
Data & Knowledge Engineering 59 (2006) 293–319

www.elsevier.com/locate/datak
Argument-based critics and recommenders:
A qualitative perspective on user support systems

Carlos Iván Chesñevar a,*, Ana Gabriela Maguitman b, Guillermo Ricardo Simari c

a Department of Computer Science, Universitat de Lleida, C/Jaume II, 69, 25001 Lleida, Spain
b School of Informatics, Indiana University, Bloomington, IN 47408-3912, USA

c Department of Computer Science and Engineering, Universidad Nacional del Sur, 8000 B. Blanca, Argentina

Received 25 April 2005; received in revised form 7 September 2005; accepted 7 September 2005
Available online 27 October 2005
Abstract

In recent years we have witnessed the wide-spread evolution of support tools that operate in association with the user to
accomplish a range of computer-mediated tasks. Two examples of these tools are critics and recommenders. Critics are
cooperative tools that observe the user interacting with a computer system and present reasoned opinions about a product
under development. Recommender systems are tools that assist users by facilitating access to relevant items. At the same
time, defeasible argumentation has evolved as a successful approach in AI to model commonsense qualitative reasoning,
with applications in many areas, such as agent theory, knowledge engineering and legal reasoning. This paper presents a
novel approach towards the integration of user support systems, such as critics and recommender systems, with a defea-
sible argumentation framework. The final goal is to enhance practical reasoning capabilities of current user support tools
by incorporating argument-based qualitative inference.
� 2005 Elsevier B.V. All rights reserved.

Keywords: User support systems; Decision support systems; Recommender systems; Critics; Defeasible argumentation; Practical
reasoning
1. Introduction and motivations

Critiquing and recommendation systems have evolved in the last years as specialized tools to assist users in
a plethora of computer-mediated tasks by providing guidelines or hints [93,56]. Critiquing systems (also
known as critics) offer context-sensitive support to users. The goal of critiquing systems is to discover and
point out errors or suboptimal results that might otherwise remain unnoticed, and to help users make the nec-
essary repairs. Recommender systems (or just recommenders), on the other hand, are aimed at helping users
with the problem of information overload by facilitating access to relevant items [67]. In a more general set-
ting, both critics and recommenders can be conceptualized as user support systems.
0169-023X/$ - see front matter � 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2005.09.005

* Corresponding author.
E-mail addresses: cic@eps.udl.es (C.I. Chesñevar), anmaguit@cs.indiana.edu (A.G. Maguitman), grs@cs.uns.edu.ar (G.R. Simari).

mailto:cic@eps.udl.es
mailto:anmaguit@cs.indiana.edu
mailto:grs@cs.uns.edu.ar

294 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
Most critics and recommenders are based on machine learning and information retrieval algorithms. The
resulting systems typically provide suggestions based on quantitative evidence (i.e., measures of similarity
between objects or users). The inference process which led to these suggestions is commonly opaque to the
user (i.e., �black-box� metaphor). Although the effectiveness of existing critics and recommenders is remark-
able, they still have serious limitations as they are unable to perform qualitative inference on the suggestions
they offer. A number of well-know formalisms, such as description logics [38], could be naturally integrated to
existing recommendation technologies to provide inference capabilities. However, the majority of these for-
malisms are incapable of dealing with the defeasible nature of user preferences. In this context, defeasible argu-

mentation frameworks constitute an interesting alternative, as they have matured in the last decade to become
a useful setting to formalize commonsense qualitative reasoning in a computationally attractive way. A thor-
ough consideration of these frameworks can be found in [22,87].

Recent research has shown that argumentation can be integrated in a growing number of real-world appli-
cations such as planning [100], multiagent systems [77,2,76], legal reasoning [86], knowledge engineering [17],
analysis of news reports [51] clustering [48], argumentation support systems [107], mediation systems and com-
puter-supported collaborative argumentation [68,89,49,66], among others. In the last few years particular
attention has been given to different extensions of logic programming as a suitable framework for formalizing
knowledge representation and argumentative inference.

Defeasible logic programming (DeLP) [44]1 is a particular formalization of defeasible argumentation based
on logic programming which provides the possibility of representing information in the form of defeasible and
strict rules in a declarative manner. An important characteristic of the DeLP approach is that, by performing
defeasible reasoning dialectically, it can handle information that is in principle contradictory. The process of
deciding if a conclusion is supported, or warranted, begins by analyzing if there exists an undefeated argument
(a warrant) supporting that conclusion, i.e, an argument for which every possible attacking argument has been
defeated. The notion of attack and defeat is formally introduced below but can be intuitively described as the
consideration of arguments that are in conflict (attack) with the supporting argument. The attack becomes a
defeat when the attacking argument is better, in some specific sense, than the supporting argument.

Thus, use of argumentation will allow the system to present reasoned suggestions, which the user will be able to
further investigate and accept only if a convincing case can be made by the recommendation tool. This approach
has proven to be particularly attractive in the context of real-world applications, such as clustering [48], intelligent
Web search [21,23], natural language processing [20], and multiagent systems [25]. An in depth analysis of DeLP
and its comparison with other formalisms in argumentation and logic programming can be found in [44].

This paper presents a first approach towards the integration of typical variants of user support systems—
such as critics and recommenders—with a defeasible argumentation framework. In order to enhance user
support by means of argumentation, user preference criteria are modelled by means of facts, strict rules
and defeasible rules encoded as part of a DeLP program. These preference criteria are combined with
additional background information and used by the argumentation framework to prioritize potential sugges-
tions, thus enhancing the final results provided to the active user.

The rest of the article is structured as follows. First, in Section 2 we present a generic characterization of
user support systems, with focus on critics and recommenders. In Section 3 we provide some background on
the role of argumentation in AI and outline the fundamentals of defeasible logic programming. Next, in Sec-
tion 4 we discuss our proposal for characterizing argument-based recommender systems. Sections 5 and 6
present two case studies, which illustrate how the proposed approach works. Section 7 describes implementa-
tion issues and ongoing research. Section 8 discusses related work. Finally, in Section 9 we present the main
conclusions that have been obtained.

2. User support systems

User support system operate in association with the user to effectively accomplish a range of tasks. Some of
these systems serve the purpose of expanding the user�s natural capabilities, for example by acting as intelli-
1 An implementation of DeLP is available at http://lidia.cs.uns.edu.ar/DeLP.

http://lidia.cs.uns.edu.ar/DeLP

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 295
gence or memory augmentation mechanisms [37]. Some of these systems reduce the user�s work by carrying
out the routinizable tasks on the user�s behalf. Others offer tips on how to refine or complete human generated
products (such as electronic documents) by highlighting potential inaccuracies and proposing alternative solu-
tions. Some aides ‘‘think ahead’’ to anticipate the next steps in a user�s task providing the capability for the
user to confirm the prediction and ask the system to complete the steps automatically.

As we will see later, argument-based reasoning can be integrated into such user support systems in order to
provide a qualitative perspective in decision making. This is achieved by integrating inference abilities to offer
reasoned suggestions and critics modelled in terms of arguments in favor and against a particular decision.
This approach complements existing qualitative techniques by enriching the user�s mental model of such com-
puter systems in a natural way: suggestions are statements which are backed by arguments supporting them.
Clearly, conflicting suggestions may arise, and it will be necessary to determine which suggestions can be con-
sidered as valid according to some rationally justified procedure. The role of argumentation is to provide a
sound formal framework as a basis for such analysis.

Next we will briefly review two major kinds of user support systems—critics and recommenders—which
cover an important part of the spectrum of existing user support system technologies. Both critics and recom-
menders act in cooperation with users, complementing their abilities and augmenting their performance by
offering proactive or on demand context-sensitive support.

2.1. Critics

Critics or critiquing systems [98] are cooperative tools that observe the user interacting with a computer sys-
tem and present reasoned opinions about a product under development. The goal of the critiquing systems is
to discover and point out errors or suboptimal results that might otherwise remain unnoticed, and to help
users to make the necessary repairs. Critics need domain-based criteria to evaluate the quality of a solution
and usually generate their advice by using a specialized domain knowledge base. Critics have been imple-
mented in many applications, such as tutoring [97], diagnosis and decision-making [73], expertise-based design
[40], and knowledge acquisition systems [104]. Most popular critiquing systems have been developed to assist
word processing. These include spelling-, grammar-, and style-checkers [59,32,88].

Although critics for word-processing software have helped to significantly reduce the overall amount of
burden for checking documents, the problem of judging the appropriateness of language usage in different
contexts remains to a large extent still unsolved. Providing advice on language usage is hard for several rea-
sons. On the one hand, language usage does not follow a set of predefined and rigorous rules, being highly
context-dependant (thus, for example, some colloquial words in British English could lead to misunderstand-
ings when used for an American audience). On the other hand, natural languages change over time, and such
changes turn out to be very difficult to trace by means of automated tools.

One effective solution to this problem is to provide the user with information about frequencies of natural
language expressions in different contexts. Such systems, called concordance programs [41,91], have become
particularly powerful with the evolution of the Web, as there is a huge collection of text-based information
available online. However, there is still a major problem with this approach, as concordance programs require
the user to explicitly provide a search-string and for that reason they have a limited functionality. Critiquing
systems with inference abilities for judging the appropriateness of language usage could automate this process,
reducing the user�s effort in identifying inaccuracies and generating solutions. As we will see in Section 6, the
combination of automated argument-based inference along with Web search capabilities will provide a pow-
erful tool for reasoning about appropriate language usage.

2.2. Recommenders

Recommender systems are programs that create a model of the user�s preferences or the user�s task with the
purpose of facilitating access to items (e.g., news, Web pages, books, etc.) that the user may find useful [93,56].
While in many situations the user explicitly posts a request for recommendations in the form of a query, many
recommender systems attempt to anticipate the user�s needs and are capable of proactively providing assis-
tance [94,95,14]. In order to come up with recommendations for user queries, conventional recommender

296 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
systems rely on similarity measures between users or contents, computed on the basis of methods coming either
from the information retrieval or the machine learning communities. Recommender systems adopt mainly two
different views to help predict information needs. The first approach is known as user modelling and relies on
the use of a profile or model of the users, which is created by observing users� behavior (e.g., [65,34]). The
second approach is based on task modelling, and recommendations are based on the context in which the user
is immersed (e.g., [15,61]). The context may consist of an electronic document the user is editing, Web pages
the user has recently visited, etc.

Two main techniques have been used to compute recommendations: content-based and collaborative filter-

ing. Content-based recommenders are driven by the premise that user�s preferences tend to persist through
time. These recommenders frequently use machine-learning techniques to induce a profile of the active user.
Typically, a model of the active user is stored as a list of rated items. In order to determine if a new item is a
potentially good recommendation, content-based recommender systems rely on similarity measures between
the new items and the rated items stored as part of the user model.

Recommender systems based on collaborative filtering are based on the assumption that users� preferences
are correlated. These systems maintain a pool of users� profiles associated with items that the users rated in the
past. For a given active user, collaborative recommender systems find other similar users whose ratings
strongly correlate with the current user. New items not rated by the active user can be presented as suggestions
if similar users have rated them highly. A combination of collaborative-filtering and content-based recommen-
dation gives rise to hybrid recommender systems (e.g., [7,6,12,33]). In particular, given the huge amount of
information existing on the Web, it is not surprising that the great majority of the recommender systems have
been built around content and resources available online (e.g., [3,74,62,78,35]).

One of the main issues faced by recommender systems is the ‘‘sparsity problem’’. This problem is due to the
reluctance of users to rate items. Therefore, much research has focused on the development of strategies for
filling in incomplete users� models. A common technique is to monitor the users� behavior.2 While this
approach minimizes the user�s effort and generates large amounts of data, it has the disadvantage of resulting
in noisy descriptions of the user�s interests. Another issue faced by recommendation systems is that of trust-
worthiness. This is sometimes due to the absence of any rationale supporting the presented suggestions. There-
fore, the user is unable to evaluate the reasons that led the system to present certain recommendations. In
certain domains (e.g., e-commerce), this lack of justification can be associated with ulterior motives on the
recommendation provider�s side, leading to lack of confidence or reliability. Typical approaches to recommen-
dation (especially those based on IR and machine learning techniques) are usually limited in this sense. As we
will later see in Section 5, the use of argumentation will allow to enhance recommender systems with inference
abilities to present reasoned suggestions, which the user will be able to further investigate and accept only if a
convincing case can be made by the recommendation tool.

3. Modelling argumentation in DeLP

3.1. Argumentation in AI: background

Artificial Intelligence (AI) has long dealt with the enormous challenge of modelling commonsense reason-
ing, which almost always occurs in the face of incomplete and potentially inconsistent information [70,90,69].
A logical model of commonsense reasoning demands the formalization of principles and criteria that charac-
terize valid patterns of inference. In this respect, classical logic has proven to be inadequate, since it behaves
monotonically and cannot deal with inconsistencies at object level [90].

When a rule supporting a conclusion may be defeated by new information, it is said that such reasoning is
defeasible [80,81,75,82,99]. When we chain defeasible reasons or rules to reach a conclusion, we have argu-

ments instead of proofs. Arguments may compete, rebutting each other, so a process of argumentation is a
natural result of the search for arguments. Adjudication of competing arguments must be performed, compar-
ing arguments in order to determine what beliefs are ultimately accepted as warranted or justified. Preference
2 See for example the Amazon recommendation system for books (http://amazon.com).

http://amazon.com

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 297
among conflicting arguments is defined in terms of a preference criterion which establishes a relation ‘‘�’’
among possible arguments; thus, for two arguments A and B in conflict, it may be the case that A is strictly
preferred over B (A � B), that A and B are equally preferable (A � B and A � B) or that A and B are not
comparable with each other. In the above setting, since we arrive at conclusions by building defeasible argu-
ments, and since logical argumentation is usually called argumentation, we sometimes call this kind of reason-
ing defeasible argumentation.

For the sake of example, let us consider a well-known problem of non-monotonic reasoning in AI about the
flying abilities of birds, recast in argumentative terms. Consider the following sentences:

(1) Birds usually fly.
(2) Penguins usually do not fly.
(3) Penguins are birds.

The first two sentences correspond to defeasible rules (rules which are subject to possible exceptions). The
third sentence is a strict rule, where no exceptions are possible. Now, given the fact that Tweety is a penguin

two different arguments can be constructed:

(1) Argument A (based on rules 1 and 3): Tweety is a penguin. Penguins are birds. Birds usually fly. So Twe-
ety flies.

(2) Argument B (based on rule 2): Tweety is a penguin. Penguins usually do not fly. So Tweety does not fly.

In this particular situation, two arguments arise that cannot be accepted simultaneously (as they reach con-
tradictory conclusions). Note that argument B seems rationally preferable over argument A, as it is based on
more specific information. As a matter of fact, specificity is commonly adopted as a syntax-based criterion
among conflicting arguments, preferring those arguments which are more informed or more direct [84,83].
In this particular case, if we adopt specificity as a preference criterion, argument B is justified, whereas A is
not (as it is defeated by B). The above situation can easily become much more complex, as an argument
may be defeated by a second argument, which in turn can be defeated by a third argument, reinstating the first
one.

Several defeasible argumentation frameworks have been developed on the basis of extensions to logic pro-
gramming (see [22,87,54]). Defeasible logic programming (DeLP) [44] is one of such formalisms, combining
results from defeasible argumentation theory [99] and logic programming. DeLP is a suitable framework
for building real-world applications that deal with incomplete and contradictory information in dynamic
domains. In what follows we will present a brief overview of the DeLP framework. A more in-depth treatment
can be found elsewhere [44,28].

3.2. Defeasible logic programming

A defeasible logic program is a set (P,D) of rules, where P and D stand for sets of strict and defeasible

knowledge, resp. The set P involves strict rules of the form P Q1, . . . ,Qk and facts (strict rules with empty
body), and it is assumed to be non-contradictory. The set D involves defeasible rules of the form
P Q1, . . . ,Qk. The underlying logical language is that of extended logic programming [45,64], enriched with
a special symbol ‘‘ ’’ to denote defeasible rules. Both default and classical negation are allowed (denoted not
and �, resp.).3 Literals preceded by not are called extended literals [45]. DeLP rules are to be thought of as
inference rules rather than implications in the object language.

Example 1 (Adapted from [30]). Consider an intelligent agent controlling an engine with an oil pump, a fuel
pump and an engine, as well as three switches sw1, sw2 and sw3. These switches regulate different features of
the engine, such as the pumping system, speed, etc. This agent may have the following defeasible knowledge
base for diagnosing possible problems with the engine:
3 The definitions that follow summarize DeLP with default negation (see discussion in [44, pp. 30–33]).

Fig. 1. DeLP program Peng (Example 1).

298 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
• If the pump is clogged, then the engine gets no fuel.
• When sw1 is on, normally fuel is pumped properly.
• When fuel is pumped properly, fuel seems to work ok.
• When sw2 is on, usually oil is pumped.
• When oil is pumped, usually it works ok.
• When there is oil and fuel, usually the engine works ok.
• When there is heat, then the engine is usually not ok.
• When there is heat, normally there are oil problems.
• When fuel is pumped and speed is low, then there are reasons to believe that the pump is clogged.
• When sw2 is on, usually speed is low.
• When sw2 and sw3 are on, usually speed is not low.
• When sw3 is on, usually fuel is ok.

Suppose also that the agent knows some particular facts: sw1, sw2 and sw3 are on, and there is heat. The
knowledge of such an agent can be modelled by the DeLP program Peng ¼ ðPeng;DengÞ shown in Fig. 1, where
the set Peng of strict knowledge corresponds to clauses (1)–(4), and the set Deng of defeasible knowledge
corresponds to clauses (5)–(16).

Deriving literals in DeLP results in the construction of arguments. Formally:

Definition 2 (Argument). Given a DeLP program P, and let Q be a literal in P. An argument A for the query
Q, denoted hA;Qi, is a subset of ground instances of defeasible rules in P such that:

(1) there exists a defeasible derivation for Q from P [A;
(2) P [A is non-contradictory (i.e, P [A does not entail two complementary literals P and �P, nor does

A contain literals S and not S)4 and
(3) A is the minimal set (with respect to set inclusion) satisfying (1) and (2).

An argument hA1;Q1i is a sub-argument of another argument hA2;Q2i if A1 �A2. Given a DeLP
program P, ArgsðPÞ denotes the set of all possible arguments that can be derived from P.

The notion of defeasible derivation corresponds to the usual query-driven SLD derivation used in logic pro-
gramming, performed by backward chaining on both strict and defeasible rules, but only ‘‘collecting’’ defea-
sible rules as part of the argument. In this context a negated literal �P is treated just as a new predicate name
4 We use the term ‘‘contradictory’’ instead of ‘‘inconsistent’’ to avoid confusion, as the latter is commonly used in the context of classical
logic.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 299
no_P. Minimality imposes the �Occam�s razor principle� [99] on arguments. Any superset A0 of A can be pro-
ven to be �weaker� than A itself, as the former relies on more defeasible information. The non-contradiction
requirement forbids the use of (ground instances of) defeasible rules in an argument A whenever P [A
entails complementary literals. It should be noted that non-contradiction captures the two usual approaches
to negation in logic programming (viz. default negation and classic negation), both of which are present in
DeLP and are related to the notion of counterargument, as we will see in the next definition.

Example 3. Consider the program Peng in Example 1. Arguments hB; fuel oki and hC; oil oki can be derived
from Peng, with
5 Fo
6 Th

approa
B ¼ fpump fuel sw1; fuel ok pump fuelg
C ¼ fpump oil sw2; oil ok pump oilg:5
Similarly, an argument hA1; engine oki can be derived from Peng, where
A1 ¼ fengine ok fuel ok; oil okg [B [C
Note that in this last case hC; oil oki and hB; fuel oki are subarguments of hA1; engine oki.

Definition 4 (Counterargument—Defeat). An argument hA1;Q1i is a counterargument for an argument
hA2;Q2i (or equivalently hA1;Q1i counterargues hA2;Q2i) if and only if

(1) There is an subargument hA;Qi of hA2;Q2i such that the set P [{Q1,Q} is contradictory, or
(2) An extended literal not Q1 is present in some rule in A2.6

A preference criterion �� ArgsðPÞ � ArgsðPÞ will be used to decide among conflicting arguments. An
argument hA1;Q1i is a defeater for an argument hA2;Q2i if hA1;Q1i counterargues hA2;Q2i, and hA1;Q1i is
preferred over hA2;Q2i with respect to �. For cases (1) and (2) above, we distinguish between proper and
blocking defeaters as follows:

• In case (1), the argument hA1;Q1i will be called a proper defeater for hA2;Q2i if and only if hA1;Q1i is
strictly preferred over hA;Qi with respect to �.

• In case (1), if hA1;Q1i and hA;Qi are unrelated to each other with respect to �, or in case (2), hA1;Q1i will
be called a blocking defeater for hA2;Q2i.

It must be noted that in DeLP there is no explicit distinction between undercutting and rebutting defeat
[80,81], as both of them are subsumed by the notion of counterargument. The notions of proper and blocking
defeat in Definition 4 distinguish between defeaters which are ‘‘strictly better’’ and defeaters which are ‘‘as
good as’’ the argument under attack, respectively.

Example 5. Consider the argument hA1; engine oki given in Example 3 w.r.t. the program Peng. A
counteragument for hA1; engine oki can be found, namely hA2;�fuel oki, with
A2 ¼ fpump fuel sw1; low speed sw2; pump clog pump fuel; low speedg

Argument hA2;�fuel oki is a counterargument for hA1; engine oki as there exists a subargument hB; fuel oki
in hA1; engine oki (see Example 3) such that Peng [ffuel ok;�fuel okg is contradictory.

Specificity [99] is used in DeLP as a syntactic preference criterion among conflicting arguments, favoring
those arguments that are more informed or more direct [99,102]. However, other alternative preference criteria
could also be used [44].
r the sake of clarity, we use semicolons to separate elements in an argument A ¼ fe1; e2; . . . ; ekg.
e first notion of attack is borrowed from the Simari–Loui framework [99]; the second one is related to Dung�s argumentative
ch to logic programming [36] as well as to other formalizations, such as [85,58]. For an in-depth discussion see [44].

300 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
Example 6. Consider the arguments hA1; engine oki and hA2;�fuel oki in Example 5. Then hA2;�fuel oki
is a proper defeater for hA1; engine oki, as hA2;�fuel oki counterargues hA1; engine oki with disagreement
subargument hB; fuel oki, and hA2;�fuel oki is strictly more specific than hB; fuel oki.

Given an argument hA;Qi, the definitions of counterargument and defeat allows to detect whether other
possible arguments hB1;Q1i; . . . ; hBk;Qki are defeaters for hA;Qi. Should the argument hA;Qi be defeated,
then it would be no longer supporting its conclusion Q. However, since defeaters are arguments, they may on
their turn be defeated. That prompts for a complete recursive dialectical analysis to determine which argu-
ments are ultimately defeated. To characterize this process we will introduce some auxiliary notions.

An argumentation line starting in hA0;Q0i (denoted khA0;Q0i) is a sequence ½hA0;Q0i; hA1;Q1i;
hA2;Q2i; . . . ; hAn;Qni; . . .� that can be thought of as an exchange of arguments between two parties, a propo-

nent (evenly-indexed arguments) and an opponent (oddly-indexed arguments). Each hAi;Qii is a defeater for
the previous argument hAi	1;Qi	1i in the sequence, i > 0. In order to avoid fallacious reasoning, dialectical
constraints are imposed on such an argument exchange to be considered rationally acceptable in light of a
given program P, namely:

(1) Non-contradiction: given an argumentation line k, the set of arguments of the proponent (resp. opponent)
should be non-contradictory w.r.t. P.

(2) No circular argumentation: given an argumentation line k, no argument hAj;Qji is allowed to appear as a
sub-argument of another argument hAi;Qii i < j.

(3) Progressive argumentation: every blocking defeater hAi;Qii in k is defeated by a proper defeater
hAiþ1;Qiþ1i in k.

The first condition disallows the use of contradictory information on either side (proponent or opponent).
The second condition eliminates the ‘‘circular reasoning’’ fallacy. The last condition enforces the use of a
stronger argument to defeat an argument which acts as a blocking defeater. An argumentation line satisfying
the above restrictions is called acceptable, and can be proven to be finite. It must be noted that other argumen-
tative frameworks (e.g. [11,54,109,24]) introduce similar constraints on argumentation lines to avoid infinite
‘‘chains’’ of defeaters, reciprocal defeaters, etc. A more detailed analysis on such situations can be found in
[87].

Example 7. Consider the argument hA1; engine oki and the associated defeater hA2;�fuel oki in Example 6.
Note that hA2;�fuel oki has the associated subargument hA0

2; low speedi, with A0
2 ¼ flow speed sw2g.

From the program Peng (Fig. 1) a blocking defeater for hA2;�fuel oki can be derived, namely
hA3;�low speedi. Note that this third defeater can be thought of as an answer of the proponent to the
opponent, reinstating the first argument hA1; engine oki, as it defeats the opponent�s defeater hA2;�fuel oki.
The above situation can be expressed in the following argumentation line:
½hA1; engine oki; hA2;�fuel oki; hA3;�low speedi�.
Note that the proponent�s last defeater in the above sequence could be on its turn defeated by a blocking de-
feater hA0

2; low speedi, resulting in
½hA1; engine oki; hA2;�fuel oki; hA3;�low speedi; hA0
2; low speedi . . .�
However, such line is not acceptable, as it violates the condition of non-circular argumentation.

Given a program P and an initial argument hA0;Q0i, the set of all acceptable argumentation lines starting
in hA0;Q0i accounts for a whole dialectical analysis for hA0;Q0i (i.e., all possible dialogues rooted in
hA0;Q0i), formalized as a dialectical tree ThA0;Q0i.

Example 8. Consider hA1; engine oki from Example 3, and the argumentation line shown in Example 7. Note
that the argument hA2;�fuel oki has a second (blocking) defeater hA4; fuel oki. The argument
hA1; engine oki has also a second defeater hA5;�engine oki. There are no more arguments to consider.

There are three acceptable argumentation lines rooted in hA1; engine oki, namely:

Fig. 2. (a) Dialectical tree for hA1; engine oki; (b) marked dialectical tree for hA1; engine oki; (c) associated pruned dialectical tree.

7 Th
compu

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 301
khA1;engine oki
1 ¼ ½hA1; engine oki; hA2;�fuel oki; hA3;�low speedi�

khA1;engine oki
2 ¼ ½hA1; engine oki; hA2;�fuel oki; hA4; fuel oki�

khA1;engine oki
3 ¼ ½hA1; engine oki; hA5;�engine oki�
The corresponding dialectical tree ThA1;engine oki rooted in the argument hA1; engine oki is shown in Fig. 2.

Nodes in a dialectical tree ThA0;Q0i can be marked as undefeated and defeated nodes (U-nodes and D-nodes,
resp.): all leaves in ThA0;Q0i will be marked U-nodes (as they have no defeaters), and every inner node is to be
marked as D-node iff it has at least one U-node as a child, and as U-node otherwise. An argument hA0;Q0i is
ultimately accepted as valid (or warranted) with respect to a DeLP program P iff the root of its associated
dialectical tree ThA0;Q0i is labeled as U-node.

Example 9. Consider the dialectical tree ThA1;engine oki from Example 8. The marking procedure results in the
nodes of ThA1;engine oki marked as U-nodes and D-nodes as shown in Fig. 2.7

Solving a query Q with respect to a given program P accounts for determining whether Q is supported by a
warranted argument. Different doxastic attitudes are distinguished when answering query q according to the
associated status of warrant, in particular:

(1) Yes: accounts for believing Q iff there is at least one warranted argument supporting Q on the basis of P.
(2) No: accounts for believing �Q iff there is at least one warranted argument supporting �Q on the basis

of P.
(3) Undecided: neither Q nor �Q are warranted w.r.t. P.
(4) Unknown: Q does not belong to the signature of P.

Thus, according to DeLP semantics, given a program P, solving a query Q will result in a value belonging
to the set Ans = {Yes,No,Undecided,Unknown}.

Example 10. Consider program Peng, and the goal engine_ok. The only argument supporting engine_ok is not
warranted (as shown in Fig. 2). On the contrary, there exists an argument hA5;�engine oki supporting
�engine_ok, and such argument has no defeaters, and therefore it is warranted. The answer to goal engine_ok

will therefore be NO.
Consider now the same program Peng, and the goal fuel_ok. The only argument supporting fuel_ok is

hA4; fuel oki, which is defeated by a blocking defeater hA2;�fuel oki. The analysis for hA2;�fuel oki is
analogous, as this argument is defeated by hA4; fuel oki. Thus both arguments �block� each other, neither of
them being warranted. The resulting answer is UNDECIDED.
e search space associated with dialectical trees is reduced by applying a 	 b pruning [26] (e.g., in Fig. 2, if the right branch is
ted first, then the left branch of the tree does not need to be computed).

302 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
4. Enhancing user support system with defeasible argumentation

User support systems have had a steady evolution in the last decade. However, existing critic and recom-
mender technologies are limited due to a number of reasons. On the one hand, they are incapable of dealing for-
mally with the defeasible nature of users� preferences in complex environments. Decisions about user preferences
are mostly based on heuristics which rely on ranking previous user choices or gathering information from other
users with similar interests. On the other hand, they are not equipped with inference capabilities. As a conse-
quence, much of the implicit information remains undiscovered. Quantitative approaches in AI, as opposed
to qualitative approaches, have often been criticized for their inability to generate easy to understand and log-
ically clean conclusions. The quantitative techniques adopted by most existing user support systems suffer from
this limitation. The absence of an underlying formal model makes it hard to provide users with a clear explana-
tion of the factors and procedures that led the system to come up with certain critics or recommendations. As a
result, serious trustworthiness issues may arise, especially in those cases when business interests are involved, or
when external manipulation is possible. Logic-based approaches could help to overcome these issues, enhancing
recommendation technology by providing a means to formally express constrains and to draw inferences. How-
ever, as has been discussed by a number of sources, traditional logic-based systems are limited as they are unable
to handle rules with exceptions, which are recurrent in recommendation scenarios. We contend that defeasible
argumentation can be integrated into existing critics and recommenders, paving the way to tackle such problems.

Defeasible Logic Programming (DeLP) has proven to constitute a simple yet expressive language to encode
rule-based knowledge with incomplete and potentially inconsistent information. Even though there are several
alternative formalisms modelling argumentative reasoning [87], DeLP has shown to be a particularly useful
alternative, as it provides a multi-purpose programming language based on a sound logical framework for
default reasoning. In this context, DeLP has been successfully used in several real-world applications (includ-
ing natural language processing [20], clustering [48], knowledge management [18,19], and multiagent systems
[13], among others). In particular, recent research [47] has shown how DeLP can be also suitably extended as a
scripting language for augmenting inference capabilities in the context of the Semantic Web [10].

Our proposal is to model users� preference criteria in terms of a DeLP program built on top of a traditional
Web search engine like Google. Fig. 3 presents the basic architecture of a generic argument-based user support
system based on DeLP. In this setting users preferences and background knowledge can be codified as facts
and rules in a DeLP program. These facts and rules can come from different sources. For example, user�s pref-
erences could be entered explicitly by the user or could be inferred by the system (e.g., by monitoring the user�s
behavior). Additional facts and rules could be obtained from other repositories of structured (e.g., databases)
and semistructured data (e.g., the Web).

We will distinguish particular subsets in a DeLP program, representing different elements in a user support
system. For example, a DeLP program could take the form P ¼ Puser [Ppool [Pdomain, where sets Puser and
Ppool represent preferences and behavior of the active user and the pool of users, respectively. In the case of the
active user, his/her profile can be encoded as facts and rules in DeLP. In the case of the pool of users, rule
DeLP Program
(facts,

strict rules, and
defeasible rules) DeLP

Interpreter

Collective
Repository

(Semi-Structured
Data)

Search
Engine

User
Context/

Information
Needs

User
Preferences

Supporting
Databases

(Structured Data)

Supporting
Subsystems

Suggestions

Fig. 3. Argument-based user support system based on DeLP.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 303
induction techniques are in order8 resulting in defeasible rules characterizing trends and general preference
criteria (e.g., normally if a given user likes X then she also likes Y). The set Pdomain represents the domain (back-
ground) knowledge, encoded using facts and rules in DeLP.

Either proactively or upon a user�s request, an argument-based user support system triggers the search for
suggestions. If needed, the collected results could be codified as facts and added to the DeLP program. Finally,
a DeLP interpreter is in charge of performing the qualitative analysis on the program and to provide the final
suggestions to the user.

Given the program P, a user�s request is transformed into suitable DeLP queries, from which different sug-

gestions are obtained. For the sake of simplicity, we will assume in our analysis that user suggestions will be
DeLP terms associated with a distinguished predicate name rel (which stands for relevant or acceptable as a

valid suggestion). Using this formalization, suggestions will be classified into three sets, namely:

• Sw (warranted suggestions): those suggestions si for which there exists at least one warranted argument sup-
porting rel(si) based on P.

• Su (undecided suggestions): those suggestions si for which there is no warranted argument for rel(si), neither
there is a warranted argument for �rel(si) on the basis of P, and

• Sd (defeated suggestions): those suggestions si such that there is a warranted argument supporting �rel(si)
on the basis of P.

Given a potential suggestion si, the existence of a warranted argument hA1; relðsiÞi built on the basis of the
DeLP program P will allow to conclude that si should be presented as a final suggestion to the user. If results
are presented as a ranked list of suggestions, then a warranted suggestion is more relevant than an undecided
one or defeated one. Note that the above classification has a direct correspondence with the doxastic attitudes
associated with answers to DeLP queries. We must remark that it is always possible to ensure that the com-
putation of warrant cannot lead to contradiction [44]: if there exists a warranted argument hA,hi on the basis
of a program P, then there is no warranted argument hB,�hi based on P.

In the next sections we present two instances of this general framework: a Web recommender and a word
processing critic.

5. An argument-based Web recommender

In this section we will outline an example (adapted from [29]) of how the proposed approach works in the
context of solving news related queries. In this context, the recommendation system aims at providing an
enriched Web search engine which categorizes results. Thus, the resulting framework can be seen as a partic-
ular instance of an argument-based user support system, where the user�s needs correspond to strings to be
searched on the Web. The search engine is a conventional search engine (e.g., GOOGLE). Final recommendation
results for a query q are prioritized according to domain background knowledge and the user�s declared pref-
erences. Fig. 4 illustrates the architecture of an argument-based news recommender system.

Given a user query q, it will be given as an input to a traditional content-based Web search engine, return-
ing a list of search results L = [s1, s2, s3, s4]. If required, the original query q could be suitably re-formulated in
order to improve the quality of the search results to be obtained. In the list L we can assume that si is a unique
name characterizing a piece of information info(si), in which a number of associated features (meta-tags, file-
name, URL, etc.) can be identified. We assume that such features can be identified and extracted from info(si)
by some specialized tool, as suggested by Hunter [51] in his approach to dealing with structured news reports
(see discussion in the last section). Such features will be encoded as a set Psearch of new DeLP facts, extending
thus the original program P into a new program P0. A special operator Revise deals with possible inconsis-
tencies found in Psearch with respect to P0, ensuring P [Psearch is not contradictory.9 Following the algorithm
8 An approach for inducing defeasible rules from association rules can be found in [50].
9 For example, contradictory facts may be found on the Web; a simple belief revision criterion applied in an argument-based multiagent

scenario [16] is to prefer the facts with a newer timestamp over the older ones. Among other possible criteria, preference could also be
established regarding the reliability of the source of information.

DeLP Program
(facts,

strict rules, and
defeasible rules) DeLP

Interpreter

Web Repository

Web Search
Engine

Query
Reformulator User

Query

User
Preferences

Web Search
Special

Syntaxes

Suggestions

Fig. 4. Argument-based Web recommender system based on DeLP.

Fig. 5. Algorithm for solving queries in an argument-based Web recommender system.

304 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
shown in Fig. 5 we can now analyze s1, s2, s3 and s4 in the context of a new DeLP program P0 ¼ P [Facts,
where Facts denotes the set corresponding to the collection discussed above and P corresponds to domain
knowledge and the user�s preferences about the search domain.10 For each si, the query rel(si) will be analyzed
in light of the new program P0. Elements in the original list L of content-based search results will be classified
into three sets of warranted, undecided, and defeated results, as discussed in Section 4. The final output pre-
sented to the user will be a sorted list L 0 in which the elements of L are ordered according to their epistemic
status with respect to P0. Fig. 5 outlines a high level algorithm, which will be exemplified in the case study
shown next.
10 In this particular context, note that P ¼ Pdomain [Puser.

Fig. 6. DeLP program modelling preferences of a journalist.

Fig. 7. Facts encoded from original Web search results.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 305
5.1. Providing recommendations for Web search queries: a worked example

Consider a journalist who wants to search for news articles about recent outbreaks of bird flu. A query q
containing the terms news, bird, and flu will return thousands of search results. Our journalist may have some
implicit knowledge to guide the search, such as: (1) she always considers relevant the newspaper reports writ-
ten by Bob Beak; (2) she usually considers relevant the reports written by trustworthy journalists; (3) reports
written by trustworthy journalists which are out of date are usually not relevant; (4) knowing that a journalist
has not faked reports provides a tentative reason to believe he or she is trustworthy. By default, every jour-
nalist is assumed to be trustworthy. (5) Japanese and Thailandian newspapers usually offer a biased viewpoint
on bird flu outbreaks; (6) the ‘‘Japanese Times’’ (http://jpt.jp) is a Japanese newspaper which she usually con-
siders non-biased; (7) Chin Yao Lin is known to have faked a report. Such rules and facts can be modelled in
terms of a DeLP program P shown in Figs. 6 and 7.11 Note that some rules in P rely on ‘‘built in’’ predicates
computed elsewhere and not provided by the user.12

Consider the case for s1. The search for an argument for rel(s1) returns hA1; relðs1Þi: that is, s1 should be
considered relevant since it corresponds to a newspaper article written by Chin Yao Lin who is considered a
trustworthy author (note that every journalist is considered to be trustworthy by default). Here we have13
11 Note that the predicate biased(X) should be read as an abbreviation for ‘‘X is biased with regard to bird flu’’.
12 For instance, the country of origin corresponding to a specific Web domain can be found querying an Internet directory service such as

WHOIS.
13 For the sake of clarity, we use semicolons to separate elements in an argument A ¼ fe1; e2; . . . ; ekg.

http://jpt.jp

Fig. 8
(d) hD

306 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
A1 ¼ frelðs1Þ authorðs1; chin yao linÞ; trustðchin yao linÞ;
trustðchin yao linÞ not faked newsðchin yao linÞg.
Search for defeaters for hA1; relðs1Þi will result in finding a proper defeater hA2;�relðs1Þi: s1 is not relevant as
it comes from a Japanese newspaper, which is by default assumed to be biased about bird flu. In this case we
have
A2 ¼ f�relðs1Þ addressðs1; \jpt.jp . . . "Þ; biasedð\jpt.jp . . . "Þ;
biasedð\jpt.jp . . . "Þ japaneseð\jpt.jp . . . "Þg.
Note that we also have an argument hA3;�biasedð\jpt.jp . . . "Þi which defeats hA2;�relðs1Þi, reinstating
hA1; relðs1Þi: Usually articles from the ‘‘Japanese Times’’ are not biased. In this case we have
A3 ¼f�biasedð\jpt.jp . . ."Þ japaneseð\jpt.jp . . ."Þ;domainð\jpt.jp . . .";\jpt.jp"Þ;ð\jpt.jp"¼ \jpt.jp"Þg.
Finally, another defeater for argument hA1; relðs1Þi is found, namely the argument
hA4; faked newsðchin yao linÞi, with A4 ¼ ;. No other arguments need to be considered. The resulting dialec-
tical tree rooted in hA1; relðs1Þi as well as its corresponding marking is shown in Fig. 8a (left). The root node is
a D-node (defeated), and hence hA1; relðs1Þi is not warranted. Carrying out a similar analysis for �rel(s1) re-
sults in the dialectical tree shown in Fig. 8a (right). The root node hA2;�relðs1Þi is marked as D-node. There
are no other candidate arguments to consider; hence s1 is deemed as undecided.

The case of s2 is analogous. The argument hB1; relðs2Þi can be built, with
B1 ¼ frelðs2Þ authorðs2; jen doeÞ; trustðjen doeÞ; trustðjen doeÞ not faked newsðjen doeÞg.

This argument is defeated by a proper defeater hB2;�relðs2Þi, with
B2¼f�relðs2Þ authorðs2;jen doeÞ; trustðjen doeÞ;outdatedðs2Þ;
trustðjen doeÞ not faked newsðjen doeÞg.
There are no more arguments to consider, and hB1; relðs2Þi is deemed as non-warranted (the resulting marked
dialectical tree is shown in Fig. 8b (left)). The analysis of �rel(s2) results in an single argument. Consequently,
its associated dialectical tree has a single node hB2;�relðs2Þi and it is warranted.

Following the same line of reasoning used in the case of s1 we can analyze the case of s3. An argument
hC1; relðs3Þi, with
C1 ¼ frelðs3Þ authorðs3; jane truthÞ; trustðjane truthÞ; trustðjane truthÞ not faked newsðjane truthÞg
can be built supporting the conclusion rel(s3) (a newspaper article written by Jane Truth is relevant as she can
be assumed to be a trustworthy author). A defeater hC2;�relðs3Þi will be found: s1 is not relevant as it comes
from a Japanese newspaper, which by default is assumed to be biased about bird flu. Here we have
C2 ¼ f�relðs3Þ addressðs3; \jpt.jp . . . "Þ; biasedð\jpt.jp . . . "Þ;
biasedð\jpt.jp . . . "Þ japaneseð\jpt.jp . . . "Þg.
But this defeater in its turn is defeated by a third argument hC3; biasedðs3Þi, as usually articles from the ‘‘Jap-
anese Times’’ are not biased. In this case we have
. Dialectical trees associated with (a) hA1; relðs1Þi and hA2;�relðs1Þi; (b) hB1; relðs2Þi and hB2;�relðs2Þi; (c) hC1; relðs3Þi and

1; relðs4Þi.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 307
C3¼f�biasedð\jpt.jp . . ."Þ japaneseð\jpt.jp . . ."Þ;domainð\jpt.jp . . .";\jpt.jp"Þ;ð\jpt.jp"¼ \jpt.jp"Þg.
The resulting dialectical tree for hC1; relðs3Þi is shown in Fig. 8c (left). The original argument hC1; relðs3Þi can
be thus deemed as warranted.

Finally let us consider the case of s4. There is an argument hD1; relðs4Þi with D1 ¼ ;, as rel(s4) follows
directly from the strict knowledge in P. Clearly, there is no defeater for an empty argument, and therefore
rel(s4) is warranted. The associated dialectical tree is shown in Fig. 8d.

Applying the criterion given in the algorithm shown in Fig. 5, the initial list of search results [s1, s2, s3, s4] will
be shown as [s3, s4, s1, s2] (as hC1; relðs3Þi and hD1; relðs4Þi are warranted), hA1; relðs3Þi is undecided and
hB2;�relðs2Þi is warranted (i.e., s2 is warranted to be a non-relevant result).

6. An argument-based word processing critic

In this section we will show how the generic framework detailed in Section 4 can be used in the context of a
word processing critic system. The goal of the proposed system is to provide proactive assistance for language
usage assessment by combining Web-based linguistic corpora and defeasible argumentation. Textual expres-
sions are extracted from the user�s document and evaluated with respect to usage indices, which are good indi-
cators of the suitability of an expression on the basis of the current Web corpus. The defeasible argumentation
system determines if a given expression is acceptable by analyzing a defeasible logic program which encodes
the user�s preferences. Those expressions assessed as unsuitable are further inspected automatically by the sys-
tem to help the user make the necessary repairs. Fig. 9 illustrates the architecture of a word processing critic
system as an instance of an argument-based user support system.

A large sample of sentences in different natural languages has been accumulated as part of Web documents
on the Internet. Most of such documents are accessible through search engines, whose pattern-matching capa-
bilities have turned out to be useful for using the Web space as a linguistic corpus, also called Web-Corpus [55].
Such a Web corpus offers a number of advantages in comparison with traditional linguistic corpora [110]. In
order to analyze relevant features of language usage patterns in Web-based corpora, values associated with
absolute or relative frequencies of string patterns w.r.t. different Web domains turn out to be particularly use-
ful. We call such values usage indices. Such usage indices can be easily computed on the basis of advanced
search facilities provided by most search engines (e.g. GOOGLE).

Next we introduce some definitions to formalize this concept. In the sequel, strings will be denoted with
lowercase letters s, t,u, . . . , possibly subscripted. We will use d1,d2, . . . to denote different Web domains. The
term domain will be used indistinctly to refer to complete Web domain names (such as �google.com�) as
to suffix portion of Web domain names (e.g., �.com�). The distinguished constant name Web will be used to
characterize the collection of all existing Web domains. Given a domain d, we will use kdk to denote the num-
ber of Web pages found in the domain d. This notation can be extended to a set of domains
DeLP Program
(facts,

strict rules, and
defeasible rules) DeLP

Interpreter

Web
Corpus

Web Search
Engine Parser

Text
Document

User
Preferences

Lexical
Database

Repairer

Suggestions

Fig. 9. Argument-based word processing critic system.

308 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
D ¼ fd1; d2; . . . ; dkg as kDk ¼
Pk

i¼1kdik.14 Similarly, given a domain d and a string s, we will use kdks to
denote the number of Web pages in domain d containing the string s.15 Usage indices will be based on com-
puting occurrences in sets of domains, as presented next.

Definition 11 (Usage indices Ug, Uc, Ur, and Up). Let s be a string, and let D;D1 and D2 be non-empty sets of
Web domains, with D ¼ fd1; d2; . . . ; dkg. We define the concepts of general usage Ug, constrained usage Uc,
ratio usage Ur, and prefix usage Up as follows:

• Ug(s) =def kWebks.

• Ucðs;DÞ ¼def kDks ¼
Pk

i¼1kdiks.

• Urðs;D1;D2Þ ¼def ðU cðs;D1Þ þ 1Þ=ðU cðs;D2Þ þ 1Þ � ðkD2k=kD1kÞ.
• Upðs1; s;DÞ ¼def U cðs1
 s;DÞ=U cðs;DÞ if U cðs;DÞ 6¼ 0; and 0 otherwise.

Given a string s, the constrained usage U cðs;DÞ represents the frequency of pages containing s restricted to
the set D of Web domains. The ratio usage U rðs;D1;D2Þ represents the ratio of the frequency of pages with s

in D1 to the frequency of pages with s in D2. Finally, the prefix usage Up informs about the likelihood of find-
ing a string s1 immediately preceding another string s in a page from some domain in D.

Example 12. Consider the strings s1 = rearing children, s2 = parents, and s3 = of twins. Let d1 = �.uk� and
d2 = �.babycentre.co.uk�. Then it holds that
14 In
they sa
15 Th

an esti
16 Co
kWebk ¼ 3307998701

kfd1gk ¼ 28000000

Ucðs1; fd1gÞ ¼ 435

Ucðs1;WebÞ ¼ 13700

Urðs1; fd1g;WebÞ ¼ ð436=13701Þ � ð3307998701=28000000Þ ¼ 3:76

Upðs2; s3; fd2gÞ ¼ 677=747 ¼ 0:906.
Note in the above example that statistical inference can be performed from usage indices (e.g., 90% of
occurrences of the phrase of twins found in the URL �.babycentre.co.uk� are preceded by the word par-
ents). Note also that the above computations are time-dependent (as they depend on the current Web
corpus).16

Although the Web corpus provides very useful resources for language usage assessment on the basis of the
relative and absolute frequencies in Web documents, coming up with suggestions about language patterns
requires a meta level analysis from the end user, who must perform an additional inference process based
on such frequency values. Let us consider again the case of the journalist presented earlier, who thinks that
a given expression E is not suitable for a news report intended for a Spanish newspaper, as he suspects that
E is a regionalism e.g., from Argentina. This last assumption can be supported on the basis of the ratio
R = Ur(E,{�.ar�},{�.es�}). The fact that R > 1 provides a tentative reason for concluding that E is a regional-
ism associated with Argentina. Knowing that E is already in use in other Spanish newspaper may make the
journalist change his mind, as he would have a reason that defeats the previous assumption. Once again, the
above situation can be captured by computing R0 ¼ U cðE;DnewsÞ, where Dnews corresponds to a set of domains
corresponding to the Spanish mass media. The fact that R 0 > h, where h is a particular threshold value, pro-
vides a reason to think that E is a common expression in the Spanish mass media, and therefore it can be used.
the sequel, we will assume that domain names included in a domain set do not overlap, i.e., given a set of domains D ¼ fd1; . . . ; dkg
tisfy that if i 5 j then di is not a suffix domain of dj. In addition, we will assume that all domains contain at least one Web page.

e special syntax site:, available in certain search engines (e.g., GOOGLE), restricts the search to a specified domain, allowing to obtain
mation of kdks and kdk by posing the queries �s site:d� and �site:d�, respectively.
mputations of usage indices in this article were performed using GOOGLE with the existing Web corpus on Feb. 19, 2004.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 309
Our proposal aims at modelling the kind of analysis described above by integrating a front-end parser for
the text entered by the user with a DeLP interpreter, which provides recommendations by solving queries on
the basis of usage indices.

Given a text T corresponding to a user document, a front-end parser extracts a list T 0 = [s1, s2, . . . , sk] of
syntactic elements from T. Every si 2 T 0 is analyzed w.r.t. a DeLP program P, which encodes criteria for lan-
guage usage in terms of strict and defeasible rules. Rules in P may include references to built-in predicates Ug,
Uc, Ur and Up which stand for usage indices as presented in Definition 11. A distinguished predicate name
solve will be used for analyzing the acceptability of every expression si with respect to language usage criteria
specified in P. Program P contains the definition of a predicate called acc, which is used to evaluate the
acceptability of its argument expression. Thus, the existence of a warranted argument hA,acc(si)i built on
the basis of P will allow to conclude that si is an acceptable expression. Similarly, the existence of a warranted
argument hA,�acc(si)i indicates that si is not acceptable.17

An interesting feature in automated systems for language assessment is the possibility of suggesting repairs

whenever a particular user expression seems not suitable. This sort of functionality can be embedded in the
proposed framework by means of a specialized predicate repair. Should an expression si be assessed as unac-
ceptable, then repair can be used to seek for alternatives. An expression snew is a potential repair for si if snew is
the result of replacing some words in si by synonyms found in a lexical database (e.g., WordNet [39]). If a
warranted argument hA,acc(snew)i is built on the basis of P, then snew is presented to the user as a possible
alternative to si. This process is outlined in the algorithm of Fig. 10.

6.1. An example of language usage assessment

Consider the case of an American journalist who writes articles in Spanish about Latinamerican issues,
intended for audiences in Spain and Argentina. As Spanish is not his mother tongue, he usually makes mis-
takes related to properly assessing the correct language usage. A sample paragraph from such a journalist (and
its corresponding English translation) could be as follows:
17 No
18 Th

banks
(includ
situatio
19 A l
‘‘El corralito fue un fenómeno muy complejo [. . .] Para el colectivo de los trabaja-
dores autónomos cualquier liviano error tenı́a consecuencias [. . .].’’
‘‘The ‘‘corralito’’18 was a very complex phenomenon [. . .] For the group of autonomous workers any

slight mistake had consequences [. . .].’’
Let us assume that the editor of the newspaper will check every article written by our journalist before it is
sent to print, guided by a number of criteria which characterize a ‘‘well-written document’’. In the above text
some anomalies will be detected: ‘‘corralito’’ is a common term in Argentina, but not so common in Spain
(except in the news). The expression ‘‘colectivo de trabajadores autónomos’’ (group of autonomous workers)
[43] has a clear meaning in Spain, but is not understood in Argentina (as ‘‘agrupación’’ or ‘‘grupo’’ is the
Argentinean equivalent for ‘‘colectivo’’). The noun phrase ‘‘*liviano error’’ is wrong in Spanish language, as
the correct fixed idiom would be ‘‘ligero error’’ (=slight mistake), even though the adjectives ‘‘ligero’’ and ‘‘liv-
iano’’ are accepted as synonyms in this context. Some of the possible criteria the editor could apply to avoid
such anomalies can be characterized in terms of the DeLP program shown in Fig. 11.

Rules 1–4 characterize the behavior of the solve predicate as outlined before. Rule 5 defines the repair pred-
icate restricted to simple noun phrases of the form [Noun,Adj]. Repairs consist in just replacing Adj by an
alternative synonym obtained from an ad-hoc predicate syn (Rule 6).19 For the sake of simplicity, in this
example the definition of synonym is restricted to the Spanish adjective liviano (‘‘light’’). Defeasible rules
7–12 capture language usage preferences on the basis of usage indices computed in rules 13–15. Rule 7
te that the acc predicate in this context plays a similar role to the rel predicate used in Section 5.
e term ‘‘corralito’’ (little baby crib) was coined in Argentina in Dec. 2001 to denote severe restrictions on money drawing from
due to an economic crisis in the country. The term became popular as mass media from different Spanish-speaking countries
ing Spain) reported about the economic situation in Argentina, becoming hence an expression used to refer to an ‘‘abnormal
n in which customers are not allowed to draw their money from a bank for a long period of time’’.

exical database such as WordNet [39] can provide a list of synonyms (synset) for an arbitrary adjective.

Fig. 10. Algorithm for providing language usage assessment using defeasible argumentation.

310 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
establishes that strings whose general frequency in Spanish speaking countries is above a certain threshold
value are defeasibly acceptable. From rule 8 it follows that strings which cannot be proven to be common
in Web domains from Spanish speaking countries are usually not acceptable. Rules 9 and 10 establish that
regionalisms from Argentina and Spain are usually not acceptable. Rule 11 specifies when a given expression
can be defeasibly assumed to be a regionalism in terms of its frequency, computed using the locally_freq pred-
icate. Rule 12 provides an exception for the above rule: a string S which is locally frequent in Argentina but is
also frequent in the Spanish media is not considered to be a regionalism. A string s is considered frequent in
the Spanish media if a considerable percentage of all the hits found for s in Spain are found in newspapers.
Rule 18 lists some news domains and rule 19 specifies that the Spanish speaking countries to be considered
for the analysis are Spain and Argentina.20

Suppose we now apply the high-level algorithm presented in Fig. 10, where the strings extracted from the
above text are s1, s2 and s3, with s1 = corralito, s2 = colectivo de los trabajadores autónomos, and s3 = liviano
error. Consider the case for string s1. The search for a warranted argument for acc(s1) returns hA1; accðs1Þi,
with
20 Fo
on exc
A1 ¼ faccðs1Þ common in spanishðs1Þg

This argument holds since Uc(s1, [�.es�, �.ar�]) > 200. The DeLP inference engine will then search for defeaters
for hA1; accðs1Þi. A proper defeater hA2;�accðs1Þi is found: s1 is not acceptable as there are reasons to think it
is a regionalism from Argentina. Here we have
r the sake of simplicity, in this example we restrict our analysis to only these two countries (Spain and Argentina), and we only focus
eptions for regionalisms in Argentina based on sample Spanish news domains.

Fig. 11. DeLP program modelling preference criteria for acceptable language usage patterns in newspaper articles.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 311
A2 ¼ f�accðs1Þ common in spanishðs1Þ; regionalismðs1; ‘.ar’Þ;
regionalismðs1; ‘.ar’Þ locally freqðs1; ‘.ar’Þg.
Note that hA2;�accðs1Þi is a proper defeater for hA1; accðs1Þi as the first argument is based on more
specific information than the second. Note also that predicate locally_freq(s1, �.ar�) holds, as
Ur(s1, [�.ar�], [�.es�]) = 33.1 > 10. A defeater for this argument can be found on its turn: corralito is not a
regionalism in Argentina as it is fairly frequent in the Spanish news. Here we have the argument
A3 ¼ f�regionalismðs1; ½‘.ar’�Þ locally freqðs1; ‘.ar’Þ; appears in newsðs1; ‘.es’Þg.

Note that predicate appears_in_news (s1, Spain) holds, as Ucðcorralito;DÞ ¼ 40, with D representing domains
from Spanish newspapers. Note also that the definition of dialectical tree does not allow the use of
hA1; accðs1Þi to defeat again hA2;�accðs1Þi, as this would imply falling into fallacious, circular argumenta-
tion. After the above analysis no other defeater can be found. The resulting dialectical tree rooted in
hA1; accðs1Þi as well as its corresponding marking is shown in Fig. 12a. The root node is marked as U-node
(undefeated), which implies that the argument hA1; accðs1Þi is warranted.

Fig. 12. Dialectical trees associated with (a) hA1; accðs1Þi; (b) hB1; accðs2Þi and hB2;�accðs2Þi; (c) hC1;�accðs3Þi and hD1; accðs03Þi.

312 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
Consider now the case for string s2 = colectivo de los trabajadores autónomos. There is an argument
hB1; accðs2Þi, with
21 See
B1 ¼ faccðs2Þ common in spanishðs2Þg

which holds following the same reasoning as above. However, there is a defeater for hB1; accðs2Þi, namely
hB2;�accðs2Þi, with
B2 ¼ f�accðs2Þ common in spanishðs2Þ; regionalismðs2; ½‘.es’�Þ;
regionalismðs2; ‘.es’Þ locally freqðs2; ‘.es’Þg.
As above, predicate locally_freq(s2, �.es�) holds, as Ur(s2, [�.es�], [�.ar�]) = 41.4. No other arguments can be
computed from here onwards. The solve predicate will thus fire the search for a warranted argument for
�acc(s2), which is successful (a dialectical tree rooted in hB2;�accðs2Þi with no defeaters). The resulting situ-
ation is shown in Fig. 12b. Note that no repair is possible here, as repair is only for simple noun phrases.

Finally, let us consider the case for the string s3 = liviano error. There is no argument (and consequently no
warranted argument) supporting the conclusion acc(s3), as common_in_spanish(s3) does not hold: s3 is syntac-
tically correct but is pragmatically wrong as noun phrase in Spanish. In contrast, there is a warranted argu-
ment hC1;�accðs3Þi which provides a reason not to accept s3, based on rule 8, with
C1 ¼ f�accðs3Þ rare in spanishðs3Þg.

The predicate solve will try to repair s3, obtaining a new alternative string s03 ¼ ligero error, searching then for a
warranted argument for accðs03Þ. A warranted argument for concluding accðs03Þ can be found, namely the argu-
ment D1 ¼ faccðs03Þ common in spanishðs03Þg. As a side effect, the warning message ‘‘Accepted if rephrased as

ligero error’’ will be given to the user. This situation is shown in Fig. 12c.

7. Implementation issues. Ongoing work

Performing defeasible argumentation is a computationally complex task. An abstract machine called JAM
(Justification Abstract Machine) has been especially developed for an efficient implementation of DeLP [44].
JAM provides an argument-based extension of the traditional WAM (Warren�s Abstract Machine) for Prolog.
A full-fledged implementation of DeLP is freely available online,21 including facilities for visualizing argu-
ments and dialectical trees. A Java-based Integrated Development Environment (IDE) for DeLP has also been
developed [101]. This Java version of DeLP allows to compile DeLP code into JAM opcodes. A visual envi-
ronment for interacting with DeLP programs is provided. Several features leading to efficient implementations
of DeLP have also been recently studied, in particular those related to comparing conflicting arguments by
specificity [102], computing dialectical trees efficiently [27] and extending DeLP to incorporate possibilistic rea-
soning [30,25,31]. Equivalence results with other extensions of logic programming have also been established
[28].

In this article we have presented and examined two instances of argument-based user support systems: a
Web recommender systems and a critiquing system. The results returned by the system were encouraging
http://lidia.cs.uns.edu.ar/DeLP.

http://lidia.cs.uns.edu.ar/DeLP

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 313
for several analyzed cases. Some preliminary experiments were performed on the basis of a prototype version
implemented using the existing Java-based DeLP environment [101]. However, it must be remarked that these
initial experiments only serve as a ‘‘proof of concept’’ prototype. As part of our future work we expect to per-
form more thorough evaluations of such prototypes. These will include automatic evaluations of argument-
based recommendations using publicly available datasets (e.g., the MovieLens dataset [72]). A subset of a
selected dataset will be used for training purposes while the remaining will be used for testing the system per-
formance. These datasets usually contain users� ratings of objects such as movies, books, music, etc. In many
cases, objects and users are associated with a series of properties (e.g, user�s age, user�s occupation, movie�s
genre, etc.) Properties associated with users and objects in the training set will be mined to extract defeasible
rules of the form ‘‘users who like objects with property X usually like objects with property Y.’’ We expect to
apply standard automatic evaluation techniques such as ‘‘leave-one-out’’ cross-validation to estimate the accu-
racy of the system recommendations.

While new recommendation technologies can be systematically evaluated by means of available datasets,
the performance of critiquing techniques is hard to assess in an automatic way. In the future we expect to carry
out user studies to test whether users can complete certain tasks (e.g., translating a document from English to
Spanish) more effectively with the support of an argument-based critic system. Measures of effectiveness will
be defined in terms of product quality and amount of time spent on the task. It must also be remarked that in
our current proposal there is no hierarchical distinction between personal preferences and pool preferences. As
a matter of future work we are analyzing the possibility of envisioning a more evolved framework with an
order on preferences: an unexperienced user could mostly benefit from preferences coming from the users� pool
whereas a more experienced user could give a higher priority to his own preferences.

As discussed in Section 5, the general framework for an argument-based recommender system includes the
possibility of inducing defeasible rules automatically. A first approach for inducing defeasible rules from asso-
ciation rules [79,1] can be found in [50]. A natural extension for considering induced defeasible rules in the
context of our proposal is to have weights attached to such rules on the basis of the existing evidence. In this
respect, recent research has led to the development of P-DeLP [30,25] an extension of DeLP which includes the
possibility of representing such weights and performing inferences with them. Part of our ongoing work is
related to extending the current framework with P-DeLP in order to have weighted defeasible rules, which
can be more easily obtained by using association rules techniques.

Finally, one aspect which deserves particular attention is the comparison between DeLP knowledge encod-
ing capabilities and other rule-based systems, which have the well-known disadvantage of being brittle [46]:
adding or deleting one rule may substantially change the behavior of the system, possibly harming transpar-
ency and thus trustworthiness. In this respect, DeLP inherits all declarative features from logic programming,
and as such is highly elaboration tolerant. Answers are always supported by arguments built on the basis of a
given DeLP program. Clearly, it is possible that a change in the program (such as the addition or deletion of
some program rules) might change the answer obtained as an output for a given query, but any of such
changes can be perfectly traced back and justified by showing the underlying dialectical analysis that led to
this change.

8. Related work

Several kinds of user support systems that operate on top of Internet services have been proposed over the
past years (e.g., [3,74,62,78]). In the case of Web-based recommender systems, the usual approach involves
taking into account the user�s interests—either declared by the user or conjectured by the system—to rank
or filter Web pages.

Some Web recommender systems include LIRA [7], BASAR [105], ifWeb [5], SOAP [108], Let�s Browse
[63], SurfLen [42], Margin Notes [96], and Quickstep [71]. An example of hybrid news filtering system is
NewsDude [12], a learning agent that is trained by the user with a set of interesting news articles. A hybrid
social chat recommender system is Butterfly [106], a system that uses keywords to find interesting conversa-
tions in Usenet newsgroups. Collaborative news recommender systems include GroupLens [92,57] and PHO-
AKS [103]. These recommender systems, however, differ from our proposal in that they do not attempt to
perform a qualitative analysis to warrant recommendations.

314 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
Recently there has been a growing attention to the development of a Semantic Web [9,10], and a number of
semantically enhanced recommendation techniques have been proposed (e.g., [111]). Although the vision of
the Semantic Web is still at its beginning, the use of defeasible reasoning for qualitative analysis can also
be naturally integrated into such approaches, as recently shown in [8].

Providing assessment in word-processing activities has long been a source of research in the natural lan-
guage processing community [59]. In this context, the term critiquing system refers to cooperative tools that
observe the user interacting with a word-processing tool and present reasoned opinions about the user-entered
text, helping to discover and point out errors that might otherwise remain unnoticed. Most popular word-pro-
cessing critiquing systems include spelling-, grammar-, and style-checkers [32]. Many current approaches to
word-processing critiquing systems aim at the analysis of language usage patterns on the basis of the rich
source of textual material that the Web offers as a linguistic corpus [91,110]. Several concordancers and writing
assistant tools were developed. WebLEAP [110] is a software which aims to inform people of the existence and
the popularity of expressions in the Web. It gets an expression as input and returns the frequencies in Web
documents of the word sequences extracted from the given expression by using a search engine. The expression
and the frequencies are presented graphically so that the user can estimate the result easily and judge with
more confidence. WebCorp [91] is a suite of tools which allows access to the World Wide Web as a corpus.
WebCorp is designed to retrieve linguistic data from the Web: concordance lines showing the context in which
the user�s search term occurs. Finally, KWiCFinder [41] is an utility for conducting online searches without
supervision, facilitating more finely-targeted searches than typical Web search engines. KWiCFinder returns
‘‘Key Word in Context’’ (KWiC) abstracts and highlights the search terms, so that the user can evaluate the
usefulness of documents matching the query. All the above systems provide information on language usage on
the basis of frequency values computed from the Web corpus, including also advanced facilities for restricting
search to particular domains and finding grammatical patterns. However, differently from our proposal, these
systems leave the analysis of the returned language expressions to the user.
9. Conclusions

We have presented a novel approach towards the development of user support systems, by enhancing rec-
ommendation technologies through the use of qualitative analysis using argumentation. We have shown how
DeLP provides a suitable tool for carrying on such analysis. Our approach operates on top of a conventional
search engine such as Google, providing thus a tool for higher abstraction when dealing with users� informa-
tion needs.

One important issue in our proposal is the need to extract relevant features from Web search results, encod-
ing them as part of a DeLP program. Although HTML tags associated with Web documents are not intended
to convey a formal semantics, these tags can be usefully exploited to extract meaningful content [35,4,60]. On
the other hand, the emergence of XML as a standard for data representation on the Web contributes to
further simplify the above problem. In this context, the approach proposed by Hunter [51–53] to represent
semistructured text through logical formulas is particularly relevant for enhancing the capabilities of
argument-based user support systems as presented in this article. We think that in future developments this
process could be complemented by additional techniques, such as defeasible rule discovery [50] and specialized
argument assistance tools [107].

Current trends in user support system technologies show that in the coming years we can expect the devel-
opment of very efficient environments for decision making, where both quantitative and qualitative analysis of
user preferences will play important roles. In this context, we contend that the integration of defeasible argu-
mentation techniques will provide a powerful tool which will contribute to help fulfill this goal.
Acknowledgements

The authors would like to thank anonymous reviewers for their valuable suggestions and comments which
helped improve the original version of this article. This research work was supported by Projects TIC2003-
00950, TIN 2004-07933-C03-03, by Ramón y Cajal Program (MCyT, Spain), by CONICET (Argentina),

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 315
and by Agencia Nacional de Promoción Cientı́fica y Tecnológica (PICT 2002 No. 13.096, PICT 15.043, PAV
076).
References

[1] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases. in: SIGMOD Conference,
1993, pp. 207–216.

[2] L. Amgoud, N. Maudet, S. Parsons, An argumentation-based semantics for agent communication languages, in: Proceedings of the
15th European Conference in Artificial (ECAI), Lyon, France, 2002.

[3] R. Armstrong, D. Freitag, T. Joachims, T. Mitchell. Webwatcher: a learning apprentice for the World Wide Web, in: AAAI Spring
Symp. on Information Gathering, 1995, pp. 6–12.

[4] N. Ashish, C.A. Knoblock. Semi-automatic wrapper generation for internet information sources, in: Conference on Cooperative
Information Systems, 1997, pp. 160–169.

[5] F. Asnicar, C. Tasso, ifWeb: a prototype of user models based intelligent agent for document filtering and navigation in the World
Wide Web, in: Sixth International Conference on User Modeling, Chia Laguna, Sardinia, Italy, June 1997.

[6] M. Balabanović, Y. Shoham, Fab: content-based, collaborative recommendation, Commun. ACM 40 (3) (1997) 66–72.
[7] M. Balabanović, Y. Shoham, Y. Yun, An adaptive agent for automated Web browsing, J. Visual Commun. Image Represent. 6 (4)

(1995).
[8] N. Bassiliades, G. Antoniou, I.P. Vlahavas, A defeasible logic reasoner for the semantic Web, in: Proceedings of the Workshop on

Rules and Rule Markup Languages for the Semantic Web, 2004, pp. 49–64.
[9] T. Berners-Lee, Semantic Web road map. Technical report, W3C Design Issues, 1998.

[10] T. Berners-Lee, J. Hendler, O. Lassila, The semantic Web, Scientific American, May 2001.
[11] P. Besnard, A. Hunter, A logic-based theory of deductive arguments, Artif. Intell. 128 (1–2) (2001) 203–235.
[12] D. Billsus, M.J. Pazzani, A hybrid user model for news classification, in: J. Kay (Ed.), UM99 User Modeling—Proceedings of the

Seventh International Conference, Springer-Verlag, 1999, pp. 99–108.
[13] R. Brena, C. Chesñevar, J. Aguirre, Argumentation-supported information distribution in a multiagent system for knowledge

management, in: Proceedings of the 2nd International Workshop on Argumentation in Multiagent Systems (ArgMAS 2005),
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2005), Utrecht, Netherlands, July 2005, pp. 13–
29.

[14] J. Budzik, K.J. Hammond, User interactions with everyday applications as context for just-in-time information access, in:
Proceedings of the 2000 International Conference on Intelligent User Interfaces, New Orleans, Louisiana, ACM Press, 2000.

[15] J. Budzik, K.J. Hammond, L. Birnbaum, Information access in context, Knowledge Based Syst. 14 (1–2) (2001) 37–53.
[16] M. Capobianco, C. Chesñevar, G. Simari, An argument-based framework to model an agent�s beliefs in a dynamic environment, in:

Proceedings of the First International Workshop on Argumentation in Multiagent Systems, AAMAS 2004 Conference, New York,
USA, Lecture Notes in Artificial Intelligence , vol. 3366, 2005, pp. 96–111.

[17] D. Carbogim, D. Robertson, J. Lee, Argument-based applications to knowledge engineering, The Knowledge Eng. Rev. 15 (2)
(2000) 119–149.

[18] C. Chesñevar, R. Brena, J. Aguirre, Knowledge distribution in large organizations using defeasible logic programming, in:
Proceedings of the 18th Canadian Conference on AILNCS, vol. 3501, Springer-Verlag, 2005, pp. 244–256.

[19] C. Chesñevar, R. Brena, J. Aguirre, Modelling power and trust for knowledge distribution: an argumentative approach, in:
Proceedings of the 3rd Mexican International Conference on Artificial Intelligence (MICAI 2005). LNCS Springer Series, vol. 3789,
Springer-Verlag, 2005, pp. 98–108.

[20] C. Chesñevar, A. Maguitman, An argumentative approach to assessing natural language usage based on the Web Corpus, in:
Proceedings of the ECAI-2004 Conference, Valencia, Spain, August 2004, pp. 581–585.

[21] C. Chesñevar, A. Maguitman. ARGUENET: an argument-based recommender system for solving Web Search Queries, in: Proceedings
of the 2nd IEEE International IS-2004 Conference, Varna, Bulgaria, June 2004, pp. 282–287.

[22] C. Chesñevar, A. Maguitman, R. Loui, Logical models of argument, ACM Comput. Surveys 32 (4) (2000) 337–383.
[23] C. Chesñevar, A. Maguitman, G. Simari, A first approach to argument-based recommender systems based on defeasible logic

programming, in: Proceedings of the 10th International Workshop on Non-Monotonic Reasoning (NMR-2004), Whistler, Canada,
June 2004, pp. 109–117.

[24] C. Chesñevar, G. Simari, Towards computational models of natural argument using labelled deductive systems, in: C. Reed (Ed.)
Proceedings of the 5th International. Workshop on Computational Models of Natural Argument (CMNA 2005), 19th International
Joint Conference in Artificial Intelligence (IJCAI 2005), Edinburgh, UK, July 2005, pp. 32–39.

[25] C. Chesñevar, G. Simari, T. Alsinet, L. Godo, Modelling agent reasoning in a logic programming framework for possibilistic
argumentation, in: Proceedings of the 2nd European Workshop on Multiagent Systems, Barcelona, Spain, December 2004, pp. 135–
142.

[26] C. Chesñevar, G. Simari, A. Garcı́a. Pruning search space in defeasible argumentation, in: Proceedings of the Workshop on
Advances and Trends in AI, XX International Conference of the SCCC, Santiago, Chile, November 2000, pp. 46–55.

[27] C. Chesñevar, G. Simari, L. Godo, Computing dialectical trees efficiently in possibilistic defeasible logic programming, in:
Proceedings of the 8th International Conference on Logic Programming and Nonmonotonic Reasoning LPNMR, Lecture Notes in
Artificial Intelligence LNAI, vol. 3662, September 2005, pp. 158–171.

316 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
[28] C.I. Chesñevar, J. Dix, F. Stolzenburg, G.R. Simari, Relating defeasible and normal logic programming through transformation
properties, Theor. Comput. Sci. 290 (1) (2003) 499–529.

[29] C.I. Chesñevar, A.G. Maguitman, Combining argumentation and Web search technology: towards a qualitative approach for
ranking results, Int. J. Advanced Comput. Intell. Intelligent Inform. 9 (1) (2005) 53–60.

[30] C.I. Chesñevar, G. Simari, T. Alsinet, L. Godo, A logic programming framework for possibilistic argumentation with vague
knowledge, in: Proceedings of the International Conference in Uncertainty in Artificial Intelligence (UAI 2004), Banff, Canada, July
2004, pp. 76–84.

[31] C.I. Chesñevar, G. Simari, L. Godo, T. Alsinet, Argument-based expansion operators in possibilistic defeasible logic programming:
characterization and logical properties, in: Proceedings of the 8th European Conference on Symbolic and Qualitative Aspects of
Reasoning with Uncertainty—ECSQARU 2005, Barcelona, Spain, Lecture Notes in Artificial Intelligence (LNAI), vol. 3571, July
2005, pp. 353–365.

[32] K. Church, L. Rau, Commercial applications of natural language processing, CACM 38 (11) (1995) 71–79.
[33] M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, M. Sartin, Combining content-based and collaborative filters in an

online newspaper, in: Proceedings of ACM SIGIR Workshop on Recommender Systems, August 1999.
[34] M. Deshpande, G. Karypis, Item-based top-n recommendation algorithms, ACM Trans. Inf. Syst. 22 (1) (2004) 143–177.
[35] R.B. Doorenbos, O. Etzioni, D. Weld, A scalable comparison-shopping agent for the world-wide Web, in: W.L. Johnson, B. Hayes-

Roth (Eds.), Proceedings of the First International Conference on Autonomous Agents (Agents�97), ACM Press, Marina del Rey,
CA, USA, 1997, pp. 39–48.

[36] P.M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning and logic programming, in:
Proceedings of the 13th International Joint Conference in Artificial Intelligence (IJCAI), Chamb́ery, Francia, 1993, pp. 321–
357.

[37] D. Engelbart, Augmenting human intellect: a conceptual framework, Summary report, Stanford Research Institute, on Contract AF
49(638)-1024, October 1962.

[38] D.M.D.N.P.P.-S.e.F. Baader, D. Calvanese, The Description Logic Handbook: Theory, Implementation and Applications,
Cambridge University Press, 2003.

[39] C. Fellbaum, WordNet: An Electronic Lexical Database, MIT Press, 1998.
[40] G. Fischer, K. Nakakoji, J. Ostwald, G. Stahl, T. Sumner, Embedding computer-based critics in the contexts of design, in:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM Press, 1993, pp. 157–
v164.

[41] W. Fletcher, Concordancing the Web with KWiCFinder, in: Proceedings of the 3rd North American Symposium on Corpus
Linguistics and Language Teaching, American Association for Applied Corpus Linguistics, 2001.

[42] X. Fu, J. Budzik, K.J. Hammond, Mining navigation history for recommendation, in: Intelligent User Interfaces, 2000, pp. 106–
112.

[43] B. Galimberti, R. Russell (Eds.), The Oxford Spanish Dictionary, Oxford University Press, 2003.
[44] A. Garcı́a, G. Simari, Defeasible logic programming: an argumentative approach, Theory Pract. Logic Program. 4 (1) (2004) 95–138,

Preliminary version available from: <http://cs.uns.edu.ar/~grs>.
[45] M. Gelfond, V. Lifschitz, Logic programs with classical negation, in: Proceedings of the 7th International Conference on Logic

Programming, Jerusalem, June 1990.
[46] J. Giarratano, G. Riley, Expert Systems: Principles and Programming, third ed., PWS Publishing Company, 1998.
[47] S. Gómez, C.Chesñevar, G.Simari, Incorporating defeasible knowledge and argumentative reasoning in Web-based forms, in:

Proceedings of the 3rd International Workshop on Intelligent Techniques for Web Personalization (ITWP 2005), 19th International
Joint Conference in Artificial Intelligence (IJCAI 2005), Edinburgh, UK, July 2005, pp. 9–16.

[48] S. Gómez, C. Chesñevar, A hybrid approach to pattern classification using neural networks and defeasible argumentation, in:
Proceedings of the 17th International FLAIRS Conference, Miami, Florida, USA, American Association for Artificial Intelligence,
May 2004, pp. 393–398.

[49] T. Gordon, N. Karacapilidis. The Zeno Argumentation framework, in: Proceedings of the International Conference on Artificial
Intelligence and Law (ICAIL-97), Melbourne, Australia, 1997, pp. 10–18.

[50] G. Governatori, A. Stranieri, Towards the application of association rules for defeasible rules discovery, in: B. Verheij, A. Lodder,
R.P. Loui, A.J. Muntjerwerff (Eds.), Legal Knowledge and Information Systems, Amsterdam, JURIX, IOS Press, 2001, pp. 63–
75.

[51] A. Hunter, Hybrid argumentation systems for structured news reports, Knowledge Eng. Rev. (2001) 295–329.
[52] A. Hunter, Logical fusion rules for merging structured news reports, Data Knowledge Eng. 42 (2002) 23–56.
[53] A. Hunter, Merging structured text using temporal knowledge, Data Knowledge Eng. 41 (2002) 29–66.
[54] A.C. Kakas, F. Toni, Computing argumentation in logic programming, J. Logic Comput. 9 (4) (1999) 515–562.
[55] A. Kilgarriff, Web as Corpus, in: Proceedings of Corpus Linguistic Conference, UCREL-Lancaster Univ, UK, 2001, pp. 342–

344.
[56] J.A. Konstan, Introduction to recommender systems: algorithms and evaluation, ACM Trans. Inf. Syst. 22 (1) (2004) 1–4.
[57] J.A. Konstan, B.N. Miller, D. Maltz, J.L. Herlocker, L.R. Gordon, J. Riedl, GroupLens: applying collaborative filtering to Usenet

news, Commun. ACM 40 (3) (1997) 77–87.
[58] R. Kowalski, F. Toni, Abstract argumentation, Artif. Intell. Law 4 (3–4) (1996) 275–296.
[59] K. Kukich, Techniques for automatically correcting words in text, ACM Comput. Surveys 24 (4) (1992) 377–439.

http://cs.uns.edu.ar/~grs

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 317
[60] N. Kushmerick, D.S. Weld, R.B. Doorenbos, Wrapper induction for information extraction, in: IJCAI�97, 1997, pp. 729–
737.

[61] D.B. Leake, T. Bauer, A. Maguitman, D.C. Wilson, Capture, storage and reuse of lessons about information resources: supporting
task-based information search, in: Proceedings of the AAAI-00 Workshop on Intelligent Lessons Learned Systems, AAAI Press,
Austin, Texas, 2000, pp. 33–37.

[62] H. Lieberman, Letizia: an agent that assists Web browsing, in: IJCAI�95, Morgan Kaufmann, 1995, pp. 924–929.
[63] H. Lieberman, N.W.V. Dyke, A.S. Vivacqua, Let�s browse: a collaborative Web browsing agent, in: Proceedings of the 1999

International Conference on Intelligent User Interfaces (IUI�99), ACM Press, Los Angeles, CA, USA, 1999, pp. 65–68.
[64] V. Lifschitz, Foundations of logic programming, in: Principles of Knowledge Representation, CSLI Publications, 1996, pp. 69–

127.
[65] F. Linton, D. Joy, H.-P. Schaefer, Building user and expert models by long-term observation of application usage, in: Proceedings of

the Seventh International Conference on User Modeling, Springer-Verlag Inc., New York, 1999, pp. 129–138.
[66] R. Loui, P. Norman, J. Altepeter, D. Pinkard, D. Craven, J. Lindsay, M. Foltz, Progress on Room 5: a testbed for public interactive

semi-formal legal argumentation, in: Proceedings of the International Conference on Artificial Intelligence and Law (ICAIL-97),
Melbourne, Australia, 1997, pp. 207–214.

[67] P. Maes, Agents that reduce work and information overload, Commun. ACM 37 (7) (1994) 30–40.
[68] N. Maudet, D.J. Moore, Dialogue games for computer supported collaborative argumentation, in: Proceedings of the 1st Workshop

on Computer Supported Collaborative Argumentation (CSCA99), Standford, USA, 1999.
[69] J. McCarthy, Formalizing Common Sense: Papers by John McCarthy, Ablex Publishing Corporation, 1990.
[70] J. McCarthy, P.J. Hayes, Some philosophical problems from the standpoint of artificial intelligence, in: B. Meltzer, D. Mitchie

(Eds.), Machine Intelligence, vol. 4, Edinburgh University Press, 1969, pp. 463–502.
[71] S. Middleton, D. DeRoure, N. Shadbolt, Capturing knowledge of user preferences: ontologies in recommender systems, in:

Proceedings of the ACM K-CAP�01, ACM Press, Victoria, Canada, 2001.
[72] B.N. Miller, I. Albert, S.K. Lam, J.A. Konstan, J. Riedl, Movielens unplugged: experiences with an occasionally connected

recommender system, in: Proceedings of the 8th International Conference on Intelligent User Interfaces, ACM Press, New York,
NY, USA, 2003, pp. 263–266.

[73] P. Miller, Attending: critiquing a physician�s management plan, in: IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI-5), September 1983, pp. 449–461.

[74] D. Mladenic, Personal Webwatcher: Design and Implementation, Technical Report ijs-dp-7472, School of Computer Science,
Carnegie-Mellon University, Pittsburgh, USA, 1996.

[75] D. Nute, Defeasible reasoning, in: J.H. Fetzer (Ed.), Aspects of Artificial Intelligence, Kluwer Academic Publishers, Norwell, MA,
1988, pp. 251–288.

[76] S. Parsons, P. McBurney, Argumentation-based dialogues for agent coordination, Group Decision and Negotiation 12 (5) (2003)
415–439.

[77] S. Parsons, C. Sierrra, N. Jennings, Agents that reason and negotiate by arguing, J. Logic Comput. 8 (1998) 261–292.
[78] M.J. Pazzani, J. Muramatsu, D. Billsus, Syskill & webert: identifying interesting Web sites, in: AAAI/IAAI�96, 1996, pp. 54–

61.
[79] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules, in: G. Piatetsky-Shapiro, W. Frawley (Eds.), Knowledge

Discovery in Databases, AAAI/MIT Press, Cambridge, MA, 1991.
[80] J. Pollock, Knowledge and Justification, Princeton, 1974.
[81] J.L. Pollock, Defeasible reasoning, Cognit. Sci. 11 (1987) 481–518.
[82] J.L. Pollock, Cognitive Carpentry: A Blueprint for How to Build a Person, Bradford/MIT Press, 1995.
[83] D. Poole, Explanation and prediction: an architecture for default and abductive reasoning, Comput. Intell. 5 (1989) 97–110.
[84] D.L. Poole, On the comparison of theories: preferring the most specific explanation, in: Proceedings of the 9th International Joint

Conference on Artificial Intelligence, IJCAI, 1985, pp. 144–147.
[85] H. Prakken, G. Sartor, Argument-based extended logic programming with defeasible priorities, J. Appl. Non-Classical Logics 7

(1997) 25–75.
[86] H. Prakken, G. Sartor, The role of logic in computational models of legal argument—a critical survey, in: A. Kakas, F. Sadri (Eds.),

Computational Logic: Logic Programming and Beyond, Springer, 2002, pp. 342–380.
[87] H. Prakken, G. Vreeswijk, Logical systems for defeasible argumentation, in: D. Gabbay, F. Guenther (Eds.), Handbook of Phil.

Logic, Kluwer, 2002, pp. 219–318.
[88] F. Ramı́rez Bustamante, F. Sánches León, GramCheck: a grammar and style checker, in: Proceedings of the International

Conference on Computational Linguistics (COLING-96), 1996, pp. 175–181.
[89] C. Reed, D. Walton, Applications of argumentation schemes, in: Conference of the Ontario Society for the Study of Argument

(OSSA2001), Windsor, Canada, 2001.
[90] R. Reiter, A logic for default reasoning, Artif. Intell. 13 (1–2) (1980) 81–132.
[91] A. Renouf, Webcorp: providing a renewable data source for corpus linguists, in: S. Granger, S. Petch-Tyson (Eds.), Extending the

Scope of Corpus-based Research: New Applications, New Challenges, Rodolpi, 2002, pp. 219–318.
[92] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, J. Riedl, GroupLens: an open architecture for collaborative filtering of Netnews,

in: Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, ACM, Chapel Hill, North Carolina, 1994,
pp. 175–186.

318 C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319
[93] P. Resnick, H.R. Varian, Recommender systems, CACM 40 (3) (1997) 56–58.
[94] B. Rhodes, P. Maes, Just-in-time information retrieval agents, IBM Syst. J. (special issue on the MIT Media Laboratory) 39 (3-4)

(2000) 685–704.
[95] B.J. Rhodes, Just-in-time information retrieval, Ph.D. thesis, MIT Media Lab, May 2000.
[96] B.J. Rhodes, Margin notes: building a contextually aware associative memory, in: The Proceedings of the International Conference

on Intelligent User Interfaces (IUI �00), January 2000.
[97] T. Selker, COACH: a teaching agent that learns, Commun. ACM 37 (7) (1994) 92–99.
[98] B.G. Silverman, Survey of expert critiquing systems: practical and theoretical frontiers, Commun. ACM 35 (4) (1992) 106–

127.
[99] G. Simari, R. Loui, A mathematical treatment of defeasible reasoning and its implementation, Artif. Intell. 53 (1992) 125–

157.
[100] G.R. Simari, A.J. Garcı́a, M. Capobianco, Actions, planning and defeasible reasoning, in: 10th International Workshop on Non-

Monotonic Reasoning (NMR 2004), Whistler, Canada, 2004, pp. 377–384.
[101] A. Stankevicius, A. Garcia, G. Simari, Compilation techniques for defeasible logic programs, in: Proceedings of the 6th

International Congress on Informatics Engineering, Univ. de Buenos Aires, Bs. Aires, Argentina, Ed. Fiuba, April 2000, pp. 1530–
1541.

[102] F. Stolzenburg, A. Garcı́a, C. Chesñevar, G. Simari, Computing generalized specificity, J. Non-Classical Logics 13 (1) (2003) 87–
113.

[103] L. Terveen, W. Hill, B. Amento, D. McDonald, J. Creter, PHOAKS: a system for sharing recommendations, Commun. ACM 40 (3)
(1997) 59–62.

[104] L.G. Terveen, D.A. Wroblewski, A collaborative interface for editing large knowledge bases, in: Proceedings of AAAI, Boston,
1990, pp. 491–496.

[105] C.G. Thomas, G. Fischer, Using agents to personalize the Web, in: Proceedings of the 2nd International Conference on Intelligent
User Interfaces, ACM Press, 1997, pp. 53–60.

[106] N.W. Van Dyke, H. Lieberman, P. Maes, Butterfly: a conversation-finding agent for internet relay chat, in: Proceedings of the 4th
International Conference on Intelligent User Interfaces, ACM Press, 1999, pp. 39–41.

[107] B. Verheij, Artificial argument assistants for defeasible argumentation, Artif. Intell. J. 150 (2003) 291–324.
[108] A. Voss, T. Kreifelts, SOAP: social agents providing people with useful information, in: Proceedings of the International ACM

SIGGROUP Conference on Supporting Group Work: The Integration Challenge, ACM Press, 1997, pp. 291–298.
[109] G. Vreeswijk, Abstract argumentation systems, Artif. Intell. 90 (1–2) (1997) 225–279.
[110] T. Yamanoue, T. Minami, I. Ruxton, W. Sakurai, Learning usage of English KWICly with WebLEAP/DSR, in: Proceedings of the

2nd International Conference on Information Technology and Applications (ICITA-2004), in press.
[111] C.-N. Ziegler, Semantic Web recommender systems, in: Proceedings of the Joint ICDE/EDBT Ph.D. Workshop, 2004.

Carlos Iván Chesñevar is a full-time researcher at the Artificial Intelligence Research Group of the University
of Lleida, Catalonia, Spain since July 2003, supported by the ‘‘Ramón y Cajal’’ Program (Ministry of
Science and Technology of Spain). He is also professor at the Universidad Nacional del Sur, Bahı́a Blanca,
Argentina. He holds the degrees of Magister in Computer Science and Ph.D. in Computer Science (Uni-
versidad Nacional del Sur, Argentina). He is also member of AEPIA (Spanish Association for Artificial
Intelligence). His recent research activities have been focused on the development of argument-based software
applications in the context of different real-world problems (such as natural language processing, knowledge
management and pattern recognition, among others). Part of his current research is also involved with the
study of extensions of logic programming which combine vague knowledge and defeasible argumentation. He
is one of the authors of ‘‘Logical Models of Argument’’, a survey on the theory and practice of defeasible
argumentation in the context of computer science. His research interests cover Defeasible Argumentation,
Logic Programming, Intelligent Systems, Recommender Systems, Multi-agent Systems, and Semantic
Web.
Ana Gabriela Maguitman is a visiting scientist at the School of Informatics of Indiana University,
Bloomington. She obtained her Ph.D. in Computer Science from Indiana University in 2004. Before joining
Indiana University she was an instructor and researcher at the Computer Science Department of Universidad
Nacional del Sur, Argentina, where she received a Master Degree in 1997. She has been a CONICET fellow
from 1996 to 1999 and a Fulbright-FOMEC fellow from 1999 to 2001. She is pursuing research in the areas
of knowledge capture, recommendation systems, context-based search, and web mining. She is interested in
the development of intelligent support tools that provide proactive assistance based on the user task. She
has developed EXTENDER, a suggester that aids users as they build knowledge models based on concept
maps.

Guillermo Ricardo Simari currently heads the Artificial Intelligence Research and Development Laboratory in the
Department of Computer Science and Engineering, Universidad Nacional del Sur in Bahı́a Blanca, Argentina.
Also is a Full Professor in that university teaching the courses of Logic in Computer Science and Artificial
Intelligence. He holds the degrees of Master of Science in Computer Science and Doctor of Science from
Washington University, USA, and a degree in Mathematics from Universidad Nacional del Sur in Bahı́a Blanca,
Argentina. His research interests cover Knowledge Representation and Reasoning, Computational Logic, Logic
Programming, Defeasible Reasoning, Belief Revision, Argumentation, Deliberate Systems, Autonomous Agents
and Multi-Agent Systems.

C.I. Chesñevar et al. / Data & Knowledge Engineering 59 (2006) 293–319 319

	Argument-based critics and recommenders: A qualitative perspective on user support systems
	Introduction and motivations
	User support systems
	Critics
	Recommenders

	Modelling argumentation in DeLP
	Argumentation in AI: background
	Defeasible logic programming

	Enhancing user support system with defeasible argumentation
	An argument-based Web recommender
	Providing recommendations for Web search queries: a worked example

	An argument-based word processing critic
	An example of language usage assessment

	Implementation issues. Ongoing work
	Related work
	Conclusions
	Acknowledgements
	References

