C(v x)=1, C(v y)=$ 2, $C(v z)=3, D[\{x, y, z\}]$ is a $\overleftrightarrow{K}_{3}, C(x v)=a, C(y v)=b$ and $C(z v)=c$. Since D contains no rainbow triangles, we have $C(y x)=C(z x)=a, C(x y)=C(z y)=b$ and $C(x z)=C(y z)=c$. So $C(D)=\{1,2,3\} \cup\{a\} \cup\{b\} \cup\{c\}$. If a, b, c are pairwise distinct, then $x y z x$ is a rainbow triangle, a contradiction. So two of a, b and c must be a same color. Then $c(D) \leq 5$.

Lemma 2. Let D be an arc-colored complete digraph of order $n \geq 4$. If D contains no rainbow triangles, then there must be a vertex $v \in V(D)$ such that $d^{s}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor$.

Proof. Suppose for every vertex $v \in V(D)$, we have $d^{s}(v) \geq\left\lfloor\frac{n}{2}\right\rfloor+1$. Let v be a vertex of D. Since $n \geq 4$, we have $d^{s}(v) \geq 3$. By Lemma (1, either $C N^{-}(v) \cap C^{s}(v)=\emptyset$ or $C N^{+}(v) \bigcap C^{s}(v)=\emptyset$. Without loss of generality, suppose $C^{s}(v)=\{1,2, \ldots, k\}, k \geq$ $\left\lfloor\frac{n}{2}\right\rfloor+1$ and $C\left(v w_{i}\right)=i$, for $i=1, \ldots, k$. For $j \neq 1$, since D contains no rainbow triangles, $C\left(w_{1} w_{j}\right) \neq 1$ and $C\left(w_{j} v\right) \neq 1$, we have $C\left(w_{1} w_{j}\right)=C\left(w_{j} v\right)$. Thus, $C\left(w_{1} w_{j}\right) \notin C^{s}\left(w_{1}\right)$ for $j=2, \ldots, k$. Similarly, for $j \neq 1$, since D contains no rainbow triangles, $C\left(w_{j} w_{1}\right) \neq j$ and $C\left(w_{1} v\right) \neq j$, we have $C\left(w_{j} w_{1}\right)=C\left(w_{1} v\right)$. Since $C\left(w_{j} w_{1}\right) \in C N^{-}\left(w_{1}\right) \cap C N^{+}\left(w_{1}\right)$, we can see that $C\left(w_{j} w_{1}\right) \notin C^{s}\left(w_{1}\right)$ for $j=2, \ldots, k$. So, all colors assigned to the arcs between w_{1} and $\left\{w_{2}, \ldots, w_{k}\right\}$ do not belong to $C^{s}\left(w_{1}\right)$. Note that for a pair of arcs $u w_{1}$ and $w_{1} u$, at most one of them has a color in $C^{s}\left(w_{1}\right)$. So,

$$
\left|V\left(D-\left\{w_{1}, \ldots, w_{k}\right\}\right)\right| \geq d^{s}\left(w_{1}\right) \geq\left\lfloor\frac{n}{2}\right\rfloor+1
$$

But now

$$
|V(D)|=n \geq\left\lfloor\frac{n}{2}\right\rfloor+1+\left\lfloor\frac{n}{2}\right\rfloor+1 \geq n+1
$$

a contradiction.

Now we can give the proof of Theorem 1 ,
Proof of Theorem 1, We divide the proof into four cases.
Case 1. $n=3$.
If $n=3$, then we have $a(D)=6$. If $c(D) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3=5$, then at most two arcs have a same color, other arcs all have pairwise distinct new colors. Since there are
two arc-disjoint triangles in D, at least one of them is rainbow. Let $V(D)=\{u, v, w\}$, $C(u v)=C(v w)=1, C(w u)=2, C(v u)=C(u w)=3$ and $C(w v)=4$. Then $c(D)=4$ and neither of two triangles are rainbow. So we have $f\left(\overleftrightarrow{K}_{3}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+3=5$.

Case 2. $n=4$.
For $n=4$, if $c(D) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+3=7$ but D contains no rainbow triangles, then for every vertex $v \in V(D)$, the complete digraph $D-v$ contains no rainbow triangles either. Since $f\left(\overleftrightarrow{K}_{3}\right)=5$, we have $c(D-v)=c(D)-d^{s}(v) \leq 4$. So for every vertex $v \in V(D)$, we have $d^{s}(v) \geq 3$. By Lemman we have $c(D) \leq 5$, a contradiction.

Let $V(D)=\{v, x, y, z\}, C(v x)=C(x y)=C(y z)=C(z v)=1, C(v z)=C(z y)=$ $C(y x)=C(x v)=2, C(v y)=3, C(y v)=4, C(x z)=5$ and $C(z x)=6$. Then $c(D)=6$ and D contains no rainbow triangles. So we have $f\left(\overleftrightarrow{K}_{4}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+3=7$.

Claim 1. Let D be an arc-colored $\overleftrightarrow{K}_{4}$ without rainbow triangles. If $c(D)=6$, then there must be a permutation of the vertex set of D, say $v_{1} v_{2} v_{3} v_{4}$, such that

$$
\left\{\begin{array}{l}
C\left(v_{1} v_{2}\right)=C\left(v_{2} v_{3}\right)=C\left(v_{3} v_{4}\right)=C\left(v_{4} v_{1}\right)=a \\
C\left(v_{1} v_{4}\right)=C\left(v_{4} v_{3}\right)=C\left(v_{3} v_{2}\right)=C\left(v_{2} v_{1}\right)=b, \\
C\left(v_{1} v_{3}\right)=c, \quad C\left(v_{3} v_{1}\right)=d \\
C\left(v_{2} v_{4}\right)=e, \quad C\left(v_{4} v_{2}\right)=f
\end{array}\right.
$$

where a, b, c, d, e, f are pairwise distinct colors.
Proof. Since $f\left(\overleftrightarrow{K}_{3}\right)=5, c(D)=6$ and D contains no rainbow triangles, we have $d^{s}(v) \geq 2$ for each vertex $v \in V(D)$. If there is a vertex $v \in V(D)$ such that $d^{s}(v) \geq 3$, then by Lemma 1, we have $c(D) \leq 5$, a contradiction. So we have $d^{s}(v)=2$ for every vertex $v \in V(D)$. Thus for each $v \in V(D), D-v$ belongs to \mathcal{G}_{3}.

By the structure of \mathcal{G}_{3}, we know that for each color i the arc-colored digraph D^{i} must be connected (otherwise, we recolor a component of D^{i} by a new color, then the obtained arc-colored complete digraph has $f\left(\overleftrightarrow{K}_{4}\right)$ colors but contains no rainbow triangles, a contradiction) and belong to one of the following four types.

Type 1: an arc;
Type 2: a directed path of length 2;
Type 3: a directed path of length 3;
Type 4: a directed cycle of length 4.
Let $X_{j}=\left\{i \in C(D): D^{i}\right.$ belongs to Type $\left.j\right\}$ and $x_{j}=\left|X_{j}\right|$ for $j=1,2,3,4$. Then
we have

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+x_{3}+x_{4}=c(D) \\
x_{1}+2 x_{2}+3 x_{3}+4 x_{4}=a(D) \\
x_{2}+2 x_{3}+4 x_{4}=2\binom{4}{3} \quad(\text { the number of directed triangles in } D) \\
x_{j} \in \mathbb{N} \text { for } j=1,2,3,4 .
\end{array}\right.
$$

By these equations, we get $x_{1}=4, x_{2}=x_{3}=0$ and $x_{4}=2$. Without loss of generality, let $X_{1}=\{1,2,3,4\}, X_{4}=\{5,6\}$ and let uxyzu be the directed cycle of length 4 colored by 5. If $C(x u) \in X_{1}$, then $C(y x), C(u z) \notin X_{1}$ (otherwise, yxuy or $x u z x$ is a rainbow triangle). This forces $C(y x)=C(u z)=6$. Note that D^{6} is a directed cycle of length 4. We have $C(x u)=6 \in X_{4}$. This contradicts to the assumption that $C(x u) \in X_{1}$. Thus $C(x u) \notin X_{1}$. This forces $C(x u)=6$. By the symmetry of the cycle $u x y z u$, we get $C(x u)=C(u z)=C(z y)=C(y x)=6$. For each color $i=1,2,3,4, D^{i}$ is an arc.

Let D be an arc-colored complete digraph of order $n \geq 5$ with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Let

$$
R=\left\{v_{2 i-1} v_{2 j} \mid i=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil, j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\} .
$$

Color the arcs in R with pairwise distinct colors and color the remaining arcs with a same new color. Then $c(D)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$ and D contains no rainbow triangles. So $f\left(\overleftrightarrow{K}_{n}\right) \geq$ $\left\lfloor\frac{n^{2}}{4}\right\rfloor+2$ for $n \geq 5$.

Case 3. $n=5$.
For $n=5$, if $c(D) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+2=8$ but D contains no rainbow triangles, then for every vertex $v \in V(D)$, the complete digraph $D-v$ contains no rainbow triangles either. Since $f\left(\overleftrightarrow{K}_{4}\right)=7$, we have $c(D-v)=c(D)-d^{s}(v) \leq 6$. So for every vertex $v \in V(D)$, we have $d^{s}(v) \geq 2$. On the other hand, by Lemma 2, there must be a vertex $v \in V(D)$ such that $d^{s}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor=2$. So there exists a vertex $v \in V(D)$ such that $d^{s}(v)=2$. Let $D^{\prime}=D-v$, then D^{\prime} is an arc-colored $\overleftrightarrow{K}_{4}$ without rainbow triangles and $c\left(D^{\prime}\right)=6$. By Claim $\mathbb{1}$, we can assume that $V\left(D^{\prime}\right)=\{u, x, y, z\}$ and

$$
\left\{\begin{array}{l}
C(u x)=C(x y)=C(y z)=C(z u)=5, \\
C(u z)=C(z y)=C(y x)=C(x u)=6, \\
C(u y)=1, \quad C(y u)=2, \\
C(x z)=3, \quad C(z x)=4 .
\end{array}\right.
$$

Let $C^{s}(v)=\{7,8\}$. Without loss of generality, we can assume that $C(v u)=7$. Considering the triangle vuxv, we have $C(x v) \neq 8$. If $C(v x)=8$, then considering the triangles vuzv and $v x z v$, we have $C(z v) \in\{6,7\} \bigcap\{3,8\}$, a contradiction. So $C(v x) \neq 8$. Similarly, we have

$$
8 \notin\{C(v y)\} \cup\{C(y v)\} \cup\{C(v z)\} \cup\{C(z v)\} .
$$

So $C(u v)=8$. By similar analysis, we have

$$
7 \notin\{C(v x)\} \cup\{C(x v)\} \cup\{C(v y)\} \cup\{C(y v)\} \cup\{C(v z)\} \cup\{C(z v)\} .
$$

Considering the triangles vuxv and vyuv, we have $C(x v)=5$ and $C(v y)=2$. But now $x v y x$ is a rainbow triangle, a contradiction. Thus, we have $f\left(\overleftrightarrow{K}_{5}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+2=8$.

Case 4. $n \geq 6$.
Suppose Theorem 11 is true for $\overleftrightarrow{K}_{n-1}$, now we consider $\overleftrightarrow{K}_{n}, n \geq 6$. Let D be an arc-colored complete digraph of order $n \geq 6$. If $c(D) \geq\left\lfloor\frac{n^{2}}{4}\right\rfloor+2$ but D contains no rainbow triangles, then for every vertex $v \in V(D)$, the digraph $D-v$ contains no rainbow triangles either. Thus, we have $c(D-v)=c(D)-d^{s}(v) \leq\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$. So for every vertex $v \in V(D)$, we have

$$
\begin{aligned}
d^{s}(v) \geq & \left\lfloor\frac{n^{2}}{4}\right\rfloor+2-\left(\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1\right) \\
& = \begin{cases}\frac{n}{2}+1, & n \text { is even; } \\
\frac{n+1}{2}, & n \text { is odd. }\end{cases}
\end{aligned}
$$

On the other hand, by Lemma 2, there must be a vertex $v \in V(D)$ such that $d^{s}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor$, a contradiction. So we have $f\left(\overleftrightarrow{K}_{n}\right)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+2$ for $n \geq 5$.

The proof is complete.
Proof of Theorem 2. Let $D \in \mathcal{G}_{3}$. Since the two arc-disjoint directed triangles Δ_{1} and Δ_{2} are not rainbow, we have $c\left(\Delta_{1}\right) \leq 2$ and $c\left(\Delta_{2}\right) \leq 2$. Thus $4=c(D) \leq c\left(\Delta_{1}\right)+c\left(\Delta_{2}\right) \leq$ 4, the equality holds if and only if $c\left(\Delta_{1}\right)=c\left(\Delta_{2}\right)=2$ and $C\left(\Delta_{1}\right) \cap C\left(\Delta_{2}\right)=\emptyset$.

We have already characterized \mathcal{G}_{4} by Claim $\mathbb{1}$ in Theorem 1 .
Let $D \in \mathcal{G}_{5}$. Then $c(D)=f\left(\overleftrightarrow{K}_{5}\right)-1=8-1=7$. If $d^{s}(v)=1$ for a vertex $v \in V(D)$, then we have $c(D-v)=6$. By Claim $\mathbb{1}$ in Theorem $\mathbb{1}$, we can assume that
$V(D-v)=\{u, x, y, z\}$ and

$$
\left\{\begin{array}{l}
C(u x)=C(x y)=C(y z)=C(z u)=5 \\
C(u z)=C(z y)=C(y x)=C(x u)=6 \\
C(u y)=1, \quad C(y u)=2 \\
C(x z)=3, \quad C(z x)=4
\end{array}\right.
$$

Without loss of generality, we can assume that $C(v u)=7 \in C^{s}(v)$. Considering triangles $v u x v$, vuyv and $v u z v$, we have $C(x v)=5$ or $7, C(y v)=1$ or 7 and $C(z v)=6$ or 7. Considering triangles $v z x v$ and $v z y v$, we have $C(v z) \in\{4,5,7\} \bigcap\{1,6,7\}$, and hence $C(v z)=7=C(x v)=C(y v)$. Considering triangles $v x z v$ and $v x y v$, we have $C(v x) \in$ $\{5,7\} \bigcap\{3,6,7\}$, and hence $C(v x)=7=C(z v)$. Considering triangles $v y z v$ and $v y x v$, we have $C(v y) \in\{5,7\} \bigcap\{6,7\}$, and hence $C(v y)=7$. Finally, considering triangles uvxu and uvyu, we have $C(u v) \in\{6,7\} \bigcap\{2,7\}$, and hence $C(u v)=7$. Thus, all arcs incident to v are colored by 7 and D belongs to Type I.

Now let us consider the case that $d^{s}(v) \geq 2$ for each vertex $v \in V(D)$. Let

$$
\begin{gathered}
X=\left\{i \in C(D): C(u v)=i \text { and } i \in C^{s}(u) \cap C^{s}(v)\right\}, \\
Y=\left\{i \in C(D): i \in C^{s}(v) \text { and } i \notin C^{s}(u) \text { if } u \neq v\right\}, \\
Z=\left\{i \in C(D): i \notin C^{s}(v) \text { for any } v \in V(D)\right\} .
\end{gathered}
$$

Let x, y and z be the cardinality of X, Y and Z, respectively. Then we have

$$
\left\{\begin{array}{l}
x+y+z=c(D) \\
2 x+y=\sum_{v \in V(D)} d^{s}(v) .
\end{array}\right.
$$

Recall that $c(D)=7$ and $d^{s}(v) \geq 2$ for each vertex $v \in V(D)$. We have

$$
\left\{\begin{array}{l}
x+y+z=7 \\
2 x+y \geq 10
\end{array}\right.
$$

Thus $x \geq z+3 \geq 3$.
Let H be an arc-colored spanning subdigraph of D with the arcs that are assigned colors in X. Then $a(H) \geq x \geq 3$. Since each directed path $u v w$ in H implies a rainbow triangle $u v w u$, there is no directed path of length 2 in H. Let \hat{H} be the underlying graph of H.

Case 1. $Z=\emptyset$.

If $u v, a b \in A(H)$ for four distinct vertices u, v, a, b, then without loss of generality, we can assume that $C(v a)=1$. Since vauv and abva are not rainbow triangles, it is easy to see that $C(a u)=C(b v)=1$. Thus $1 \in Z$. This contradicts that $Z=\emptyset$. Thus there exists a vertex u such that each arc in H is incident to u and hence $d^{s}(u) \geq x$.

Let $u v$ be an arc such that $C(u v) \in X$. Let $\{a, b, c\}=V(D) \backslash\{u, v\}$. Since D contains no rainbow triangles and $Z=\emptyset$, we can assume that $C(v a)=C(a u)=1, C(v b)=$ $C(b u)=2$ and $C(v c)=C(c u)=3$. This implies that $\{1,2,3\} \subseteq Y$ and $y \geq 3$. Now we have $x, y \geq 3$ and $x+y=7$. Thus either $x=3, y=4$ or $x=4, y=3$.

If $x=3, y=4$, then $10=2 x+y=\sum_{v \in V(D) \backslash\{u\}} d^{s}(v)+d^{s}(u) \geq 11$, a contradiction.
If $x=4, y=3$, then $11=2 x+y=\sum_{v \in V(D) \backslash\{u\}} d^{s}(v)+d^{s}(u) \geq 12$, a contradiction.
Case 2. $x \geq 5$.
If H contains a cycle $u v u$, namely, $C(u v), C(v u) \in X$, where $v \neq u$, then it is easy to see that none of the arcs in H appears between $\{u, v\}$ and $V(D) \backslash\{u, v\}$. Let $\{a, b, c\}=$ $V(D) \backslash\{u, v\}$. Then either the triangle $a b c a$ or the triangle cbac contains two arcs of H. In both cases, we get a rainbow triangle. So H contains no two oppositely oriented arcs. Moreover, there is no odd cycle in \hat{H} (otherwise, there must be a directed path of length 2 in H, a contradiction.)

Note that $a(H) \geq x \geq 5$. The graph \hat{H} must contain a cycle, which has to be of length 4, say $a_{1} b_{1} a_{2} b_{2} a_{1}$. Let $\{u\}=V(D) \backslash\left\{a_{1}, a_{2}, b_{1}, b_{2}\right\}$. Since there is no directed path of length 2 in H, we can assume that $a_{1} b_{1}, a_{1} b_{2}, a_{2} b_{1}, a_{2} b_{2} \in A(H)$ and all the other arcs in $D\left[a_{1}, a_{2}, b_{1}, b_{2}\right]$ are not contained in H. Assume that $C\left(a_{1} a_{2}\right)=1$. Then $1 \in Y \cup Z$. Consider triangles $a_{1} a_{2} b_{1} a_{1}$ and $a_{1} a_{2} b_{2} a_{1}$. We get $C\left(b_{1} a_{1}\right)=C\left(b_{2} a_{1}\right)=1$. Consider $b_{2} a_{1} b_{1} b_{2}$ and $b_{1} a_{1} b_{2} b_{1}$. We get $C\left(b_{1} b_{2}\right)=C\left(b_{2} b_{1}\right)=1$. By similar analyzing process, we finally see that all the arcs in $A(D-u) \backslash A(H)$ are of color 1 . Recall that $a(H) \geq 5$. By the symmetry, we can assume that u is either incident to a_{1} or b_{1} in H.

If u is incident to b_{1} in H, then the situation has to be $u b_{1} \in H$ (since H contains no path of length 2). Now consider triangles $u b_{1} a_{1} u, u b_{1} b_{2} u$ and $u b_{1} a_{2} u$. We get $C\left(a_{1} u\right)=$ $C\left(b_{2} u\right)=C\left(a_{2} u\right)=1$. Consider triangles $u a_{1} b_{2} u$ and $u a_{2} b_{2} u$. We get $C\left(u a_{1}\right)=C\left(u a_{2}\right)=$ 1. Again, consider the triangle $u a_{1} b_{1} u$. We get $C\left(b_{1} u\right)=1$. Now $c\left(D-u b_{2}\right)=6$. Since $c(D)=7$, there holds $C\left(u b_{2}\right) \notin C\left(D-u b_{2}\right)$. Thus $u b_{2} \in A(H)$. If u is incident to a_{1} in H, then by a similar analyzing process, we can obtain that $a_{1} u, a_{2} u \in A(H)$ and all the other arcs incident to u are of color 1 .

In summary, H is an orientation of $K_{2,3}$ with partite sets A and B such that $|A|=$ $2,|B|=3$ and all the arcs are from A to B or from B to A. The remaining arcs in D are
all colored by a same new color. So D belongs to Type II.
Case 3. $z \geq 1$ and $x \leq 4$.
Recall that $x \geq z+3 \geq 4$ and $x+y+z=7$. We have $x=4, y=2$ and $z=1$. Note that

$$
10=2 x+y=\sum_{v \in V(D)} d^{s}(v) \geq 2 * 5=10 .
$$

So $d^{s}(v)=2$ for each vertex $v \in V(D)$. Now we assert that $d^{s}(v) \geq d_{\hat{H}}(v)$. If each color in $C^{s}(v) \cap X$ is only assigned to one arc in D, then there is nothing to prove. If there is a color in $C^{s}(v) \cap X$ assigned to more than two arcs, then by the definition of X, we know that these arcs must be two oppositely oriented arcs, say $v w$ and $w v$. Recolor $v w$ by a new color. Then the obtained arc-colored complete digraph D^{\prime} satisfies that $c\left(D^{\prime}\right)=f\left(\overleftrightarrow{K}_{5}\right)$ but D^{\prime} contains no rainbow triangles, a contradiction. So we have $d^{s}(v) \geq d_{\hat{H}}(v)$ for each vertex $v \in V(D)$. Thus the maximum degree of \hat{H} is at most 2 .

If \hat{H} contains a path of length 3 , then without loss of generality, we can assume that uvws is a path with $u v, w v, w s \in A(H)$. Let $C(v u)=1, C(v w)=c$ and let p be the vertex in D different from u, v, w and s. Since D contains no rainbow triangles, we obtain that $C(u w)=C(s u)=C(v s)=C(s w)=1$ and $C(w u)=C(s v)=c$. It is easy to observe that $1, c \in Z$. Since $z=1$, we have $c=1$ and $Z=\{1\}$. Consider triangles uvpu, wvpw and wspw. We get $C(v p)=C(p u)=C(p w)=C(s p)=a$. If $a \in C^{s}(p)$, then considering triangles upwu, pvsp, wpuw and vpsv, we can get

$$
\{C(u p)\} \cup\{C(p v)\} \cup\{C(w p)\} \cup\{C(p s)\} \subseteq\{1, a\} .
$$

Thus, we have $d^{s}(p)=1$, a contradiction. So $a \notin C^{s}(p)$ and hence $a=1$. If $C(u p)=2 \in$ $C^{s}(p)$, then considering triangles vupv and sups, we can get $C(p v), C(p s) \in\{1,2\}$. Since $d^{s}(p)=2$, we have $C(w p) \neq 2$ and $C(w p) \in C^{s}(p)$. Let $C(w p)=3$. Consider triangles $w p v w$ and wpsw. We can get $C(p v), C(p s) \in\{1,3\}$. So $C(p v)=C(p s)=1$. But now $\{2,3, C(u v), C(w v), C(w s)\} \subseteq X$. This contradicts that $x=4$. Thus $C(u p) \notin C^{s}(p)$. By similar analyzing process, we can see that $C(p v), C(w p), C(p s) \notin C^{s}(p)$. This implies that $C^{s}(p)=\emptyset$, a contradiction.

If the longest path in \hat{H} is of length 1 , then the arcs of H form two vertex-disjoint cycles of length 2 , say $A(H)=\{u v, v u, p q, q p\}$. Since $z=1$, it is easy to check that all the arcs between $\{u, v\}$ and $\{p, q\}$ has a same color, namely, the unique color in Z. Let $Y=\{1,2\}$ and $V(D) \backslash\{u, v, p, q\}=\{w\}$. Then there holds $C^{s}(w)=\{1,2\}$. Since D contains no rainbow triangles, we have $C(u w)=C(w v), C(v w)=C(w u), C(p w)=C(w q), C(q w)=$
$C(w p)$. By the symmetry, we can assume that $C(u w)=C(w v)=1$. Consider triangles uwpu, uwqu, pwvp and qwvq. We can see that the color 2 does not appear between w and $\{p, q\}$. This forces $C(v w)=C(w u)=2$ and all the arcs between w and $\{p, q\}$ are colored by the unique color in Z. So D belongs to Type III.

The remaining case is that \hat{H} is composed of a path of length 2 and a cycle of length 2. Let $V(D)=\{u, v, w, p, q\}$ and $A(H)=\{u v, w v, p q, q p\}$. Assume that $C(v p)=a$ and $C(p v)=b$. Then it is easy to check that each arcs between $\{u, v, w\}$ and $\{p, q\}$ are of color a or b, and $a, b \in Z$. This forces $a=b$ (since $z=1$). Now the arcs $v u, u w, w u, v w$ are the only possible arcs that are assigned the colors in Y. Thus $c(D[v, u, w])=4$ and each color in $D[v, u, w]$ does not appears on $A(D) \backslash A(D[v, u, w])$. So $D[v, u, w] \in \mathcal{G}_{3}$ and D belongs to Type III.

Let $D \in \mathcal{G}_{6}$. Since D contains no rainbow triangles, we have $c(D-v) \leq 7$, so $d^{s}(v) \geq 3$ for every $v \in V(D)$. On the other hand, by Lemma 2, there is a vertex $v \in V(D)$ such that $d^{s}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor=3$. So there is a vertex $v \in V(D)$ such that $d^{s}(v)=3$ and $c(D-v)=7$. Since $D-v$ contains no rainbow triangles, by the above arguments, $D-v \in \mathcal{G} 5$ and thus belongs to one of the three types of digraphs.

Case 1. $D-v$ belongs to Type I.
Let $V(D)=\{u, v, w, x, y, z\}$, We can assume that

$$
\left\{\begin{array}{l}
C(u y)=1, \quad C(y u)=2, \quad C(x z)=3, \quad C(z x)=4, \\
C(u x)=C(x y)=C(y z)=C(z u)=5, \\
C(u z)=C(z y)=C(y x)=C(x u)=6, \\
C(w x)=C(w y)=C(w z)=C(w u)=C(u w)=C(x w)=C(y w)=C(z w)=7 .
\end{array}\right.
$$

Since $d^{s}(v)=3$, by Lemma 1, we can assume that $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$. Let $C^{s}(v)=$ $\{8,9,10\}$ and $C(v z)=8$. Considering the triangle $v z w v$, we have $C(w v)=7$. But now $d^{s}(w) \leq 2$, a contradiction.

Case 2. $D-v$ belongs to Type III.

Let $V(D)=\left\{v, a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}$. We can assume that $C\left(a_{1} a_{2}\right)=1, C\left(a_{2} a_{1}\right)=2$ and $C\left(\left\{a_{1}, a_{2}\right\},\left\{b_{1}, b_{2}, b_{3}\right\}\right)=\{3\}$. Since $d^{s}(v)=3$, by Lemma [1 we can assume that $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$. Then there must be a vertex b_{j} such that $C\left(v b_{j}\right) \in C^{s}(v)$. Without loss of generality, we can assume that $C\left(v b_{1}\right)=8 \in C^{s}(v)$. Considering triangles $v b_{1} a_{1} v$ and $v b_{1} a_{2} v$, we have $C\left(a_{1} v\right)=C\left(a_{2} v\right)=3$. Considering the triangle $a_{1} v a_{2} a_{1}$, we have
$C\left(v a_{2}\right) \in\{2,3\}$. Since $C\left(a_{1} b_{1}\right)=3$, we can see that $3 \notin C^{s}\left(a_{2}\right)$ and $d^{s}\left(a_{2}\right) \leq 2$, a contradiction.

Case 3. $D-v$ belongs to Type II.

Let $V(D)=\left\{v, a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}$. We can assume that

$$
\left\{\begin{array}{lll}
C\left(a_{1} b_{1}\right)=1, & C\left(a_{1} b_{2}\right)=2, & C\left(a_{1} b_{3}\right)=3 \\
C\left(a_{2} b_{1}\right)=4, & C\left(a_{2} b_{2}\right)=5, & \left.C\left(a_{2} b_{3}\right)\right)=6
\end{array}\right.
$$

and the remaining arcs of $D-v$ are all colored by 7 .
Case 3.1. $C N^{+}(v) \bigcap C^{s}(v)=\emptyset$.
Since $d^{s}(v)=3$, there must be a vertex b_{j} such that $C\left(b_{j} v\right) \in C^{s}(v)$. Without loss of generality, we can assume that $C\left(b_{1} v\right)=8 \in C^{s}(v)$. Considering triangles $v a_{1} b_{1} v$ and $v a_{2} b_{1} v$, we have $C\left(v a_{1}\right)=1$ and $C\left(v a_{2}\right)=4$. Considering triangles $a_{1} b_{2} v a_{1}$ and $a_{2} b_{2} v a_{2}$, we have $C\left(b_{2} v\right) \in\{1,2\} \bigcap\{4,5\}$, a contradiction.
Case 3.2. $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$.
Let $C^{s}(v)=\{8,9,10\}$. If $C\left(v a_{1}\right)=8$, then considering triangles $v a_{1} b_{1} v$ and $v a_{1} b_{2} v$, we have $C\left(b_{1} v\right)=1$ and $C\left(b_{2} v\right)=2$. Considering triangles $a_{2} b_{1} v a_{2}$ and $a_{2} b_{2} v a_{2}$, we have $C\left(v a_{2}\right) \in\{1,4\} \bigcap\{2,5\}$, a contradiction. So $C\left(v a_{1}\right) \neq 8$. Similarly we can prove that

$$
\left(\left\{C\left(v a_{1}\right)\right\} \cup\left\{C\left(v a_{2}\right)\right\}\right) \bigcap C^{s}(v)=\emptyset
$$

Thus $C^{s}(v) \subseteq\left\{C\left(v b_{1}\right), C\left(v b_{2}\right), C\left(v b_{3}\right)\right\}$. Without loss of generality, we can assume that $C\left(v b_{1}\right)=8, C\left(v b_{2}\right)=9$ and $C\left(v b_{3}\right)=10$. Considering the triangle set

$$
\left\{v b_{1} u v \mid u \in\left\{a_{1}, a_{2}, b_{2}, b_{3}\right\}\right\} \bigcup\left\{v b_{2} b_{1} v\right\}
$$

we have

$$
C\left(\left\{u v \mid u \in\left\{a_{1}, a_{2}, b_{1}, b_{2}, b_{3}\right\}\right\}\right)=\{7\}
$$

Considering triangles $v a_{1} b_{1} v, v a_{1} b_{2} v, v a_{2} b_{1} v$ and $v a_{2} b_{2} v$, we have

$$
C\left(v a_{1}\right) \in\{1,7\} \bigcap\{2,7\}=\{7\} \text { and } C\left(v a_{2}\right) \in\{4,7\} \bigcap\{5,7\}=\{7\}
$$

Let $v=a_{3}$. Then we can see that the spanning subdigraph H of D with $A(H)=\left\{a_{i} b_{j} \mid i=\right.$ $1,2,3 ; j=1,2,3\}$ is rainbow and all the remaining arcs are colored by a same new color 7. So the theorem is true for $3 \leq n \leq 6$.

Let $D \in \mathcal{G}_{n}, n \geq 7$. Suppose the theorem is true for $\overleftrightarrow{K}_{n-1}$. Now we consider $\overleftrightarrow{K}_{n}$ $n \geq 7$.

If $D=\overleftrightarrow{K}_{n}$ contains no rainbow triangles and $c(D)=\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$, then $c(D-v) \leq$ $\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$ and $d^{s}(v) \geq\left\lfloor\frac{n}{2}\right\rfloor$ for every $v \in V(D)$. On the other hand, by Lemma 2, there is a vertex $v \in V(D)$ such that $d^{s}(v) \leq\left\lfloor\frac{n}{2}\right\rfloor$. So there is a vertex $v \in V(D)$ such that $d^{s}(v)=\left\lfloor\frac{n}{2}\right\rfloor$ and $c(D-v)=\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+1$. By induction hypothesis, the vertex set of $D-v$ can be partitioned into two subsets $\left\{a_{1}, a_{2}, \ldots, a_{\left\lfloor\frac{n-1}{2}\right\rfloor}\right\}$ and $\left\{b_{1}, b_{2}, \ldots, b_{\left\lceil\frac{n-1}{2}\right\rceil}\right\}$ such that the spanning subdigraph H of D with $A(H)=\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor ; j=\right.$ $\left.1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil\right\}$ (or $A(H)=\left\{b_{j} a_{i} \mid i=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil\right\}$) is rainbow and all arcs in $A(D) \backslash A(H)$ are colored by a same new color c. By symmetry, we only discuss the case $A(H)=\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil\right\}$. If n is odd, then we divide the rest of the proof into two cases.

Case 1. $C N^{+}(v) \cap C^{s}(v)=\emptyset$.
If there is a vertex b_{j} such that $C\left(b_{j} v\right) \in C^{s}(v)$. Without loss of generality, we can assume that $C\left(b_{1} v\right) \in C^{s}(v)$. Considering triangles $v a_{1} b_{1} v$ and $v a_{2} b_{1} v$, we have $C\left(v a_{1}\right)=C\left(a_{1} b_{1}\right)$ and $C\left(v a_{2}\right)=C\left(a_{2} b_{1}\right)$. Considering triangles $a_{1} b_{2} v a_{1}$ and $a_{2} b_{2} v a_{2}$, we have

$$
C\left(b_{2} v\right) \in\left\{C\left(a_{1} b_{1}\right), C\left(a_{1} b_{2}\right)\right\} \bigcap\left\{C\left(a_{2} b_{1}\right), C\left(a_{2} b_{2}\right)\right\} .
$$

But $A(H)=\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n-1}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil\right\}$ is rainbow, a contradiction. So $C\left(b_{j} v\right) \notin C^{s}(v)$, for $j=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$. Thus $C^{s}(v) \subseteq\left\{C\left(a_{1} v\right), \ldots, C\left(a_{\left\lfloor\frac{n-1}{2}\right\rfloor} v\right)\right\}$. Since $d^{s}(v)=\left\lfloor\frac{n}{2}\right\rfloor=\left\lfloor\frac{n-1}{2}\right\rfloor$, we can see that $\left.C^{s}(v)=\left\{C\left(a_{1} v\right), \ldots, C\left(a_{\left\lfloor\frac{n-1}{2}\right\rfloor}\right\rfloor\right)\right\}$. Considering the triangle set

$$
\left\{v u a_{1} v \mid u \in V(D) \backslash\left\{v, a_{1}\right\}\right\} \bigcup\left\{v a_{1} a_{2} v\right\},
$$

we have

$$
C(\{v u \mid u \in V(D) \backslash\{v\}\})=\{c\} .
$$

Considering triangles $v a_{1} b_{j} v$ and $v a_{2} b_{j} v$, for $j=1,2, \ldots,\left\lceil\frac{n-1}{2}\right\rceil$, we have

$$
C\left(b_{j} v\right) \in\left\{C\left(a_{1} b_{j}\right), c\right\} \bigcap\left\{C\left(a_{2} b_{j}\right), c\right\}=\{c\} .
$$

Let $v=b_{\left\lceil\frac{n}{2}\right\rceil}$. Then we can see that the spanning subdigraph H of D with $A(H)=$ $\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ is rainbow and all the remaining arcs are colored by a same new color c.

Case 2. $C N^{-}(v) \bigcap C^{s}(v)=\emptyset$.
By similar analysis, we can see that the spanning subdigraph H of D with $A(H)=$ $\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil ; j=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$ is rainbow and all the remaining arcs are colored by a same new color c, where $v=a_{\left\lceil\frac{n}{2}\right\rceil}$.

If n is even, then by similar analysis we can see that the spanning subdigraph H of D with $A(H)=\left\{a_{i} b_{j} \mid i=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor ; j=1,2, \ldots,\left\lceil\frac{n}{2}\right\rceil\right\}$ is rainbow and all the remaining arcs are colored by a same new color c, where $v=a_{\left\lfloor\frac{n}{2}\right\rfloor}$.

The proof is complete.
Proof of Theorem 3. Suppose the contrary. Let D be a counterexample with the smallest number of vertices, and then with the smallest number of arcs.

Claim 1. D contains two arcs $u v$ and $x y$ with a same color, where $x y \neq v u$.
Proof. Recall that the maximum number of arcs among all digraphs of order n without directed triangles is $\left\lfloor\frac{n^{2}}{2}\right\rfloor$ (see [18]). If $c(D) \geq\left\lfloor\frac{n^{2}}{2}\right\rfloor+1$, then D contains a rainbow triangle, a contradiction. So $c(D) \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor$. Thus, we have

$$
a(D)-\left\lfloor\frac{n^{2}}{2}\right\rfloor \geq n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+2-2\left\lfloor\frac{n^{2}}{2}\right\rfloor= \begin{cases}\frac{n(n-4)}{4}+2>0, & n \text { is even } ; \\ \frac{(n-1)(n-3)}{4}+2>0, & n \text { is odd. }\end{cases}
$$

So $a(D)>\left\lfloor\frac{n^{2}}{2}\right\rfloor$. Namely, D contains a directed triangle Δ and at least two arcs of Δ are colored by a same color. Note that two arcs of a triangle can only have one common end. So D contains two arcs $u v$ and $x y$ with a same color, where $x y \neq v u$.

Claim 2.

$$
a(D)+c(D)= \begin{cases}n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+3, & n=3,4 \\ n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+2, & n \geq 5 .\end{cases}
$$

Proof. By Claim $\mathbb{1}$, let a_{1} and a_{2} be two arcs with a same color. Then $a\left(D-a_{1}\right)=a(D)-1$ and $c\left(D-a_{1}\right)=c(D)$. If

$$
a(D)+c(D) \geq \begin{cases}n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+4, & n=3,4 \\ n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+3, & n \geq 5\end{cases}
$$

then

$$
a\left(D-a_{1}\right)+c\left(D-a_{1}\right) \geq \begin{cases}n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+3, & n=3,4 ; \\ n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+2, & n \geq 5 .\end{cases}
$$

Note that $D-a_{1}$ contains no rainbow triangles either. Thus $D-a_{1}$ is a counterexample with fewer arcs, a contradiction.

Claim 3. For every $v \in V(D)$, we have

$$
d(v)+d^{s}(v) \geq \begin{cases}2(n-1)+\frac{n}{2}+1, & n \text { is even; } \\ 2(n-1)+\frac{n-1}{2}+1, & n \text { is odd and } n \neq 5 \\ 10, & n=5\end{cases}
$$

Proof. Note that $a(D-v)=a(D)-d(v)$ and $c(D-v)=c(D)-d^{s}(v)$. If

$$
d(v)+d^{s}(v) \leq \begin{cases}2(n-1)+\frac{n}{2}, & n \text { is even } \\ 2(n-1)+\frac{n-1}{2}, & n \text { is odd and } n \neq 5 \\ 9, & n=5\end{cases}
$$

then

$$
\begin{aligned}
& a(D-v)+c(D-v)=a(D)+c(D)-\left(d(v)+d^{s}(v)\right) \\
& \quad \geq \begin{cases}(n-1)(n-2)+\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+3, & n=4,5 \\
(n-1)(n-2)+\left\lfloor\frac{(n-1)^{2}}{4}\right\rfloor+2, & n \geq 6\end{cases}
\end{aligned}
$$

Note that $D-v$ does not contain a rainbow triangle. Thus $D-v$ is a counterexample with fewer vertices, a contradiction.

Claim 4. $\sum_{v \in V(D)} d^{s}(v) \leq 2 c(D)-1$.
Proof. Let c be an arbitrary color in $C(D)$. Note that each color c can only be saturated by at most two vertices. So $\sum_{v \in V(D)} d^{s}(v) \leq 2 c(D)$. Moreover, c is saturated by exactly two vertices if and only if c appears on only one arc or on a pair of arcs between two vertices. By Claim 1, D contains two $\operatorname{arcs} u v$ and $x y$ with a same color, where $x y \neq v u$. Thus, at least one color cannot be saturated by exactly two vertices. So $\sum_{v \in V(D)} d^{s}(v) \leq 2 c(D)-1$.

By Claims 2.4, we can get that if $n \geq 6$ is even, then

$$
\begin{equation*}
2 n(n-1)+\frac{n^{2}}{2}+n \leq \sum_{v \in V(D)}\left(d(v)+d^{s}(v)\right) \leq 2 a(D)+2 c(D)-1=2 n(n-1)+\frac{n^{2}}{2}+3 \tag{1}
\end{equation*}
$$

This implies that $n \leq 3$, a contradiction.
If $n \geq 7$ is odd, then

$$
\begin{align*}
2 n(n-1)+\frac{n(n-1)}{2}+n \leq \sum_{v \in V(D)}\left(d(v)+d^{s}(v)\right) & \leq 2 a(D)+2 c(D)-1 \\
& =2 n(n-1)+\frac{(n-1)(n+1)}{2}+3 \tag{2}
\end{align*}
$$

This implies that $n \leq 5$, a contradiction. So it suffices to consider the cases $n=3,4,5$.
For $n=3$, since $a(D)+c(D)=11$ and $a(D) \leq 6$, we have $c(D) \geq 5=\left\lfloor\frac{n^{2}}{2}\right\rfloor+1$. So D contains a rainbow triangle, a contradiction.

For $n=4$, we have $a(D)+c(D) \geq 19$. If $a(D)=12$, then $D \cong \overleftrightarrow{K}_{4}$ and $c(D) \geq 7$ By Theorem 1, D contains a rainbow triangle, a contradiction. If $a(D) \leq 10$, then $c(D) \geq 9=\left\lfloor\frac{4^{2}}{2}\right\rfloor+1$. We know that D contains a rainbow triangle, a contradiction. The
only case left is that $a(D)=11=a\left(\overleftrightarrow{K}_{4}\right)-1$ and $c(D)=8$. Let u be a vertex in D such that $D-u \cong \overleftrightarrow{K}_{3}$. Since $f\left(\overleftrightarrow{K}_{3}\right)=5$, we have $d^{s}(u) \geq 4$. Let $V(D-u)=\{x, y, z\}$. Then there must exist two vertices in $V(D-u)$ (say x and y) such that $c(u x)$ and $c(y u)$ are two distinct colors in $C^{s}(u)$. This implies that uxyu is a rainbow triangle, a contradiction.

Lemma 3. Let D be an arc-colored digraph of order 3. If $a(D)+c(D)=10$ and D contains no rainbow triangle, then $D \cong \overleftrightarrow{K}_{3}$.

Proof. Since D contains no rainbow triangle, we have $c(D) \leq\left\lfloor\frac{n^{2}}{2}\right\rfloor=4$ and $a(D) \geq 6$. So $c(D)=4, a(D)=6$ and $D \cong \overleftrightarrow{K}_{3}$.

Lemma 4. Let D be an arc-colored digraph of order 4. If $a(D)+c(D)=18$ and D contains no rainbow triangle, then $D \cong \overleftrightarrow{K}_{4}$.

Proof. For every $v \in V(D)$, since $D-v$ contains no rainbow triangles, we have $a(D-v)+$ $c(D-v) \leq 10$ and hence $d(v)+d^{s}(v) \geq 8$. If $d(v)+d^{s}(v) \geq 9$ for every $v \in V(D)$, then

$$
\begin{equation*}
36 \leq \sum_{v \in V(D)}\left(d(v)+d^{s}(v)\right) \leq 2 a(D)+2 c(D)-1=35, \tag{3}
\end{equation*}
$$

a contradiction. So there is a vertex $v \in V(D)$ such that $d(v)+d^{s}(v)=8$. Let $V(D)=$ $\{v, x, y, z\}$ and $d(v)+d^{s}(v)=8$. Then $a(D-v)+c(D-v)=10$. By Lemma 3, $D-v \cong \overleftrightarrow{K}_{3}$, and thus $D-v \in \mathcal{G}_{3}$. Furthermore, by Theorem 2, we know that the color sets of the two directed triangles in $D-v$ is disjoint. Let $C(D-v)=\{1,2,3,4\}$. If $D \not \approx \overleftrightarrow{K}_{4}$, then $d(v) \leq 5$ and $d^{s}(v) \geq 3$. Let $\{5,6,7\} \subseteq C^{s}(v)$. If there exist two vertices in $V(D-v)$ (say x and y) such that $c(v x)$ and $c(y v)$ are two distinct colors in $C^{s}(v)$, then we have vxyv is a rainbow triangle, a contradiction. So we can assume that $C(v x)=5, C(v y)=6$ and $C(v z)=7$. If $y v \in A(D)$, then consider triangles $v x y v$ and $v z y v$. We get $C(x y)=C(y v)$ and $C(z y)=C(y v)$. Thus $C(x y)=C(z y)$. This contradicts the structure of $D-v \in \mathcal{G}_{3}$. So we have $y v \notin A(D)$. Similarly, we can get $x v, z v \notin A(D)$. Thus $d(v)=d^{s}(v)=3$. This contradicts that $d(v)+d^{s}(v)=8$.

For $n=5$, we have $a(D)+c(D) \geq 28$. For each integer p, let $X_{p}=\{u \in V(D)$: $a(D-u)+c(D-u)=p\}$ and let $x_{p}=\left|X_{p}\right|$. Since D contains no rainbow triangle, $a(D-u)+c(D-u) \leq 18$ for each vertex $u \in V(D)$. So we have

$$
\begin{equation*}
\sum_{p \leq 18} x_{p}=5 . \tag{4}
\end{equation*}
$$

Let $Y_{i}=\{u: i \in C(D-u)\}$ for each $i \in C(D)$ and let $y_{i}=\left|Y_{i}\right|$. Since each color appears in at least 3 induced subdigraphs of order 4 , we have $y_{i} \geq 3$. Note that D has 5 induced
subdigraphs of order 4 , every arc of D belongs to exactly 3 of such induced subdigraphs and every color $i \in C(D)$ belongs to exactly y_{i} of them. So we have

$$
\begin{equation*}
\sum_{p \leq 18} p x_{p}=3 a(D)+\sum_{i \in C(D)} y_{i}=3 a(D)+3 c(D)+\sum_{i \in C(D)}\left(y_{i}-3\right) \geq 84+\sum_{i \in C(D)}\left(y_{i}-3\right) . \tag{5}
\end{equation*}
$$

By (5) $-16 \times$ (4) we can get

$$
\sum_{i \in C(D)}\left(y_{i}-3\right) \leq 2 x_{18}+x_{17}-4 .
$$

Case 1. $x_{18}=0$.
In this case, since $x_{17} \leq 5$, we have $0 \leq \sum_{i \in C(D)}\left(y_{i}-3\right) \leq 1$. This means that either $y_{i}=3$ for all $i \in C(D)$ or there is only one color j such that $y_{j}=4$.

If $y_{i}=3$ for all $i \in C(D)$, then every triangle in D must be a rainbow triangle. This implies that D contains no directed triangles. So $a(D) \leq\left\lfloor\frac{5^{2}}{2}\right\rfloor=12$. Thus

$$
28 \leq a(D)+c(D) \leq 2 a(D) \leq 24,
$$

a contradiction. If there is only one color j such that $y_{j}=4$. Then let u be the only vertex in D such that $j \notin C(D-u)$. Then $D-u$ contains no directed triangle. Thus $a(D-u)+c(D-u) \leq 2 a(D-u) \leq 2\left\lfloor\frac{4^{2}}{2}\right\rfloor=16$. So $d^{s}(u)+d(u) \geq 12$. Note that $d^{s}(u)+d(u) \leq 2 d(u)-a\left(D^{j}\right)+1$. So

$$
\begin{equation*}
a\left(D^{j}\right) \leq 2 d(u)-11 . \tag{6}
\end{equation*}
$$

On the other hand, let D^{\prime} be an arc-colored digraph such that $V\left(D^{\prime}\right)=V(D)$ and $A\left(D^{\prime}\right)=\left(A(D) \backslash A\left(D^{j}\right)\right) \cup\{e\}$. Here e is an arc from D^{j}. Then we have $28-a\left(D^{j}\right)+1=$ $a\left(D^{\prime}\right)+c\left(D^{\prime}\right) \leq 2 a\left(D^{\prime}\right) \leq 2\left\lfloor\frac{5^{2}}{2}\right\rfloor$. Thus

$$
\begin{equation*}
a\left(D^{j}\right) \geq 5 . \tag{7}
\end{equation*}
$$

Combine (6) and (77). We have $d(u) \geq 8$. Note that $d(u) \leq 8$. We have $d(u)=8, a\left(D^{j}\right)=5$ and there must be a vertex $v \in V(D-u)$ such that $C(u v)=C(v u)=j$. Let $D^{\prime \prime}$ be an arc-colored digraph such that $V\left(D^{\prime \prime}\right)=V(D)$ and $A\left(D^{\prime \prime}\right)=\left(A(D) \backslash A\left(D^{j}\right)\right) \cup\{u v, v u\}$. Then each triangle in $D^{\prime \prime}$ must be a rainbow triangle. So $D^{\prime \prime}$ contains no triangles. We have

$$
a(D)-a\left(D^{j}\right)+2=a\left(D^{\prime \prime}\right) \leq\left\lfloor\frac{5^{2}}{2}\right\rfloor .
$$

Thus $a(D) \leq 15$. So $c(D) \geq 13=\left\lfloor\frac{5^{2}}{2}\right\rfloor+1$, which implies that D contains a rainbow triangle, a contradiction.

Case 2. $x_{18} \geq 1$.
In this case, there is a vertex $u \in V(D)$ such that $a(D-u)+c(D-u)=18$ and $d(u)+d^{s}(u) \geq 10$. By Lemma 4, we can see that $D-u \cong \overleftrightarrow{K}_{4}$ and $D-u \in \mathcal{G}_{4}$. If $D \cong \overleftrightarrow{K}_{5}$, then we obtain a rainbow triangle by Theorem 回 a contradiction. So $d(u) \leq 7$ and $d^{s}(u) \geq 3$. By Lemma (1) we can assume that $C N^{-}(u) \cap C^{s}(u)=\emptyset$. Then $d^{s}(u) \leq 4$. Let the two monochromatic cycles in $D-u$ are $x y z w x$ and $w z y x w$ with colors α and β, respectively. Assume that $C(u x), C(u y)$ and $C(u z)$ are three distinct colors in $C^{s}(u)$. If $y u \in A(D)$, then consider triangles $u x y u$ and $u z y u$, we get $\alpha=C(y u)=\beta$, a contradiction. So $y u \notin A(D)$. Similarly, we can get $x u \notin A(D), z u \notin A(D)$, wu $\notin A(D)$. So $d(u) \leq 4$, and thus $d(u)+d^{s}(u) \leq 8$, a contradiction.

The proof is complete.
To prove Theorem 4, we need the following famous theorem of Moon [17:
Theorem 5 (Moon's theorem). Let T be a strongly connected tournament on $n \geq 3$ vertices. Then each vertex of T is contained in a cycle of length k for all $k \in[3, n]$. In particular, a tournament is hamiltonian if and only if it is strongly connected.

Proof of Theorem 4. By induction on n. For $n=3$, since D is strongly connected, we can see that D is a directed triangle. If $c(D) \geq \frac{n(n-1)}{2}-n+3=3$, then all arcs of D have distinct colors. So D is a rainbow triangle.

Suppose that every arc-colored strongly connected tournament D^{\prime} of order $n-1$ with $c\left(D^{\prime}\right) \geq \frac{(n-1)(n-2)}{2}-(n-1)+3$ contains a rainbow triangle for $n \geq 4$. Now we consider an arc-colored strongly connected tournament D of order n. Since D is strongly connected, by Moon's theorem, D contains a directed $(n-1)$-cycle C. Let v be the vertex not in C. Then $D-v$ contains a hamiltonian cycle C. Thus, $D-v$ is strongly connected. If $c(D) \geq \frac{n(n-1)}{2}-n+3$ and D contains no rainbow triangles, then $D-v$ contains no rainbow triangles either, and hence $c(D-v) \leq \frac{(n-1)(n-2)}{2}-(n-1)+2$. So we have

$$
d^{s}(v) \geq \frac{n(n-1)}{2}-n+3-\left(\frac{(n-1)(n-2)}{2}-(n-1)+2\right)=n-1 .
$$

This implies that $C N(v) \bigcap C(D-v)=\emptyset$ and every two different arcs incident to v have distinct colors. Since D is strongly connected, there exists an arc from $N^{+}(v)$ to $N^{-}(v)$. Assume that $w u \in A(D)$, where $w \in N^{+}(v)$ and $u \in N^{-}(v)$, then $v w u v$ is a directed triangle. Since $w u \in A(D-v)$ and $v w, u v$ are two different arcs incident to v, we can see that $v w u v$ is a rainbow triangle, a contradiction.

The proof is complete.

3 Concluding remarks

By Lemmas 3 and 4 in Theorem 3, we proved that for $n=3$, 4 , if $a(D)+c(D)=$ $a\left(\overleftrightarrow{K}_{n}\right)+f\left(\overleftrightarrow{K}_{n}\right)-1$ and D contains no rainbow triangles, then $D \cong \overleftrightarrow{K}_{n}$. We conjecture that this is true for all $n \geq 5$.

Conjecture 1. Let D be an arc-colored digraph of order $n \geq 5$ without containing rainbow triangles. If $a(D)+c(D)=n(n-1)+\left\lfloor\frac{n^{2}}{4}\right\rfloor+1$, then $D \cong \overleftrightarrow{K}_{n}$.

References

[1] M. Albert, A. Frieze and B. Reed, Multicolored Hamilton cycles, Electron. J. Combin., 2 (1995), \#R10.
[2] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, 2001.
[3] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, 2008.
[4] P. Erdős, J. Nešetřil and V. Rödl, Some problems related to partitions of edges of a graph, Graphs and other combinatorial topics, Teubner, Leipzig, (1983) 54-63.
[5] A.M. Frieze and B.A. Reed, Polychromatic Hamilton cycles, Discrete Math., 118 (1993) 69-74.
[6] S. Fujita, R. Li and S. Zhang, Color degree and monochromatic degree conditions for short properly colored cycles in edge-colored graphs, J. Graph Theory, 87 (2018) 362-373.
[7] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin., 26 (2010) 1-30.
[8] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Hungar., 18 (1967) 25-66.
[9] A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory, 46 (2004) 211-216.
[10] G. Hahn and C. Thomassen, Path and cycle sub-Ramsey numbers and an edgecolouring conjecture, Discrete Math., 62 (1) (1986) 29-33.
[11] M. Kano and X. Li, Monochromatic and heterochromatic subgraphs in edge-colored graphs - a survey, Graphs Combin., 24 (2008) 237-263.
[12] B. Li, B. Ning, C. Xu and S. Zhang, Rainbow triangles in edge-colored graphs, European J. Combin., 36 (2014) 453-459.
[13] H. Li, Rainbow C_{3} 's and C_{4} 's in edge-colored graphs, Discrete Math., 313 (2013) 1893-1896.
[14] H. Li and G. Wang, Color degree and heterochromatic cycles in edge-colored graphs, European J. Combin., 33 (2012) 1958-1964.
[15] R. Li, B. Ning and S. Zhang, Color degree sum conditions for rainbow triangles in edge-colored graphs, Graphs Combin., 32 (2016) 2001-2008.
[16] W. Li, S. Zhang, Y. Bai and R. Li, Rainbow triangles in arc-colored tournaments, arXiv:1805.03412.
[17] J.W. Moon, On subtournaments of a tournament. Canad. Math. Bull., 9 (1966) 297-301.
[18] Sridharan, M. R., On Turán's theorem, J. Indian Inst. Sci., 59 (10) (1977) 111-112.

[^0]: *The first author is supported by GXNSF (Nos. 2016GXNSFFA38001 and 2018GXNSFAA138152) and Program on the High Level Innovation Team and Outstanding Scholars in Universities of Guangxi Province; the second author is supported by NSFC (Nos. 11571135 and 11671320) and the third author is supported by the Fundamental Research Funds for the Central Universities (No. 31020180QD124).
 ${ }^{\dagger}$ Corresponding author. E-mail addresses: muyu.yu@163.com (W. Li), sgzhang@nwpu.edu.cn (S. Zhang), liruonan@mail.nwpu.edu.cn (R. Li).

