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a b s t r a c t

Companies increasingly adopt process-aware information systems (PAISs), which offer
promising perspectives for more flexible enterprise computing. The emergence of different
process support paradigms and the lack of methods for comparing existing approaches
enabling PAIS changes have made the selection of adequate process management technol-
ogy difficult. This paper suggests a set of 18 change patterns and seven change support fea-
tures to foster the systematic comparison of existing process management technology in
respect to process change support. While the proposed patterns are all based on empirical
evidence from several large case studies, the suggested change support features constitute
typical functionalities provided by flexible PAISs. Based on the proposed change patterns
and features, we provide a detailed analysis and evaluation of selected approaches from
both academia and industry. The presented work will not only facilitate the selection of
technologies for realizing flexible PAISs, but can also be used as a reference for implement-
ing flexible PAISs.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In today’s dynamic business world the economic success of an enterprise depends on its ability to react to changes in its
environment in a quick and flexible way [1]. Causes for these changes can be manifold and include the introduction of new
laws or changes in customers’ attitudes. For these reasons companies have recognized business agility as a competitive
advantage, which is fundamental for being able to cope with business trends like increasing product and service variability,
faster time-to-market, and business-on-demand.

Process-aware information systems (PAISs) offer promising perspectives in this respect, and a growing interest in aligning
information systems in a process-oriented way can be observed [2,3]. In contrast to data- or function-centered information
systems, PAISs are characterized by a strict separation of process logic and application code. In particular, most PAISs de-
scribe process logic explicitly in terms of a process model providing the schema for process execution. Usually, the core
of the process layer is built by a process management system, which provides generic functionality for modeling, executing,
and monitoring processes. This allows for a separation of concerns, which is a well established principle in computer science
for increasing maintainability and for reducing cost of change [4]. Changes to one layer often can be performed without
affecting the other layers. For example, modifying the application service which implements a particular process step
(i.e., activity) does usually not imply any change to the process layer as long as interfaces remain stable (i.e., the external
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observable behavior of the service remains the same). In addition, changing the execution order of activities or adding new
activities to the process can, to a large degree, be accomplished without touching any of the application services.

The ability to efficiently deal with process change has been identified as one of the critical success factors for any PAIS
[5,6]. PAISs facilitate changes significantly through the above described separation of concerns. According to a recent study
conducted among several Dutch companies, however, enterprises are reluctant to change PAIS implementations once they
are running properly [7]. High complexity and high cost of change are mentioned as major reasons for not fully leveraging
the potential of PAISs. To overcome this problem flexible PAISs are needed, enabling companies to capture real-world pro-
cesses adequately without leading to a mismatch between the computerized business processes and those running in reality
[8,5]. In particular, the introduction of a PAIS must not freeze existing business processes [9]. Instead, authorized users must
be able to flexibly deviate from the predefined processes as required (e.g., to deal with exceptions) and to evolve PAIS imple-
mentations over time (e.g., to continuously adapt the underlying process models to process optimizations). Such changes
must be possible at a high level of abstraction without affecting consistency and robustness of the PAIS [10]. In addition,
PAISs must support users to deal with uncertainty by deferring decisions to run-time as required.

1.1. Problem statement

The need for flexible and easily adaptable PAISs has been recognized and several competing paradigms for addressing
process changes and process flexibility have been developed. As example consider adaptive processes [11–13], case handling
[14], declarative processes [15], and late binding and modeling [12,16–18]. However, there still is a lack of methods for sys-
tematically comparing the change frameworks provided by existing process support technologies. This makes it difficult for
PAIS engineers1 to assess maturity and change capabilities of those technologies, often resulting in wrong decisions and expen-
sive misinvestments.

To make PAISs better comparable, workflow patterns have been introduced [19]. Respective patterns provide means for ana-
lyzing the expressiveness of process modeling tools and languages in respect to different workflow perspectives. In particular,
proposed workflows patterns cover the control flow [19,20], the data flow [21], and the resource perspective [22]. Obviously,
broad support for workflow patterns allows for building more flexible PAISs. However, an evaluation of a PAIS regarding its
ability to deal with changes needs a broader view. In addition to build-time flexibility (i.e., the ability to (pre-)model flexible
execution behavior based on advanced workflow patterns), run-time flexibility has to be considered as well [23]. The latter is
to some degree addressed by exception handling patterns [24], which describe different ways for coping with the exceptions
that occur during process execution (e.g., activity failures). Patterns like Rollback or Redo allow users to deal with exceptional
situations by changing the state of a running process; usually, they do not affect the structure of a process. In many cases,
changing the state of a running instance is not sufficient, but the process structure itself has to be adapted as well [23]. In addi-
tion, exception handling patterns cover changes at the process instance level, but are not applicable to process schema changes.

In addition to the expressiveness of the used process modeling language and the respective change framework, the fea-
tures provided by the PAIS to support and implement these changes have to be considered as well. Expressiveness only allows
for statements whether a particular change can be conducted or not; e.g., it provides information on whether or not process
activities can be added or deleted. It does not give insights into how quickly and easily such process changes can be accom-
plished and whether consistency and correctness are ensured at all time [10]. For example, many of the proposed change
frameworks require the user to perform changes at a rather low level of abstraction by manipulating single nodes and edges
of a process graph. This does not only require a high level of expertise, but also slows down the entire change process. In addi-
tion, not all PAISs supporting dynamic process changes ensure correctness and robustness afterwards, which might lead to
inconsistencies, deadlocks or other flaws [25]. Again, methods for a systematic comparison of these frameworks in respect
to their ability to deal with changes would facilitate the selection of an appropriate technology for implementing the PAIS.

1.2. Contribution

The major contributions of this paper are threefold.

(1) We suggest a set of change patterns to foster the comparison of existing approaches with respect to their ability to deal
with process change. The suggested patterns complement existing worklow patterns and have been systematically
identified by analyzing a large collection of process models from the healthcare and the automotive domain. On
the one hand we provide patterns for high-level process adaptations at the process type as well as the process instance
level. On the other hand, we identify patterns that can be used to defer decisions regarding the exact control flow to
run-time to better deal with uncertainty.

(2) In addition to change patterns, we suggest a set of change support features. While the respective patterns allow for
assessing the expressiveness of change frameworks, change support features ensure that changes are performed in a
correct and consistent way, change traceability is enabled, and process changes become easier to accomplish for users.

1 We use the notion of a PAIS engineer for a developer of PAISs with the focus on the analysis and design of (executable) processes; i.e., a PAIS engineer deals
with programming in the large.
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(3) We provide an in-depth evaluation of selected approaches from both industry and academia based on the proposed
change patterns and change support features.

This paper provides a significant extension of the work we presented in [25]. While in [25] the proposed patterns have
been only described very briefly, this paper provides an in-depth description of all identified change patterns and discusses
the applied methods for patterns identification in detail. The discussion of how change patterns can be applied has been also
considerably extended. Finally, we include additional patterns and change support features in our comparison framework
and we extend the evaluation to a larger set of approaches and tools. Further, this work can be seen as a reference for imple-
menting adaptive and more flexible PAISs. In analogy to the workflow patterns initiative [19], we expect further systems to
be evaluated over time and vendors of existing PAISs are expected to extend their current PAISs towards more complete sup-
port for change patterns and change features.

The remainder of this paper is organized as follows: Section 2 summarizes background information needed for the under-
standing of the paper. Section 3 presents the research method employed for identifying the described patterns and features.
Section 4 describes 18 change patterns sub-dividing them into adaptation patterns and patterns for changes in predefined
regions. Section 5 deals with seven crucial change support features. Taking these change patterns and change features, Sec-
tion 6 evaluates different approaches from academia as well as industry. Section 7 presents related work. We conclude with a
summary and outlook in Section 8.

2. Background information

In this section we describe basic concepts and notions used in this paper.

2.1. Basic notions

A PAIS is a specific type of information system which provides process support functions and allows for separating pro-
cess logic and application code. For this purpose, at build-time the process logic has to be explicitly defined based on the con-
structs provided by a process meta model. At run-time the PAIS then orchestrates the processes according to the defined logic
and allows for the integration of users and other resources. Workflow Management Systems (e.g., Staffware [2], ADEPT [11],
WASA [13]) and Case-Handling Systems (e.g., FLOWer [2,14]) are typical technologies enabling PAISs (for a quantitative com-
parison see [26]).

For each business process to be supported (e.g., booking a trip or handling a medical order), a process type represented by
a process schema S has to be defined. For one particular process type several process schemes may exist representing the dif-
ferent versions and the evolution of this type over time. In the following, a single process schema corresponds to a directed
graph, which comprises a set of nodes – representing process steps (i.e., activities) or control connectors (e.g., XOR/AND-Split,
XOR/AND-Join) – and a set of control edges between them. Control edges specify precedence relations between the different
nodes. Activities can either be atomic or complex. While an atomic activity is associated with an invokable application service,
a complex activity contains a sub-process or, more precisely, a reference to a sub-process schema S0. This allows for the hier-
archical decomposition of process schemes.

Most of the patterns introduced in this paper are not only applicable to atomic or complex activities, but also to sub-pro-
cess graphs with single entry and single exit node (also denoted as hammocks in graph literature [27]). In this paper, we use
the term process fragment as generalized concept covering atomic activities, complex activities (i.e., sub-processes) and ham-
mocks (i.e., sub-graphs with single entry and single exit node). If a pattern is denoted as being applicable to a process frag-
ment, it can be applied to all these objects.

In Fig. 1 process schema S1 consists of six activities and two control connectors: Activity A is followed by activity B in the
flow of control, whereas activities C and D can be processed in parallel. Activities A to E are atomic, and activity F constitutes
a complex activity (i.e., sub-process with own process schema S2). The region of the process schema containing activities B,
C, D and E as well as the control connectors AND-Split and AND-Join constitutes an example for a hammock, i.e., a sub-
process graph with single entry and single exit nodes. The term process fragment covers all of the above mentioned concepts
and can either be an atomic activity (e.g., activity A), an encapsulated sub-process (e.g., process schema S2), or a hammock
(e.g., the sub-graph consisting of activities B, C, D, E and the two connector nodes).

Based on process schema S, at run-time new process instances can be created and executed. Regarding process instance I1

from Fig. 1, for example, activity A is completed and activity B is activated. Generally, a large number of instances in different
states might run on a particular process schema.

2.2. Process flexibility

To deal with evolving processes, exceptions and uncertainty, PAISs must be flexible. This can either be achieved through
structural process adaptations (cf. Fig. 2) or by allowing for loosely specified process models, which can be refined by users
during run-time according to predefined criteria (cf. Fig. 2).
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2.2.1. Process adaptation
In general, process adaptations can be triggered and performed at two levels – the process type and the process instance

level (cf. Fig. 2a+b) [10]. Process schema changes at the type level (in the following denoted as schema evolution) become nec-
essary to deal with the evolving nature of real-world processes (e.g., to adapt them to legal changes). Such a schema evolu-
tion often necessitates the propagation of respective changes to ongoing process instances (of the respective type),
particularly if these instances are long-running [29]. For example, let us assume that in a patient treatment process, due

Fig. 1. Core concepts – an example (in BPMN notation [28]).

Fig. 2. Process adaptation and built-in flexibility.
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to a new legal requirement, patients have to be educated about potential risks before a surgery takes place. Let us further
assume that this change is also relevant for patients for which the treatment has already been started. In such a scenario,
stopping all ongoing treatments, aborting them and re-starting them is not a viable option. As a large number of treatment
processes might be running at the same time, applying this change manually to all ongoing treatment processes is also not a
feasible option. Instead, efficient system support is required to add this additional ‘‘information” step to all patient treat-
ments for which this is still feasible (e.g., if the surgery has not yet started). For example, Fig. 2a illustrates a process type
change. Schema S is transformed to S0 by inserting two additional activities X and Y. Changes can be propagated to running
instances as well, if these instances are compliant with the new schema version (i.e., their traces can be produced on S0 as
well) [29]. Instances I1 and I2 from Fig. 2a, for example, can be migrated to S0, while I3 has already progressed too far and
therefore has to be completed based on original schema version S.

Ad-hoc changes of single process instances, in turn, are usually performed to deal with exceptions or unanticipated situ-
ations, resulting in an adapted instance-specific process schema [11,13,30]. The effects of such ad-hoc changes are usually
instance-specific and do not affect any other ongoing process instance. In a medical treatment process, for example, a pa-
tient’s current medication may have to be discontinued due to an allergic reaction of this particular patient. In Fig. 2b, in-
stance I4 has been individually modified by inserting activity X and by deleting activity F.

2.2.2. Built-in flexibility
Flexibility can be also achieved by leaving parts of the process model unspecified at build-time and by adding the missing

information during run-time (cf. Fig. 2) [12,15–18]. This approach is especially useful in case of uncertainty as it allows for
deferring decisions from build- to run-time, when more information becomes available. For example, when treating a cru-
ciate rupture for a particular patient we might not know in advance which treatment will be exactly performed in which
execution order. Therefore, this part of the process remains unspecified during build-time and the physician decides on
the exact treatment at run-time. For example, Fig. 2c depicts a process schema with placeholder activity B. For placeholder
activity B four process fragments S, T, U and V have been specified, which can be used during run-time to compose a sub-
process for substituting placeholder activity B. Instances I5 and I6 constitute two valid variants, which can be created based
on schema S.

3. Research methodology

Goal of this paper is to complement existing workflow patterns with a set of change patterns and change support features
suitable to assess a PAIS ability to effectively deal with process changes. Respective patterns and features should not only
allow PAIS engineers to assess the expressiveness of a PAIS change framework, but also ensure that changes can be per-
formed in a correct, consistent and efficient way. In the following the research methodology employed for identifying the
change patterns (cf. Section 3.1) and change support features (cf. Section 3.2) is discussed.

3.1. Pattern identification

We describe the selection criteria for our change patterns, the data sources they are based on, and the procedure we ap-
plied for pattern identification.
� Selection criteria. On the one hand, this paper considers patterns to support process users to efficiently deal with excep-

tions and to cope with the evolving nature of business processes (i.e., supporting structural process adaptations). On the other
hand, it covers patterns for supporting users to better deal with uncertainty by deferring decisions to run-time (i.e., to allow
for Built-in Flexibility). The focus of this paper is on changes of the control-flow perspective. The extension towards other pro-
cess aspects (e.g., data flow or resources) constitutes complementary work and is outside the scope of this paper.
� Sources of data and data collection. As sources for our patterns we consider the results of case studies we previously per-

formed in the healthcare domain [5] and the automotive domain [31].
One of our major data sources is a large reengineering project which we conducted at a Women’s Hospital. As part of this

project all core processes of the hospital were analyzed and documented [32–36]. For each of these processes an as-is process
model (either described with ARIS Toolset or the Bonapart process modeling tool) exists. In addition, suggestions for process
optimizations were textually described and, in case of structural process adaptations, additionally modeled as to-be pro-
cesses. Finally, in the context of our process analyses interviews with seven physicians and four nurses were conducted
to document typical exceptional situations (i.e., deviations from the standard procedure). In total we consider 98 process
models from the healthcare domain covering both administrative processes (e.g., patient admission or ordering drugs)
and medical treatment processes (e.g., in-patient chemotherapy and ovarian cancer surgery) (an overview of the analyzed
models is given in Fig. 3). While the considered administrative processes are quite simple, the medical treatment processes
all comprise numerous sub-processes and have several hierarchical levels (i.e., up to five levels of hierarchy and more than a
hundred activities including all sub-processes).

As our second major data source we use process models from the automotive domain. In particular, we consider a case
study on electronic change management (ECM) [37] and process models described in [38]. As part of the ECM project (stan-
dardized) process models for two phases of electronic change management (i.e., Electronic Change Request (ECR) and
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Electronic Change Order (ECO)) were created. The ECR and ECO process models were iteratively modeled (either as Event-
Driven Process Chains or as UML Activity Diagrams) resulting in multiple process model versions. The final models related to
ECR have been published by the German Association of the Automotive Industry (VDA) as quasi-standard and are described
in [37]. The process models described in [38] include processes on car repair and maintenance in garages, in-house change
management and product planning. Again numerous process model variants exist. With several hundred activities the prod-
uct planning process is the most complex process we consider. In total, our material from the automotive domain consists of
59 process models (for an overview cf. Fig. 3).
� Pattern identification procedure. To ground our patterns on a solid basis we first create a list of candidate patterns. For

generating this initial list we conduct a detailed literature review and rely on our experience with PAIS-enabling technolo-
gies. Next we thoroughly analyze the above mentioned material to find empirical evidence for our candidate patterns. In par-
ticular, we compare the available as-is and to-be processes from the healthcare case study or the different model versions
from the automotive domain. Further, we analyze the described suggestions for optimizations and exceptional situations.
We then map the identified structural process adaptations as well as exceptional situations to our candidate patterns and
– if necessary – extend the candidate list of patterns (for two examples see below).

For example, in the context of an in-patient chemotherapy activities Inform Patient and Make Appointment are per-
formed sequentially in the as-is model, while the to-be process model arranges them in parallel, i.e., activities Inform Pa-

tient and Make Appointment have been parallelized. This example is one observation supporting pattern AP9 (Parallelize
Process Fragment) as introduced in Section 4.1. As another example consider the patient admission process. Usually activity
Clinical Admission has to be preceded by activity Administrative Admission. However, in case of an emergency the
administrative admission needs to be postponed (e.g., the administrative admission is moved in parallel to the clinical
admission). This scenario is an example providing evidence for pattern AP3 (Move Process Fragment). In total, we analyzed
more than a hundred exceptional situations in which structural model adaptations become necessary. Evidence for pattern
AP6 Extract Process Fragment and AP7 Inline Process Fragment, for example, can be found in the product planning process
(automotive domain), which comprises several hundred activities. To generate aggregated views for process visualization
or to dissolve these aggregations, process fragments need to be dynamically extracted to sub-processes or be inlined into
the parent process [38].

As a pattern is defined as a reusable solution to a commonly occurring problem we require each of our change patterns to
be observed at least three times in different models of our process samples. Therefore, only those patterns, for which enough
empirical evidence exists, are included in the final list of patterns, which is presented in Section 4.

3.2. Identification of change support features

In the following we describe the selection criteria for change support features, the data sources they are based on and the
used procedure for change feature identification.

� Selection criteria. While change patterns provide the expressive power to perform process adaptations or to defer deci-
sions to run-time, change support features constitute typical functionalities offered by PAIS-enabling technologies to
ensure that process changes become applicable in practice. Thereby, change support features address typical quality
dimensions like correctness and consistency, efficiency, traceability, security and usability.
� Sources of data and data collection. As data sources for our change patterns several flexible PAIS from both academia

and industry are considered. As commercial systems we consider the workflow management system Staffware and
the case-handling system FLOWer, which are both among the most widely used systems in their area. As academic
approaches we consider popular flexible PAIS such as ADEPT2 [11,39], CAKE2 [30,40], CBRFlow [41,42], HOON [17],
MOVE [18], Pockets of Flexibility (PoF) [16,43,44], WASA2 [13], WIDE [45,46], Worklets/Exlets [12,47,48], and YAWL
[49].

Fig. 3. Analyzed process models.

B. Weber et al. / Data & Knowledge Engineering 66 (2008) 438–466 443



Author's personal copy

� Feature identification procedure. To identify typical change support features we analyze the above mentioned PAIS-
enabling technologies in respect to their functionality supporting process changes. To be included in our final list
of change support features (cf. Section 3.2) we again require at least three independent observations, i.e., each change
support feature needs to be supported by at least three PAIS-enabling technologies.

4. Change patterns

In this section we describe 18 characteristic patterns relevant for control flow changes in PAISs (cf. Fig. 5). All these change
patterns constitute solutions for realizing commonly occuring changes in PAISs. We divide the change patterns into two ma-
jor categories: adaptation patterns and patterns for changes in predefined regions. Thereby, adaptation patterns support struc-
tural process adaptations, whereas patterns for changes in predefined regions allow for built-in flexibility (cf. Section 2.2).

Adaptation Patterns allow users to structurally modify a process schema at the type or instance level by using high-level
change operations (e.g., to add an activity in parallel to another one) instead of low-level change primitives (e.g., to add a
single node or to delete a single control flow edge). Although process adaptations can be performed based on low-level
change primitives as well, these primitives are not considered as real change patterns due to their lack of abstraction. Like
design patterns in software engineering, change patterns aim at reducing complexity [50] by raising the level of abstraction
for expressing changes. Generally, adaptation patterns can be applied to the whole process schema, i.e., the region to which
the adaptation pattern is applied can be chosen dynamically. Therefore, adaptation patterns are well suited for dealing with
exceptions or for coping with the evolving nature of business processes.

Patterns for changes in predefined regions. By contrast, patterns for changes in predefined regions do not enable structural
process adaptations, but allow process participants to add information regarding unspecified parts of the process model (i.e.,
its process schema) during run-time. For this purpose, the application of these patterns has to be anticipated at build-time.
This can be accomplished by defining regions in the process schema where potential changes may be performed during run-
time. As process schema changes or process schema expansions can only be applied to these predefined regions, respective
patterns are less suited for dealing with arbitrary exceptions [11]. Instead they allow for dealing with situations where, due
to uncertainty, decisions cannot be made at build-time, but have to be deferred to run-time. Fig. 4 gives a comparison of
these two major pattern categories.

Fig. 5 gives an overview of the 18 patterns, which are described in detail in the following. For each pattern we provide a
name, a brief description, an illustrating example, a description of the problem it addresses, a couple of design choices, re-
marks regarding its implementation, and a reference to related patterns. In particular, design choices allow for parametrizing
change patterns keeping the number of distinct patterns manageable.

Fig. 4. Adaptation patterns vs. patterns for changes in predefined regions.

Fig. 5. Overview of identified change patterns.
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Design choices not only relevant for a particular pattern, but for a set of patterns, are described only once for the entire
set. Typically, existing approaches only support a subset of the design choices in the context of a particular pattern. We de-
note the combination of design choices supported by a particular approach as a pattern variant.

To obtain unambiguous pattern descriptions and to ground pattern implementation as well as pattern-based analysis of
PAISs on a solid basis, we have provided a formal semantics for change patterns in [51]. This formalization is independent of
the underlying process meta model and is based on the behavioral semantics of the modified process schema before and
after its change.

4.1. Adaptation patterns

Adaptation patterns allow users to structurally change process schemes. In general, the application of an adaptation pat-
tern transforms a process schema S into another process schema S0. For this, two different options exist, which can be both
found in existing systems (cf. Section 6).

On the one hand, structural adaptations can be realized based on a set of change primitives like add node, remove node,
add edge, remove edge, and move edge. Following this approach, the realization of a particular adaptation (e.g., to delete an
activity or to add a new one) usually requires the application of multiple change primitives. Specifying structural adaptations
at this low level of abstraction, however, is a complex and error-prone task. Further, when applying a single change prim-
itive, soundness of the resulting process schema (e.g., absence of deadlocks) cannot be guaranteed. Therefore, for more com-
plex process meta models it is not possible to associate formal pre-/post-conditions with the application of single primitives.
Instead, correctness of a process schema has to be explicitly checked after applying the respective set of primitives.

On the other hand, structural adaptations can be based on high-level change operations (e.g., to insert a process fragment
between two sets of nodes), which abstract from the concrete schema transformations to be conducted. Instead of specifying
a set of change primitives the user applies one or more high-level change operations to realize the desired process schema
adaptation. Approaches following this direction often associate pre- and post-conditions with the high-level operations,
which allows the PAIS to guarantee soundness when applying the respective operations [11,45]. Note that soundness will
become a fundamental issue if changes are to be applied by end-users or – even more challenging – by automated software
components (i.e., software agents [10,52]). For these reasons we only consider high-level operations as adaptation patterns;
more precisely, an adaptation pattern comprises exactly one high-level operation. Furthermore, its application to a given
process schema will preserve soundness of this schema if certain pre-conditions are met.

In total, 14 out of the 18 identified change patterns can be classified as adaptation patterns (see left-hand side of Fig. 5). In
the following all 14 adaptation patterns are described in detail. Adaptation patterns AP1 and AP2 allow for the insertion
(AP1) and deletion (AP2) of process fragments in a given process schema. Moving and replacing fragments is supported
by adaptation patterns AP3 (Move Process Fragment), AP4 (Replace Process Fragment), AP5 (Swap Process Fragment), and
AP14 (Copy Process Fragment). Patterns AP6 and AP7 allow for adding or removing levels of hierarchy. Thereby, the extrac-
tion of a sub-process from a process schema is supported by AP6, whereas the inclusion of a sub-process into a process sche-
ma is supported by AP7. Patterns AP8–AP12 support adaptations of control dependencies: embed an existing process
fragment in a loop (AP8), parallelize a process fragment (AP9), embed an existing process fragment in a conditional branch
(AP10), and add/ remove control dependencies (AP11, AP12). Finally, AP13 (update condition) allows for changing transition
conditions.

Fig. 6 describes two general design choices, which are valid for all 14 adaptation patterns and which can be used for their
parametrization. Additional design choices, only relevant in the context of a specific adaptation pattern, are provided with

Fig. 6. General design choices for adaptation patterns.
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the description of the respective patterns (cf. Fig. 7–13). The design choices listed in Fig. 6 are shortly described in the fol-
lowing. Each adaptation pattern can be applied at the process type and/or process instance level (Design Choice A) (cf. Fig.
2a+b). If an adaptation pattern is supported at the process type level, the graphical editor of the PAIS allows users to edit a
process schema at built-time using the respective pattern. If no pattern support is provided, process schema changes have to
be conducted at a low level of abstraction using change primitives [51]. If a respective pattern is, in turn, supported at the
process instance level, run-time changes of single instances can be accomplished. In addition, adaptation patterns can oper-
ate on an atomic activity, an encapsulated sub-process or a hammock (Design Choice B) (cf. Fig. 6).

4.1.1. Adaptation pattern AP1: Insert process fragment
The Insert Process Fragment pattern (cf. Fig. 7) can be used to add process fragments to a process schema. In addition to the

general design choices described in Fig. 6, one major design choice for this pattern (Design Choice C) describes the position at
which the new process fragment is embedded in the respective schema (cf. Fig. 7). There are systems which only allow users
to serially insert a process fragment between two directly succeeding activities [53]. By contrast, other systems follow a
more general approach, allowing the user to insert new fragments between two sets of activities meeting certain constraints
[11]. Special cases of the latter variant include the insertion of a process fragment in parallel to another one (parallel insert) or
the association of the newly added fragment with an execution condition (conditional insert).

4.1.2. Adaptation pattern AP2: Delete process fragment
The Delete Process Fragment pattern can be used to remove a process fragment (cf. Fig. 7). No additional design choices are

needed for this pattern. There exist alternative ways in which this pattern can be implemented. The first implementation
option is to delete the respective process fragment, i.e, to remove the corresponding nodes and control edges from the pro-
cess schema. The second implementation option replaces the fragment by one or more silent activities (i.e., activities without

Fig. 7. Insert (AP1) and delete process fragment (AP2) patterns.
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associated action). In the third implementation option, the fragment is embedded in a conditional branch, which is then
never executed (i.e., the fragment remains part of the schema, but will not be executed) [46].

4.1.3. Adaptation pattern AP3: Move process fragment
The Move Process Fragment pattern (cf. Fig. 8) allows users to shift a process fragment from its current position to a new

one. Like for the Insert Process Fragment pattern, an additional design choice specifies the way the fragment can be re-embed-
ded in the process schema afterwards. Although the Move Process Fragment pattern could be realized by the combined use of
AP1 and AP2 (Insert/Delete Process Fragment) or be based on change primitives, we introduce it as separate pattern, since it
provides a higher level of abstraction to users.

4.1.4. Adaptation pattern AP4: Replace process fragment
This pattern enables the replacement of a process fragment by another one (cf. Fig. 9). Like AP3, pattern AP4 can be imple-

mented based on patterns AP1 and AP2 (Insert/Delete Process Fragment) or be directly based on change primitives.

4.1.5. Adaptation pattern AP5: Swap process fragments
The Swap Process Fragment pattern (cf. Fig. 9) allows users to swap a process fragment with another one. The process frag-

ments to be swapped do not have to be directly connected. This adaptation pattern can be implemented based on pattern
AP3 (Move Process Fragment), on the combined use of patterns AP1 and AP2 (Insert/Delete Process Fragment), or on change
primitives.

4.1.6. Adaptation pattern AP6: Extract sub-process
The pattern Extract Sub-Process (AP6) allows users to extract an existing process fragment from a process schema and to

encapsulate it in a separate sub-process schema (cf. Fig. 10). This pattern can be used to add a hierarchical level to simplify a
process schema or to hide information from process participants. If no direct support for pattern AP6 is provided a possible
workaround will look as follows: The new schema representing the extracted sub-process has to be created manually. Next,
the respective process fragment must be copied to the new process schema and be removed from the original one. In addi-
tion, an activity referencing the newly implemented sub-process must be added to the original schema, and required input
and output parameters must be manually mapped to the sub-process (not considered in detail here). The implementation of
pattern AP6 can be based on graph aggregation techniques [54].

Fig. 8. Move process fragment (AP3) pattern.
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4.1.7. Adaptation pattern AP7: Inline sub-process
As opposed to AP6 (Extract Process Fragment), pattern Inline Sub-Process (AP7) allows users to inline a sub-process sche-

ma into the parent process, and consequently to flatten the hierarchy of the overall process (cf. Fig. 10). This can be useful in
case a process schema is divided into too many hierarchical levels or for improving its structure. If no direct support for AP7
is provided a couple of manual steps will be required as workaround. First the fragment representing the sub-process has to
be copied to the parent process schema. In a next step the activity invoking the sub-process has to be replaced by the pre-
viously copied process fragment. Further, input and output parameters of the sub-process have to be manually mapped to
the newly added activities.

4.1.8. Adaptation pattern AP8: Embed process fragment in loop
Using AP8 an existing process fragment can be embedded in a loop to allow for its repeated execution (cf. Fig. 11). AP8 can

be realized based on patterns AP1 (Insert Process Fragment), AP11 (Add Control Dependency), and AP12 (Remove Control Depen-
dency). However, with AP8 the number of operations needed for accomplishing such a change can be reduced [51].

4.1.9. Adaptation pattern AP9: Parallelize process fragments
AP9 enables the parallelization of process fragments which were confined to be executed in sequence (cf. Fig. 11). If no

direct support for AP9 is provided, it can be simulated by combining adaptation patterns AP11 and AP12 (Add/ Remove Control
Dependency) or by using adaptation pattern AP3 (Move Process Fragment).

4.1.10. Adaptation pattern AP10: Embed process fragment in conditional branch
Using this pattern an existing process fragment can be embedded in a conditional branch, which will be only executed if

certain conditions are met (cf. Fig. 11). AP10 can be implemented based on patterns AP1 (Insert Process Fragment), AP11, AP12
(Add/ Remove Control Dependency) and AP13 (Update Condition).

4.1.11. Adaptation pattern AP11: Add control dependency
When applying pattern AP11 a control edge (e.g., for synchronizing the execution order of two parallel activities) is added

to the given process schema (cf. Fig. 12). As opposed to the low-level change primitive add edge, the added control depen-
dency must not violate soundness (e.g., no deadlock causing cycles). Therefore, approaches implementing AP11 usually

Fig. 9. Replace (AP4) and swap process fragment (AP5) patterns.
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ensure that the use of this pattern meets certain pre- and post-conditions. Further, the newly added edge can be associated
with attributes (e.g., transition conditions) when applying AP11.

4.1.12. Adaptation pattern AP12: Remove control dependency
Using this pattern a control dependency and its attributes can be removed from a process schema (cf. Fig. 12). Similar

considerations as for AP11 can be made.

4.1.13. Adaptation pattern AP13: Update condition
This pattern allows users to update transition conditions in a process schema (cf. Fig. 12). Usually, an implementation of this

pattern has to ensure that the new transition condition is correct in the context of the given process schema (e.g., process vari-
ables to which the transition condition refers must have been written before evaluating the condition). For example, it has to be
ensured that all process relevant data elements, to which the transition condition refers to, are contained in the process schema.

4.1.14. Adaptation pattern AP14: Copy process fragment
AP14 (cf. Fig. 13) allows users to copy a process fragment. In contrast to AP3 (Move Process Fragment) the respective frag-

ment is not removed from its initial position.

Fig. 10. Extract (AP6) and inline sub-process (AP7) patterns.
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4.2. Patterns for changes in predefined regions

Patterns for changes in predefined regions allow for better dealing with uncertainty by deferring decisions regarding the
exact control-flow to run-time. Instead of requiring a process model to be fully specified prior to execution, parts of the mod-
el can remain unspecified. In contrast to adaptation patterns, whose application is not restricted a priori to a particular pro-
cess part, patterns for changes in predefined regions define constraints concerning the parts of a process schema that can be
changed or expanded. In this category we have identified four patterns: Late Selection (PP1), Late Modeling (PP2) and Late
Composition of Process Fragments (PP3) and Multi-Instance Activity (PP4). These four patterns differ regarding the parts that
can remain unspecified resulting in a different degree of freedom during run-time.

4.2.1. Pattern for predefined change PP1: Late selection of process fragments
This pattern (cf. Fig. 14) allows deferring the selection of the implementation of a particular process activity to run-time.

Prior to execution only a placeholder activity has to be provided, the concrete implementation is selected during run-time

Fig. 11. Embed process fragment in loop (AP8), parallelize process fragments (AP9) and embed process fragment in conditional branch (AP10) patterns.
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either based on predefined rules or on user decisions (Design Choice A in Fig. 14). The placeholder activity can either be
substituted by an atomic activity or a sub-process (Design Choice B in Fig. 14). This is done before the placeholder activity
is enabled or when it is enabled (Design Choice C in Fig. 14).

4.2.2. Pattern for predefined change PP2: Late modeling of process fragments
This pattern (cf. Fig. 15) offers more freedom and allows for modeling selected parts of the process schema at run-time.

Prior to execution only a placeholder activity has to be provided, its implementation is modeled during run-time. Design
Choice A of Fig. 15 specifies which building blocks can be used for late modeling. Building blocks can either be all process
fragments from the repository, a constraint-based subset of the fragments from the repository, or newly defined activities
or process fragments. Design Choice B (cf. Fig. 15) describes whether the user may apply the same modeling constructs dur-
ing build-time or more restrictions apply. Late modeling can take place upon creation of the process instance, when the
placeholder activity is enabled, or when a particular state in the process is reached (Design Choice C in Fig. 15). Depending
on the pattern variant users start late modeling with an empty template or they take a predefined template as a starting
point and adapt it as required (Design Choice D in Fig. 15).

4.2.3. Pattern for predefined change PP3: Late composition of process fragments
This pattern (cf. Fig. 16) enables the on-the fly composition of process fragments from the process repository, e.g., by

dynamically introducing control dependencies between a predefined set of fragments. There is no predefined plan, but
the process instance is created in an ad-hoc way by selecting from the available activities in the repository. In addition, con-
straints may be defined, which have to be considered while composing a process fragment (Design Choice A in Fig. 16). The

Fig. 12. Add (AP11) and remove control dependency (AP12) and update condition (AP13).
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Interleaved Routing pattern [3,20] – one of the workflow patterns [19] – can be seen as a special implementation of PP3. It
allows for the sequential execution of a set of activities, whereby the execution order is decided upon at run-time and each

Fig. 13. Copy process fragment (AP14) pattern.

Fig. 14. Late selection of process fragments (PP1).
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process fragment has to be executed exactly once. Like for pattern PP3 decisions about the exact control flow structure are
deferred to run-time. The Interleaved Routing pattern corresponds to Design Choice A[2] of PP3 (cf. Fig. 16) as the composition
has to to obey certain constraints (i.e., on how often a particular activity has to be executed).

4.2.4. Pattern for predefined change PP4: Multi-instance activity
This pattern (cf. Fig. 16) allows for deferring the decision on how often a specific activity should be executed during run-

time, while the activity itself needs to be predefined. PP4 not only constitutes a change pattern, but a workflow pattern as
well [19]. It allows for the creation of multiple activity instances during run-time. The decision how many instances are

Fig. 15. Late modeling of process fragments (PP2).
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created can be based either on knowledge available at build-time or on some run-time knowledge. We do not consider mul-
ti-instance activities of the former kind as a change pattern as their use does not help dealing with uncertainty. For all other
types of multi-instance activities the number of instances is determined based on run-time knowledge, which is or is not
available a-priori to the execution of the multi-instance activity. While in the former case the number of instances can be
determined at some point during run-time before executing them, this is not possible in the latter case. Multi-Instance Activ-
ities are considered as change patterns as their usage allows users to delay the decision on the number of instances to be
created for a particular activity to run-time (cf. Fig. 16).

5. Change support features

So far, we have introduced a set of change patterns which can be used to accomplish changes at the process type or pro-
cess instance level. However, simply looking at the supported patterns and counting their number is not sufficient to analyze
how well a system can deal with process change. In addition, change support features must be considered to make change
patterns useful in practice (cf. Fig. 17). Relevant change support features include Schema Evolution, Version Control and In-
stance Migration (F1), Support for Instance-Specific Changes (F2), Correctness of Change (F3), Traceability and Analysis of Changes
(F4), Access Control for Changes (F5), Change Reuse (F6), and Change Concurrency Control (F7). As illustrated in Fig. 17 the de-
scribed change support features are not equally important for both process type level and process instance level changes.
Version control, for example, is primarily relevant for changes at the type level (T), while change reuse is particularly useful
at the instance level (I) [41].

Fig. 16. Late composition of fragments (PP3) and multi-instance activity (PP4).
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5.1. Schema evolution, version control and instance migration

To support changes at the process type level, version control for process schemes is needed (cf. Fig. 17). In case of long-
running processes, in addition controlled migration of already running instances from the old to the new process schema
version is often required when conducting a schema change at the process type level. In this subsection we describe different
options existing in this context (cf. Fig. 18).

If no version control is provided, either the process designer will have to manually create a copy of the process schema to
be changed or the original schema will be overwritten (cf. Fig. 18a). In the latter case, running instances can either be with-
drawn from the run-time environment (Design Choice F1[1]) or, as shown in Fig. 18a, they remain associated with the mod-
ified schema (Design Choice F1[2]). Depending on current instance execution state and on how changes are propagated to
instances progressed too far, missing version control can lead to inconsistent states and in the worst case to deadlocks or
severe other run-time errors [10]. As shown in Fig. 18a schema S has been modified by adding activities X and Y. Regarding
instance I1 this change is uncritical as I1 has not yet entered the changed region. However, instance I2 would be in an incon-
sistent state afterwards as instance schema and execution history do not match [10].

By contrast, if a PAIS provides explicit version control three support features can be differentiated: running process in-
stances remain associated with the old schema version, while new instances will be created based on the new schema ver-
sion [45,29]. This approach leads to the co-existence of process instances belonging to different schema versions (cf. Fig.
18b). Alternatively, for a (selected) collection of already running process instances a controlled migration to the new process
schema version is supported (cf. Fig. 18c).

Design Choice F1[3] is shown in Fig. 18b where already running instances I1, I2 and I3 remain associated with schema S1,
while new instances (I4, I5) are created from schema S0 (co-existence of process instances of different schema versions). By
contrast, Fig. 19 illustrates the controlled migration of selected instances (Design Choice F1[5]). Only those instances (I1 and
I2) are migrated to the new schema version which are compliant2 with S0. Thereby, I1 can be migrated without any state adap-
tations, whereas for I2 the newly inserted Activity X has to be enabled instead of Activity B. Instance I3 remains running accord-
ing to S since it is non-compliant with S0. If instance migration is accomplished in an uncontrolled manner (i.e., it is not
restricted to compliant process instances) inconsistencies or errors will result (Design Choice F1[4]). Nevertheless, we treat
the uncontrolled migration of process instances as a separate design choice since this functionality can be found in existing sys-
tems (cf. Section 6).

5.2. Other change support features

To ensure that changes can be conducted in a correct and consistent way, that traceability is ensured, and change reuse is
provided additional change support features are needed.

Fig. 17. Change support features.

2 Simply speaking, a process instance I is compliant with process schema S, if the current execution history of I can be created based on S (for details see [10]).
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5.2.1. Support for instance-specific changes (change feature F2)
To deal with exceptions PAISs must support unplanned changes (Design Choice F2[1]) at the process instance level either

through high-level changes in the form of patterns (cf. Section 4) or through low-level primitives. To deal with uncertainty,
PAISs must further allow process modelers to keep parts of the model unspecified during build-time and to defer the con-
cretisation of the respective part to run-time (Design Choice F2[2]). The effects resulting from instance-specific changes can
be permanent or temporary. A permanent instance change remains valid until completion of the instance (unless it is undone
by a user). By contrast, a temporary instance change is only valid for a certain period of time (e.g., the current iteration of a
loop) (cf. Fig. 20).

5.2.2. Correctness of changes (change feature F3)
The application of change patterns must not lead to run-time errors (e.g., activity program crashes due to missing input

data, deadlocks, or inconsistencies due to lost updates or vanishing of instances). In particular, different criteria [10] have
been introduced to formally ensure that process instances can only be updated to a new schema if they are compliant
with it [13,45,29]. In addition, depending on the used process meta model constraints of the respective formalism (e.g., con-
cerning the structuring of process schemes) have to be taken into account as well when applying process changes to a
particular process schema. A detailed overview on correctness issues in the context of (dynamic) process changes can be
found in [10].

Fig. 18. Version control – different options (1).
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5.2.3. Traceability and analysis of changes (change feature F4)
For adaptation patterns, applied changes have to be stored in a change log as change patterns or primitives [55]. Regard-

ing patterns for changes in predefined regions, an execution log is usually sufficient to enable traceability (Design Choice
F4[1]). In addition, logs can be enriched with semantical information, e.g., about the reasons and the context of the changes
[41,56] (Design Choice F4[2]). Finally, change mining allows for the analysis of changes and resulting schema variants, for
example, to support continuous process improvement [57,58] (Design Choice F4[3]).

5.2.4. Access control for changes (change feature F5)
The support of change patterns leads to increased process flexibility. This, in turn, imposes security issues as the PAIS be-

comes more vulnerable to misuse [59,60]. Therefore, the application of changes at the process type and the process instance
level must be restricted to authorized users (Design Choice F5[1]). Access control features differ significantly in their degree
of granularity. In the simplest case, changes are restricted to a particular group of people (e.g., to process engineers). More
advanced access control components [59] allow users to define restrictions at the level of single change patterns (e.g., a cer-
tain user is only allowed to insert additional activities, but not to delete existing ones) (Design Choice F5[2]). In addition,

Fig. 19. Version control – different options (2).

Fig. 20. Permanent and temporary changes.
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authorizations may depend on the object to be changed (e.g., the concrete process schema or a process instance) (Design
Choice F5[3]).

5.2.5. Change reuse (change feature F6)
In the context of unplanned instance changes ‘‘similar” deviations (i.e., combinations of one or more adaptation patterns)

can occur more than once [30,40]. As it requires significant user experience to define changes from scratch, change reuse has
to be supported. For this, changes should be annotated with contextual information (e.g., about the reasons for the deviation)
and be memorized (change Feature F4[2]). This contextual information can be used for retrieving similar problem situations.
This approach ensures that only changes relevant in the current situation are presented to the user [41,40,42]. Regarding
patterns for changes in predefined regions, reuse can be supported by making historical cases available to the user and
by saving frequently re-occurring instances as templates [43].

5.2.6. Change concurrency control (change feature F7)
PAISs supporting instance-specific adaptations (cf. Feature F2), should be able to cope with concurrent changes.
For example, two users might want to apply different ad-hoc changes to a particular process instance at the same time. If

this is done in an uncontrolled manner, errors or inconsistencies (e.g., deadlock-causing cycles) can occur (Design Choice
F7[1]). Or, the execution of an instance proceeds (i.e., the state of the instance may change) while an ad-hoc change is con-
currently applied to it. Here we have to ensure that the state change does not violate state constraints required for the cor-
rect application of the ad-hoc change (or at least the ad-hoc change has to be prohibited in such cases).

The easiest way to avoid respective conflicts is to prohibit concurrent changes in general (Design Choice F7[2]). This can
be achieved, for example, by holding exclusive locks on a process instance when changing its structure or state (e.g., an in-
stance must not proceed while applying an ad-hoc change to it). Although this approach is easy to implement, it is usually
too restrictive due to the long-term locks required (e.g., when a change is defined interactively by a user this might block
instance execution for a while). A more flexible approach would allow for concurrent changes of the structure or state of
a process instance, and further ensure that this does not lead to errors or inconsistencies afterwards (Design Choice
F7[3]). Both, pessimistic and optimistic techniques can be applied in this context to control such concurrent instance changes
and to ensure their correctness. Pessimistic locking is an approach where the process instance to be modified is locked until
the change is accomplished. In contrast, optimistic concurrency control does not put a lock on the process instance, but
checks for conflicts when committing changes.

Finally, we have to deal with ‘‘concurrent” changes at the process type and the process instance level. For example, as-
sume that an instance-specific change is applied to process instance I, which was originally created from process schema
S. Assume further that later process schema S evolves to S0 due to a change at the process type level. Then, the challenging
question is whether the process type change can be propagated to I as well. Although I has undergone an instance-specific
change this should not mean that it must not migrate to the new schema version S’ (particularly not if I is long-running) [61].
Note that respective considerations only have to be made for systems supporting both changes at the process type and the
process instance level (Design Choice F7[4]).

6. Change patterns and change support features in practice

In the following we describe the evaluation of selected approaches from academia and industry regarding their support
for process change patterns and change support features. Section 6.1 describes our evaluation methodology. Evaluation re-
sults for adaption patterns are covered in Section 6.2, while support for changes in predefined regions is discussed in Section
6.3. Section 6.4 shows how the described change features are supported by the evaluated approaches. Finally, a summary of
our evaluation results is provided in Section 6.5.

6.1. Evaluation methodology

This section describes the methodology employed for conducting our evaluation. In particular, we describe the evaluation
goal, evaluation objects, evaluation criteria, evaluation metrics, and the evaluation procedure.

6.1.1. Definition of evaluation goal
The goal of our evaluation is to measure how well current PAISs and PAIS-enabling technology cope with process changes.

Thereby the focus is on changes of the control flow perspective.

6.1.2. Selection of evaluation objects
As evaluation objects we choose PAIS-enabling technologies from both academia and industry. Our focus is on approaches

which primarily model their business processes in an imperative way. Declarative approaches to process modeling are not
covered by our evaluation. In terms of academic approaches our evaluation includes (in alphabetical order) ADEPT2 [11,39],
CAKE2 [30,40], CBRFlow [41,42], HOON [17], MOVE [18], Pockets of Flexibility (PoF) [16,43,44], WASA2 [13], WIDE [45,46],
Worklets/Exlets [12,47,48], and YAWL [49]. As CBRFlow and ADEPT2 have been integrated in the ProCycle [62,56] project
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both systems are evaluated together. The Worklets/Exlets approach is evaluated together with YAWL as it has been inte-
grated as a service for YAWL to foster its flexibility [12]. All academic approaches included in our evaluation have proof-
of-concept implementations. Conceptual frameworks without implementation have not been considered. As samples for
commercial systems our evaluation includes the case-handling system FLOWer and the workflow system Staffware. For both
we have hands-on experience [26] as well as an installation running in our labs.

6.1.3. Definition of evaluation criteria and metrics
Evaluation criteria are the 18 change patterns and the seven change support features as described in Sections 4 and 5.

Furthermore, 5 change primitives (i.e., add/remove node add/remove edge and move edge) are added to our evaluation cri-
teria. As changes can always be conducted at a low level of abstraction through change primitives, their inclusion as eval-
uation criteria is required to ensure completeness. We measure the ability of a PAIS to deal with change as the degree of
support for the described evaluation criteria. For each evaluation criterion we differentiate between no support, partial sup-
port, support and not applicable. If a particular evaluation object does not support an evaluation criterion at all this criterion
will be labelled with ‘‘�”; partial support will be labelled with ‘‘�”. If an evaluation object provides support for a particular
criterion and no design choices exist, this will be labelled with ‘‘+”. Otherwise, the supported design choices will be listed. As
an example take pattern PP1 (Late Selection of Process Fragments) in Fig. 14. Assume that an evaluation object supports pat-
tern PP1 with Design Choices A, B and C. Further assume that for both Design Choice A and Design Choice B, Options 1 and 2
are supported, while Design Choice C is only supported with Option 3. This would result in String ‘‘A[1,2], B[1,2], C[2]” (e.g.,
Worklet/Exlet approach in Fig. 23). As another example consider pattern AP1 (Insert Process Fragment) as depicted in Fig. 7.
Assume that an evaluation object supports Design Choice A with all two options, Design Choice B with all three option, and
Design Choice C with all two options. This would result in String ‘‘A[1, 2], B[1,2,3], C [1, 2]” (e.g., ADEPT2 in Fig. 21).

6.1.4. Analyzing the evaluation objects along the evaluation criteria
For the academic approaches we base our evaluation on a comprehensive literature study. In cases where it is unclear

whether a particular pattern or feature is supported, the respective research groups were contacted. This provided us with
valuable insights into the implementation of change patterns and change support features in the respective approaches.
Regarding the commercial systems support for change patterns and change features was determined based on the installa-
tions in our lab and on our hands-on experience with respective systems [26].

Fig. 21. Adaptation patterns support at the process type level.
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A summary of our evaluation results is given in Fig. 21–23. An in-depth description of each of the evaluated approaches
can be found in [51]. Note that this evaluation only considers flexibility in respect to control flow aspects. Especially in the
case of FLOWer this only provides a partial picture of what the system can offer in terms of flexibility. For example, FLOWer
supports dynamic changes of role assignments and allows process engineers to dynamically add or delete forms [14]. As
these changes do not constitute control flow changes, respective functionality is not considered in our evaluation.

6.2. Support for adaptation patterns

Fig. 21 and 22 show which change primitives and adaptation patterns are supported by the evaluated systems. Fig. 21
focuses on structural changes at the process type level, i.e., on changes which can be performed in the process editor of
the respective system when defining or adapting a process model. Fig. 22, in turn, provides the evaluation results considering
the use of adaptation patterns or change primitives at the process instance level. For a detailed description of the evaluated
approaches we refer to [51].

Generally, an adaptation pattern will only be considered as being provided if the evaluated system supports the pattern
directly, i.e., based on a single high-level change operation instead of a set of change primitives. As structural process adap-
tations can be always realized by means of a set of basic change primitives (e.g., CAKE2, WASA2), missing support for adap-
tation patterns does not necessarily mean that no changes can be performed. However, the support of adaptation patterns
allows introducing changes at a higher level of abstraction hiding as much complexity from the user as possible. Further,
certain adaptation patterns (e.g., AP3 or AP4) can be implemented by combining basic patterns (e.g., AP1, AP2, AP10 and
AP11). Again, a given approach will only qualify for supporting an adaptation pattern, if it supports this pattern directly;
e.g., providing support for patterns AP1 (Insert Process Fragment) and AP2 (Delete Process Fragment) allows for the straight-
forward implementation of pattern AP3 (Move Process Fragment). However, moving activities by using AP1 and AP2 in com-
bination with each other is more complicated than the direct application of AP3. Moreover, this leads to less meaningful
change logs.

Fig. 21 shows that all evaluated systems allow for process type modifications. Thereby, most systems only provide sup-
port for change primitives, i.e., they allow for modifying an existing process schema by adding or deleting nodes and edges.
An additional primitive which allows users to move edges is provided by CAKE2 and YAWL. The only systems offering sup-
port for adaptation patterns at the process type level are ADEPT2 and WIDE. Fig. 22 shows that process instance modifica-
tions are supported by rather few systems. CAKE2 and WASA2 allow for structural run-time adaptations at the instance-level

Fig. 22. Adaptation patterns support at the process instance level.
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based on change primitives (i.e., by adding or removing nodes and edges respectively). ADEPT2, in turn, provides support for
a wide range of adaptation patterns at the process instance level. Both the Worklet/Exlet approach and FLOWer support a
limited spectrum of ad-hoc changes: the Worklet/Exlet approach allows for the replacement of activities (AP4), whereas
FLOWer allows for the deletion of activities (AP2).

6.3. Support for patterns for changes in predefined regions

Fig. 23 shows how patterns for changes in predefined regions are supported by the evaluated approaches. Pattern PP1
(Late Selection of Process Fragment) is supported by 3 distinct systems (HOON, Worklets/Exlets and Staffware). Similar sup-
port is offered by CAKE2, MOVE and PoF, which provide support for pattern PP2 (Late Modeling of Process Fragment). While
MOVE and CAKE2 offer the whole expressiveness of the modeling environment to the end user, PoF facilitates model con-
struction by introducing modeling constraints. Validation ensures that the lately modeled process fragment is compliant
with the constraints [16]. PP3 is not supported by any of the evaluated systems. Nevertheless, the Late Composition of Process
Fragment is listed as a distinct pattern as it constitutes a typical strategy for dealing with different kinds of changes which we
observed in several case studies [5,31]. Finally, the Multi-Instance Activity pattern PP4 can be found in WIDE, YAWL, FLOWer
and Staffware. In addition, it is currently under implementation in ADEPT2.

Patterns PP1 (Late Selection of Process Fragment) and PP2 (Late Modeling of Process Fragment) allow for the realization of
parts of the functionality of adaptation pattern AP1 through workarounds (e.g., HOON, MOVE, PoF). Generally, a placeholder
activity can be positioned between two fragments or parallel to an existing one in the process schema. By substituting this
placeholder activity during run-time with a concrete (sub) process fragment, in principle, a pre-planned serial or parallel
insertion becomes possible (cmp. Design Choice D[1,2] of AP1 in Fig. 7). However, insertion of activities is restricted to
the placeholder activity. Furthermore, these approaches do not allow for structural (ad-hoc) changes of a process fragment
once it has been instantiated, unless this fragment itself contains placeholder activities.

6.4. Change support features in practice

Fig. 23 shows evaluation results regarding the described change support features (cf. Section 5). As the evaluation shows,
Feature F1 (Schema Evolution, Version Control and Instance Migration) is partially supported. Only half of the evaluated

Fig. 23. Change features in practice.
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systems provide versioning support at all (ADEPT2, WASA2, WIDE, YAWL, FLOWer, and Staffware). As missing versioning
support requires users to overwrite an existing schema in case of process type changes or to save the modified schema with
new name, practical applicability is limited. FLOWer allows for overwriting a process schema in addition to the co-existence
of instances running on different schema versions. If running instances are not removed from the system, overwriting a pro-
cess schema can lead to undesired behavior. In connection with process schema evolution the controlled propagation of
changes to ongoing instances is only considered by ADEPT2, WASA2 and WIDE. Furthermore, Staffware offers a feature
for propagating changes to all ongoing instances. As instance migration cannot be restricted to compliant instances only,
the usage of this feature might lead to inconsistencies or deadlocks, thus having the same effect as overwriting a process
schema.

Feature F2 (Support for Instance-Specific Changes) is provided by most approaches in some form. Ad-hoc changes based
on adaptation patterns are only possible in ADEPT2, FLOWer and Worklets/Exlets. While ADEPT2 has realized most adapta-
tion patterns, FLOWer restricts ad-hoc changes to activity deletions and Worklets/Exlets only allow for activity replace-
ments. Furthermore, CAKE2 and WASA2 enable ad-hoc changes based on change primitives. Preplanned changes are
supported by CAKE2, HOON, MOVE, PoF, Worklets/Exlets, FLOWer, and Staffware. Fig. 23 gives a detailed overview.

Feature F3 (Correctness of Changes) is realized quite well by most of the academic approaches, except Worklets/Exlets
which only provide partial correctness support. Both commercial systems, Staffware and FLOWer, do not use formal correct-
ness criteria in the context of schema evolution and instance migration, which can lead to runtime inconsistencies and er-
rors. This especially holds for the overwriting of process schemes in Flower and the instance migrations in Staffware.

Feature F4 (Traceability and Analysis of Changes) is supported by all systems. However, most of them only provide simple
execution and/or change logs and do not enhance these logs with further information (e.g., context of a change). Change
annotations are only available in ADEPT2/CBRFlow and CAKE2. First approaches towards change mining are supported by
ADEPT2 for which a plugin for the process mining tool ProM [63] has been developed [57].

Feature F5 (Access Control for Changes) is mostly supported based on a simple role concept. Several systems additionally
enable more fine-grained definitions of access rights; e.g., ADEPT2/CBRFlow [59], HOON, PoF, Worklets/Exlets, FLOWer [14],
and Staffware allow for specifying distinct authorizations for each pattern. In addition, all these approaches support object-
dependent authorizations as well, i.e., authorizations may depend on the process schema or process instance to be modified.
The latter is also supported by MOVE and WIDE.

Feature F6 (Change Reuse) is supported in ADEPT2/CBRFlow, CAKE2, PoF, and Worklets/Exlets. Both ADEPT2/CBRFlow and
CAKE2 use case-based reasoning techniques for retrieving instance-specific changes which occurred previously in similar
context [42,30]. The retrieval component of PoF is primarily based on structural information [64]. Finally, Worklets/Exlets
support reuse of sub-process fragments through selection rules [12].

Feature F7 (Change Concurrency Control) is addressed by most systems. Approaches which restrict changes to predefined
regions (e.g., HOON, PoF, Worklets/Exlets and Staffware) usually allow only one user to modify a particular placeholder
activity at a time. Further, changes to different placeholder activities are not conflicting and can therefore be introduced
concurrently. Regarding structural adaptations, concurrency control is more complicated. ADEPT2 and CAKE2 allow for con-
current ad-hoc changes [11,30]. In contrast, WASA2 prohibits concurrent changes and requires the entire process instance to
be locked. Similarly, FLOWer does not allow users to work on the same case simultaneously and therefore prohibits
concurrent changes as well [65]. Concurrency of process type and process instance changes is only addressed by ADEPT2
[61,66].

6.5. Summary of evaluation results

Our evaluation shows that no single system exists which supports all change patterns and features in an integrated way
(cf. Fig. 21–23). In particular, none of the approaches offers a holistic change framework considering both adaptation pat-
terns and patterns for changes in predefined regions. ADEPT2 and WIDE score well in respect to adaptation patterns, but lack
support for changes restricted to predefined regions. WASA2 provides good support for ad-hoc changes using change prim-
itives, but neither considers changes to predefined regions nor high-level change operations. Finally, CAKE2 supports ad-hoc
instance changes and changes to predefined regions based on primitives, but does not consider process type changes.

An integrated change framework considering both adaptation patterns and patterns for changes in predefined regions
would allow for addressing a much broader process spectrum and a larger variety of process flexibility scenarios. While pat-
terns for changes in predefined regions provide support for dealing with uncertainty by providing more flexible models,
adaptation patterns allow for structural changes which cannot be preplanned. In addition, they make changes more efficient,
less complex, and less error-prone through providing high-level change operations.

There exists a trade-off between expressiveness of a process meta model and support for structural adaptations. For
example, ADEPT2 has been designed with the goal to enable the latter [11]. To allow for an efficient implementation of adap-
tation patterns, restrictions on the process meta model have been made. Similar restrictions in terms of expressiveness hold
for other approaches supporting structural adaptations (CAKE2, WASA2 and WIDE). YAWL, in turn, provides a reference
implementation for workflow patterns and therefore allows for a high degree of expressiveness [49]. Structural adaptations
have not yet been addressed in YAWL and their implementation would be more difficult due to the higher expressiveness.
However, the integration of Worklets/Exlets with YAWL has shown that patterns for changes in predefined regions can be
easily realized for expressive process meta models as well.
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As discussed, change support features are needed to make changes applicable in practice. However, our evaluation has
shown that deficits in respect to change features exist in several systems, especially correctness of changes is not always
guaranteed.

7. Related work

Patterns were first used by Christopher Alexander [67] to describe solutions to recurring problems and best practices in
architectural design. Patterns also have a long tradition in computer science. Gamma et al. [50] applied the same concepts to
software engineering and described 23 design patterns. In the workflow area, patterns have been introduced for analyzing
the expressiveness of process meta models [19,20,68]. In this context, control flow patterns describe different constructs to
specify activities and their ordering. In addition, workflow data patterns [21] provide ways for modeling the data aspect in
PAISs, and workflow resource patterns [22] describe how resources can be represented in workflows. Furthermore, patterns
for describing service interactions and process choreographies were introduced [69].

The introduction of workflow patterns has had significant impact on PAIS design as well as on the evaluation of PAISs and
process languages like BPEL [20], BPMN [70], EPC [20], and UML [71]. To evaluate the powerfulness of a PAIS regarding its
ability to cope with change, the existing workflow patterns are important, but not sufficient. In addition, a set of patterns
addressing the aspect of process change is needed. Although workflow pattern support allows for reducing the need for mod-
ifying process instances, these patterns require flexibility to be entirely built into the process model. By contrast, patterns for
changes to predefined regions allow deferring decisions from build- to run-time to better cope with uncertainty. In addition,
adaptation patterns will allow for structural process modifications to deal with non-anticipated exceptions and evolving
needs.

Exception handling patterns [24] like Rollback only change the state of a process instance (i.e., its behavior), but not its
schema (i.e., its structure). Thus they are well suited for dealing with expected situations. Non-anticipated situations, in turn,
might require structural adaptations as well [23]. Change patterns support this by allowing to modify the observable behav-
ior of a process instance and its structure. In addition, change patterns can be applied at the process type level decreasing the
efforts needed for accomplishing a change. To provide a complete evaluation framework for PAIS flexibility, expected and
unexpected exceptions as well as schema evolution must be considered.

Exception handling often requires combined use of several exception handling patterns resulting in rather complex rou-
tines. The Exlet approach [47,48] addresses this problem by allowing for the combination of different exception handling
patterns to an exception handling process called Exlet. Generally, Exlets are executed in parallel to the process instance to
be modified and can be reused when similar exceptions re-occur. Exlets allow for ‘‘simulating” several of the adaptation pat-
terns. However, as Exlets are executed independently of the process instance without structurally modifying it, end users
have to suspend the process instance manually if required. In contrast, change patterns hide this complexity from users
by providing high-level change operations.

In [72] it has been shown that patterns can additionally be used for facilitating process modeling. It proposes 9 patterns
for business functions (e.g., approval, notification) and shows that modeling efforts can be decreased when using this pattern
set as building blocks. This approach speeds up process modeling, change patterns likewise allow for reducing the efforts of
accomplishing process changes.

In [73], some of the proposed change patterns are used to implement refactoring techniques, which will be behavior-pre-
serving if certain pre- and post conditions are met. In particular, refactorings allow PAIS engineers to keep process models
maintainable and understandable over time and consequently reduce costs of future process changes.

Most systems considered by our evaluation, model processes in a procedural or imperative way. An exception is provided
by Pockets of Flexibility (PoF) [16], which use a combination of imperative and declarative modeling style. The process itself
is modeled imperatively, but the placeholder activities are specified in a declarative way using constraints. Other declarative
approaches not considered in our evaluation are MOBILE [74] and DECLARE [15,75]. Instead of requiring designers to specify
how the process shall be executed, they only have to state what shall be done during process execution. With declarative
approaches changes become less frequent. However, run-time adaptations still can be an issue (e.g., a constraint might have
to be violated for a particular instance due to an unforeseen situation). Further, constraints themselves may evolve over time,
which raises the challenge of propagating changes to ongoing instances. A promising approach towards this direction is of-
fered by DECLARE [15]. Another challenging issue is the maintenance and testing of constraint-based process models, par-
ticularly in case of large constraint sets.

Different frameworks exist for comparing specific aspects related to process change. In [10] the authors provide one such
framework for elaborating strengths and weaknesses of adaptive PAISs along typical dynamic change problems. Main
emphasis is on investigating formal properties and correctness criteria in connection with dynamic process changes. In
[76] graph- and rule-based languages along dimensions like flexibility, adaptability, complexity, and expressiveness.

Several approaches target the automatic handling of process exceptions. Some of these approaches [77–79,52] apply
structural adaptations to process instances to deal with the exceptions. By using the adaptation patterns offered by existing
systems. In ADEPT2, for example, respective patterns are not only accessible via a process editor, but can also be invoked via
a powerful application programming interface. Several approaches have utilized ADEPT2’s interface to implement agents for
automated exception handling [77–79,52].
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8. Summary and outlook

We have proposed 18 change patterns and seven change support features which – in combination – allow for assessing
PAIS change frameworks. In addition, we have evaluated selected approaches and systems regarding their ability to deal with
process change. The introduction of change patterns complements existing workflow patterns and allows for more meaning-
ful evaluations of existing systems and approaches, particularly if flexibility is an issue. In combination with workflow pat-
terns the presented change framework will enable (PA)IS engineers to choose the process management technology which
meets their flexibility requirements best (or to find that no system satisfies their requirements). Our work will make the
comparison of change frameworks simpler and allows (PA)IS engineers to easily assess whether vendors really hold what
they promise in respect to process changes and process flexibility. Our evaluation shows that currently none of the evaluated
systems provides a holistic change framework supporting all kind of changes in an integrated way. However, in analogy to
workflow patterns we expect vendors to evaluate their PAISs along these criteria and to extend them towards better support
for process changes.

Our future work includes change patterns for aspects other than control flow (e.g., data or resources) and patterns for
advanced change scenarios (e.g., adapting data flow when changing control flow). Further, we will evaluate additional aca-
demic and commercial systems. Currently, we are also working on a reference implementation supporting all change pat-
terns and change support features. Based on this we will conduct a series of experiments, e.g., to measure the efforts for
changing process schemes either based on change patterns or change primitives.
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