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Abstract. For k ≥ 1, a k-colouring c of G is a mapping from V (G) to
{1, 2, . . . , k} such that c(u) 6= c(v) for any two adjacent vertices u and v.
The k-Colouring problem is to decide if a graph G has a k-colouring. For
a family of graphs H, a graph G is H-free if G does not contain any graph
from H as an induced subgraph. Let Cs be the s-vertex cycle. In previous
work (MFCS 2019) we examined the effect of bounding the diameter on
the complexity of 3-Colouring for (C3, . . . , Cs)-free graphs and H-free
graphs where H is some polyad. Here, we prove for certain small values
of s that 3-Colouring is polynomial-time solvable for Cs-free graphs
of diameter 2 and (C4, Cs)-free graphs of diameter 2. In fact, our results
hold for the more general problem List 3-Colouring. We complement
these results with some hardness result for diameter 4.

1 Introduction

Graph colouring is a well-studied topic in Computer Science due to its wide range
of applications. A k-colouring of a graph G is a mapping c : V (G)→ {1, . . . , k}
that assigns each vertex u a colour c(u) in such a way that c(u) 6= c(v) for any
two adjacent vertices u and v of G. The aim is to find the smallest value of k (also
called the chromatic number) such that G has a k-colouring. The corresponding
decision problem is called Colouring, or k-Colouring if k is fixed, that is, not
part of the input. As even 3-Colouring is NP-complete [17], k-Colouring and
Colouring have been studied for many special graph classes, as surveyed in,
for example, [1,5,10,14,16,20,24,25,28,29]. This holds in particular for hereditary
classes of graphs, which are the classes of graphs closed under vertex deletion.

It is well known and not difficult to see that a class of graphs is hereditary
if and only if it can be characterized by a unique set FG of minimal forbidden
induced subgraphs. In particular, a graph G is H-free for some graph H if G does
not contain H as an induced subgraph. The latter means that we cannot modify
G into H by a sequence of vertex deletions. For a set of graphs {H1, . . . ,Hp}, a
graph G is (H1, . . . ,Hp)-free if G is Hi-free for every i ∈ {1, . . . , p}.

We continue a long-term study on the complexity of 3-Colouring for special
graph classes. Let Ct and Pt be the cycle and path, respectively, on t vertices.
? Research supported by the Leverhulme Trust (RPG-2016-258). An extended ab-
stract [22] of the paper has appeared in the proceedings of CIAC 2021.
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The complexity of 3-Colouring for H-free graphs has not yet been classified;
in particular this is still open for Pt-free graphs for every t ≥ 8, whereas the
case t = 7 is polynomial [3]. For t ≥ 3, let C>t = {Ct+1, Ct+2, . . .}. Note that
for t ≥ 2, the class of Pt-free graphs is a subclass of C>t-free graphs. Recently,
Gartland et al. [9] gave for every t ≥ 3, a quasi-polynomial-time algorithm for
3-Colouring on C>t-free graphs. Rojas and Stein [26] proved in another recent
paper that for every odd integer t ≥ 9, 3-Colouring is polynomial-time solvable
for (Codd<t−3, Pt)-free graphs, where Codd<t is the set of all odd cycles on less than
t vertices. This complements a result from [11], which implies that for every
t ≥ 1, 3-Colouring, or more general List 3-Colouring (defined later), is
polynomial-time solvable for (C4, Pt)-free graphs (see also [19]).

The graph classes in this paper are only partially characterized by forbidden
induced subgraphs: we also restrict the diameter. The distance dist(u, v) between
two vertices u and v in a graph G is the length (number of edges) of a shortest
path between them. The diameter of a graph G is the maximum distance over
all pairs of vertices in G. Note that the n-vertex path Pn has diameter n − 1,
but by removing an internal vertex the diameter becomes infinite. Hence, for
every integer d ≥ 2, the class of graphs of diameter at most d is not hereditary
(whereas if d = 1 we obtain the class of complete graphs, which is hereditary).

For every d ≥ 3, the 3-Colouring problem for graphs of diameter at most d
is NP-complete, as shown by Mertzios and Spirakis [23] who gave a highly non-
trivial NP-hardness construction for the case where d = 3. In fact they proved
that 3-Colouring is NP-complete even for C3-free graphs of diameter 3 and
radius 2. The complexity of 3-Colouring for the class of all graphs of diameter 2
has been posed as an open problem in several papers [2,4,21,23,24].

On the positive side, Mertzios and Spirakis [23] gave a subexponential-time al-
gorithm for 3-Colouring on graphs of diameter 2. Moreover, as we discuss below,
3-Colouring is polynomial-time solvable for several subclasses of diameter 2.
In order to explain this, we need some terminology.

A graphG has an articulation neighbourhood ifG−(N(v)∪{v}) is disconnected
for some v ∈ V (G). The neighbourhoods N(u) and N(v) of two distinct (and
non-adjacent) vertices u and v are nested if N(u) ⊆ N(v). The graph K1,r

denotes the (r + 1)-vertex star, that is, the graph with vertices x, y1, . . . , yr and
edges xyi for i = 1, . . . , r. The subdivision of an edge uw in a graph removes
uw and replaces it with a new vertex v and edges uv, vw. We let K`

1,r be the
`-subdivided star, which is obtained from K1,r by subdividing one edge exactly
` times. A polyad is a tree where exactly one vertex has degree at least 3. The
graph Sh,i,j , for 1 ≤ h ≤ i ≤ j, is the tree with one vertex x of degree 3 and
exactly three leaves, which are of distance h, i and j from x, respectively. Note
that S1,1,1 = K1,3. The diamond is obtained from the 4-vertex complete graph
by deleting an edge.

The 3-Colouring problem is polynomial-time solvable for:

• diamond-free graphs of diameter 2 with an articulation neighbourhood but
without nested neighbourhoods [23];
• (C3, C4)-free graphs of diameter 2 [21];
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• K2
1,r-free graphs of diameter 2, for every r ≥ 1 [21]; and

• S1,2,2-free graphs of diameter 2 [21].

It follows from results in [8,13,18] that without the diameter-2 condition, 3-
Colouring is NP-complete again in each of the above cases; in particular
3-Colouring is NP-complete for C-free graphs for any finite set C of cycles.

Our Results

We aim to increase our understanding of the complexity of 3-Colouring for
graphs of diameter 2. In [21] we mainly considered 3-Colouring for graphs
of diameter 2 with some forbidden induced subdivided star. In this paper, we
continue this study by focussing on 3-Colouring for Cs-free or (Cs, Ct)-free
graphs of diameter 2 for small values of s and t; in particular for the case
where s = 4 (cf. the aforementioned polynomial-time result for (C4, Pt)-free
graphs). In fact we prove our results for a more general problem, namely List 3-
Colouring, whose complexity for diameter 2 is also still open. A list assignment
of a graph G = (V,E) is a function L that prescribes a list of admissible colours
L(u) ⊆ {1, 2, . . .} to each u ∈ V . A colouring c respects L if c(u) ∈ L(u) for every
u ∈ V. For an integer k ≥ 1, if L(u) ⊆ {1, . . . , k} for each u ∈ V , then L is a list
k-assignment. The List k-Colouring problem is to decide if a graph G with
an list k-assignment L has a colouring that respects L. If every list is {1, . . . , k},
we obtain k-Colouring.

The following two theorems summarize our main results.

Theorem 1. For s ∈ {5, 6}, List 3-Colouring is polynomial-time solvable for
Cs-free graphs of diameter 2.

Theorem 2. For t ∈ {3, 5, 6, 7, 8, 9}, List 3-Colouring is polynomial-time
solvable for (C4, Ct)-free graphs of diameter 2.

The case t = 3 in Theorem 2 directly follows from the Hoffman-Singleton
Theorem [12], which states that there are only four (C3, C4)-free graphs of
diameter 2. The cases t ∈ {5, 6} immediately follows from Theorem 1. Hence,
apart from proving Theorem 1, we only need to prove Theorem 2 for t ∈ {7, 8, 9}.

We prove Theorem 1 and the case t = 7 of Theorem 2 in Section 3. As we
explain in the same section, all these results follow from the same technique, which
is based on a number of (known) propagation rules. We first colour a small number
of vertices and then start to apply the propagation rules exhaustively. This will
reduce the sizes of the lists of the vertices. The novelty of our approach is the
following: we can prove that the diameter-2 property ensures such a widespread
reduction that each precolouring changes our instance into an instance of 2-List
Colouring: the polynomial-solvable variant of List Colouring where each
list has size at most 2 [7] (see also Section 2).

We prove the cases t = 8 and t = 9 of Theorem 2 in Section 4 using a
refinement of the technique from Section 3. We explain this refinement in detail
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at the start of Section 4. In short, in our branching, we exploit information from
earlier obtained no-answers to reduced instances of our original instance (G,L).

We complement Theorems 1 and 2 by the following result for diameter 4,
whose proof can be found in Section 5.

Theorem 3. For every even integer t ≥ 6, 3-Colouring is NP-complete on the
class of (C4, C6, . . . , Ct)-free graphs of diameter 4.

Results of Damerell [6] imply that 3-Colouring is polynomial-time solvable
for (C3, C4, C5, C6)-free graphs of diameter 3 and for (C3, . . . , C8)-free graphs of
diameter 4 [21]. We were not able to reduce the diameter in Theorem 3 from 4
to 3; see Section 6 for a further discussion, including other open problems.

2 Preliminaries

In this section we give some more terminology and notation. We also recall some
useful result from the literature.

Let G = (V,E) be a graph. A vertex u ∈ V is dominating if u is adjacent to
every other vertex of G. For S ⊆ V , the graph G[S] = (S, {uv | u, v ∈ S and uv ∈
E}) denotes the subgraph of G induced by S. The neighbourhood of a vertex
u ∈ V is the set N(u) = {v | uv ∈ E} and the degree of u is the size of N(u). For
a set U ⊆ V , we write N(U) =

⋃
u∈U N(u) \ U .

A clique is a set of pairwise adjacent vertices, and an independent set is a set
of pairwise non-adjacent vertices. A graph is complete if its vertex set is a clique.
We denote the complete graph on r vertices by Kr. Recall that the diamond is
the graph obtained from the K4 after removing an edge. The bull is the graph
obtained from a triangle on vertices x, y, z after adding two new vertices u and v
and edges xu and yv.

Let G be a graph with a list assignment L. If |L(u)| ≤ ` for each u ∈ V ,
then L is a `-list assignment. A list k-assignment is a k-list assignment, but the
reverse is not necessarily true. The `-List Colouring problem is to decide if
a graph G with an `-list assignment L has a colouring that respects L. We use
a known general strategy for obtaining a polynomial-time algorithm for List
3-Colouring on some class G. That is, we will reduce the input to a polynomial
number of instances of 2-List Colouring and use a well-known result due to
Edwards.

Theorem 4 ([7]). The 2-List Colouring problem is linear-time solvable.

We also need an observation.

Lemma 1. Let G be a non-bipartite graph of diameter 2. Then G contains a C3

or induced C5.

Proof. As G is non-bipartite, G has an odd cycle. Let C be an odd cycle in G
of minimum length. Then C is induced; otherwise we would find a shorter odd
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cycle. For contradiction, suppose that C has length at least 7. Consider two
vertices u and v at distance 3 in C. Then C contains a 4-vertex path uxyv for
some x, y ∈ V (C). As C is induced, u and v are non-adjacent. Hence, there exists
a vertex w not on C that is adjacent to u and v (as G has diameter 2). Then
the subgraph of G induced by {u, v, w, x, y} contains a C3 or an induced C5,
contradicting the minimality of C. ut

3 The Propagation Algorithm and Three Results

We present our initial propagation algorithm, which is based on a number of
(well-known) propagation rules; we illustrate Rules 4 and 5 in Figures 1 and 2,
respectively.

Rule 1. (no empty lists) If L(u) = ∅ for some u ∈ V , then return no.
Rule 2. (not only lists of size 2) If |L(u)| ≤ 2 for every u ∈ V , then apply

Theorem 4.
Rule 3. (single colour propagation) If u and v are adjacent, |L(u)| = 1, and

L(u) ⊆ L(v), then set L(v) := L(v) \ L(u).
Rule 4. (diamond colour propagation) If u and v are adjacent and share

two common non-adjacent neighbours x and y with |L(x)| = |L(y)| = 2
and L(x) 6= L(y), then set L(x) := L(x)∩L(y) and L(y) := L(x)∩L(y)
(so L(x) and L(y) get size 1).

Rule 5. (bull colour propagation) If u and v are the two degree-1 vertices
of an induced bull B of G and L(u) = L(v) = {i} for some i ∈ {1, 2, 3}
and moreover L(w) 6= {i} for the degree-2 vertex w of B, then set
L(w) := L(w) ∩ {i}.

u v

x

y

{i, j}

{i, k}

u v

x

y

{i, j} ∩ {i, k} = {i}

{i, k} ∩ {i, j} = {i}

Fig. 1. Left: A diamond graph before applying Rule 4. Right: After applying Rule 4.

We say that a propagation rule is safe if the new instance is a yes-instance of List
3-Colouring if and only if the original instance is so. We make the following
observation, which is straightforward (see also [15]).
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w

u v{i} {i}

L(w)

w

u v{i} {i}

L(w) ∩ {i} (so L(w) := {i} or L(w) := ∅)

Fig. 2. Left: A bull graph before applying Rule 5. Right: After applying Rule 5.

Lemma 2. Each of the Rules 1–5 is safe and can be applied in polynomial time.

Consider again an instance (G,L). Let N0 be a subset of V (G) that has size
at most some constant. Assume that G[N0] has a colouring c that respects the
restriction of L to N0. We say that c is an L-promising N0-precolouring of G.

In our algorithms we first determine a setN0 of constant size and consider every
L-promising N0-precolouring of G. That is, we modify L into a list assignment Lc

with Lc(u) = {c(u)} (where c(u) ∈ L(u)) for every u ∈ N0 and Lc(u) = L(u) for
every u ∈ V (G) \N0. We then apply Rules 1–5 on (G,Lc) exhaustively, that is,
until none of the rules can be applied anymore. This is the propagation algorithm
and we say that it did a full c-propagation. The propagation algorithm may
output yes or no (when applying Rules 1 or 2); else it will output unknown.

If the algorithm returns yes, then (G,L) is a yes-instance of List 3-Colouring
by Lemma 2. If it returns no, then (G,L) has no L-respecting colouring coinciding
with c on N0, again by Lemma 2. If the algorithm returns unknown, then (G,L)
may still have an L-respecting colouring that coincides with c on N0. In that
case the propagation algorithm did not apply Rule 1 or 2. Hence, it modified Lc

into a list assignment L′c of G such that L′c(u) 6= ∅ for every u ∈ V (G) and at
least one vertex v of G still has a list L′c(v) of size 3, that is, L′c(v) = {1, 2, 3}.
We say that L′c (if it exists) is the c-propagated list assignment of G.

After performing a full c-propagation for every L-promising N0-precolouring c
of G we say that we performed a full N0-propagation. We say that (G,L) is
N0-terminal if after the full N0-propagation one of the following cases hold:

1. for some L-promisingN0-precolouring, the propagation algorithm returned yes;
2. for every L-promisingN0-precolouring, the propagation algorithm returned no.

Note that if (G,L) is N0-terminal for some set N0, then we have solved List
3-Colouring on instance (G,L). The next lemma formalizes our approach.

Lemma 3. Let (G,L) be an instance of List 3-Colouring. Let N0 be a subset
of V (G) of constant size. Performing a full N0-propagation takes polynomial time.
Moreover, if (G,L) is N0-terminal, then we have solved List 3-Colouring on
instance (G,L).

Proof. The first part of the lemma follows from the facts that (i) each application
of each rule is safe and takes polynomial time by Lemma 2; (ii) if a rule does
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not return a yes-answer or no-answer, then it reduces the list size of at least
one vertex and the latter can happen at most 3|V | times; and (iii) the number of
L-promising N0-precolourings of G is at most 3|N0|, which is a constant as N0

has constant size. The second part of the lemma follows from the definition of a
full N0-propagation and Lemma 2. ut

We now prove our first three results on List 3-Colouring for diameter-2 graphs.
The first result generalizes a corresponding result for 3-Colouring in [21].

Theorem 5. List 3-Colouring can be solved in polynomial time for C5-free
graphs of diameter at most 2.

Proof. Let G = (V,E) be a C5-free graph of diameter 2 with a list 3-assignment L.
We first check in polynomial time if G is bipartite. Suppose that we find that
G is bipartite, say with partition classes A and B. As G has diameter 2, we
find that G must be complete bipartite. This implies that either A or B must
be monochromatic. For each i ∈

⋂
u∈A L(u) (which might be empty) we set

L(u) = {i} for every u ∈ A and L(v) := L(v) \ {i} for every i ∈ B and apply
Theorem 4. If we do not find a colouring respecting L, then we reverse the role
of A and B and perform the same step.

Now suppose that we find that G is not bipartite. If G contains a K4, then
G is not 3-colourable, and hence, (G,L) is a no-instance of List 3-Colouring.
We can check this in O(|V |4) time. From now on we assume that G is K4-free
and non-bipartite. The latter implies that G must have a triangle or an induced
C5, due to Lemma 1. As G is C5-free, it follows that G has at least one triangle.

x1 x2 x3N0

N1

N2

y1 y2 y3

u

x1 x2 x3

y1 y2

u

Fig. 3. Left: Examining the situation in the proof of Theorem 5 where a vertex u ∈ N2

does not belong to T ; we show that y1, y2, y3 and u either form a K4 or we would find
an induced C5 (both of these cases are not possible). Right: A situation where u ∈ T .

Let C be a triangle in G. We write N0 = V (C) = {x1, x2, x3}, N1 = N(V (C))
and N2 = V (G)\ (N0∪N1). As N0 has size 3, we can apply a full N0-propagation
in polynomial time by Lemma 3. By the same lemma we are done if we can
prove that (G,L) is N0-terminal. We prove this claim below after first showing a
structural result.
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As G has diameter 2, for every i ∈ {1, 2, 3}, it holds that every vertex in N2

has a neighbour in N1 that is adjacent to xi. Now let T consist of all vertices of
N2 that have a neighbour in N1 that is adjacent to exactly two vertices of N0.

Claim 1. N2 = T .

We prove Claim 1 as follows. Let u ∈ N2. For contradiction, assume u /∈ T . If u has
a neighbour y ∈ N1 adjacent to every xi, then G contains a K4, a contradiction.
Hence, as u /∈ T , we find that u must have three distinct neighbours y1, y2, y3,
such that for i ∈ {1, 2, 3}, it holds that N(yi) ∩ N0 = {xi}. If {y1, y2, y3} is a
clique, then G has a K4 on vertices u, y1, y2, y3, a contradiction. Hence, we may
assume without loss of generality that y1 and y2 are non-adjacent. However, then
{u, y1, x1, x2, y2} induces a C5 in G, another contradiction. See also Figure 3. We
conclude that T = N2. This proves Claim 1.

Now, for contradiction, assume that (G,L) is not N0-terminal. Then there must
exist an L-promising N0-precolouring c for which we obtain the c-propagated
list assignment L′c. By definition of L′c we find that G contains a vertex u with
L′c(u) = {1, 2, 3}. Then u /∈ N0, as every v ∈ N0 has L′c(v) = {c(v)}. Moreover,
u /∈ N1, as vertices in N1 have a list of size at most 2 after applying Rule 3.
Hence, we find that u ∈ N2. As N2 = T by Claim 1, we find that u ∈ T . From
the definition of T it follows that u has a neighbour v ∈ N1 with two neighbours
in N0. By Rule 3, we find that |Lc(v)| = 1. By the same rule, this implies that
|L′c(u)| ≤ 2, a contradiction. We conclude that (G,L) is N0-terminal. ut

x1 x2 x3 x4 x5N0

N1

N2

y z

v

w

Fig. 4. The situation in the proof of Theorem 6, which is similar to the situation in the
proof of Theorem 7.

Theorem 6. List 3-Colouring can be solved in polynomial time for C6-free
graphs of diameter at most 2.

Proof. Let G = (V,E) be a C6-free graph of diameter 2 with a list 3-assignment L.
If G is C5-free, then we apply Theorem 5. If G contains a K4, then G is not
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3-colourable and hence, (G,L) is a no-instance of List 3-Colouring. We check
these properties in polynomial time. So, from now on, we assume that G is a
K4-free graph that contains an induced 5-vertex cycle C, say with vertex set
N0 = {x1, . . . , x5} in this order. Let N1 be the set of vertices that do not belong
to C but that are adjacent to at least one vertex of C. Let N2 = V \ (N0 ∪N1)
be the set of remaining vertices.

As N0 has size 5, we can apply a full N0-propagation in polynomial time
by Lemma 3. By the same lemma we are done if we can prove that (G,L) is
N0-terminal. We prove this claim below.

For contradiction, assume that (G,L) is not N0-terminal. Then there must
exist an L-promising N0-precolouring c for which we obtain the c-propagated
list assignment L′c. By definition of L′c we find that G contains a vertex v with
L′c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has L′c(u) = {c(u)}. Moreover,
v /∈ N1, as vertices in N1 have a list of size at most 2 after applying Rule 3.
Hence, we find that v ∈ N2.

We first note that some colour of {1, 2, 3} appears exactly once on N0, as
|N0| = 5. Hence, we may assume without loss of generality that c(x1) = 1 and
that c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1
and v. As L′c(v) = {1, 2, 3} and c(x1) = 1, we find that L′c(y) = {2, 3}. As
c(xi) ∈ {2, 3} for every i ∈ {2, 3, 4, 5}, the latter means that y is not adjacent
to any xi with i ∈ {2, 3, 4, 5}. Hence, as G has diameter 2, there exists a vertex
z ∈ N1 with z 6= y, such that z is adjacent to x3 and v. We assume without
loss of generality that c(x3) = 3 and thus c(x2) = c(x4) = 2 and thus c(x5) = 3.
As L′c(v) = {1, 2, 3} and c(x3) = 3, we find that L′c(z) = {1, 2}. Hence, z is not
adjacent to any vertex of {x1, x2, x4}. Now the set {x1, x2, x3, z, v, y} forms a
cycle on six vertices. As G is C6-free, this cycle cannot be induced. Hence, the
above implies that y and z must be adjacent; see also Figure 4.

As G has diameter 2, there exists a vertex w ∈ N1 that is adjacent to x4
and v. As both y and z are not adjacent to x4, we find that w /∈ {y, z}. As
L′c(v) = {1, 2, 3} and c(x4) = 2, we find that L′c(w) = {1, 3}. As c(x1) = 1 and
c(x3) = c(x5) = 3, the latter implies that w is not adjacent to any vertex of
{x1, x3, x5}. Consequently, w must be adjacent to y, as otherwise the 6-vertex
cycle with vertex set {x1, x5, x4, w, v, y} would be induced, contradicting the
C6-freeness of G. We refer again to Figure 4 for a display of the situation.

If w and z are adjacent, then {v, w, y, z} induces a K4, contradicting the
K4-freeness of G. Hence, w and z are not adjacent. Then {v, w, y, z} induces
a diamond, in which w and z are the two non-adjacent vertices. However, as
L′c(w) = {1, 3} and L′c(z) = {1, 2}, our algorithm would have applied Rule 4. This
would have resulted in lists of w and z that are both equal to {1, 3}∩{1, 2} = {1}.
Hence, we obtained a contradiction and conclude that (G,L) is N0-terminal. ut

Theorem 7 is proven in a similar way as Theorem 6.

Theorem 7. List 3-Colouring can be solved in polynomial time for (C4, C7)-
free graphs of diameter 2.
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Proof. Let G = (V,E) be a C4-free graph of diameter 2 with a list 3-assignment L.
If G is C5-free, then we apply Theorem 5. Hence, we may assume that G contains
an induced 5-vertex cycle C, say with vertex set N0 = {x1, . . . , x5} in this order.
As before, we let N1 be the set of vertices that do not belong to C but that are
adjacent to at least one vertex of C. We also let N2 = V \ (N0 ∪N1) denote the
set of remaining vertices again.

As N0 has size 5, we can apply a full N0-propagation in polynomial time
by Lemma 3. By the same lemma we are done if we can prove that (G,L) is
N0-terminal. We prove this claim in exactly the same way in which we proved a
similar claim in the proof of Theorem 6 except for the following differences:

1. instead of using the 6-vertex set {x1, x2, x3, z, v, y} we use the 7-vertex set
{x1, x5, x4, x3, z, v, y} after observing that z cannot be adjacent to x5 due to
the C4-freeness of G, and

2. instead of using the 6-vertex set {x1, x5, x4, w, v, y} we use the 7-vertex set
{x1, x2, x3, x4, w, v, y} after observing that w cannot be adjacent to x2, again
due to the C4-freeness of G.

We refer again to Figure 4 for a display of the situation. ut

4 The Extended Propagation Algorithm and Two Results

For our next two results, we need a more sophisticated method. Let (G,L) be an
instance of List 3-Colouring. Let p be some positive constant. We consider each
set N0 ⊆ V (G) of size at most p and perform a full N0-propagation. Afterwards
we say that we performed a full p-propagation. We say that (G,L) is p-terminal
if after the full p-propagation one of the following cases hold:

1. for some N0 ⊆ V (G) with |N0| ≤ c, there is an L-promising N0-precolouring c,
such that the propagation algorithm returns yes; or

2. for every setN0 ⊆ V (G) with |N0| ≤ c and every L-promisingN0-precolouring c,
the propagation algorithm returns no.

We can now prove the following lemma.

Lemma 4. Let (G,L) be an instance of List 3-Colouring and p ≥ 1 be some
constant. Performing a full p-propagation takes polynomial time. Moreover, if
(G,L) is p-terminal, then we have solved List 3-Colouring on instance (G,L).

Proof. For every set N0 ⊆ V (G), a full N0-propagation takes polynomial time by
Lemma 3. Then the first statement of the lemma follows from this observation
and the fact that we need to perform O(np) full N0-propagations, which is a
polynomial number, as p is a constant.

Now suppose that (G,L) is p-terminal. First assume that for some N0 ⊆ V (G)
with |N0| ≤ c, there exists an L-promising N0-precolouring c, such that the
propagation algorithm returns yes. Then (G,L) is a yes-instance due to Lemma 2.
Now assume that for every set N0 ⊆ V (G) with |N0| ≤ c and every L-promising
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N0-precolouring c, the propagation algorithm returns no. Then (G,L) is a no-
instance. This follows from Lemma 2 combined with the observation that if (G,L)
was a yes-instance, the restriction of a colouring c that respects L to any set N0

of size at most p would be an L-promising N0-precolouring of G. ut

In our next two algorithms, we perform a full p-propagation for some appropriate
constant p. If we find that an instance (G,L) is p-terminal, then we are done by
Lemma 4. In the other case, we exploit the new information on the structure
of G that we obtain from the fact that (G,L) is not p-terminal.

Theorem 8. List 3-Colouring can be solved in polynomial time for (C4, C8)-
free graphs of diameter 2.

Proof. Let G = (V,E) be a (C4, C8)-free graph of diameter 2 with a list 3-
assignment L. If G is C6-free, then we apply Theorem 6. If G contains a K4, then
G is not 3-colourable and hence, (G,L) is a no-instance of List 3-Colouring.
We check these properties in polynomial time. So, from now on, we assume that
G is a K4-free graph that contains at least one induced cycle on six vertices.

We set p = 6 and perform a full p-propagation. This takes polynomial time
by Lemma 2. By the same lemma, we have solved List 3-Colouring on (G,L)
if (G,L) is p-terminal. Suppose we find that (G,L) is not p-terminal.

We first prove the following claim.

Claim 1. For each induced 6-vertex cycle C, the propagation algorithm returned
no for every V (C)-promising colouring c that assigns the same colour i on two
vertices of C that have a common neighbour on C.

We prove Claim 1 as follows. Consider an induced 6-vertex cycle C, say with
vertex set N0 = {x1, . . . , x6} in this order. Let N1 be the set of vertices that
do not belong to C but that are adjacent to at least one vertex of C. Let
N2 = V \ (N0 ∪ N1) be the set of remaining vertices. For contradiction, let c
be a V (C)-promising colouring that assigns two vertices of C with a common
neighbour on C the same colour, say c(x1) = 1 and c(x3) = 1, such that a full
c-propagation does not yield a no output. As (G,L) is not p-terminal, this means
that we obtained the c-propagated list assignment L′c. By definition of L′c we
find that G contains a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as every
u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have a list of
size at most 2 after applying Rule 3. Hence, we find that v ∈ N2.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to both v
and x1. As c(x1) = 1, we find that c(x2) ∈ {2, 3} and c(x6) ∈ {2, 3}. As c(x3) = 1,
we find that c(x4) ∈ {2, 3}. Hence, y is not adjacent to any vertex of {x2, x4, x6};
otherwise y would have a list of size 1 due to Rule 3, and by the same rule, v would
have a list of size 2. We note that y is not adjacent to x3 or x5 either, as otherwise
{x1, x2, x3, y} or {x1, x6, x5, y} induces a C4, contradicting the C4-freeness of G.

As G has diameter 2 and yx3 /∈ E, there exists a vertex y′ ∈ N1 \ {y} that is
adjacent to both v and x3. By the same arguments as above, y′ is not adjacent
to any vertex of {x1, x2, x4, x5, x6}. If y and y′ are adjacent, then v would have
list {1} due to Rule 5. Hence, y and y′ are not adjacent. However, we now find
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that {x1, y, v, y′, x3, x4, x5, x6} induces a C8, contradicting the C8-freeness of G;
see also Figure 5. This proves Claim 1.

v

y y′

x1 x2 x3 x4 x5 x6

{1} {1}⊂ {2, 3} ⊂ {2, 3}⊂ {1, 2, 3} ⊂ {2, 3}

Fig. 5. The situation that is described in Claim 1 in the proof of Theorem 8: the set
{x1, y, v, y

′, x3, x4, x5, x6} induces a C8, which is not possible.

Due to Claim 1, we know that if G has a colouring c respecting L, then any
such colouring c gives a different colour to every two non-adjacent vertices that
are of distance 2 on some induced 6-vertex cycle. Hence, we can safely use the
following new rule. To explain this, x5 cannot get the same colour of both x1
and x3, which are both of distance 2 from x5 on an induced C6, thus x5 must get
the remaining colour, which is the colour of x2. Moreover, an application of the
new rule takes polynomial time. Note that we must also have that L(x4) = L(x1)
and L(x6) = L(x3) but this will be irrelevant for our purposes.

Rule-C6. (C6 colour propagation) Let C be an induced cycle on six ver-
tices x1, x2, . . . , x6 in that order. If |L(x1)| = |L(x2)| = |L(x3)| = 1,
L({x1, x2, x3}) = {1, 2, 3} and L(x2) 6= L(x5), then set L(x5) :=
L(x2) ∩ L(x5) (so x5 gets a list of size at most 1).

We can now do as follows. Consider an induced 6-vertex cycle C in G, say on
vertices x1, . . . , x6 in that order. Then we may assume without loss of generality
that if G has a colouring c that respects L, then c(x1) = 1, c(x2) = 2, c(x3) = 3,
c(x4) = 1, c(x5) = 2 and c(x6) = 3 (otherwise we can do some permutation of
the colours). See also Figure 6.

We let again N0 = {x1, . . . , x6}, N1 be the set of vertices that do not belong
to C but that are adjacent to at least one vertex of C, and N2 = V \ (N0 ∪N1)
be the set of remaining vertices. We define a colouring c of G[N0] by setting
c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 2 and c(x6) = 3. We do a
full c-propagation but now we also include the exhaustive use of Rule-C6. By
combining Lemma 2 with the observation that Rule-C6 runs in polynomial time
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v

y y′ y′′

x1 x2 x3 x4 x5 x6

{1} {3}{2} {1} {3}{2}

Fig. 6. The situation in the proof of Theorem 8, where a vertex v ∈ N2 still has a list
of three available colours after a full propagation including Rule-C6: we show that in
this case G contains a K4, namely on vertices v, y, y′, y′′, a contradiction.

and reduces the list size of at least one vertex, this takes polynomial time. By
combining the same lemma with the fact that Rule-C6 is safe (due to Claim 1)
and the above observation that every L-respecting colouring of G coincides with
c on N0 (subject to colour permutation), we are done if we can prove that the
propagation algorithm either outputs yes or no.

For contradiction, assume that the propagation algorithm returns unknown.
Then we obtained the c-propagated list assignment L′c. By definition of L′c we
find that G contains a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as every
u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have lists of size
at most 2 after applying Rule 3. Hence, we find that v ∈ N2.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1 and v.
Hence, y is not adjacent to any vertex in {x2, x3, x5, x6}; otherwise y would have
a list of size 1 due to Rule 3, and by the same rule, v would have a list of size 2.
As G has diameter 2 and yx3 /∈ E, there exists a vertex y′ ∈ N1 \ {y} that is
adjacent to x3 and v. By the same arguments as above, y′ is not adjacent to
any vertex in {x1, x2, x4, x5}. If yy′ /∈ E, then {x1, x2, x3, y′, v, y} induces a C6.
However, in that case we would have applied Rule-C6 and v would have had list
{2}. Hence, we find that y and y′ are adjacent; see also Figure 6.

As G has diameter 2, yx5 /∈ E and y′x5 /∈ E, there exists a vertex y′′ ∈
N1 \ {y, y′} that is adjacent to x5 and v. By using exactly the same arguments
as above but now applied to y′′ and to the pairs (y, y′′) and (y′, y′′), respectively,
we find that y′′ is adjacent to both y and y′. However, now the vertices v, y, y′, y′′
induce a K4, contradicting the K4-freeness of G (see again Figure 6). We conclude
that the propagation algorithm returned either yes or no. ut

Theorem 9. List 3-Colouring can be solved in polynomial time for (C4, C9)-
free graphs of diameter 2.
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Proof. Let G = (V,E) be a (C4, C9)-free graph of diameter 2 with a list 3-
assignment L. If G is C7-free, then we apply Theorem 7. If G contains a K4, then
G is not 3-colourable and hence, (G,L) is a no-instance of List 3-Colouring.
We check these properties in polynomial time. So, from now on, we assume that
G is a K4-free graph that contains at least one induced cycle on seven vertices.

We set p = 7 and perform a full p-propagation. This takes polynomial time
by Lemma 2. By the same lemma, we have solved List 3-Colouring on (G,L)
if (G,L) is p-terminal. Suppose we find that (G,L) is not p-terminal.

We first prove the following claim.

Claim 1. For each induced 7-vertex cycle C, the propagation algorithm returned
no for every L-promising V (C)-colouring c that assigns the same colour i on two
vertices of C that have a common neighbour on C and that gives every other
vertex of C a colour different from i.

We prove Claim 1 as follows. Consider an induced 7-vertex cycle C, say with
vertex set N0 = {x1, . . . , x7} in this order. Let N1 be the set of vertices that
do not belong to C but that are adjacent to at least one vertex of C. Let
N2 = V \ (N0 ∪N1) be the set of remaining vertices. Let c be an L-promising
V (C)-colouring that assigns two vertices of C with a common neighbour on C
the same colour, say c(x1) = 1 and c(x3) = 1, and moreover, that assigns every
vertex xi with i ∈ {2, 4, 5, 6, 7} colour c(xi) 6= 1.

For contradiction, suppose that a full c-propagation does not yield a no output.
As (G,L) is not p-terminal, this means that we obtained the c-propagated list
assignment L′c. By definition of L′c we find that G contains a vertex v with
L′c(v) = {1, 2, 3}. Then v /∈ N0, as every u ∈ N0 has L′c(u) = {c(u)}. Moreover,
v /∈ N1, as vertices in N1 have a list of size at most 2 after applying Rule 3.
Hence, we find that v ∈ N2.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to both v
and x1. Then y is not adjacent to any xi with i ∈ {2, 4, 5, 6, 7}; in that case y
would have a list of size 1 (as each xi other than x1 and x3 is coloured 2 or 3)
meaning that L′c(v) would have size at most 2. Hence, y is not adjacent to x3
either, as otherwise {y, x1, x2, x3} would induce a C4. As G has diameter 2, this
means that there exists a vertex y′ ∈ N1 with y′ 6= y such that y′ is adjacent to
both v and x3. By the same arguments we used for y′, we find that x3 is the only
neighbour of y′ on C.

If yy′ is an edge, then by Rule 5, v would have had list {1} instead of {1, 2, 3}.
Hence, y and y′ are not adjacent. However, now {y, v, y′, x3, x4, x5, x6, x7, x1}
induces a C9, a contradiction; see also Figure 7. This proves Claim 1.

Claim 1 tells us that if G has a colouring c respecting L, then c only gives the
same colour to two vertices x and x′ that are of distance 2 on some induced
7-vertex cycle C if there is a third vertex x′′ that is of distance 2 from either x
or x′ on C with c(x′′) = c(x′) = c(x). Hence, we can safely use the following new
rule, whose execution takes polynomial time (in this rule, c(x1) = c(x6) is not
possible: view x1 as x and x6 as x′ and note that x′′ can neither be x3 or x4).
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v

y y′

x1 x2 x3 x4 x5 x6 x7

{1} {1}⊂ {2, 3} ⊂ {2, 3}⊂ {2, 3}⊂ {2, 3} ⊂ {2, 3}

Fig. 7. The situation that is described in Claim 1 in the proof of Theorem 9. The set
{x1, y, v, y

′, x3, x4, x5, x6, x7} induces a C9, which is not possible.

Rule-C7. (C7 colour propagation) Let C be an induced cycle on seven ver-
tices x1, x2, . . . , x7 in that order. If |L(xi)| = 1 for i ∈ {1, 2, 3, 4},
L({x1, x2, x3}) = {1, 2, 3}, L(x4) = L(x2), and L(x1) ⊆ L(x6), then
set L(x6) := {1, 2, 3} \ L(x1) (so L(x6) gets size at most 2).

We now consider an induced 7-vertex cycle C in G, say on vertices x1, . . . , x7
in that order. Then either one colour appear once on C, or two colours appear
exactly twice on C, with distance 3 from each other on C. Hence, we may assume
without loss of generality that if G has a colouring c that respects L, then one of
the following holds for such a colouring c (see also Figures 8 and 9):

(1) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2, c(x7) = 3; or
(2) c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) = 2, c(x7) = 3.

We let again N0 = {x1, . . . , x7}, N1 be the set of vertices that do not belong to C
but that are adjacent to at least one vertex of C, and N2 = V \ (N0 ∪N1) be
the set of remaining vertices. We do a full c-propagation but now we also include
the exhaustive use of Rule-C7. By combining Lemma 2 with the observation
that Rule-C7 runs in polynomial time and reduces the list size of at least one
vertex, this takes polynomial time. By combining the same lemma with the fact
that Rule-C7 is safe (due to Claim 1) and the above observation that every L-
respecting colouring of G coincides with c on N0 (subject to colour permutation),
we are done if we can prove that the propagation algorithm either outputs yes or
no. We show that this is the case for each of the two possibilities (1) and (2) of c.

For contradiction, assume that the propagation algorithm returns unknown.
Then we obtained the c-propagated list assignment L′c. By definition of L′c we
find that G contains a vertex v with L′c(v) = {1, 2, 3}. Then v /∈ N0, as every
u ∈ N0 has L′c(u) = {c(u)}. Moreover, v /∈ N1, as vertices in N1 have a list of
size at most 2 after applying Rule 3. Hence, we find that v ∈ N2. We now need
to distinguish between the two possibilities of c.



16 B. Martin, D. Paulusma and S. Smith

Case 1. c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, c(x5) = 3, c(x6) = 2 and
c(x7) = 3.

As G has diameter 2, there exists a vertex y ∈ N1 that is adjacent to x1 and v.
Hence, y is not adjacent to any vertex in {x2, . . . , x7}; otherwise y would have a
list of size 1 due to Rule 3, and by the same rule, v would have a list of size 2. As
G has diameter 2, there exists a vertex y′ ∈ N1 that is adjacent to x4 and v. By
the same arguments as above, y′ is not adjacent to any vertex of {x1, x3, x5, x7}.
The latter, together with the C4-freeness of G, implies that y′ is not adjacent to
x2 and x6 either.

First suppose that yy′ ∈ E. Then {x1, x7, x6, x5, x4, y′, y} induces a C7; see
also Figure 8. As c(x1) = 1, c(x7) = 3, c(x6) = 2 and c(x5) = 3, we find that
Lc({x1, x7, x6}) = {1, 2, 3} and Lc(x5) = Lc(x7). Then 1 /∈ Lc(y

′), as otherwise
the propagation algorithm would have applied Rule-C7. Moreover, 2 /∈ Lc(y

′),
as otherwise the propagation algorithm would have applied Rule 3. Hence,
Lc(y

′) = {3}. However, then |Lc(v)| ≤ 2, again due to Rule 3, a contradiction.
Now suppose that yy′ /∈ E. Then {x1, x2, x3, x4, y′, v, y} induces a C7. As

c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 2, we find that Lc({x1, x2, x3}) =
{1, 2, 3} and Lc(x4) = Lc(x2). Then 1 /∈ Lc(v) due to Rule-C7. This is a con-
tradiction, as we assumed Lc(v) = {1, 2, 3}. We conclude that the propagation
algorithm returned either yes or no.

v

y y′

x1 x2 x3 x4 x5 x6 x7

{1} {3}{2} {2} {3} {2} {3}

Fig. 8. The situation that is described in Case 1 in the proof of Theorem 9. If the
edge yy′ exists, then {x1, x7, x6, x5, x4, y

′, y} induces a C7 to which Rule-C7 should
have been applied. Otherwise the vertices {x1, x2, x3, x4, y

′, v, y} induce such a C7.

Case 2. c(x1) = 1, c(x2) = 2, c(x3) = 3, c(x4) = 1, c(x5) = 3, c(x6) = 2 and
c(x7) = 3.

As G has diameter 2, there is a vertex y ∈ N1 adjacent to x3 and v. Hence, y
is not adjacent to any vertex in {x1, x2, x4, x6}; otherwise y would have a list
of size 1 due to Rule 3, and by the same rule, v would have a list of size 2. As
yx4 /∈ E, we find that yx5 /∈ E either; otherwise {y, x3, x4, x5} induces a C4.
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As G has diameter 2, this means there is a vertex y′ ∈ N1 \ {y} adjacent to
x5 and v. By the same arguments as above, y′ is not adjacent to any vertex of
{x1, x2, x4, x6}. As G is C4-free, the latter implies that y′x3 /∈ E and y′x7 /∈ E.

v

y y′

x1 x2 x3 x4 x5 x6 x7

z

{1} {3}{2} {1} {3} {2} {3}

Fig. 9. The situation that is described in Case 2 in the proof of Theorem 9. The set
{x6, x5, x4, x3, y, v, z} induces a C7 to which Rule-C7 should have been applied.

If yy′ ∈ E, then v would have a list of size at most 2 due to Rule 5. Hence,
yy′ /∈ E. If yx7 /∈ E, this means that {x1, x2, x3, y, v, y′, x5, x6, x7} induces a C9,
which is not possible. Hence, yx7 ∈ E.

To summarize, we found that v has two distinct neighbours y and y′, where
y has exactly two neighbours on C, namely x3 and x7, and y′ has exactly one
neighbour on C, namely x5. As G has diameter 2, this means that there exists
a vertex z ∈ N1 with z /∈ {y, y′} that is adjacent to x6 and v. Then z is not
adjacent to any vertex of {x1, x3, x4, x5, x7}, as otherwise z would have a list
of size 1 due to Rule 3, and by the same rule, v would have a list of size 2. If
zy ∈ E, then {y, z, x6, x7} induces a C4, which is not possible. Hence, zy /∈ E.

From the above, we find that {x6, x5, x4, x3, y, v, z} induces a C7; see also
Figure 9. As c(x6) = 2, c(x5) = 3, c(x4) = 1 and c(x3) = 3, we find that
Lc({x6, x5, x4}) = {1, 2, 3} and Lc(x3) = Lc(x5). Then 2 /∈ Lc(v), due to Rule-
C7. Hence, |Lc(v)| ≤ 2, a contradiction. We conclude that the propagation
algorithm returned either yes or no in Case 2 as well. ut

5 The Proof of Theorem 3

In this section we prove Theorem 3, which we restate below.

Theorem 3 (restated). For every even integer t ≥ 6, 3-Colouring is NP-
complete on the class of (C4, C6, . . . , Ct)-free graphs of diameter 4.

Proof. Note that the problem is readily seen to be in NP. To prove NP-hardness
we modify the standard reduction for Colouring from the NP-complete problem
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z

v1 v1
′ v2 v2

′ v3 v3
′ v4 v4

′

c12c11 c13 c22c21 c23

Fig. 10. An example of a graph G in the reduction from Not-All-Equal 3-
Satisfiability to 3-Colouring with clauses C1 = x1∧x2∧x3 and C2 = x3∧¬x3∧x4.
We obtain the graph G′ by subdividing the thick edges (edges between literal and clause
vertices) the same number of times and connecting the newly introduced vertices to z.

Not-All-Equal 3-Satisfiability [27], where each variable appears in at most
three clauses. So, given a CNF formula φ, we first construct a graph G as follows
(see also Figure 10):

– add literal vertices vi and v′i for each variable xi;
– add an edge between each vi and v′i;
– add a vertex z adjacent to every vi and every v′i;
– for each clause Ci add a triangle Ti with clause vertices ci1 , ci2 , ci3 ;
– fix an arbitrary order of the literals xi1 , xi2 , xi3 of Ci and for j ∈ {1, 2, 3},

add the edge vijcij if xij is positive and the edge v′ijcij if xij is negative.

It is well known that φ has a truth assignment τ such that each clause contains
at least one true literal and at least one false literal (call such a τ satisfying) if
and only if G has a 3-colouring. For completeness we give a proof below.

First suppose φ has a satisfying truth assignment. Colour vertex z with
colour 1, each true literal with colour 2 and each false literal with colour 3. Then,
as each clause has a true literal and a false literal, each triangle Ti has neighbours
in two different colours. Hence, we can complete the 3-colouring.

Now suppose G has a 3-colouring. Say z is assigned colour 1. Then each literal
vertex has either colour 2 or colour 3. Moreover, each Ti must be adjacent to at
least one literal vertex coloured 2 and to at least one literal vertex coloured 3.
Hence, the truth assignment that sets literals whose vertices are coloured with
colour 2 to be true and those coloured with colour 3 to be false is satisfying.

As every clause vertex is adjacent to a literal vertex and literal vertices are
adjacent to z, every vertex has distance at most 2 from z. So G has diameter 4.

We modify G into a graph G′: for some p ≥ 0, subdivide each edge vijcij and
each edge v′ijcij p times and make each newly introduced vertex adjacent to z; see
also Figure 10. Then G′ has a 3-colouring if and only if G has a 3-colouring, as the
new vertices will be alternatingly coloured by 2 and 3 if z has colour 1. Moreover,
G′ still has diameter 4, and it can be readily checked that every induced cycle
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of G of length at most p is either a C3 (either a triangle Ti or a triangle containing
z) or a C5 (which must contain z). As we can make p arbitrarily large, the result
follows. ut

6 Conclusions

We proved that 3-Colourability is polynomial-time solvable for several sub-
classes of diameter 2 that are characterized by forbidding one or two small induced
cycles. In order to do this we used a unified framework of propagation rules,
which allowed us to exploit the diameter-2 property of the input graph. Our
current techniques need to be extended to obtain further results (in particular,
we cannot currently handle the increasing number of different 3-colourings of
induced cycles of length larger than 9).

As open problems we pose: determine the complexity of 3-Colouring and
List 3-Colouring for:

– graphs of diameter 2 (which we recall is a long-standing open problem)
– Ct-free graphs of diameter 2 for s ∈ {3, 4, 7, 8, . . .}; and
– (C4, Ct)-free graphs of diameter 2 for t ≥ 10.

We also note that the complexity of k-Colouring for k ≥ 4 and Colouring is
still open for C3-free graphs of diameter 2 (see also [21]).

Finally, we turn to the class of graphs of diameter 3. The construction of
Mertzios and Spirakis [23] for proving that 3-Colouring is NP-complete for
C3-free graphs of diameter 3 appears to contain not only induced subdivided stars
of arbitrary diameter and with an arbitrary number of leaves but also induced
cycles of arbitrarily length s ≥ 4. Hence, we pose as open problems: determine
the complexity of 3-Colouring and List 3-Colouring for Ct-free graphs of
diameter 3 for t ≥ 4 and (C4, Ct)-free graphs of diameter 3 for t ∈ {3, 5, 6, . . .}.
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