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Abstract

An independent broadcast on a connected graph G is a function f : V (G) → N0 such

that, for every vertex x of G, the value f(x) is at most the eccentricity of x in G, and

f(x) > 0 implies that f(y) = 0 for every vertex y of G within distance at most f(x) from

x. The broadcast independence number αb(G) of G is the largest weight
∑

x∈V (G)

f(x) of

an independent broadcast f on G.

We describe an efficient algorithm that determines the broadcast independence number

of a given tree. Furthermore, we show NP-hardness of the broadcast independence number

for planar graphs of maximum degree four, and hardness of approximation for general

graphs. Our results solve problems posed by Dunbar, Erwin, Haynes, Hedetniemi, and

Hedetniemi (2006), Hedetniemi (2006), and Ahmane, Bouchemakh, Sopena (2018).
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1 Introduction

In his PhD thesis [7] Erwin introduced the notions of broadcast domination and broadcast

independence in graphs. While broadcast domination was studied in detail, only little research

has been done on broadcast independence [1,4,6,9], and several fundamental problems related

to this notion remained open. After efficient algorithms for optimal broadcast domination were

developed for restricted graph classes [3,5], Heggernes and Lokshtanov [10] showed the beautiful

and surprising result that broadcast domination can be solved optimally in polynomial time for

every graph. In contrast to that, Dunbar et al. [6] and Hedetniemi [9] explicitly ask about the

complexity of broadcast independence and about efficient algorithms for trees. As pointed out

recently by Ahmane et al. [1], the complexity of broadcast independence was unknown even for

trees.

In the present paper we describe an efficient algorithm for optimal broadcast indepen-

dence in trees. Furthermore, we show hardness of approximation for general graphs and NP-

completeness for planar graphs of maximum degree four. Before stating our results precisely,

we collect the necessary definitions. We consider finite, simple, and undirected graphs, and use

standard terminology and notation. Let N0 be the set of nonnegative integers, and let Z be the

set of integers. For a connected graph G, a function f : V (G) → N0 is an independent broadcast

on G if

(B1) f(x) ≤ eccG(x) for every vertex x of G, where eccG(x) is the eccentricity of x

in G, and

(B2) distG(x, y) > max{f(x), f(y)} for every two distinct vertices x and y of G with

f(x), f(y) > 0, where distG(x, y) is the distance of x and y in G.

The weight of f is
∑

x∈V (G)

f(x). The broadcast independence number αb(G) of G is the maximum

weight of an independent broadcast onG, and an independent broadcast onG of weight αb(G) is

optimal. Let α(G) be the usual independence number of G defined as the maximum cardinality

of an independent set in G, which is a set of pairwise nonadjacent vertices of G. For an integer

k, let [k] be the set of all positive integers at most k, and let [k]0 = {0} ∪ [k].

Note that adding a universal vertex to a non-empty graph does not change its independence

number but reduces its diameter to two, and that αb(G) = α(G) for a graph G with diameter

two and α(G) ≥ 3. These observations imply that Zuckerman’s [11] hardness of approximation

result for maximum clique immediately yields the following.

Proposition 1.1. For every positive real number ǫ, it is NP-hard to approximate the broadcast

independence number of a given connected graph of order n to within n1−ǫ.

As already stated, we show that computing the broadcast independence number remains

hard even when restricted to instances with bounded maximum degree. In fact, we believe that

it is hard even when restricted to cubic graphs.
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Theorem 1.1. For a given connected planar graph G of maximum degree 4 and a given positive

integer k, it is NP-complete to decide whether αb(G) ≥ k.

Clearly, αb(G) ≥ α(G) for every connected graph G. In [2] we show αb(G) ≤ 4α(G) for

every connected graphG, which yields efficient constant factor approximation algorithms for the

broadcast independence number on every class of connected graphs on which the independence

number can efficiently be approximated within a constant factor; in particular, on graphs of

bounded maximum degree.

In the next section, we prove Theorem 1.1, and, in Section 3, we present the polynomial

time algorithm to compute the broadcast independence number of a given tree, more precisely,

we prove the following.

Theorem 1.2. The broadcast independence number αb(T ) of a given tree T of order n can be

determined in O(n9) time.

2 NP-completeness of broadcast independence on planar

graphs with maximum degree 5

In this section, we prove Theorem 1.1.

Since an independent broadcast can be encoded using polynomially many bits, and (B1) and

(B2) can be checked in polynomial time, the considered decision problem is in NP. We show its

NP-completeness by reducing to it the NP-complete problem [8] Independent Set restricted

to connected planar cubic graphs. Therefore, let (H, k) be an instance of Independent Set,

where H is a connected planar cubic graph. Recall that Independent Set is the problem

to decide whether α(H) ≥ k. In order to complete the proof, we describe a polynomial time

construction of a planar graph G of maximum degree 4 such that

αb(G) = α(H) +
45

2
n(H),

where n(H) is the order of H . First, let the graph H ′ arise by subdividing each edge of H

exactly twice. It is well known and easy to see that α(H ′) = α(H) +m(H) = α(H) + 3
2
n(H),

where m(H) is the number of edges of H . Now, the graph G arises from H ′ by

• adding, for every vertex x in V (H), one copy K(x) of the star K1,4 of order 4 and

connecting its center with x, and

• adding, for every vertex x in V (H ′) \ V (H), two disjoint copies K1(x) and K2(x) of the

star K1,4 of order 4 and connecting their two centers with x.

See Figure 1 for an illustration.
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Figure 1: An edge uv of H after two subdivisions and the attachment of the disjoint stars. The
vertices of H are shown largest and the vertices of the attached stars are shown smallest.

Note that G is connected and planar, has order 32n(H) and maximum degree 4, and contains

21n(H) endvertices. Since some maximum independent set in G contains all 21n(H) endvertices

of G, and removing the closed neighborhoods of all these endvertices yields H ′, we have

α(G) = α(H ′) + 21n(H) = α(H) +
3

2
n(H) + 21n(H) = α(H) +

45

2
n(H),

that is, it remains to show that αb(G) = α(G).

Let f : V (G) → N0 be an optimal independent broadcast on G. For every vertex x of H ′,

let L(x) be the set of endvertices of G that are at distance 2 from x, and let L =
⋃

x∈V (H′)

L(x).

Note that |L(x)| = 3 if x ∈ V (H), and that |L(x)| = 6 if x ∈ V (H ′) \ V (H).

If there is some vertex x in V (G) \ L with f(x) = k for some k ≥ 2, and y is a vertex in L

that is closest to x, then changing the value of f(y) to k, and the value of f(x) to 0 yields an

independent broadcast on G of the same weight as f . Applying this operation iteratively, we

may assume that

f(x) ≥ 2 only if x ∈ L.

If there is some vertex y in V (H ′) such that f(x) ∈ {2, 3} for some vertex x in L(y), then

changing the value of f for the at least three vertices in L(y) to 1 yields an independent

broadcast on G whose weight is at least the weight of f . Applying this operation iteratively,

we may assume that

f(x) 6∈ {2, 3} for every x ∈ V (G).

If there is some vertex y in V (H ′) \ V (H) such that f(x) ∈ {4, 5, 6} for some vertex x in L(y),

then changing the value of f for the six vertices in L(y) to 1 yields an independent broadcast

on G whose weight is at least the weight of f . Applying this operation iteratively, we may

assume that

f(x) 6∈ {4, 5, 6} for every y ∈ V (H ′) \ V (H) and every x ∈ L(y). (1)

Let X = {x ∈ V (G) : f(x) > 0}. To every vertex x in X , we assign an independent set I(x) as

follows:
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• If f(x) = 1, then let I(x) = {x}.

• If f(x) = 4, then, by (1), there is some vertex y of H such that x ∈ L(y). Let I(x) =

{y} ∪ L(y).

• If f(x) = 5, then, by (1), there is some vertex y of H such that x ∈ L(y). Let y′ be some

neighbor of y in H ′, and let I(x) = L(y) ∪ L(y′).

• If f(x) ≥ 6, then there is some vertex y of H ′ such that x ∈ L(y). By (B1), there is a

shortest path P : x0 . . . x⌊ f(x)
2 ⌋ in G such that x0 = x and x2 = y. Let

I(x) =

⌊ f(x)
2 ⌋
⋃

i=2

L(xi).

By construction, I(x) is an independent set for every x in X . Furthermore, if f(x) ≤ 5 for

some x in X , then |I(x)| ≥ f(x) is easily verified. Now, if f(x) ≥ 6 for some x in X , and P is

as above, then
⌊

f(x)
2

⌋

≥ 3, at least one of the two sets L(x2) and L(x3) contains six vertices,

and, hence, |I(x)| ≥ 3
(⌊

f(x)
2

⌋

− 1
)

+3 ≥ f(x). Altogether, I(x) is an independent set of order

at least f(x) for every x in X .

Suppose, for a contradiction, that there are two distinct vertices x and x′ inX such that I(x)

and I(x′) intersect. If f(x) = 1, then, necessarily, f(x′) = 4, and distG(x, x
′) ≤ 2, contradicting

(B2). If f(x), f(x′) ∈ {4, 5}, then, by (1), distG(x, x
′) = 2, and if f(x) ∈ {4, 5} and f(x′) ≥ 6,

then distG(x, x
′) ≤

⌊

f(x′)
2

⌋

+ 2 < f(x′), contradicting (B2). Finally, if f(x), f(x′) ≥ 6, then

distG(x, x
′) ≤

⌊

f(x)
2

⌋

+
⌊

f(x′)
2

⌋

≤ max{f(x), f(x′)}, again contradicting (B2). Hence, the sets

I(x) for x in X are all disjoint.

Suppose, for a contradiction, that there are two distinct vertices x and x′ in X such that

G contains an edge between I(x) and I(x′). Since no two endvertices in G are adjacent, and

I(x) ⊆ L for x in X with f(x) ≥ 5, this implies f(x), f(x′) ∈ {1, 4}, which easily implies a

contradiction to (B2). Altogether, it follows that I =
⋃

x∈X

I(x) is an independent set of order

at least αb(G), which implies α(G) ≥ αb(G). Since αb(G
′) ≥ α(G′) holds for every graph G′,

this complete the proof.

3 A polynomial time algorithm for trees

Throughout this section, let T be a fixed tree of order n.

Before we explain the details of our approach, which is based on dynamic programming,

we collect some key observations. We will consider certain subtrees T (u, i) of T that contain a

vertex u such that all edges of T between V (T (u, i)) and V (T ) \V (T (u, i)) are incident with u,
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that is, V (T (u, i)) contains u and some connected components of T −u. For every independent

broadcast f on T , the restriction of f to V (T (u, i)) clearly satisfies

(C1) f(x) ≤ eccT (x) for every vertex x of T (u, i).

(C2) distT (x, y) > max{f(x), f(y)} for every two distinct vertices x and y of T (u, i)

with f(x), f(y) > 0.

Furthermore, if y is a vertex in V (T ) \ V (T (u, i)) with f(y) > 0, then y imposes upper bounds

on the possible values of f inside V (T (u, i)). More precisely, f(x) must be 0 for all vertices

x of T (u, i) with distT (x, y) ≤ f(y), and f(x) can be at most distT (x, y) − 1 for all vertices

x of T (u, i) with distT (x, y) > f(y). So, in short we have f(x) = 0 if distT (x, y) ≤ f(y) and

f(x) ≤ distT (x, y)− 1 otherwise. Expressed as a function of distT (u, x) instead of distT (x, y),

and using the equality distT (u, x) = distT (x, y)− distT (u, y), we obtain the condition

f(x) ≤ g(p,q)(distT (u, x)) for every vertex x of T (u, i),

where the function g(p,q)(d) : Z → N0 is such that

g(p,q)(d) =







0 , if d ≤ p, and

d− p+ q − 1 , if d ≥ p+ 1,
(2)

p = f(y)− distT (u, y), and

q = f(y).

Note that q is positive, p may be negative, and that |p| and q are both at most the diameter of

T , which is at most n.

One key observation is the following simple lemma.

Lemma 3.1. If (p1, q1), . . . , (pk, qk) are pairs of integers such that −n ≤ pi ≤ n and 1 ≤ qi ≤ n

for every i in [k], then there is a pair (pin, qin) of integers such that −n ≤ pin ≤ n, 1 ≤ qin ≤ n,

and

g(pin,qin)(d) = min
{

g(p1,q1)(d), . . . , g(pk,qk)(d)
}

for every nonnegative integer d.

Proof. The statement follows for pin = max{p1, . . . , pk} and

qin = min
{

g(p1,q1)(pin + 1), . . . , g(pk,qk)(pin + 1)
}

.

Clearly, we have −n ≤ pin ≤ n and min{g(p1,q1)(d), . . . , g(pk,qk)(d)} = 0 = g(pin,qin)(d) for d ≤ pin.

Since g(pi,qi)(pin + 1) ≥ g(pi,qi)(pi + 1) = qi ≥ 1 for every i in [k], we have qin ≥ 1. Furthermore,

if i in [k] is such that pin = pi, then

qin ≤ g(pi,qi)(pin + 1) = g(pi,qi)(pi + 1) = (pi + 1)− pi + qi − 1 = qi,
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which implies qin ≤ qi ≤ n. Finally, notice that for every p, q, p′, and d such that d ≥ p + 1

and p′ ≥ p, we have g(p,q)(d) = d− (p′ + 1) + g(p,q)(p
′ + 1). So, for every d ≥ pin + 1, we have

min{g(p1,q1)(d), . . . , g(pk,qk)(d)} = d− (pin + 1) + min{g(p1,q1)(pin + 1), . . . , g(pk,qk)(pin + 1)}

= d− (pin + 1) + qin

= g(pin,qin)(d).

Lemma 3.1 implies that the upper bounds on the possible values of f inside V (T (u, i)) that

are imposed by positive values of f in V (T )\V (T (u, i)) can be encoded by just two integers pin

and qin with −n ≤ pin ≤ n and 1 ≤ qin ≤ n. Symmetrically, the upper bounds on the possible

values of f inside V (T ) \ V (T (u, i)) that are imposed by positive values of f in V (T (u, i)),

again expressed as a function of the distance from u in T , can be encoded by just two integers

pout and qout with −n ≤ pout ≤ n and 1 ≤ qout ≤ n.

For all O(n4) possible choices for ((pin, qin), (pout, qout)), the algorithm determines the max-

imum contribution
∑

x∈V (T (u,i))

f(x) to the weight of an independent broadcast f on T such that

the following conditions hold:

(C3) f(x) ≤ g(pin,qin)(distT (u, x)) for every vertex x of T (u, i).

(C4) If f(x) > 0 for some vertex x of T (u, i), then

g(pout,qout)(d) ≤ g(f(x),f(x))(d+ distT (u, x)) for every positive integer d.

Intuitively speaking, (C3) means that every value of f assigned to some vertex of T (u, i) respects

the upper bound encoded by g(pin,qin), and (C4) means that every positive value of f assigned

to some vertex of T (u, i) imposes an upper bound on the values of f outside V (T (u, i)) that is

at least the upper bound encoded by g(pout,qout). The next lemma shows how to check condition

(C4) in constant time for an individual vertex x.

Lemma 3.2. If p, q, f , and dist are integers such that −n ≤ p ≤ n and q, f, dist ∈ [n], then

g(p,q)(d) ≤ g(f,f)(d+ dist) for every positive integer d (3)

if and only if max
{

f −max
{

p, 0
}

, q − p
}

≤ dist.

Proof. We consider two cases.

First, let p ≤ 0. In this case, g(p,q)(d) is positive for every positive d, and (3) holds if and

only if

(i) g(f,f)(1 + dist) is positive, and
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(ii) g(f,f)(1 + dist) is at least g(p,q)(1).

(i) is equivalent to 1 + dist ≥ f + 1, and, by (i), (ii) is equivalent to (1 + dist) − f + f − 1 ≥

1− p+ q − 1, that is, (i) and (ii) together are equivalent to max{f, q − p} ≤ dist.

Next, let p ≥ 1. In this case, g(p,q)(d) is positive if and only if d ≥ p + 1, and (3) holds if

and only if

(i) g(f,f)(p+ 1 + dist) is positive, and

(ii) g(f,f)(p+ 1 + dist) is at least g(p,q)(p+ 1).

(i) is equivalent to p+1+dist ≥ f +1, and, by (i), (ii) is equivalent to p+1+dist−f +f−1 ≥

p + 1− p+ q − 1 = q, that is, (i) and (ii) together are equivalent to max{f − p, q − p} ≤ dist.

The statement of the lemma summarizes both cases.

Now, we explain which subtrees T (u, i) we consider. We select a vertex r of T , and consider

T as rooted in r. For every vertex u of T that is not a leaf, we fix an arbitrary linear order on

the set of children of u. If v1, . . . , vk are the children of u in their linear order, then for every

i ∈ [k]0, let T (u, i) be the subtree of T that contains u, v1, . . . , vi as well as all descendants of

the vertices v1, . . . , vi in T . Note that T (u, 0) contains only u, and that u is the only vertex

of T (u, i) that may have neighbors in T outside of V (T (u, i)). Altogether, there are at most

(dT (r) + 1) +
∑

x∈V (T )\{r}

dT (x) = O(n) many choices for (u, i). For brevity, let V (u, i) denote

V (T (u, i)).

Let u be a vertex with k children, and let i ∈ [k]0. Let pin, pout, qin, and qout be integers

with −n ≤ pin, pout ≤ n and 1 ≤ qin, qout ≤ n. A function

f : V (u, i) → N0 is ((pin, qin), (pout, qout))-compatible

if conditions (C1), (C2), (C3), and (C4) hold. Let

β((u, i), (pin, qin), (pout, qout))

be the maximum weight
∑

x∈V (u,i)

f(x) of a function f : V (u, i) → N0 that is ((pin, qin), (pout, qout))-

compatible.

Our next lemma shows that the broadcast independence number can be extracted from

these values.

Lemma 3.3. αb(T ) = β((r, dT (r)), (−1, n), (n, 1)).

Proof. By definition, T (r, dT (r)) equals T . Since g(−1,n)(d) ≥ n for every d in N0, condition

(C3) is void in view of condition (C1). Similarly, condition (C4) is void by Lemma 3.2 and

condition (C1). This clearly implies the statement.
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The following lemmas explain how to determine β((u, i), (pin, qin), (pout, qout)) recursively for

all O(n5) possible choices for ((u, i), (pin, qin), (pout, qout)). The next lemma specifies in particular

the values for leaves.

Lemma 3.4.

β((u, 0), (pin, qin), (pout, qout)) =







0 , if qout > pout, and

min
{

eccT (x), g(pin,qin)(0), pout

}

, if qout ≤ pout.

Proof. This follows immediately from (C1), (C3), and (C4) using Lemma 3.2, V (u, 0) = {u},

and distT (u, u) = 0.

The next lemma is the technical key lemma. Recall that v1, . . . , vk denote the children of u

in the chosen linear order. See Figure 2.

su

ss . . .
v1 vi−1

✂
✂
✂

s

vi

V (u, i− 1) V (vi, ki)

Figure 2: The situation considered in Lemma 3.5.

Lemma 3.5. Let i ∈ [k], and let vi have ki children. Let f : V (u, i) → N0.

If f is ((pin, qin), (pout, qout))-compatible, then there are integers

p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out,

with −n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n such that:

(i) The restriction of f to V (u, i− 1) is
((

p
(0)
in , q

(0)
in

)

,
(

p
(0)
out, q

(0)
out

))

-compatible.

(ii) The restriction of f to V (vi, ki) is
((

p
(1)
in , q

(1)
in

)

,
(

p
(1)
out, q

(1)
out

))

-compatible.

(iii) g(
p
(0)
in ,q

(0)
in

)(d) = min
{

g(pin,qin)(d), g
(

p
(1)
out,q

(1)
out

)(d+ 1)
}

for every nonnegative integer d.

(iv) g(
p
(1)
in ,q

(1)
in

)(d) = min
{

g(pin,qin)(d+ 1), g(
p
(0)
out,q

(0)
out

)(d+ 1)
}

for every nonnegative integer d.

(v) g(pout,qout)(d) ≤ min
{

g(
p
(0)
out,q

(0)
out

)(d), g(
p
(1)
out,q

(1)
out

)(d+ 1)
}

for every positive integer d.
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Conversely, if the integers

p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out,

with −n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n are such that conditions (i) to

(v) hold, then f is ((pin, qin), (pout, qout))-compatible.

Proof. First, let f : V (u, i) → N0 be ((pin, qin), (pout, qout))-compatible.

By Lemma 3.1, there is a pair
(

p
(0)
out, q

(0)
out

)

such that the function g(
p
(0)
out,q

(0)
out

) encodes the

upper bounds on the possible values of f outside of V (u, i−1) that are imposed by the positive

values of f in V (u, i−1) as a function of the distance to u. Similarly, there is a pair
(

p
(1)
out, q

(1)
out

)

such that the function g(
p
(1)
out,q

(1)
out

) encodes the upper bounds on the possible values of f outside

of V (vi, ki) that are imposed by the positive values of f in V (vi, ki) as a function of the distance

to vi. Since the distance of a vertex outside of V (u, i) to vi is one more than its distance to u,

condition (C4) implies (v).

By Lemma 3.1, the minimum in (iii) equals g(
p
(0)
in ,q

(0)
in

) for a suitable choice of
(

p
(0)
in , q

(0)
in

)

,

where we use g(p,q)(d+ 1) = g(p−1,q)(d) for all integers p, d with q ≥ 1. Similarly, the minimum

in (iv) equals g(
p
(1)
in ,q

(1)
in

) for a suitable choice of
(

p
(1)
in , q

(1)
in

)

, that is, (iii) and (iv) hold.

Since f is ((pin, qin), (pout, qout))-compatible, the value of f assigned to a vertex x in V (u, i−1)

is at most g(pin,qin)(distT (u, x)). Furthermore, by (C2) for f , the value of f assigned to any vertex

x in V (u, i− 1) is at most g(
p
(1)
out,q

(1)
out

)(distT (vi, x)) = g(
p
(1)
out,q

(1)
out

)(distT (u, x) + 1). Altogether, (i)

holds for g(
p
(0)
in ,q

(0)
in

) as in (iii). By a completely symmetric argument, it follows that (ii) holds

for g(
p
(1)
in ,q

(1)
in

) as in (iv). This completes of the proof of the first part of the statement.

Next, let

p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out,

with −n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n be such that conditions (i) to

(v) hold.

By (i) and (ii),

f satisfies (C1).

By (i) and (ii), the restriction of f to V (u, i − 1) satisfies (C2), and the restriction of f to

V (vi, ki) satisfies (C2). Let x ∈ V (u, i− 1) and y ∈ V (vi, ki) be such that f(x), f(y) > 0. We

obtain

f(x)
(i),(C3)

≤ g(
p
(0)
in ,q

(0)
in

)(distT (u, x))

(iii)

≤ g(
p
(1)
out,q

(1)
out

)(distT (u, x) + 1)

(ii),(C4)

≤ g(f(y),f(y))(distT (u, x) + 1 + distT (vi, y))

= g(f(y),f(y))(distT (x, y)),
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which implies distT (x, y) > f(y), because f(x) is positive. Symmetrically, we obtain

f(y)
(ii),(C3)

≤ g(
p
(1)
in ,q

(1)
in

)(distT (vi, y))

(iv)

≤ g(
p
(0)
out,q

(0)
out

)(distT (vi, y) + 1)

(i),(C4)

≤ g(f(x),f(x))(distT (vi, y) + 1 + distT (u, x))

= g(f(x),f(x))(distT (x, y)),

which implies distT (x, y) > f(x), because f(y) is positive. Altogether, it follows that

f satisfies (C2).

Since, by (iii), g(
p
(0)
in ,q

(0)
in

)(d) ≤ g(pin,qin)(d), and, by (iv), g(
p
(1)
in ,q

(1)
in

)(d) ≤ g(pin,qin)(d + 1) for every

nonnegative integer d, we have

f satisfies (C3).

If x ∈ V (u, i− 1) is such that f(x) > 0, then,

g(pout,qout)(d)
(v)

≤ g(
p
(0)
out,q

(0)
out

)(d)

(i),(C4)

≤ g(f(x),f(x))(d+ distT (u, x)) for every positive integer d.

Similarly, if x ∈ V (vi, ki) is such that f(x) > 0, then,

g(pout,qout)(d)
(v)

≤ g(
p
(1)
out,q

(1)
out

)(d+ 1)

(ii),(C4)

≤ g(f(x),f(x))(d+ 1 + distT (vi, x))

= g(f(x),f(x))(d+ distT (u, x)) for every positive integer d.

Altogether,

f satisfies (C4),

which completes the proof.

The next lemma is a consequence of Lemma 3.5.

Lemma 3.6. Let i ∈ [k], and let vi have ki children.

β((u, i), (pin, qin), (pout, qout)) equals the maximum of

β
(

(u, i− 1),
(

p
(0)
in , q

(0)
in

)

,
(

p
(0)
out, q

(0)
out

))

+ β
(

(vi, ki),
(

p
(1)
in , q

(1)
in

)

,
(

p
(1)
out, q

(1)
out

))

,

where the maximum extends over all choices of p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out, q

(0)
in , q

(0)
out, q

(1)
in , and q

(1)
out, with
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−n ≤ p
(0)
in , p

(0)
out, p

(1)
in , p

(1)
out ≤ n and 1 ≤ q

(0)
in , q

(0)
out, q

(1)
in , q

(1)
out ≤ n that satisfy the conditions (iii),

(iv), and (v) from Lemma 3.5.

Proof. This follows from Lemma 3.5 and the fact that V (u, i) is the disjoint union of V (u, i−1)

and V (vi, ki). Notice that when considering the values β
(

(u, i− 1),
(

p
(0)
in , q

(0)
in

)

,
(

p
(0)
out, q

(0)
out

))

and β
(

(vi, ki),
(

p
(1)
in , q

(1)
in

)

,
(

p
(1)
out, q

(1)
out

))

, we know, by definition, that the corresponding re-

stricted independent broadcasts on T (u, i − 1) and T (vi, ki) are
((

p
(0)
in , q

(0)
in

)

,
(

p
(0)
out, q

(0)
out

))

-

compatible and
((

p
(1)
in , q

(1)
in

)

,
(

p
(1)
out, q

(1)
out

))

-compatible, respectively. As the choice of the pa-

rameters satisfies the conditions (iii), (iv), and (v) from Lemma 3.5, we have seen in the proof

of that lemma that the common extension of the two restricted independent broadcasts is a

restricted independent broadcast on T (u, i).

We are now ready for the following.

Proof of Theorem 1.2. By Lemmas 3.4 and 3.6, each of the O(n5) values

β((u, i), (pin, qin), (pout, qout))

can be determined in time O(n4), by

• processing the vertices u of T in an order of nonincreasing depth within T ,

• considering the O(n) possible values for each of the four integers p
(0)
out, p

(1)
out, q

(0)
out, and q

(1)
out,

• checking condition (v) from Lemma 3.5 in constant time,

• determining the four integers p
(0)
in , p

(1)
in , q

(0)
in , and q

(1)
in as in (iii) and (iv) from Lemma 3.5

in constant time, and

• adding β
(

(u, i− 1),
(

p
(0)
in , q

(0)
in

)

,
(

p
(0)
out, q

(0)
out

))

and β
(

(vi, ki),
(

p
(1)
in , q

(1)
in

)

,
(

p
(1)
out, q

(1)
out

))

.

Now, Lemma 3.3 implies the statement.

It may be possible — yet tedious — to extend Theorem 1.2 to graphs of bounded treewidth.
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