
Probabilistic Voronoi Diagrams for Probabilistic Moving Nearest Neighbor
Queries

Mohammed Eunus Ali1, Egemen Tanin, Rui Zhang, and Ramamohanarao Kotagiri

Department of Computer Science and Software Engineering
University of Melbourne, Victoria, 3010, Australia

Tel.: +61 3 8344 1350
Fax: +61 3 9348 1184

{eunus,egemen,rui,rao}@csse.unimelb.edu.au

Abstract

A large spectrum of applications such as location based services and environmental monitoring demand efficient query
processing on uncertain databases. In this paper, we propose the probabilistic Voronoi diagram (PVD) for process-
ing moving nearest neighbor queries on uncertain data, namely the probabilistic moving nearest neighbor (PMNN)
queries. A PMNN query finds the most probable nearest neighbor of a moving query point continuously. To process
PMNN queries efficiently, we provide two techniques: a pre-computation approach and an incremental approach.
In the pre-computation approach, we develop an algorithm to efficiently evaluate PMNN queries based on the pre-
computed PVD for the entire data set. In the incremental approach, we propose an incremental probabilistic safe
region based technique that does not require to pre-compute the whole PVD to answer the PMNN query. In this incre-
mental approach, we exploit the knowledge for a known region to compute the lower bound of the probability of an
object being the nearest neighbor. Experimental results show that our approaches significantly outperform a sampling
based approach by orders of magnitude in terms of I/O, query processing time, and communication overheads.

Keywords: Voronoi diagrams, continuous queries, moving objects, uncertain data

1. Introduction

Uncertainty is an inherent property in many database applications that include location based services [1], envi-
ronmental monitoring [2], and feature extraction systems [3]. The inaccuracy or imprecision of data capturing devices,
the privacy concerns of users, and the limitations on bandwidth and battery power introduce uncertainties in different
attributes such as the location of an object or the measured value of a sensor. The values of these attributes are stored
in a database, known as an uncertain database.

In recent years, query processing on an uncertain database has received significant attention from the research
community due to its wide range of applications. Consider a location based application where the location information
of users may need to be pre-processed before publishing due to the privacy concern of users. Alternatively, a user may
want to provide her position as a larger region in order to prevent her location to be identified to a particular site.
In such cases, locations of users are stored as uncertain attributes such as regions instead of points in the database.
An application that deals with the location of objects (e.g., post office, hospital) obtained from satellite images is
another example of an uncertain database. Since the location information may not be possible to identify accurately
from the satellite images due to noisy transmission, locations of objects need to be represented as regions denoting
the probable locations of objects. Likewise, in a biological database, objects identified from microscopic images need
to be presented as uncertain attributes due to inaccuracies of data capturing devices.

In this paper, we propose a novel concept called Probabilistic Voronoi Diagram (PVD), which has a potential
to efficiently process nearest neighbor (NN) queries on an uncertain database. The PVD for a given set of uncertain

1The corresponding author

Preprint submitted to Elsevier September 17, 2018

ar
X

iv
:1

10
6.

59
79

v1
  [

cs
.D

B
] 

 2
9 

Ju
n 

20
11



objects o1, o2, ..., on partitions the data space into a set of Probabilistic Voronoi Cells (PVCs) based on the probability
measure. Each cell PVC(oi) is a region in the data space, where each data point in this region has a higher probability
of being the NN to oi than any other object.

A nearest neighbor (NN) query on an uncertain database, called a Probabilistic Nearest Neighbor (PNN) query,
returns a set of objects, where each object has a non-zero probability of being the nearest to a query point. A common
variant of the PNN query that finds the most probable NN to a given query point is also called a top-1-PNN query.
Existing research focuses on efficient processing of PNN queries [4, 5, 6, 7] and its variants [8, 9, 10] for a static
query point. In this paper, we are interested in answering Probabilistic Moving Nearest Neighbor (PMNN) queries on
an uncertain database, where data objects are static, the query is moving, and the future path of the moving query is
unknown. A PMNN query returns the most probable nearest object for a moving query point continuously.

A straightforward approach for evaluating a PMNN query is to use a sampling-based method, which processes the
PMNN query as a sequence of PNN queries at sampled locations on the query path. However, to obtain up-to-date
answers, a high sampling rate is required, which makes the sampling-based approach inefficient due to the frequent
processing of PNN queries.

To avoid high processing cost of the sampling based approach and to provide continuous results, recent approaches
for continuous NN query processing on a point data set rely on safe-region based techniques, e.g., Voronoi dia-
gram [11]. In a Voronoi diagram based approach, the data space is partitioned into disjoint Voronoi cells where all
points inside a cell have the same NN. Then, the NN of a query point is reduced to identifying the cell for the query
point, and the result of a moving query point remains valid as long as it remains inside that cell. Motivated by the
safe-region based paradigm, in this paper we propose a Voronoi diagram based approach for processing a PMNN
query on a set of uncertain objects.

Voronoi diagrams for uncertain objects [6, 12] based on a simple distance metric, such as the minimum and
maximum distances to objects, result in a large neutral region that contains those points for which no specific NN
object is defined. Thus, these are not suitable for processing a PMNN query. In this paper, we propose the PVD that
divides the space based on a probability measure rather than using just a simple distance metric.

A naive approach to compute the PVD is to find the top-1-PNN for every possible location in the data space using
existing static PNN query processing techniques [4, 5, 8], which is an impractical solution due to high computational
overhead. In this paper, we propose a practical solution to compute the PVD for a set of uncertain objects. The key
idea of our approach is to efficiently compute the probabilistic bisectors between two neighboring objects that forms
the basis of PVCs for the PVD.

After computing the PVD, the most probable NN can be determined by simply identifying the PVC in which the
query point is currently located. The result of the query does not change as long as the moving query point remains
in the current PVC. A user sends its request as soon as it exits the PVC. Thus, in contrast to the sampling based
approach, the PVD ensures the most probable NN for every point of a moving query path is available. Since this
approach requires the pre-computation of the whole PVD, we name it the pre-computation approach in this paper.

The pre-computation approach needs to access all the objects from the database to compute the entire PVD. In
addition, the PVD needs to be re-computed for any updates (insertion or deletion) to the database. Thus the pre-
computation approach may not be suitable for the cases when the query is confined into a small region in the data
space or when there are frequent updates in the database. For such cases, we propose an incremental algorithm based
on the concept of local PVD. In this approach, a set of surrounding objects and an associated search space, called
known region, with respect to the current query position are retrieved from the database. Objects are retrieved based
on their probabilistic NN rankings from the current query location. Then, we compute the local PVD based only on the
retrieved data set, and develop a probabilistic safe region based PMNN query processing technique. The probabilistic
safe region defines a region for an uncertain object where the object is guaranteed to be the most probable nearest
neighbor. This probabilistic safe region enables a user to utilize the retrieved data more efficiently and reduces the
communication overheads when a client is connected to the server through a wireless link. The process needs to be
repeated as soon as the retrieved data set cannot provide the required answer for the moving query point. We name
this PMNN query processing technique the incremental approach in this paper.

In summary, we make the following contributions in this paper:

• We formulate the Probabilistic Voronoi Diagram (PVD) for uncertain objects and propose techniques to com-
pute the PVD.

2



• We provide an algorithm for evaluating PMNN queries based on the pre-computed PVD.

• We propose an incremental algorithm for evaluating PMNN queries based on the concept of local PVD.

• We conduct an extensive experimental study which shows that our PVD based approaches outperform the
sampling based approach significantly.

The rest of the paper is organized as follows. Section 2 discusses preliminaries and the problem setup. Section 3
reviews related work. In Section 4, we formulate the concept of PVD and present methods to compute it, focusing on
one and two dimensional spaces. In Section 5, we present two techniques: pre-computation approach and incremental
approach for processing PMNN queries. Section 6 reports our experimental results and Section 7 concludes the paper.

2. Preliminaries and Problem Setup

Let O be a set of uncertain objects in a d-dimensional data space. An uncertain object oi ∈ O, 1 ≤ i ≤ |O|,
is represented by a d-dimensional uncertain range Ri and a probability density function (pd f ) fi(u) that satisfies∫

Ri
fi(u)du = 1 for u ∈ Ri. If u < Ri, then fi(u) = 0. We assume that the pdf of uncertain objects follow uniform

distributions for the sake of easy explication. Our concept of PVD is applicable for other types of distributions. We
briefly discuss PVDs for other distributions in Section 4.3). For uniform distribution, the pdf of oi can be expressed as
fi(u) = 1

Area(Ri)
for u ∈ Ri. For example, for a circular object oi, the uncertainty region and the pdf are represented as

Ri = (ci, ri) and fi(u) = 1
πr2

i
, respectively, where ci is the center and ri is the radius of the region. We also assume that

the uncertainty of objects remain constant.
An NN query on a traditional database consisting of a set of data points (or objects) returns the nearest data point

to the query point. An NN query on an uncertain database does not return a single object, instead it returns a set of
objects that have non-zero probabilities of being the NN to the query point. Suppose that the database maintains only
point locations c1, c2, and c3 for objects o1, o2, and o3, respectively (see Figure 1). Then an NN query with respect
to q returns o2 as the NN because the distance dist(c2, q) is the least among all other objects. In this case, o1 and
o3 are the second and third NNs, respectively, to the query point q. If the database maintains the uncertainty regions
R1 = (c1, r1), R2 = (c2, r2), and R3 = (c3, r3) for objects o1, o2, and o3, respectively, then the NN query returns all
three (o1, p1), (o2, p2), (o3, p3) as probable NNs for the query point q, where p1 > p2 > p3 > 0 (see Figure 1).

A Probabilistic Nearest Neighbor (PNN) query [4] is defined as follows:

Definition 2.1. (PNN) Given a set O of uncertain objects in a d-dimensional database, and a query point q, a PNN
query returns a set P of tuples (oi, pi), where oi ∈ O and pi is the non-zero probability that the distance of oi to q is
the minimum among all objects in O.

The probability p(oi, q) (or simply pi) of an object oi of being the NN to a query point q can be computed as
follows. For any point u ∈ Ri, where Ri is the uncertainty region of an object oi, we need to first find out the probability
of oi being at u and multiply it by the probabilities of all other objects being farther than u with respect to q, and then
summing up these products for all u to compute pi. Thus, pi can be expressed as follows:

pi =

∫
u∈Ri

fi(u)
(∏

j,i

∫
v∈R j

P(dist(v, q) > dist(u, q))dv
)
du, (1)

where the function P(.) returns the probability that a point v ∈ R j of o j is farther from a point u ∈ Ri of oi.
Figure 1 shows a query point q, and three objects o1, o2, and o3. Based on Equation 1, the probability p1 of object

o1 being the NN to q can be computed as follows. In this example, we assume a discrete space where the radii of three
objects are 5, 2, and 3 units, respectively, and the minimum distance of o1 to q is 5 units. Suppose that the dashed circles
(q, 5), (q, 6), (q, 7), (q, 8), and (q, 9) centered at q with radii 5, 6, 7, 8, and 9 units, respectively, divide the uncertain
region R1 of o1 into four sub-regions o11 , o12 , o13 , and o14 , where o11 = (c1, r1) ∩ (q, 6), o12 = (c1, r1) ∩ (q, 7) − o11 ,
o13 = (c1, r1)∩ (q, 8)− (o11 ∪ o12 ), o14 = (c1, r1)∩ (q, 9)− (o11 ∪ o12 ∪ o13 ); similarly R2 is divided into six sub-regions
o21 , o22 , o23 , o24 , o25 , and o26 ; R3 is divided into three sub-regions o31 , o32 , and o33 .

3



5

9

q

2o

3o

1o
2c

3c

1r
1c

2r

3r

1
1o

3
1o21

o
4
1o

Figure 1: An example of a PNN query

Then p1 can be computed by summing: (i) the probability of o1 being within the sub-region o11 multiplied by the
probabilities of o2 and o3 being outside the circular region (q, 6), (ii) the probability of o1 being within the sub-region
o12 multiplied by the probabilities of o2 and o3 being outside the circular region (q, 7), (iii) the probability of o1 being
within the sub-region o13 multiplied by the probabilities of o2 and o3 being outside the circular region (q, 8), and (iv)
the probability of o1 being within the sub-region o14 multiplied by the probabilities of o2 and o3 being outside the
circular region (q, 9).

As we have discussed in the introduction, in many applications a user may often be interested in the most probable
nearest neighbor. In such cases, a PNN only returns the object with the highest probability of being the NN, also
known as a top-1-PNN query. In this paper, we address the probabilistic moving NN query that continuously reports
the most probable NN for each query point of a moving query.

From Equation 1, we see that finding the most probable NN to a static query point is expensive as it involves costly
integration and requires to consider the uncertainty of other objects. Hence, for a moving user that needs to be updated
with the most probable answer continuously, it requires repetitive computation of the top object for every sampled
location of the moving query. In this paper, we propose PVD based approaches for evaluating a PMNN query.

In this paper, we propose two techniques: a pre-computation approach and an incremental approach to answer
PMNN queries. Based on the nature of applications, one can choose any of these techniques that suits best for her
purpose. Moreover, both of our techniques fit into any of the two most widely used query processing paradigms:
centralized paradigm, and client-server paradigm. In the centralized paradigm the query issuer and the processor
reside in the same machine, and the total query processing cost is the main performance measurement metric. On the
other hand, in the client-server paradigm, a client issues a query to a server that processes the query, through wireless
links such as mobile phone networks. Thus, in the client-server paradigm the performance metric includes both the
communication cost and the query processing cost.

In the rest of the paper, we use the following functions: min(v1, v2, ..., vn) and max(v1, v2, ..., vn) return the mini-
mum and the maximum, respectively, of a given set of values v1, v2,...,vn; dist(p1, p2) returns the Euclidian distance
between two points p1 and p2; mindist(p, o) and maxdist(p, o) return the minimum and maximum Euclidian distances,
respectively, between a point p and an uncertain object o.

We also use the following terminologies. When the possible range of values of two uncertain objects overlap then
we call them overlapping objects; otherwise they are called non-overlapping objects. If the ranges of two objects are
of equal length then we call them equi-range objects; otherwise they are called non-equi-range objects.

3. Background

In this section, we first give an overview of existing PNN query processing techniques on uncertain databases that
are closely related to our work. Then we present existing work on Voronoi diagrams.

3.1. Probabilistic Nearest Neighbor
Processing PNN queries on uncertain databases has received significant attention in recent years. In [4],

Cheng et al. proposed a numerical integration based technique to evaluate a PNN query for one-dimensional sen-
sor data. In [5], an I/O efficient technique based on numerical integration was developed for evaluating PNN queries

4



on two-dimensional uncertain moving object data. In [7], authors presented a sampling based technique to compute
PNN, where both data and query objects are uncertain. Probabilistic threshold NN queries have been introduced
in [13], where all objects with probabilities above a specified threshold are reported. In [14], a PNN algorithm was
presented where both data and query objects are static trajectories, where the algorithm finds objects that have non-
zero probability of any sub-intervals of a given trajectory. Lian et al. [15] presented a technique for a group PNN
query that minimizes the aggregate distance to a set of static query points.

The PNN variant, top-k-PNN query reports top k objects which have higher probabilities of being the nearest than
other objects in the database [8, 9, 10]. Among these works, techniques [9, 10] aim to reduce I/O and CPU costs
independently. In [8], the authors proposed a unified cost model that allows interleaving of I/O and CPU costs while
processing top-k-PNN queries. This method [8] uses lazy computational bounds for probability calculation which is
found to be very efficient for finding top-k-PNN.

Any existing methods for static PNN queries [4, 5, 7] or its variants [8, 9, 10] can be used for evaluating PMNN
queries which process the PMNN query as a sequence of PNN queries at sampled locations on the query path. Since in
this paper we are only interested in the most probable answer, we use the recent technique [8] to compute top-1-PNN
for processing PMNN queries in a comparative sampling based approach and also for the probability calculation in
the PVD.

Some techniques [16, 17] have been proposed for answering PNN queries (including top-k-PNN) for existentially
uncertain data, where objects are represented as points with associated membership probabilities. However, these
techniques are not related to our work as they do not support uncertainty in objects’ attributes. Our problem should
also not be confused with maximum likelihood classifiers [18] where they use statistical decision rules to estimate the
probability of an object being in a certain class, and assign the object to the class with the highest probability.

All of the above mentioned schemes assume a static query point for PNN queries. Though, continuous processing
of NN queries for a moving query point on a point data set was also a topic of interest for many years [19], we are the
first to address such queries on an uncertain data set. In this paper, we propose efficient techniques for probabilistic
moving NN queries on an uncertain database, where we continuously report the most probable NN for a moving query
point.

3.2. Voronoi Diagrams

The Voronoi diagram [11] is a popular approach for answering both static and continuous nearest neighbor queries
for two-dimensional point data [20]. Voronoi diagrams for extended objects (e.g., circular objects) [21] have been
proposed that use boundaries of objects, i.e., minimum distances to objects, to partition the space. However, these
objects are not uncertain, and thus, [21] cannot be used for PNN queries.

Voronoi diagrams for uncertain objects have been proposed that can divide the space for a set of sparsely dis-
tributed objects [6, 12]. Both of these approaches are based on the distance metric, where mindist and maxdist to
objects are used to calculate the boundary of the Voronoi edges.

The Voronoi diagram of [12] can be described as follows.
Let R1,R2, ...,Rn be the regions of a set O of uncertain objects o1, o2, ..., on, respectively. Then a set of sub-regions

or cells V1,V2, ...,Vn in the data space can be determined such that a point in Vi must be closer to any point in Ri than
to any point in any other object’s region. For two objects oi and o j, let H(i, j) be the set of points in the space that are
at least as close to any point in Ri as any point in R j, i.e.,

H(i, j) = {p‖∀x ∈ Ri∀y ∈ R j dist(p, x) ≤ dist(p, y)},

where p is a point in the data space.
Then, the cell Vi of object oi can be defined as follows:

Vi = ∩ j,iH(i, j).

The boundary B(i, j) of H(i, j) can be defined as a set of points in H(i, j), where p ∈ B(i, j) and maxdist(p, oi) =
mindist(p, o j). If the regions are circular, the boundary of object oi with o j is a set of points p that holds the following
condition:

dist(p, ci) + ri = dist(p, c j) − r j,

5



2o
1
o

Figure 2: A guaranteed Voronoi diagram

where ci and c j are the centers and ri and r j are the radii of the regions for objects oi and o j, respectively.
Since ri and r j are constants, the points p that satisfy the above equation lie on the hyperbola (with foci ci and c j)

arm closest to oi. Figure 2 shows an example of this Voronoi diagram for uncertain objects o1 and o2. The figure also
shows the neutral region (the region between two hyperbolic arms) for which the NN cannot be defined by using this
Voronoi diagram. Since this Voronoi diagram divides the space based on only the distances (i.e., mindist and maxdist
of objects), there may not exist any partition of the space when there is no point such that mindist of an object is equal
to maxdist of the other object, i.e., when the regions of objects overlap or too close to each other.

In this approach, a Voronoi cell Vi only contains those points in the data space that have oi as the nearest object
with probability one. Thus, this diagram is called a guaranteed Voronoi diagram for a given set of uncertain objects.
However, in our application domain, an uncertain database can contain objects with overlapping ranges or objects
with close proximity (or densely populated) [4, 5, 8]. Hence a PNN query returns a set of objects (possibly more than
one) which have the possibilities of being the NN to the query point. Having such a data distribution, the guaranteed
Voronoi diagram cannot divide the space at all, and as a result the neutral regions cover most of the data space for
which no nearest object can be determined. However, for an efficient PMNN query evaluation we need to continuously
find the most probable nearest object for each point of the query path. We propose a Probabilistic Voronoi Diagram
(PVD) that works for any distribution of data objects.

Cheng et al. [6] also propose a Voronoi diagram for uncertain data, called Uncertain-Voronoi diagram (UV-
diagram). The UV-diagram partitions the space based on the distance metric similar to the guaranteed Voronoi di-
agram [12]. For each uncertain object oi, the UV-diagram defines a region (or UV-cell) where oi has a non-zero
probability of being the NN for any point in this region. The main difference of the UV-diagram from the guaranteed
Voronoi diagram is that the guaranteed Voronoi diagram concerns about finding the region for a object where the
object is guaranteed to be the NN for any point in this region, on the other hand UV-diagram concerns about defining
a region for an object where the object has a chance of being the NN for any point in this region. For example, in
Figure 2, all points that are left side of the hyperbolic arm closest to o2 have non-zero probabilities of o1 being the
NN, and thus the region left to this hyperbolic line (i.e., closest to o2) defines the UV-cell for object o1. Similarly, the
region right to the hyperbolic line closest to o1 defines the UV-cell for object o2. Since both UV-diagram and guar-
anteed Voronoi diagram are based on the concept of similar distance metrics, the UV-diagram suffers from similar
limitations as of the guaranteed Voronoi diagram (as discussed above) and is not suitable for our purpose.

4. Probabilistic Voronoi Diagram

A Probabilistic Voronoi Diagram (PVD) is defined as follows:

Definition 4.1. (PVD) Let O be a set of uncertain objects in a d-dimensional data space. The probabilistic Voronoi
diagram partitions the data space into a set of disjoint regions, called Probabilistic Voronoi Cells (PVCs). The PVC
of an object oi ∈ O is a region or a set of non-contiguous region, denoted by PVC(oi), such that p(oi, q) > p(o j, q) for
any point q ∈ PVC(oi) and for any object o j ∈ O − {oi}, where p(oi, q) and p(o j, q) are the probabilities of oi and o j

of being the NNs to q.

The basic idea of computing a PVD is to identify the PVCs of all objects. To find a PVC of an object, we need to
find the boundaries of the PVC with all neighboring objects. The boundary line/curve that separates two neighboring
PVCs is called the probabilistic bisector of two corresponding objects, as both objects have equal probabilities of being

6



the NNs for any point on the boundary. Let oi and o j be two uncertain objects, pboio j be the probabilistic bisector of
oi and o j that separates PVC(oi) and PVC(o j). Then, for any point q ∈ pboio j , p(oi, q) = p(o j, q), and for any point
q ∈ PVC(oi), p(oi, q) > p(o j, q), and for any point q ∈ PVC(o j), p(oi, q) < p(o j, q).

A naive approach to compute the PVD requires the processing of PNN queries by using Equation 1 at every
possible location in the data space for determining the PVCs based on the calculated probabilities. This approach is
prohibitively expensive in terms of computational cost and thus impractical. In this paper, we propose an efficient and
practical solution for computing the PVD for uncertain objects. Next, we show how to efficiently compute PVDs,
focusing on 1-dimensional (1D) and 2-dimensional (2D) spaces. We briefly discuss higher dimensional cases at the
end of this section.

4.1. Probabilistic Voronoi Diagram in a 1D Space

Applications such as environmental monitoring, feature extraction systems capture one dimensional uncertain
attributes, and store these values in a database. In this section, we derive the PVD for 1D uncertain objects.

An uncertain 1D object oi can be represented as a range [li, ui], where li and ui are lower and upper bounds of
the range. Let mi and ni be the midpoint and the length of the range [li, ui], i.e., mi =

li+ui
2 and ni = ui − li. The

probabilistic bisector pboio j of two 1D objects oi and o j is a point x within the range [min(li, l j),max(ui, u j)] such that
p(oi, x) = p(o j, x), and p(oi, x′) > p(o j, x′) for any point x′ < x and p(oi, x′′) < p(o j, x′′) for any point x′′ > x. Since
only the equality condition is not sufficient, other two conditions must also hold. In our proof for lemmas, we will
show that a probabilistic bisector needs to satisfy all three conditions.

For example, Figure 3(b) shows two uncertain objects o1 and o2, and their probabilistic bisector pbo1o2 as a point
x. In this example, the lengths of range for o1 and o2 are n1 = 8 and n2 = 4, respectively, and the minimum distances
from x to o1 and o2 are d1 = 1 and d2 = 3, respectively. Then based on Equation 1, we can compute the probabilities
of o1 and o2 of being the NN to x as follows:

p(o1, x) =
2
8
·

4
4
+

1
8
·

3
4
+

1
8
·

2
4
+

1
8
·

1
4
=

14
32
,

and

p(o2, x) =
1
4
·

5
8
+

1
4
·

4
8
+

1
4
·

3
8
+

1
4
·

2
8
=

14
32
.

A naive approach for finding the pboio j requires the computation of probabilities (using Equation 1) of oi and o j for
every position within the range [min(li, l j),max(ui, u j)]. To avoid high computational overhead of this naive approach,
in our method we show that for two equi-range objects (i.e., ni = n j), we can always directly compute the probabilistic
bisector (see Lemma 4.1) by using the upper and lower bounds of two candidate objects. Similarly, we also show that
for two non-equi-range objects, where ni , n j, we can directly compute the probabilistic bisector for certain scenarios
shown in Lemmas 4.2-4.3, and for the remaining scenarios of non-equi-range objects we exploit these lemmas to find
probabilistic bisectors at reduced computational cost.

Next, we present the lemmas for 1D objects. Lemma 4.1 gives the probabilistic bisector of two equi-range objects,
overlapping and non-overlapping. Figure 3(a) is an example of a non-overlapping case. (Note that if li = l j and ui = u j,
then two objects oi and o j are assumed to be the same and no probabilistic bisector exists between them.)

Lemma 4.1. Let oi and o j be two objects where mi , m j. If ni = n j, then the probabilistic bisector pboio j of oi and o j

is the bisector of mi and m j.

PROOF. Let oi and o j be two equi-range objects, i.e., ni = n j. Let x be the bisector of two midpoints mi and m j, i.e.,
x = mi+m j

2 .
Then, by using Equation 1, we can calculate the probability of oi being the NN to x as follows.

p(oi, x) =
ni−1∑
s=1

1
ni

n j − s
n j

.

7



1 3

2o1o

2u2m2l1m 1u1l
2
o
1
opb

x

(b)

3o

2o1o

2m 2u2l1l 1u1m

(a)

2
o
1
opbx

(e)

(d)(c)

2x1x

2o1o
pb

2l 2m 2u

x
x

2
o
1
opb

2o1o
pb

1u1m1l

2l 2u2m

2l 2m 2u
1l 1u1m1m 1u1l

2o1o
pb

1o 1o

1o

2o 2o

2o

Figure 3: Scenarios of lemmas

Similarly, we can calculate the probability of o j being the NN to x, as follows.

p(o j, x) =
n j−1∑
s=1

1
n j

ni − s
ni

.

If we put ni = n j in the above two equations, we have p(oi, x) = p(o j, x). Thus, the probabilities of oi and o j of
being the NN from the point x are equal.

Now, let x′ = mi+m j

2 − ε be a point on the left side of x. Then we can calculate the probability of oi of being the NN
to x′

p(oi, x′) = 2ε
n j

nin j
+

ni−2ε∑
s=1

1
ni

n j − s
n j

.

Similarly, we can calculate the probability of o j being the NN to x′, as follows.

p(o j, x′) =
ni−1∑

s=2ε+1

1
n j

ni − s
ni

.

Now, if we put ni = n j in the above two equations, then we have p(oi, x′) > p(o j, x′) at x′. Similarly we can prove
that p(oi, x′′) < p(o j, x′′) for a point x′′ on the right side of x.

Thus, we can conclude that x is the probabilistic bisector of oi and o j, i.e., pboio j = x.

The following lemma shows how to compute the probabilistic bisector of two non-equi-range objects that are
non-overlapping (see Figure 3(b)).

Lemma 4.2. Let oi and o j be two non-overlapping objects, where ni , n j. If there are no other objects within the
range [min(li, l j),max(ui, u j)], then the probabilistic bisector pboio j of oi and o j is the bisector of mi and m j.

8



PROOF. Let ni > n j, and x be the bisector of two midpoints mi and m j of objects oi and o j, respectively, i.e., x = mi+m j

2 ,
and the minimum distances from x to oi and o j are di and d j, respectively.

Then, by using Equation 1, we can calculate the probability of oi being the NN to x as follows.

p(oi, x) = (d j − di)
1
ni

n j

n j
+

n j−1∑
s=1

1
ni

n j − s
n j

= (d j − di)
n j

nin j
+

n j(n j − 1)
2nin j

.

Similarly, we can calculate the probability of o j being the NN to x as follows.

p(o j, x) =
n j∑

s=1

1
n j

ni − (d j − di + s)
ni

.

Since, we have d j − di =
ni−n j

2 , i.e., ni = 2(d j − di) + n j. By replacing ni in the numerator of p(o j, x), we can have the
following,

p(o j, x) =
n j∑

s=1

1
n j

2(d j − di) + n j − (d j − di + s)
ni

= (d j − di)
n j

nin j
+

n j(n j − 1)
2nin j

.

Since p(oi, x) = p(o j, x), we have pboio j = x.
On the other hand, let x′ = mi+m j

2 − ε be a point on the left side of the probabilistic bisector.
Then, by using Equation 1, we can calculate the probability of oi being the NN to x′ as follows.

p(oi, x′) = (d j − di + 2ε)
n j

nin j
+

n j(n j − 1)
2nin j

.

Similarly, we can calculate the probability of o j being the NN to x′, as follows.

p(o j, x′) = (d j − di − 2ε)
n j

nin j
+

n j(n j − 1)
2nin j

.

So, we can say p(oi, x′) > p(o j, x′) for a point x′ on the left side of pboio j . Similarly we can prove that p(oi, x′′) <
p(o j, x′′) for a point x′′ on the right side of pboio j .

For two non-equi-range objects that are overlapping, the following lemma directly computes the probabilistic
bisector for the scenarios where lower, upper, or mid-point values of two candidate objects are same (see Figure 3(c),
(d), and (e)).

Lemma 4.3. Let oi and o j be two overlapping objects, where ni , n j, li ≤ l j ≤ u j ≤ ui, and there are no other objects
within the range [min(li, l j),max(ui, u j)].

1. If li = l j, then the probabilistic bisector pboio j of oi and o j is the bisector of mi and u j.
2. If ui = u j, then the probabilistic bisector pboio j of oi and o j is the bisector of mi and l j.
3. If mi = m j, then the probabilistic bisectors pboio j of oi and o j are the bisectors of li and l j, and ui and u j.

PROOF. Let ni > n j, li = l j, x = mi+l j

2 , and d be the distance from x to both mi and l j.

9



Then, by using Equation 1, we can calculate the probability of oi being the NN to x as follows.

p(oi, x) =
d∑

s=1

2
ni

n j

n j
+

n j−1∑
s=1

2
ni

n j − s
n j

=
2d
ni
+

n j(n j − 1)
nin j

.

Similarly, we can calculate the probability of o j being the NN to x as follows.

p(o j, x) =
n j∑

s=1

1
n j

ni − (2d + 2s)
ni

.

However, ni
2 − n j = 2d, that is ni = 4d + 2n j. By replacing ni in the numerator and simplifying the term, we can have

the following, p(o j, x) = 2d
ni
+

n j(n j−1)
nin j

. Since p(oi, x) = p(o j, x), pboio j = x. Similar to Lemma 4.2, we can prove that
p(oi, x′) > p(o j, x′) for any point x′ on the left, and p(oi, x′′) < p(o j, x′′) for any point x′′ on the right side of pboio j .

Similarly, we can prove the case for ui = u j.
Let mi = m j, x1 =

li+l j

2 , and d be the distance from x1 to both li and l j.
Then, by using Equation 1, we can calculate the probability of oi being the NN to x1 as follows.

p(oi, x1) =
d∑

s=1

2
ni

n j

n j
+

n j−1∑
s=1

1
ni

n j − s
n j

=
2d
ni
+

n j(n j − 1)
2nin j

.

Similarly, we can calculate the probability of o j being the NN to x1 as follows.

p(o j, x1) =
n j∑

s=1

1
n j

ni − (2d + s)
ni

.

However, ni
2 −

n j

2 = 2d, that is ni = 4d + n j. By replacing ni in the numerator and simplifying the term, we can have
the following, p(o j, x1) = 2d

ni
+

n j(n j−1)
2nin j

. Since p(oi, x′) = p(o j, x′), we have pboio j = x1. Similar to Lemma 4.2, we can
prove that p(oi, x′) > p(o j, x′) for any point x′ on the left, and p(oi, x′′) < p(o j, x′′) for any point x′′ on the right side
of pboio j .

Similarly, we can prove that the other probabilistic bisector exists at x2 =
ui+u j

2 , as the case is symmetric to that of
x1.

Note that, since ni > n j and mi = m j, oi completely contains o j. Thus the probability of o j is higher than that of oi

around the mid-point (mi), and the probability of oi is higher than that of o j towards the boundary points (li and ui).
Therefore in this case, we have two probabilistic bisectors between oi and o j.

Figures 3(c-e) show an example of three cases as described in Lemma 4.3. Figure 3(c) shows the first case for
objects o1 and o2, where l1 = l2 and pbo1o2 =

m1+u2
2 . Similarly, Figure 3(d) shows an example of the second case

for objects o1 and o2, where u1 = u2 and pbo1o2 =
m1+l2

2 . Finally, Figure 3(e) shows an example of the third case
for objects o1 and o2, where m1 = m2, and x1 =

l1+l2
2 and x2 =

u1+u2
2 are two probabilistic bisectors. In such a case,

two probabilistic bisectors, x1 and x2, divide the space into three subspaces. That means, the Voronoi cell of object
o1 comprises of two disjoint subspaces. In Figure 3(e), the subspace left to x1 and the subspace right to x2 form the
Voronoi cell of o1, and the subspace bounded by x1 and x2 forms the Voronoi cell of o2.

Apart from the above mentioned scenarios, the remaining scenarios of two overlapping non-equi-range objects
are shown in Figure 4, where it is not possible to compute the probabilistic bisector directly by using lower and upper
bounds of two candidate objects. In these scenarios, Lemma 4.3 can be used for choosing a point, called the initial

10



probabilistic bisector, which approximates the actual probabilistic bisector and thereby reducing the computational
overhead. Figure 4 (a), (b), (c) show three scenarios, where three cases of Lemma 4.3 (1), (2), (3), are used to compute
the initial probabilistic bisector, respectively, for our algorithm. We will see (in Algorithm 1) how to use our lemmas
to find the probabilistic bisectors for these scenarios.

2o1o
ipb

2o1o
ipb

2
o
1
oipb

2o1o
ipb

(c)

(b)(a)

2o

2u2m2l

2o

2l 2m 2u

2x1x

2u2m2l

x
x

1u1m1l

1m 1u1l1l 1u1m
1o 1o

1o

2o

Figure 4: Remaining scenarios

So far we have assumed that no other objects exist within the ranges of two candidate objects. However, the
probabilities of two candidate objects may change in the presence of any other objects within their ranges (as shown
in Equation 1). Only the probabilistic bisector of two equi-range objects remains the same in the presence of any other
object within their ranges.

Let ok be the third object that overlaps with the range [min(li, l j),max(ui, u j)] for the case in Figure 3(a). Then,
using Equation 1, we can calculate the NN probability of object oi from x as follows.

p(oi, x) =
ni−1∑
s=1

1
ni

n j − s
n j

nk − s
nk

.

Similarly, we can calculate the NN probability of object o j from x as follows.

p(o j, x) =
n j−1∑
s=1

1
n j

ni − s
ni

nk − s
nk

.

Since ni = n j, we have p(oi, x) = p(o j, x) and pboio j = x. Therefore, the probabilistic bisector pboio j does not
change with the presence a third object.

Therefore, for scenarios, except for the case when two candidate objects are equi-range, when any other object
exists within the ranges two candidate objects, we again use one of the Lemmas 4.1-4.3 to compute the initial proba-
bilistic bisector, and then find the actual probabilistic bisector. For example, if two non-equi-range candidate objects
do not overlap each other (see Figure 3(b)) and a third object exists, which is not shown in figure, within the range
of these two candidate objects, then we use Lemma 4.2 to find the initial probabilistic bisector. Similarly, we choose
the corresponding lemmas for other scenarios to compute initial probabilistic bisectors. Then we use these computed
initial probabilistic bisectors to find actual probabilistic bisectors.

The position of a probabilistic bisector depends on the relative positions and the uncertainty regions of two can-
didate objects. We have shown that for some scenarios the probabilistic bisectors can be directly computed using the
proposed lemmas. In some other scenarios, there is no straightforward way to compute probabilistic bisectors. For this
latter case, the initial probabilistic bisector of two candidate objects is chosen based on the actual probabilistic bisector
of the scenario that can be directly computed and has the most similarity (relative positions of candidate objects) with
two candidate objects. This ensures that the initial probabilistic bisector is essentially close to the actual probabilistic
bisector.
Algorithms:

11



Algorithm 1: ProbBisector1D(oi, o j,O)

pboio j ← ∅1.1

if oi and o j satisfy one of the Lemmas 4.1- 4.3 then1.2
pboio j ← BisectorBasedOnLemmas(oi, o j,O)1.3

else1.4
(any pair of objects that does not satisfy Lemmas 4.1- 4.3)1.5
if oi and o j do not overlap then1.6

ipb← Bisector(mi,m j)1.7
pboio j ← FindProbBisector1D(oi, o j, ipb,O)1.8

else1.9
(three possible cases for overlapping pairs of objects (Figure 4))1.10
(assume li ≤ l j (the other case li ≥ l j is symmetric))1.11
if li < l j and u j < ui then1.12

ipb1 ← Bisector(li, l j)1.13
ipb2 ← Bisector(ui, u j)1.14
pboio j ← FindProbBisector1D(oi, o j, ipb1,O) ∪ FindProbBisector1D(oi, o j, ipb2,O)1.15

else if l j − li < u j − ui then1.16
ipb← Bisector(m j, ui)1.17
pboio j ← FindProbBisector1D(oi, o j, ipb,O)1.18

else1.19
ipb← Bisector(mi, l j)1.20
pboio j ← FindProbBisector1D(oi, o j, ipb,O)1.21

return pboio j ;1.22

Based on the above lemmas, Algorithm 1 summarizes the steps of computing the probabilistic bisector pboio j for
any two objects oi and o j, where O is a given set of objects and oi, o j ∈ O. If oi and o j satisfy any of Lemmas 4.1-
4.3 the algorithm directly computes pboio j (Lines 1.2- 1.3). Otherwise, if any other object exists within the range of
two candidate non-equi-range objects oi and o j, or two candidate non-equi-range objects fall in any of the scenarios
shown in Figure 4. The algorithm first computes an initial probabilistic bisector ipb using our lemmas, where the
given scenario has the most similarity in terms of relative positions of candidate objects to the corresponding lemma.
Then, the algorithm uses the function FindProbBisector1D to find pboio j by using ipb as a base.

After computing the ipb the algorithm calls a function FindProbBisector1D to find the probabilistic bisector
pboio j (Lines 1.8, 1.15, 1.18, and 1.21).

The function FindProbBisector1D computes pboio j by refining ipb. If the probabilities of oi and o j of being the
NN from ipb are equal, then the algorithm returns ipb as the probabilistic bisector. Otherwise, the algorithm decides
in which direction from ipb it should continue the search for pboio j . Let x = ipb. We also assume that oi is left to o j. If
p(oi, x) is smaller than p(o j, x), then pboio j is to the left of x and within the range [min(li, l j), x], otherwise pboio j is to
the right of x and within the range [x,max(li, l j)]. Since using lemmas, we choose ipb as close as possible to pboio j , in
most of the cases the probabilistic bisector is found very close to the position of ipb. Thus, as an alternative to directly
running a binary search within the range, one can perform a step-wise search first, by increasing (or decreasing) the
value of x until the probability ranking of two objects swaps. Since the precision of probability measures affects the
performance of the above search, we assume that the two probability measures are equal when the difference between
them is smaller than a threshold. The value of the threshold can be found experimentally given an application domain.

Finally, Algorithm 2 shows the steps for computing a PVD for a set of 1D uncertain objects O. In 1D data space,
the PVD contains a list of bisectors that divides the total data space into a set of Voronoi cells or 1D ranges. The basic
idea of Algorithm 2 is that, once we have the probabilistic bisectors of all pairs of objects in a sorted list, a sequential
scan of the list can find the candidate probabilistic bisectors that comprise the probabilistic Voronoi diagram in 1D
space.

To avoid computing probabilistic bisectors for all pairs of objects oi, o j ∈ O, we use the following heuristic:

12



Algorithm 2: ProbVoronoi1D(O)
PVD← ∅2.1
PBL← ∅2.2
S ortOb jects(O)2.3
for each oi ∈ O do2.4

o j ← getNext(O) pboio j ← ProbBisector1D(oi, o j,O) PBL← PBL ∪ pboio j2.5

N ← getCandidateOb jects(O, pboio j )2.6

for each ok ∈ N do2.7
pboiok ← ProbBisector1D(oi, ok,O) PBL← PBL ∪ pboiok2.8

S PBL← S ortProbBisectors(PBL)2.9
o′ ← initialMostProbableOb ject()2.10
while S PBL is not empty do2.11

pboio j ← popNextPB(S PBL)2.12

le f t ← Le f tS ideOb ject()2.13
right ← RightS ideOb ject()2.14
if PVD is empty OR o′ = le f t then2.15

PVD← PVD ∪ ProbBisector(pboio j , oi, o j)2.16

o′ ← right2.17

else2.18
Discard(pboio j )2.19

return PVD;2.20

Heuristic 4.1. Let oi be an object in the ordered (in ascending order of li) list of objects O, and o j be the next object
right to oi in O. Let x = pboio j , and d = dist(x, li). Let ok be an object in O. If dist(x, lk) > d, then the probabilistic
bisector pboiok of oi and ok is x′, and x′ is to the right of x, i.e., x′ > x; therefore pboiok does not need to be computed.

Algorithm 2 runs as follows. First, the algorithm sorts all objects in ascending order of their lower bounds
(Line 2.3). Second, for each object oi, it computes probabilistic bisectors of oi with the next object o j ∈ O and
with a set N of objects returned by the function getCandidateOb jects based on Heuristic 4.1 (Lines 2.4-2.8). PBL
maintains the list all computed probabilistic bisectors. Third, the algorithm sorts the list PBL in ascending order of the
position of probabilistic bisectors and assigns the sorted list to S PBL (Line 2.9). Finally, from S PBL, the algorithm
selects probabilistic bisectors that contribute to the PVD (Lines 2.10-2.19). For this final step, the algorithm first finds
the most probable NN o′ with respect to the starting position of the data space. Then for each pboio j ∈ S PBL, the
algorithm decides whether pboio j is a candidate for the PVD (Lines 2.11-2.19). We assume that oi is the left side
object and o j is the right side object of the probabilistic bisector. If o′ = oi, then pboio j is included in the PVD, and
o′ is updated with the most probable object on the right region of pboio j (Line 2.17). Otherwise, pboio j is discarded
(Line 2.19). This process continues until S PBL becomes empty, and the algorithm finally returns PVD.

The proof of correctness and the complexity of this algorithm are provided as follows.
Correctness: Let S PBL be the list of probabilistic bisectors in ascending order of their positions. Let o′ be the

most probable NN with respect to the starting point l of the 1D data space. Let pboio j be the next probabilistic bisector
fetched from S PBL. Now we can have the following two cases: (i) Case 1: o′ = oi. The probability pi of oi being
the nearest is the highest for all points starting from l to pboio j and the probability p j of o j being the nearest is the
highest for points on the right side of pboio j until the next valid probabilistic bisector is found. Hence, pboio j is a valid
probabilistic bisector and is added to the PVD. Then the algorithm updates o′ by o j since o j will be the most probable
on the right of pboio j and will be on the left region of the next valid probabilistic bisector. (ii) Case 2: o′ , oi. Let
us assume that pi > p′ at pboio j . We already know that p′ > pi at the starting point l. So there should be some point
within the range [l, pboio j ] where p′ = pi, which is the position of the probabilistic bisector of o′ and oi. Since no
such bisector is found within this range, pi > p′ is not true at pboio j . Thus, p′ is the highest even at pboio j , and will
remain the highest until it fetches another pboi′o j′ from S PBL, where o′ = oi′ . The above process continues until the
algorithm reaches the end of the data space.

13



Complexity: The complexity of Algorithm 2 can be determined as follows. Let Cb be the cost of computing the
probability of an object being the NN of a query point, and Cpb be the cost of finding the probabilistic bisector of
two objects. The complexity of Algorithm 2 is dominated by the complexity of executing the Lines 2.4-2.8, which
is O(nNCpb), where n is the total number of objects, and N is the expected number of probabilistic bisectors that
need to be computed for each object in O. For real data sets, N is found to be a small value since each object has
a small number of surrounding objects (in the worst case it can be n − 1). The cost of Cpb = O(Cb log2 D), where
D is the expected distance between our initial probabilistic bisector ipb and the actual probabilistic bisector. This is
because, the cost of finding a probabilistic bisector is O(1) for the cases when our algorithm can directly compute
the probabilistic bisector, and for other cases our algorithm first finds ipb by O(1) and then searches for the actual
probabilistic bisector using FindProbBisector1D by O(log D).

4.2. Probabilistic Voronoi Diagram in a 2D Space

In location-based applications, locations of objects such as a passenger and a building, in a 2D space can be
uncertain due to the imprecision of data capturing devices or the privacy concerns of users. In these applications, the
location of an object oi can be represented as a circular region Ri = (ci, ri), where ci is the center and ri is the radius of
the region, and the actual location of oi can be anywhere in Ri. The area of oi is expressed as Ai = πr2

i . In this section,
we derive the PVD for 2D uncertain objects.

Similar to the 1D case, a naive approach to find the probabilistic bisector pboio j of oi and o j requires an exhaustive
computation of probabilities using Equation 1 for every position in a large area. In our approach, we first show that we
can directly compute pboio j as the bisector bscic j of ci and c j when two candidate objects are equi-range (i.e., ri = r j).
Next, we show that for two non-equi-range objects (i.e., ri , r j), depending on radii and relative positions of objects
pboio j slightly shifts from bscic j . In this case, we use bscic j to choose a line, called the initial probabilistic bisector,
to approximate the actual probabilistic bisector pboio j . Although for simplicity of presentation, we will use examples
where two candidate objects are non-overlapping, Lemmas 4.4-4.7 also hold for overlapping objects.

For two equi-range uncertain circular objects oi and o j, we have the following lemma:

Lemma 4.4. Let oi and o j be two circular uncertain objects with uncertain regions (ci, ri) and (c j, r j), respectively. If
ri = r j, then the probabilistic bisector pboio j of oi and o j is the bisector bscic j of ci and c j.

PROOF. Let x be any point on bscic j , and d = mindist(x, oi)(or mindist(x, o j)). Let there be no other objects within the
circular range centered at x with radius d + 2ri. Suppose circles centered at x with radii d + 1 to d + 2ri partition oi

into 2ri sub-regions oi1 , oi2 , ..., oi2ri
, such that

∑2ri
s=1

ois
Ai
= 1. Similarly, o j is divided into 2ri sub-regions o j1 , o j2 , ..., o j2ri

,
where

∑2ri
s=1

o js
A j
= 1. By using Equation 1, we can calculate the probability of oi being the nearest from x, as follows.

p(oi, x) =
2ri+d∑
s=d+1

ois−d

Ai
(1 −

s∑
u=d+1

o ju−d

A j
).

Similarly, we can calculate the probability of o j being the nearest from x, as follows.

p(o j, x) =
2ri+d∑
s=d+1

o js−d

A j
(1 −

s∑
u=d+1

oiu−d

Ai
).

Since, ri = r j and ois = o js for all 1 ≤ s ≤ 2ri, we have p(oi, x) = p(o j, x).

The probabilistic bisector pbo1o2 of two equi-range objects o1 and o2 is shown in Figure 5.
Lemmas 4.5 and 4.6 show how the probabilistic bisector of two non-equi-range objects oi and o j is related to the

bisector of ci and c j (Figure 6 and 7).
Next, we will show in Lemma 4.5 that the shape of pboio j for two non-equi-range circular objects oi and o j is a

curve, and the distance of this curve from bscic j is maximum on the line cic j. Figure 6 shows the bisector bsc1c2 and
the probabilistic bisector pbo1o2 for o1 and o2.

14



x

2c1c
bs=

2o1o
pb

1c 2c

2r1r

1o

2o

Figure 5: The probabilistic bisector of objects o1 and o2, where r1 = r2

00x

0x

21
o

11
o

2c1c
x

1r

1o

2c1c
bs

2o

2r2o1o
pb

Figure 6: The probabilistic bisector of objects o1 and o2, where r1 > r2. The curve, pbo1o2 , is the probabilistic bisector between o1 and o2, i.e.,
p(o1, x) = p(o2, x), for any point x ∈ {pbo1o2 }

Lemma 4.5. Let oi and o j be two objects with non-equi-range uncertain circular regions (ci, ri) and (c j, r j), respec-
tively, and bscic j be the bisector of ci and c j. Then the maximum distance between bscic j and pboio j occurs on the line
cic j. This distance gradually decreases as we move towards positive or negative infinity along the bisector bscic j .

PROOF. Let x = ci+c j

2 be the intersection point of bscic j and cic j. Suppose a circle centered at x with radius dist(ci,c j)
2

divides oi into oi1 and oi2 , where
oi1
Ai
+

oi2
Ai
= 1, and o j into o j1 and o j2 , where

o j1
A j
+

o j2
A j
= 1. According to curvature

properties of circles, since ri > r j, we have
oi1
Ai
<

o j1
A j

(in Figure 6,
o11
A1

<
o21
A2

), which intuitively means, o j is a more
probable NN than oi to x, i.e., p(o j, x) > p(oi, x). Thus, x needs to be shifted to a point towards ci (along the line xci),
such that the probabilities of oi and o j being the NNs to the new point become equal.

Suppose a point x′ is on bscic j at the positive infinity. If a circle centered at x′ goes through the centers of both
objects oi and o j, then the curvature of the portion of the circle that falls inside an object (oi or o j) will become a
straight line. This is because, in this case we consider a small portion of the curve of an infinitely large circle. This
circle divides both objects oi and o j into two equal parts oi1 = oi2 and o j1 = o j2 , respectively. Thus, the probabilities
of oi and o j being the NNs will approach to being equal at positive infinity, i.e., p(o j, x′) ≈ p(oi, x′), for a large values
of dist(x′, x). Similarly, we can show the case for a point x′′ at the negative infinity on bscic j (see Figure 6).

Next, we show in Lemma 4.6 that pboio j shifts from bscic j towards the object with larger radius, and the distance
of pboio j from bscic j widens with the increase of the ratio of two radii (i.e., ri and r j). Figure 7 shows an example of
this case.

Lemma 4.6. Let oi and o j be two objects with non-equi-range uncertain circular regions (ci, ri) and (c j, r j), respec-
tively, and x = ci+c j

2 be the midpoint of the line segment cic j. If ri > r j, then the probabilistic bisector pboio j meets
cic j at point x′, where x′ lies between x and ci. If the circular range of oi increases such that r′i > ri, then the new
probabilistic bisector pb′oio j

meets cic j at point x′′ , where x′′ lies between x and ci, and dist(x, x′) < dist(x, x′′).

15



PROOF. Suppose a circle centered at x with radius dist(ci,c j)
2 divides oi into oi1 and oi2 , where

oi1
Ai
+

oi2
Ai
= 1, and o j into

o j1 and o j2 , where
o j1
A j
+

o j2
A j
= 1. According to curvature properties of circles, since ri > r j, we have

oi1
Ai

<
o j1
A j

(in

Figure 7,
o11
A1

<
o21
A2

), which intuitively means, o j is a more probable NN than oi to x, i.e., p(o j, x) > p(oi, x). Thus, x
needs to be shifted to a point x′ towards ci, such that the probabilities of oi and o j being the NN to x′ become equal.
Let o′i be an object, such that r′i > ri and c′i = ci. Then the circle centered at x with radius dist(ci,c j)

2 divides o′i into o′i1
and o′i2 , where

o′i1
A′i
+

o′i2
A′i
= 1. Now, we have

o′i1
A′i
<

oi1
Ai
<

o j1
A j

. Thus, x needs to be shifted to a point x′′ more towards ci,
i.e., dist(x, x′) < dist(x, x′′), such that the probabilities of o′i and o j being the NNs become equal at x′′.

12
o 22

o
11
0o

21
0o

11
o

21
o 00x

0x

x

2c1c

2c1c
bs

1r

1o

1
0r

2o

2r

Figure 7: Influence of objects’ sizes on the probabilistic bisector

The next lemma shows the influence of a third object on the probabilistic bisector of two non-equi-range objects.
(Note that the probabilistic bisector of two equi-range objects does not change with the influence of any other object
(see Lemma 4.4)). Figure 8 shows an example, where object o3 influences the probabilistic bisector of objects o1 and
o2. In this figure, the dotted circle centered at s1 with radius dist(s1, c1)+ r1 encloses one candidate object o1, but only
touches the third object o3. Thus, the probability of o3 being the NN to s1 is zero. However, for any point between s1
and s2, o3 has a non-zero probability of being the NN of that point, and thus o3 influences pbo1o2 .

Lemma 4.7. Let oi and o j be two objects with non-equi-range uncertain circular regions (ci, ri) and (c j, r j), respec-
tively, where ri < r j, and bscic j be the bisector of ci and c j. An object ok influences the probabilistic bisector pboio j for
the part of the segment [s1, s2] on the line bscic j , where dist(s, ci) + ri > dist(s, ck) − rk for s ∈ bscic j .

PROOF. Since ri < r j, we have maxdist(s, oi) < maxdist(s, o j). Thus, if the minimum distance mindist(s, ok) of an
object ok from s is greater than the maximum distance maxdist(s, o j) of o j from s, i.e., dist(s, ck)− rk > dist(s, ci)+ ri,
the object ok cannot be the NN to the point s, otherwise ok has the possibility of being the NN to s and hence ok

influences pboio j .

It is noted when the centers of two non-equal objects coincide each other, the probability of the smaller object
dominates the probability of the larger object. Therefore, in those cases, we only consider the object with a smaller
radius, and the other object is discarded. Also, if two objects are equal and their centers coincide each other, no
probabilistic bisector exists between them, thus any one of these two objects is considered for computing the PVD.
Algorithms:

Based on the above lemmas, we propose algorithms to find the probabilistic bisector of any two uncertain 2D
objects. We have shown in Lemma 4.4 that the probabilistic bisector of two circular uncertain objects is a straight line
when the radii of two objects are equal. On the other hand, Lemma 4.5-Lemma 4.6 show that the probabilistic bisector
is a curve when the radii of two objects are non-equal. However, to avoid the computational and maintenance costs,
we maintain a bounding box (i.e., quadrilateral) that encloses the actual probabilistic bisector of two objects. Hence,
we name the probabilistic bisector of two circular objects as the Probabilistic Bisector Region (PBR). For example,
the bounding box that encloses the curve in Figure 6 is the PBR for two objects o1 and o2. In our algorithm, we first
create an ordinary Voronoi diagram by using the centers of all uncertain objects. Then, from each Voronoi edge ei j

(i.e., bscic j ) of two objects oi and o j, we compute the PBR that encloses pboio j .
Algorithm 3 computes the probabilistic bisector of two equi-range objects according to Lemma 4.4 (Line 32).

Otherwise, it calls the function FindProbBisector2D to determine pboio j for two non-equi-range objects oi and o j.

16



2s

1s

2
o
1
obs

12e

3o

1o 2o
2c

3c

1c

Figure 8: Influence of object o3 on the probabilistic bisector of o1 and o2

Algorithm 3: ProbBisector2D(oi, o j, ei j,O)

if ri = r j then3.1
pboio j ← ProbBisector(oi, o j, ei j)3.2

else3.3
pboio j ← FindProbBisector2D(oi, o j, ei j,O)3.4

return pboio j ;3.5

The function FindProbBisector2D (see Algorithm 4) takes two non-equi-range objects oi, o j, the bisector ei j (i.e.,
a Voronoi edge) of ci and c j, and the set of objects O as input, and returns pbr for pboio j . The algorithm finds lower
(lval) and upper (uval) bounds representing the required deviations of the probabilistic bisector from the bisector
of ci and c j, such that the PBR can be computed by drawing two lines parallel to ei j at lval and uval, respectively.
Algorithm 4 first initializes ipb with the intersection point of ei j and cic j (Line 4.1). Then, the function InitPBRBound
computes initial lower (lval) and upper (uval) bounds of pbr (Line 4.2). This function first determines a point x′ on
the line cic j where p(oi, x′) ≈ p(o j, x′) (We use a similar search technique as described for the 1D space). If x′ is to

Algorithm 4: FindProbBisector2D(oi, o j, ei j,O)

ipb← Intersect(ei j, cic j)4.1
InitPBRBound(lval, hval, ipb)4.2
IL← FindIn f luencedPart(oi, o j, ei j)4.3
for each ls ∈ IL do4.4

U pdatePBRBound(lval, hval, ls)4.5

pbr ← [lval, hval]4.6

return pbr;4.7

the left of ei j, then lval and hval are set to x′ and x, respectively. On the other hand, if x′ is to the right of ei j, then
lval and hval are set to x and x′, respectively. After that, the function FindIn f luencePart finds a list IL that contains
different segments of the bisector ei j, where other objects influence pboio j (see Lemma 4.7). The function returns IL as
an empty list when no other object influences the probabilistic bisector. In that case the current lval and hval defines
pbr. In Lemma 4.6, we have seen that the maximum distance of pboio j from the bisector of ci and c j is on the line
cic j. Thus, the initially computed pbr encloses the curve of pboio j . On the other hand, if IL is not empty, then for
each line segment ls ∈ IL, the function U pdatePBRBound is called to update lval and hval based on the influence
of other objects. As lval and hval represent the deviation of pboio j from ei j, we need compute the deviations for each
line segment ls, and then take the minimum of all lvals and the maximum of all hvals to compute the pbr. To avoid
a brute-force approach of computing lval and hval for every point of an ls ∈ IL, we compute lval and hval for two
extreme points and the mid-point of ls. Finally, the algorithm returns pbr for pboio j .

Algorithm 5 shows the steps of ProbVoronoi2D that computes PVD for a given set O of 2D objects. In Line 5.2,
the algorithm first creates a Voronoi diagram VD for all centers ci of objects oi ∈ O using [22]. Then for each Voronoi

17



Algorithm 5: ProbVoronoi2D(O)
PVD← ∅5.1
VD← VornoiDiagramO fCentroids(O)5.2
for each Voronoi edge ei j ∈ VD, where oi, o j ∈ O do5.3

PVD← PVD ∪ ProbBisector2D(oi, o j, ei j,O)5.4

return PVD;5.5

edge ei j between two objects oi and o j, the algorithm calls the function ProbBisector2D to compute the probabilistic
bisector as PBR between two candidate objects, and finally it returns the PVD for the given set O of objects.

3
o
2
opbr

3
o
1
opbr

2o1o
pbr

)3o(PVC

)2o(PVC)1o(PVC

3o

1o 2o

Figure 9: The PVD of three objects o1, o2, and o3

Figure 9 shows the PVD for objects o1, o2, and o3. In this figure, PVC(o1), PVC(o2), and PVC(o3) represent the
PVCs for objects o1, o2, and o3, respectively. The boundaries between PVCs, i.e., PBRs of objects, pbro1o2 , pbro2o3 ,
and pbro1o3 , are shown using grey bounded regions. For any point inside a PVC, the corresponding object is guaranteed
to be the most probable NN. On the other hand, for any point inside a PBR, any of the two objects that share the PBR
can be the most probable NNs. If more than two PBRs intersect each other in a region, any object associated with
these PBRs can be the most probable NN to a query point in that region. Figure 9 shows a dark grey region where
pbro1o2 , pbro1o3 , and pbro2o3 meets.

Complexity: The complexity of Algorithm 5 can be estimated as follows. The complexity of creating a Voronoi
diagram (Line 5.2) is O(n log n) [22], where n is the number of objects. The complexity of finding probabilistic
bisectors (Lines 5.3-5.4) is O(neCpb), where ne is the number of Voronoi edges and Cpb is the expected cost of
computing the probabilistic bisector between two circular objects. For real data sets, ne is expected to be a small
integer since an object has only a small number of surrounding objects. The total complexity of the algorithm is
O(n log n)+O(neCpb). Cpb can be estimated as follows. Let Cb be the cost of computing the probability of an object
being the NN of a query point, D be the expected distance between the initial probabilistic bisector ipb and the actual
probabilistic bisector, and L be the expected number of points in the bisector that needs to be considered to find upper
and lower bounds of the probabilistic bisector. Then we have Cpb = O(LCb log2 D). This is because, the cost of finding
a probabilistic bisector is O(1) for the cases when our algorithm can directly compute the probabilistic bisector, and
for other cases our algorithm first finds ipb by O(1) and then search for the actual probabilistic bisector by using
Algorithm 4 by O(L log D). Note that, for both 1D and 2D, the run-time behavior of our algorithm is dominated by
those cases for which there is no closed form for a given probabilistic bisector, i.e., the algorithm needs to search for
the bisector by using the initial probabilistic bisector.

4.3. Discussion

PVD for Other Distributions: In this paper, we assume the uniform distributions for the pdf of uncertain objects to
illustrate the concept of the PVD. However, the pdf that describes the distribution of an object inside the uncertainty
region can follow arbitrary distributions, e.g., Gaussian. The concept of PVD can be extended for any arbitrary distri-
bution. For example, for an object with Gaussian pdf having a circular uncertain region, the probability of the object

18



of being around the center of the circular region is higher than that of the boundary region of the circle. For such dis-
tributions, a straightforward approach to compute the probabilistic bisector between any pair of objects is as follows.
First, we can use the bisector of the centroids of two candidate objects as the initial probabilistic bisector. Then we
can refine the initial probabilistic bisector to find the actual probabilistic bisector. Finding suitable initial probabilistic
bisectors for efficient computation of probabilistic bisectors (e.g., lemmas for different cases for 1D and 2D data sets
similar to the uniform pdf) for an arbitrary distribution is the scope of future investigation.
PVD for Higher Dimensions: We can compute the PVD for higher dimensional spaces, similar to 1D and 2D spaces.
For example, in a 3D space, an uncertain object can be represented as a sphere instead of a circle in 2D. Then, the
probabilistic bisector of two equal size spheres will be a plane bisecting the centers of two spheres. Using this as a
base, similar to 2D, we can compute the PVD for 3D objects. We omit a detailed discussion on PVDs in spaces of
more than 2 dimensions.
Higher order PVDs: In this paper, we focus on the first order PVD. By using this PVD, we can find the NN for a given
query point. Thus, the PVD can be used for continuously reporting 1-NN for a moving query point. To generalize
the concept for kNN queries, we need to develop the k-order PVD. The basic idea would be to find the probabilistic
bisectors among size-k subsets of objects. The detailed investigation of higher order PVDs is a topic of future study.
Handling Updates: To handle updates on the data objects, like traditional Voronoi diagrams, a straightforward ap-
proach is to recompute the entire PVD. There are algorithms [23, 24] to incrementally update a traditional Voronoi
diagram. Similar ideas can be applied to the PVD to derive incremental update algorithms. We will defer such incre-
mental update algorithms for future work.

It is noted that, to avoid an expensive computation of the PVD for the whole data set and to cope with updates for
the data objects, we propose an alternative approach based on the concept of local PVD (see Section 5.5.2). In this
approach, only a subset of objects that fall within a specified range of the current position of the query is retrieved
from the server and then the local PVD is created for these retrieved objects to answer PMNN queries. If there is
any update inside the specified range, the process needs to be repeated. Since, this approach works only with the
surrounding objects of a query, updates from objects that are outside the range do not affect the performance of the
system.

5. Processing PMNN Queries

In this section, based on the concept of PVD we propose two techniques: a pre-computation approach and an
incremental approach for answering PMNN queries. In the pre-computation approach, we first create the PVD for the
whole data set and then index the PVCs for answering PMNN queries. We name the pre-computation based technique
for processing PMNN queries as P-PVD-PMNN. On the other hand, in the incremental approach, we retrieve a set of
surrounding objects with respect the current query location and then create the local PVD for these retrieved data set,
and finally use this local PVD to answer PMNN queries. We name this approach I-PVD-PMNN in this paper.

5.1. Pre-computation Approach

In the pre-computation approach, we first create the PVD for all objects in the database. After computing the PVD,
we only need to determine the current Probabilistic Voronoi Cell (PVC), where the current query point is located. The
query evaluation algorithm can be summarized as follows.

Initially, the query issuer requests the most probable NN for the current query position q. After receiving the
PMNN request for q, the server algorithm finds the current PVC to which the query point falls into using a function
Identi f yPVC and updates cpvc with the current PVC. The algorithm reports the corresponding object p as the most
probable NN and the cell cpvc to the query issuer. Next time when q is updated at the query issuer, if q falls inside
cpvc, no request is made to the server as the most probable NN has not been changed. Otherwise, the query issuer
again sends the PMNN request to the server to determine the new PVC and the answer for the updated query position.

As the PVD in a 1D space contains a set of non-overlapping ranges representing PVCs for objects, the algorithm
returns a single object as the most probable NN for any query point. On the other hand, in a 2D space, the boundary
between two PVCs is a region (i.e., PBR) rather than a line. When a query point falls inside a PBR, the algorithm can
possibly return both objects that share the PBR as the most probable NNs, or preferably can decide the most probable
NN by computing a top-1-PNN query. (Since, for a realistic setting a PBR is small region compared to that of PVCs,

19



(b)(a)

000q
1o

3o

)1o(PVC )2o(PVC

)3o(PVC

3o2o
pbr

3o1o
pbr

2o1o
pbr

)3o(PVC

)2o(PVC)1o(PVC

3o

1o

11B

7B

12B

8B4B5B

3B

10B

2B

9B

1B

0q

00q 2o2o

0q

Figure 10: (a) The PVD, and (b) the MBRs of PVCs for objects o1-o3

our approach incurs much less computational overhead than that of the sampling based approach for processing a
PMNN query.)

Figure 10(a) shows that when the query point is at q′, PVD-PMNN returns o3 as the most probable NN as q′ falls
into PVC(o3). When the query point moves to q′′, the algorithm returns o2 as the answer.

A naive approach of identifying the desired PVC (i.e., Identi f yPVC function) requires an exhaustive search of
all the PVCs in a PVD, which is an expensive operation. Indexing Voronoi diagrams [25, 26, 27] is an well-known
approach for efficient nearest neighbor search in high-dimensional spaces. Thus, for efficient search of the PVCs,
we index the PVCs of the PVD using an R∗-tree [28], a variant of the R-tree [29, 27]. In a 1D space, each PVC is
represented as a 1D range and is indexed using a 1D R∗-tree. Since there is no overlap among PVCs, a query point
always falls inside a single PVC, where the corresponding object is the most probable NN to the query point. On the
other hand, in a 2D space, each PVC cell is enclosed using a Minimum Bounding Rectangle (MBR), and is indexed
using a 2D R∗-tree. Since the MBRs representing PVCs overlap each other, when a query point falls inside only a
single MBR, the corresponding object is confirmed to be the most probable NN to the query point. However, when a
query point falls inside the overlapping region of two or more MBRs, the actual most probable NN can be identified
by checking the PVCs of all candidate MBRs. Figure 10(b) shows the MBRs [B1, B2, B3, B4], [B5, B6, B7, B8], and
[B9, B10, B11, B12] for the PVCs of objects o1, o2, and o3, respectively. In this example, the query point q′ intersects
both [B5, B6, B7, B8] and [B9, B10, B11, B12], and the actual most probable NN o3 can be determined by checking the
PVCs of o3 and o2; on the other hand, the query point q′′′ only intersects a single MBR [B5, B6, B7, B8], so the
corresponding object o2 is the most probable NN to q′′′.

Since the above approach only retrieves the current PVC of a moving query point, it needs to access the PVD using
the R∗-tree as soon as the query leaves the current PVC. This may incur more I/O costs than what can be achieved.
To further reduce I/O and improve the processing time, we use a buffer management technique, where instead of
only retrieving the PVC that contains the given query point, we retrieve all PVCs whose MBRs intersect with a given
range, called a buffer window, for a given query point. These PVCs are buffered and are used to answer subsequent
query points of a moving query. This process is repeated for a PMNN query when the buffered cells cannot answer
the query.

Since the creation of the entire PVD is computationally expensive, the pre-computation based approach is justified
when the PVD can be re-used which is the case for static data, or when the query spans over the whole data space.
To avoid expensive pre-computation, next, we propose an incremental approach which is preferable when the query
is confined to a small region of the data space or when there are frequent updates in the database.

5.2. Incremental Approach
In this section, we describe our incremental evaluation technique for processing a PMNN query based on the

concept of known region and the local PVD. Next, we briefly discuss the concept of known region, and then present
the detailed algorithm of our incremental approach.

Known Region: Intuitively, the known region is an explored data space where the position of all objects are known.
We define the known region as a circular region that bounds the top-k probable NNs with respect to the current query
point (i.e., the center point of the region). For a given point qs, the server expands the search space to incrementally
access objects in the order of their mindist from qs until it finds top k probable nearest neighbors with respect to qs

(we use existing algorithm [8] to find top-kNN). Then the known region is determined by a circular region centered at

20



qs that encloses all these k objects. Figure 11 shows the known circular region K(qs, r) using a dashed circle, where
k = 3. Then the radius r of this known area is determined by max(maxdist(qs, o1),maxdist(qs, o2),maxdist(qs, o3)).
In this example, top-3 most probable nearest neighbors are o1,o2, and o3.

0d

2q

1q

r sq

3o

1o

);rsq(K

2c
2o

Figure 11: Known region and objects o1, o2, and o3

The key idea of incremental approach is to consider only a sub-set of objects surrounding the moving query point
while evaluating a PMNN query. For example, in a client-server paradigm, the client first requests the server for
objects and the known region by providing the starting point of the moving query path as a query point. Then the
client locally creates a PVD based on the retrieved objects, and uses the local PVD for answering the PMNN query.
This process needs to be repeated as soon as the user’s request for the PMNN query cannot be satisfied by the already
retrieved data at the client. Though this incremental approach applies to both centralized and client-server paradigms,
without loss of generality, next we explain how to incrementally evaluate a PMNN query in the client-server paradigm.

Algorithm: After retrieving a set of objects from the server, the client locally computes a PVD for those objects.
Then, the client can use the local PVD to determine the most probable nearest neighbor among the objects inside the
known region. However, since the client does not have any knowledge about objects that are outside of the known
region, the most probable nearest neighbor based on the local PVD formed for objects inside the known region, might
not guarantee the most probable nearest neighbor with respect to all objects in the database. This is because, a PVC
of the local PVD determines the region where the corresponding object is the most probable NN with respect to
objects inside the known region. However, certain locations of the PVC can have other non-retrieved objects, which
are outside the known region, as the most probable NN. Thus, we need to determine a region in the PVC for which
the query result is guaranteed. That is, all locations inside this guaranteed region will have the corresponding object
as the most probable NN. To define the guaranteed region for an object, we have two conditions.

Let q be a query point and oi be an object inside the known region. Then, if the query point q is inside a PVC cell
of object oi and the condition in the following equation (see Equation 2) holds, then it is ensured that oi is the most
probable NN among all objects in the database.

maxdist(q, ci) ≤ r − dist(q, qs). (2)

The condition in Equation 2 ensures that no object outside the known region can be the nearest neighbor for the
given query point. This is because, when a circle centered at q completely contains an object, all objects outside this
circle will have zero probability of being the NN to q.

To formally define a region based on the above inequality, we re-arrange Equation 2 as follows.

dist(q, ci) + ri ≤ r − dist(q, qs)
=> dist(q, ci) + dist(q, qs) ≤ r − ri

We can see that the boundary of the above formula forms an elliptic region in a 2D Euclidean space, where
the two foci of the ellipse are qs and ci. i.e., the sum of the distances from qs and ci to any point on the ellipse is
r − ri. Figure 11 shows an example, where the elliptical region for object o2 is shown using dashed border. Figure 11

21



shows that when the query point is at q1, the object o2 is confirmed to be the most probable nearest neighbor, as
dist(q1, c2) + r2 < r − dist(q1, qs).

From the above discussion, we see that for an object oi, the intersection region of the PVC and the elliptical region
for oi forms a region where all points in this region has oi as the most probable NN. Figure 12 shows the PVD and
elliptical regions for objects o1, o2, and o3, and a moving query path from q′ to q′′′. In this figure, since q′ is inside
the intersection region of PVC(o3) and elliptical region of o3, thus o3 is guaranteed to be the most probable NN for q′

with respect to all objects in the database. Similarly, o2 is the most probable NN when the query point moves to q′′′.
If a query point is outside the intersection region of a PVC and the corresponding elliptical region, but falls inside

the PVC, still there is a possibility that the object associated with this PVC is the most probable NN for the query
point. For example, in Figure 11, when the query point is at q2, then the condition in Equation 2 fails. For this case,
our algorithm relies on the lower bound of the probability for the object o2 of being the nearest neighbor from the
query point q2. We define the second condition based on the lower bound probability of an object.

)3o(PVC

)2o(PVC

)1o(PVC

3o

1o 2o
000q

0
q

Figure 12: The incremental approach

We can compute the lower bound of probability, lp(oi, q) for object oi of being the NN from the query point q,
by using pessimistic assumption. For computing the lower bound probability, we assume that a non-retrieved virtual
point object is located at the minimum distance from the query point and is just outside the boundary surface of the
known region. For example, in Figure 11, when the client is at q2, we assume that a point object exists at d′. Then, we
estimate the probability of the object o2 being the NN to q2, which gives us the lower bound of the probability.

By using the lower bound, the client can determine whether there is a possibility of other non-retrieved objects
being the most probable NN from the current query location. If the probability of the virtual point object ov, p(ov, q) is
less than the lower bound probability of the candidate object oi, lp(oi, q), then it is ensured that there is no other object
in the database that has higher probability for being the NN of q than that of oi; otherwise there may exist other object
in the database with higher probabilities for being the NN of q than oi. Thus, our second condition for the guaranteed
region can be defined as follows:

lp(oi, q) ≥ p(ov, q). (3)

Based on the above observations, we define a probabilistic safe region for an object oi, as a region where oi is
guaranteed to be the most probable NN for every point inside that region. Thus, Equation 2 and Equation 3 form the
guaranteed region for an object oi.

We use the above two conditions and the local PVD to incrementally evaluate a PMNN query. The algorithm first
retrieves a set of surrounding objects for the given query point q, and creates a PVD, named lPVD, for those objects.
Then, the algorithm finds the PVC and the corresponding object oi as the most probable nearest neighbor of the query
point q with respect to the objects within the known region. If q is inside a PVC cell, the object oi is returned as
the most probable nearest neighbor if q satisfies Equation 2 or Equation 3. If none of the above condition holds, the
algorithm requests a new set of objects with respect to the current query point q, and repeats the above process on
newly retrieved set of objects.
Discussion: Our pre-computation based approach computes the PVD for all objects in the database and then indexes
the PVD using an R-tree to efficiently process PMNN queries. Since, the pre-computation of the PVD for the entire
data set is computationally expensive, the pre-computation based approach is justified when the PVD can be re-used

22



for large number of queries, as the cost is amortized among queries(e.g., [11, 20]). Thus, the pre-computation based
approach is appropriate for the following settings: the data set largely remains static, there are large number of queries
in the system, and the query spans over the whole data space.

On the other hand, in our incremental approach, we retrieve a set of surrounding objects for the current query
location, and then incrementally process PMNN queries based only on these retrieved set of objects. Only data close
to the given query are accessed for query evaluation. As the evaluation of this approach depends on the location of
the query, this approach is also called the query dependent approach, as opposed to the data dependent approach (e.g.,
pre-computation based approach) where the location of queries are not taken into account. This incremental approach
is preferred for the cases when there are updates in the database or the query is confined to a small region in the data
space. A comparative discussion between the pre-computation approach and the incremental approach for point data
sets can be found in [30, 20].

6. Experimental Study

We compare our PVD based approaches for the PMNN query (P-PVD-PMNN and I-PVD-PMNN) with a sampling
based approach (Naive-PMNN), which processes a PMNN query as a sequence of static PNN queries at sampled
locations. Though in Naive-PMNN we use the most recent technique of static top-1-PNN queries [8], any existing
technique for static PNN queries [4, 5] can be used. Note that, by using the existing method in [6], for each uncertain
object oi, we could only define a region (or UV-cell) where oi has a non-zero probability of being the NN for any point
in this region. Thus, this method cannot be used to determine whether an object has the highest probability of being
the NN to a query point. Therefore, we compare our approach with a sampling based approach.

In our experiments, we measure the query processing time, the I/O costs, and the communication costs as the
number of communications between a client and a server. Note that while the processing and I/O costs are the perfor-
mance measurement metric for both centralized and client-server paradigms, the communication cost only applies to
the client-server paradigm. In this paper, we run the experiments in the centralized paradigm, where the query issuer
and the processor reside in the same machine. Thus, we measure the communication cost as the number of times the
query issuer communicates with the query processor while executing a PMNN query.

6.1. Experimental Setup
We present experimental results for both 1D and 2D data sets.
For 2D data, we have used both synthetic and real data sets. We normalize the data space into a span of 10, 000 ×

10, 000 square units. We generated synthetic data sets with uniform (U) and Zipfian (Z) distributions, representing a
wide range of real scenarios. For both uniform and Zipfian, we vary the data set size from 5K to 25K. To introduce
uncertainty in data objects, we randomly choose the uncertainty range of an object between 5 × 5 and 30 × 30 square
units, and approximated the selected range using a circle. For real data distributions, we use the data sets from Los
Angeles (L) with 12K geographical objects described by ranges of longitudes and latitudes [31]. Note that, in both
uniform and Zipfian distributions, objects can overlap each other. More importantly, in Zipfian distribution, most of
the objects are concentrated within a small region in the space, thereby objects largely overlap with each other. Also,
our real datasets include objects with large and overlapping regions. Thus, we do not present any sperate experimental
results for overlapping objects.

For 1D data, we have only used syntectic data sets. In this case, we generated synthetic data sets with uniform (U)
and Zipfian (Z) distributions in the data space of 10,000 units. The uncertainty range of an object is chosen as any
random value between 5 and 30 units. We also vary the data set size from 100 to 500. These values are comparable to
2D data set sizes and scenarios.

For query paths, we have generated two different types of query trajectories, random (R) and directional (D),
representing the query movement paths covering a large number of real scenarios. The default length of a trajectory
is a fixed length of 1000 steps, and consecutive points are connected with a straight line of a length of 5 units. For
each type of query path, we run the experiments for 20 different trajectories starting at random positions in the data
space, and determine the average results. We present the processing time, I/O cost, and the communication cost for
executing a complete trajectory (i.e., a PMNN query). In our experiments, since the trajectory of a moving query path
is unknown, we use the generated trajectories as input, but do not provide these to the server in advance.

We run the experiments on a desktop computer with Intel(R) Core(TM) 2 CPU 6600 at 2.40 GHz and 2 GB RAM.

23



6.2. Performance Evaluation

In this section, we evaluate our proposed techniques: pre-computation approach (P-PVD-PMNN) and incremental
approach (I-PVD-PMNN) in Sections 6.2.1 and 6.2.2, respectively.

It is well known that pre-computation based approach is suitable for settings when the PVD can be re-used (e.g.,
static data sets) for large number of queries or the query span the whole data space, and on the other hand the incre-
mental or local approach is suitable for settings when the query is confined to a small space and there are frequent
updates in the database (e.g., [30, 11, 20]). Since two approaches aim at two different environmental settings and also
the parameters of these two techniques differ from each other, we independently evaluate them and compare them
with the sampling based approach.

6.2.1. Pre-computation Approach
In the pre-computation approach, we first create the PVD for the entire data set and use an R∗-tree to index the

MBRs of PVCs. On the other hand, for Naive-PMNN we use an R∗-tree to index uncertain objects. In both cases, we
use the page size of 1KB and the node capacity of 50 entries for the R∗-tree.
Experiments with 2D Data Sets:

We vary the following parameters in our experiments: the length of a query trajectory, the data set size, and the
size of the buffer window that determines the number of PVCs retrieved each time with respect to a query point.

Effect of the Length of a Query Trajectory: In this set of experiments, we vary the length of moving queries from
1000 to 5000 units of the data space. We run the experiments for data sets U(10K), Z(10K), and L(12K). Since the real
data set size is 12K, the data set sizes for U and Z are both set to 10K. Figures 13 show the processing time, I/O costs,
and the number of communications required for a PMNN query of different query trajectory length. Figures 13(a)-(c)
present the results for U data sets, where we can see that, for both P-PVD-PMNN and Naive-PMNN, the processing
time, I/O costs, and the number of communications increase with the increase of the length of the query trajectory,
which is expected. Figures also show that our P-PVD-PMNN approach outperforms the Naive-PMNN by at least an
order of magnitude in all metrics. This is because, P-PVD-PMNN only needs to identify the current PVC rather than
computing top-1-PNN for every sampled location of the moving query.

The results for both Z (see Figures 13(d)-(f)) and L (see Figures 13(g)-(i)) data sets show similar trends with U
data set as described above.

Effect of Data Set Size: In this set of experiments, we vary the data set size from 5K to 25K and compare the
performance of our P-PVD-PMNN with Naive-PMNN for both U (see Figures 14(a)-(c)) and Z (see Figures 14(d)-
(f)) distributions. In these experiments, we set the trajectory length to 5000 units.

Figures 14(a)-(f) show that, in general for P-PVD-PMNN, the processing time and I/O costs, and the number of
communications increase with the increase of the data set size. The reason is as follows. For a larger data set, since the
density of objects is high, we have smaller PVCs. Thus, for a larger data set, as the query point moves, it crosses the
boundaries of PVCs more frequently than that of a smaller data set. This operation incurs extra computational overhead
for a larger data set. On the other hand, for Naive-PMNN, the processing time, I/O costs, and the communication costs
remain almost constant with the increase of the data set size. This is because, unless the R∗-tree has a new level due to
the increase of the data set size, the processing costs for Naive-PMNN do not vary with increase of the data set size,
which is the case in Figures 14(a)-(f)).

Figures also show that our P-PVD-PMNN outperforms Naive-PMNN by an order of magnitude in processing
time, 2 orders of magnitude in I/Os and number of communications for all data sets. The results also show that
P-PVD-PMNN performs similar for both directional (D) and random (R) query movement paths.

Effect of Buffer Window: In this set of experiments, we study the impact of introducing a buffer for processing a
PMNN query. We vary the value of buffer window from 0 to 400 units of the data space, and then run the experiments
for data sets U(10K), Z(10K), and L(12K). We set the trajectory length to 5000 units.

In these experiments, all PVCs whose MBRs intersect with a buffer window centered at q having the length and
width of the buffer window are retrieved from the R∗-tree and sent to the client. The client stores these PVCs in its
buffer. When buffer window is 0, the algorithm only retrieves those PVCs whose MBRs contain the given query point.
On the other hand, when buffer window is 100, all PVCs whose MBRs intersect with the buffer window centered at q
having the length and width of 100 units (i.e., the buffer window covers 100 × 100 square units in the data space) are
retrieved. In this setting, we expect that the I/O costs will be reduced for a larger value of buffer window, because the

24



 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(g) (h) (i)

Figure 13: The effect of the query trajectory length in U (a-c), Z (d-f), and L (g-i)

 0.1

 1

 25 20 15 10 5

T
im

e
 (

s
e

c
)

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 25 20 15 10 5

I/
O

s

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 25 20 15 10 5

#
 C

o
m

m
.

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 25 20 15 10 5

T
im

e
 (

s
e

c
)

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 25 20 15 10 5

I/
O

s

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 25 20 15 10 5

#
 C

o
m

m
.

Data Set (K)

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 14: The effect of the data set size in U (a-c), Z (d-f)

25



 0.1

 1

 400 300 200 100 0

T
im

e
 (

s
e
c
)

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

I/
O

s

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

#
 C

o
m

m
.

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 400 300 200 100 0

T
im

e
 (

s
e
c
)

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

I/
O

s

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

#
 C

o
m

m
.

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

 0.1

 1

 400 300 200 100 0

T
im

e
 (

s
e
c
)

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

I/
O

s

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

#
 C

o
m

m
.

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(g) (h) (i)

Figure 15: The effect of buffer window in U (a-c), Z (d-f), and L (g-i)

server does not need to access the R∗-tree as long as these buffered PVCs can serve the subsequent query points of a
moving query.

Figures 15(a)-(c) show the processing time, the I/O costs, and the number of communications, respectively, for
varying the size of the buffer window from 0 to 400 units for U data set. Figure 15(a) shows that for P-PVD-PMNN,
in general the processing time increase with increase of buffer window. The reason is that for a very large buffer
window, a large number of PVCs are buffered and the processing time increases as the algorithm needs to check these
PVCs for a moving query. On the other hand, Figure 15(b) shows that for P-PVD-PMNN, I/O costs decrease with
the increase of the buffer window. This is because, for a larger value of buffer window the algorithm fetches more
PVCs at a time from the server, and thereby needs to access the PVD using the R∗-tree reduced number of times. The
figure also shows that P-PVD-PMNN outperforms Naive-PMNN by an order of magnitude in processing time and 2
orders of magnitude in I/O. Figure 15(c) shows that the number of communications for P-PVD-PMNN continuously
decreases with the increase of buffer window as the client fetches more PVCs at a time from the server. However, for
Naive-PMNN, the client communicates with the server for each sampled location of the query, and thus the number
of communications remain constant.

The results on Z (see Figures 15(d)-(f)) and L (see Figures 15(g)-(i)) data sets show similar trends with U data set
described above.
Experiments with 1D Data Sets:

For 1D data, we have run a similar set of experiments to 2D ones, where we vary the length of the query trajectory,
the data set size, and the size of the buffer window.

Effect of the Length of a Query Trajectory: In this set of experiments, we vary the query trajectory length from 1000
to 5000 units while evaluating a PMNN query for 1D data sets. We run the experiments for both U (see Figures 16(a)-

26



 0.01

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.01

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 16: The effect of the query trajectory length in U (a-c), Z (d-f) for 1D data

 0.01

 0.1

 1

 500 400 300 200 100

T
im

e
 (

s
e
c
)

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 10

 100

 1000

 500 400 300 200 100

I/
O

s

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 10

 100

 1000

 500 400 300 200 100

#
 C

o
m

m
.

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.01

 0.1

 1

 500 400 300 200 100

T
im

e
 (

s
e
c
)

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 10

 100

 1000

 500 400 300 200 100

I/
O

s

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 10

 100

 1000

 500 400 300 200 100

#
 C

o
m

m
.

Data Set

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 17: The effect of the data set size in U (a-c), Z (d-f) for 1D data

(c)) and Z (see Figures 16(d)-(f)) data sets. The data set size is set to 100. We can see that, for both P-PVD-PMNN
and Naive-PMNN, the processing time, I/O costs, and number of communications increase with the increase of the
query trajectory length for 1D sets, which is expected. Figures also show that our P-PVD-PMNN outperforms the
Naive-PMNN by at least an order of magnitude in terms of processing time, I/Os, and communication costs.

Effect of Data Set Size: We also run the experiments with varying data set size (see Figures 17(a)-(c) for U and
Figures 17(d)-(f) for Z data sets). In these experiments, the trajectory length is set to 5000 units. Figures show that,
for P-PVD-PMNN, the processing time, I/O costs and number of communications increase with the increase of data
set size for 1D sets. This is because, for a larger data set, we have smaller PVCs and thereby a moving query needs
to check higher number of PBRs than that of a smaller data set. Figures 17(a)-(f) also show that our P-PVD-PMNN
outperforms Naive-PMNN by at least an order of magnitude in all evaluation metrics. The results also show that

27



 0.01

 0.1

 1

 400 300 200 100 0

T
im

e
 (

s
e
c
)

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

I/
O

s

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

#
 C

o
m

m
.

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.01

 0.1

 1

 400 300 200 100 0

T
im

e
 (

s
e
c
)

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

I/
O

s

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 400 300 200 100 0

#
 C

o
m

m
.

buffer-window

P-PVD-PMNN (D)
P-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(c) (d)

Figure 18: The effect of buffer window in U (a-c), Z (d-f) for 1D data

P-PVD-PMNN performs similar for both directional (D) and random (R) query movement paths.
Effect of Buffer Window: In this set of experiments, we study the impact of introducing a buffer for processing

a PMNN query. We vary the value of buffer window from 0 to 400 units, and then run the experiments for U (see
Figures 18(a)-(c)) and Z (see Figures 18(d)-(f)) data sets. In these experiments, we set the data set size to 100 and the
trajectory length to 5000 units. The experimental results show that P-PVD-PMNN outperforms Naive-PMNN by 1-2
orders of magnitude for I/O and processing costs, and 2-3 orders of magnitude in terms of communication costs.

6.2.2. Incremental Approach
In the incremental approach, we use an R∗-tree to index the MBRs of uncertain objects, for both I-PVD-PMNN

and Naive-PMNN. In both cases, we use the page size of 1KB and the node capacity of 50 entries for the R∗-tree.
Experiments with 2D Data Sets:

We vary the following parameters in our experiments: the value of k (i.e., the number of objects retrieved at each
step), the data set size, and the length of the query trajectory, and compare the performance of I-PVD-PMNN with
Naive-PMNN.

Effect of k: In this set of experiments, we study the impact of k in the performance measure for processing a
PMNN query. We vary the value of k from 10 to 50, and then run the experiments for all available data sets (U, Z,
and L). In these experiments, for both U and Z, we have set the data set size to 10K. Figures 19(a)-(c) show the
processing time, the I/O costs, and the number of communications, respectively, for varying k from 10 to 50 for U
data set. Figure 19(a) shows that the processing time almost remains constant for varying k. The processing time of
I-PVD-PMNN is on average 6 times less for directional (D) query paths than that of Naive-PMNN, and on average 13
times less for random (R) query paths than that of Naive-PMNN. On the other hand, Figures 19(b)-(c) show that I/O
costs and the number of communications decrease with the increase of k. This is because, for a larger value of k, the
client fetches more data at a time from the server, and thereby needs to communicate less number of times with the
server. Figures also show that our I-PVD-PMNN outperforms the Naive-PMNN by 2-3 orders of magnitude for both
I/O and communication costs.

Figures 19(d)-(f) and (g)-(i) show the performance behaviors of Z and L data sets, respectively, which are similar
to U data set.

Effect of Data Set Size: In this set of experiments, we vary the data set size from 5K to 25K and compare the
performance of our approach I-PVD-PMNN with Naive-PMNN. We set the trajectory length to 5000 units. Also, in
these experiments, we have set the value of k to 30. Figures 20 (a)-(c) and (d)-(f) show the processing time, I/O costs,

28



 0.1

 1

 10

 50 40 30 20 10

T
im

e
 (

s
e

c
)

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

I/
O

s

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

#
 C

o
m

m
.

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 10

 50 40 30 20 10

T
im

e
 (

s
e

c
)

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

I/
O

s

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

#
 C

o
m

m
.

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

 0.1

 1

 10

 50 40 30 20 10

T
im

e
 (

s
e

c
)

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

I/
O

s

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

#
 C

o
m

m
.

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(g) (h) (i)

Figure 19: The effect of (k) in U (a-c), Z (d-f), and L (g-i)

 0.1

 1

 10

 25 20 15 10 5

T
im

e
 (

s
e

c
)

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 25 20 15 10 5

IO
s

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 25 20 15 10 5

#
 C

o
m

m
.

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 10

 25 20 15 10 5

T
im

e
 (

s
e

c
)

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 25 20 15 10 5

IO
s

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 25 20 15 10 5

#
 C

o
m

m
.

Data Set (K)

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 20: The effect of the data set size in U (a-c), Z (d-f)

29



 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 21: The effect of the query length in U (a-c), Z (d-f)

and the number of communications for U and Z data sets, respectively. Figures also show that our I-PVD-PMNN
outperforms Naive-PMNN by 1-3 orders of magnitude for all data sets.

Effect of the Length of a Query Trajectory: We vary the length of moving queries from 1000 to 5000 units of the
data space. In these experiments, for both U and Z, we have set the data set size to 10K. Also, in these experiments, we
have set the value of k to 30. Figures 21 show that the processing time, I/O costs, and the number of communications
increase with the increase of the length of the query trajectory for both U and Z data sets, which is expected. The
processing time of I-PVD-PMNN is on average 5 times less for directional (D) query path and is on average 10 times
less for random (R) query paths compared to Naive-PMNN. Also I-PVD-PMNN outperforms Naive-PMNN by at
least an order of magnitude for both I/O and communication costs.

 0.1

 1

 10

 50 40 30 20 10

T
im

e
 (

s
e

c
)

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

I/
O

s

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

#
 C

o
m

m
.

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 10

 50 40 30 20 10

T
im

e
 (

s
e

c
)

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

I/
O

s

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 50 40 30 20 10

#
 C

o
m

m
.

k

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 22: The effect of (k) in U (a-c), Z (d-f) for 1D data

30



 0.1

 1

 500 400 300 200 100

T
im

e
 (

s
e
c
)

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 500 400 300 200 100

I/
O

s

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 500 400 300 200 100

#
 C

o
m

m
.

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 500 400 300 200 100

T
im

e
 (

s
e
c
)

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 500 400 300 200 100

I/
O

s

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 500 400 300 200 100

#
 C

o
m

m
.

Data Set

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 23: The effect of the data set size in U (a-c), Z (d-f) for 1D data

Experiments with 1D Data Sets: We also evaluate our incremental approach with 1D data sets by varying the follow-
ing parameters: the value of k, the data set size, and the length of the query trajectory.

Effect of k: In this set of experiments, we study the impact of k in the performance measure of I-PVD-PMNN for
1D data sets. Figures 22(a)-(e) show the results of U and Z data sets, for varying k from 10 to 50. In these experiments,
we have set the data set size to 100. Figure 22(a) shows that the processing time almost remains constant for varying k.
Moreover, the processing time of I-PVD-PMNN is on average 6 times less for directional (D) query paths than that of
Naive-PMNN, and on average 10 times less for random (R) query paths than that of Naive-PMNN. Figures 22(b)-(c)
show that the I/O costs and the number of communications decrease with the increase of k. Figures also show that our
I-PVD-PMNN outperforms Naive-PMNN by 2-3 orders of magnitude in terms of both I/O costs and communication
costs.

Figures 22(d)-(f) show the results for Z data set, which is similar to U data set.
Effect of Data Set Size: In this set of experiments, we vary the data set size from 100 to 500 and compare the

performance of our approach I-PVD-PMNN with Naive-PMNN. In these experiments, we have set the value of k to
30 and the trajectory length to 5000 units. Figures 20 (a)-(c) and (d)-(f) show the processing time, I/O costs, and the
number of communications for U and Z data sets, respectively. The results reveal that the processing time, I/O costs,
and the communications costs increase with the increase of the data set size. Figures also show that our I-PVD-PMNN
outperforms Naive-PMNN by at least an order of magnitude for all data sets.

Effect of the Length of a Query Trajectory: We also vary the length of the query trajectory for 1D data sets and
the results (Figures 24) for 1D data sets exhibit similar behavior to 2D data sets. In these experiments, we vary the
trajectory length from 1000 to 5000 units of the data space. Also, we have set the data set size to 100, and the value
of k to 30. Figures 24 show that for both U and Z data sets, the processing time, I/O costs, and the communication
costs increase with the increase of the trajectory length. Figures also show that our I-PVD-PMNN outperforms Naive-
PMNN in all evaluation metrics.

7. Summary

In this paper, we have introduced the concept of Probabilistic Voronoi Diagrams (PVDs). A PVD divides the data
space using a probability measure. Based on the PVD, we developed two different techniques: a pre-computation
approach and an incremental approach, for efficient processing of Probabilistic Moving Nearest Neighbor (PMNN)
queries. Our experimental results show that our techniques outperform the sampling based approach by up to two
orders of magnitude in our evaluation metrics.

31



 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(a) (b) (c)

 0.1

 1

 5000 4000 3000 2000 1000

T
im

e
 (

s
e

c
)

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

I/
O

s

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

 0.1

 1

 10

 100

 1000

 5000 4000 3000 2000 1000

#
 C

o
m

m
.

trajectory-length

I-PVD-PMNN (D)
I-PVD-PMNN (R)
Naive-PMNN (D)
Naive-PMNN (R)

(d) (e) (f)

Figure 24: The effect of the query length in U (a-c), Z (d-f) for 1D data

Our work on PVD opens new avenues for future work. Currently our approach finds the most probable NN for a
moving query point; in the future we aim to extend it for top-k most probable NNs. PVDs for other types of probability
density functions such as normal distribution are to be investigated. We also plan to have a detailed investigation on
PVDs of higher dimensional spaces.

References

[1] G. Trajcevski, O. Wolfson, K. Hinrichs, S. Chamberlain, Managing uncertainty in moving objects databases, ACM TODS 29 (3) (2004)
463–507.

[2] S. Madden, M. J. Franklin, J. M. H. W. Hong, The design of an acquisitional query processor for sensor networks, in: SIGMOD, 2003, pp.
491–502.

[3] Q. Liu, W. Yan, H. Lu, S. Ma, Occlusion robust face recognition with dynamic similarity features, in: ICPR, 2006, pp. 544–547.
[4] R. Cheng, D. V. Kalashnikov, S. Prabhakar, Evaluating probabilistic queries over imprecise data, in: SIGMOD, 2003, pp. 551–562.
[5] R. Cheng, S. Prabhakar, D. V. Kalashnikov, Querying imprecise data in moving object environments, IEEE TKDE 16 (9) (2004) 1112–1127.
[6] R. Cheng, X. Xie, M. L. Yiu, J. Chen, L. Sun, UV-Diagram: A Voronoi diagram for uncertain data, in: ICDE, 2010.
[7] H.-P. Kriegel, P. Kunath, M. Renz, Probabilistic nearest-neighbor query on uncertain objects, in: DASFAA, 2007, pp. 337–348.
[8] G. Beskales, M. A. Soliman, I. F. IIyas, Efficient search for the top-k probable nearest neighbors in uncertain databases, Proc. VLDB Endow.

1 (1) (2008) 326–339.
[9] C. Re, N. Dalvi, D. Suciu, Efficient top-k query evaluation on probabilistic data, in: ICDE, 2007, pp. 886–895.

[10] M. A. Soliman, I. F. Ilyas, Top-k query processing in uncertain databases, in: ICDE, 2007, pp. 896–905.
[11] A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, John Wiley & Sons,

Inc., 2000.
[12] W. Evans, J. Sember, Guaranteed voronoi diagrams of uncertain sites, in: CCCG, 2008.
[13] R. Cheng, J. Chen, M. F. Mokbel, C.-Y. Chow, Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data,

in: ICDE, 2008, pp. 973–982.
[14] G. Trajcevski, R. Tamassia, H. Ding, P. Scheuermann, I. F. Cruz, Continuous probabilistic nearest-neighbor queries for uncertain trajectories,

in: EDBT, 2009, pp. 874–885.
[15] X. Lian, L. Chen, Probabilistic group nearest neighbor queries in uncertain databases, IEEE TKDE 20 (6) (2008) 809–824.
[16] X. Dai, M. L. Yiu, N. Mamoulis, Y. Tao, M. Vaitis, Probabilistic spatial queries on existentially uncertain data, in: SSTD, 2005, pp. 400–417.
[17] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, M. Vaitis, Efficient evaluation of probabilistic advanced spatial queries on existentially uncertain

data, IEEE TKDE 21 (1) (2009) 108–122.
[18] T. Mitchell, Machine Learning, Mcgraw-Hill, 1997.
[19] Y. Tao, D. Papadias, Time-parameterized queries in spatio-temporal databases, in: SIGMOD, 2002, pp. 334–345.
[20] J. Zhang, M. Zhu, D. Papadias, Y. Tao, D. L. Lee, Location-based spatial queries, in: SIGMOD, 2003, pp. 443–454.
[21] M. I. Karavelas, Voronoi diagrams for moving disks and applications, in: WADS, 2001, pp. 62–74.
[22] S. Fortune, A sweepline algorithm for voronoi diagrams, Algorithmica 2 (1987) 153–174.
[23] M. de Berg, K. Dobrindt, O. Schwarzkopf, On lazy randomized incremental construction, in: STOC, 1994, pp. 105–114.

32



[24] M. A. Mostafavi, C. Gold, M. Dakowicz, Delete and insert operations in voronoidelaunay methods and applications, Computers & Geo-
sciences 29 (4) (2003) 523–530.

[25] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, T. Seidl, Fast nearest neighbor search in high-dimensional space, in: ICDE, 1998, pp.
209–218.

[26] S. Berchtold, D. A. Keim, H.-P. Kriegel, T. Seidl, Indexing the solution space: A new technique for nearest neighbor search in high-
dimensional space, IEEE TKDE 12 (1) (2000) 45–57.

[27] H. Samet, Foundations of Multidimensional and Metric Data Structures, Morgan Kaufmann, CA, 2006.
[28] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The R*-Tree: an efficient and robust access method for points and rectangles, in: SIGMOD,

1990, pp. 322–331.
[29] A. Guttman, R-trees: A dynamic index structure for spatial searching, in: SIGMOD, 1984, pp. 47–57.
[30] S. Nutanong, R. Zhang, E. Tanin, L. Kulik, The V*-diagram: a query-dependent approach to moving knn queries, VLDB 1 (1) (2008)

1095–1106.
[31] TIGER, http://www.census.gov/geo/www/tiger/.

33


	1 Introduction
	2 Preliminaries and Problem Setup
	3 Background
	3.1 Probabilistic Nearest Neighbor
	3.2 Voronoi Diagrams

	4 Probabilistic Voronoi Diagram
	4.1 Probabilistic Voronoi Diagram in a 1D Space
	4.2 Probabilistic Voronoi Diagram in a 2D Space
	4.3 Discussion

	5 Processing PMNN Queries
	5.1 Pre-computation Approach
	5.2 Incremental Approach

	6 Experimental Study
	6.1 Experimental Setup
	6.2 Performance Evaluation
	6.2.1 Pre-computation Approach
	6.2.2 Incremental Approach


	7 Summary

