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Link prediction in protein–protein interaction networks (PPINs) is an important task in
biology, since the vast majority of biological functions involve such protein interactions. Link
prediction is also important for online social networks (OSNs), which provide predictions
about who is a friend of whom. Many link prediction methods for PPINs/OSNs are local-based
and do not exploit all network structure, which limits prediction accuracy. On the other hand,
there are global approaches to detect the overall path structure in a network, being
computationally prohibitive for huge-size PPINs/OSNs. In this paper, we enhance a previously
proposed multi-way spectral clustering method by introducing new ways to capture node
proximity in both PPINs/OSNs. Our new enhanced method uses information obtained from the
top few eigenvectors of the normalized Laplacian matrix. As a result, it produces a less noisy
matrix, which is smaller and more compact than the original one. In this way, we are able to
provide faster and more accurate link predictions. Moreover, our new spectral clustering
model is based on the well-known Bray–Curtis coefficient to measure proximity between two
nodes. Compared to traditional clustering algorithms, such as k-means and DBSCAN, which
assume globular (convex) regions in Euclidean space, our approach is more flexible in
capturing the non-connected components of a social graph and a wider range of cluster
geometries. We perform an extensive experimental comparison of the proposed method
against existing link prediction algorithms and k-means algorithm, using two synthetic data
sets, three real social networks and three real human protein data sets. Our experimental
results show that our SpectralLink algorithm outperforms the local approaches, the k-means
algorithm and another spectral clustering method in terms of effectiveness, whereas it is more
efficient than the global approaches.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Online social networks (OSNs) such as Facebook.com,1 Myspace,2 Hi5.com,3 etc. contain gigabytes of data that can be mined to
make predictions about who is a friend of whom. OSNs gather information on users' social contacts, construct a large
interconnected social network, and recommend other people to users based on the network structure. Link Prediction in social
networks, tries to infer new interactions among members of a social network that are likely to occur in the near future. There are
two main approaches [24] that handle it. The first approach is based on local features of a network, focusing mainly on the nodes
structure; the second approach is based on global features, detecting the overall path structure in a network. For instance, as an
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example of a local approach, as shown in Fig. 1, Facebook.com or Hi5.com uses the following style of recommendation for
recommending new friends to a target user U1: “People you may know: (i) user U7 because you have three common friends (users
U5, U6, and U10) (ii) user U4 because you have two common friends (users U2 and U3) (iii) user U9 because you have one common
friend (user U8)…”. The list of recommended friends is ranked based on the number of common friends each candidate friend has
with the target user.

Moreover, inspired from the recent surge of research on large, complex networks and their properties, we also study protein–
protein interaction networks (PPINs) — structures whose nodes represent proteins and whose edges represent interaction, or
influence between them. Interactions between proteins are important for numerous – if not all – biological functions. Given a natural
example from the area of biology, signals from the exterior of a cell are mediated to the inside of that cell by protein–protein
interactions of the signalingmolecules. This process, called signal transduction, plays a fundamental role inmany biological processes
and in many diseases (e.g. cancers). Thus, we study a basic computational problem underlying protein networks, the link prediction
problem, i.e. given a part of a protein network we seek to accurately predict the rest of the network's edges, by performingmultiway
spectral clustering analysis.

In this paper, we provide link predictions in both OSNs and PPINs, by performing multi-way spectral clustering, which uses
information obtained from the top few eigenvectors and eigenvalues of the normalized Laplacian matrix and computes a multi-way
partition of the data.

Compared to approaches based on local features of a network (i.e. Common Neighbors index or else known as FOAF algorithm,
Adamic/Adar index, Jaccard Coefficient, etc. — for more details see Related work section), we provide link predictions, by
exploiting the normalized Laplacian matrix of the graph, which captures the overall network structure. Instead, local approaches
consider only pathways of maximum length 2 between a target user/protein and his candidate friends/interacting proteins, which
results to lower accuracy prediction as will be shown experimentally later.

Compared to global approaches (i.e. Katz status index, RWR algorithm, SimRank algorithm etc.), which also operate on the
overall structure of a network (i.e. initial adjacency matrix), our method is more efficient. The reason is that, our method is based
on the top few eigenvectors and eigenvalues of the normalized Laplacian matrix, requiring less time and space complexity than
the global algorithms, as will be shown in Section 4.4. Solving a standard eigenvalue problem for all eigenvectors takes O(n3)
operations, where n is the number of nodes in a graph. This becomes impractical for applications with n on the order of millions.
However, real social and protein–protein interaction networks have often the following properties [38]: 1) The graphs are often
only locally connected and the resulting eigensystem is very sparse, and 2) only the top few eigenvectors are needed for graph
partitioning. These special properties of our problem can be fully exploited by an eigensolver called the Lanczos method [11],
resulting to faster time complexity than global algorithms.

Compared to traditional clustering algorithms, such as k-means and DBSCAN, whichmake explicit or implicit assumptions that
clusters form globular (convex) regions in Euclidean space, the normalized Laplacian matrix has some desirable properties that
make it more suitable for real OSNs and PPINs, which often have non-connected components with non-globular shapes. Firstly, it
is positive semi-definite with k non-negative real-valued eigenvalues 0 = λ1 ≤ … ≤ λk. The number of 0 eigenvalues equals the
number of the connected components in a graph. Thus, spectral clustering is more flexible than k-means, in capturing (i) the
non-connected components of a graph, and (ii) a wider range of cluster geometries and shapes [47].

The contributions of our approach are summarized as follows: (i) For the first time spectral clustering has been used for providing
link prediction in both OSNs/PPINs. (ii) We provide more accurate friend recommendations and protein link predictions than local
approaches and k-means, by detecting a wider range of network structure and cluster geometries. This reveals the latent associations
between users/proteins of OSNs and PPINs respectively, aswill be shown experimentally later. (iii)We provide higher efficiency than
the global approaches. Our approach, by performing dimensionality reduction of the normalized Laplacianmatrix, results to a smaller
andmore compact graphmatrix than the original one, as will be also shown experimentally. (iv)We define two new node similarity
measures that exploit local and global characteristics of a network. In particular, we calculate the similarity between nodes that
belong in the same cluster and similarity between nodes that belong in different clusters by exploiting triangular inequality between
the two nodes and the center of a cluster. (v) Compared to the bulk of research on social networks that has focused almost exclusively
on positive interpretations of links between people, we also study the interplay between positive and negative relationships.
U1

U2

U3

U4

U5

U6

U7

U8U9

U10

Fig. 1. Network example.
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Respectively, we also apply our proposed scheme to a PPINwith positive and negative links. (vi)We perform extensive experimental
comparison of the proposed method against existing link prediction algorithms, another spectral clustering algorithm and k-means,
using synthetic and real data sets.

The rest of this paper is organized as follows. Section 2 summarizes the related work, whereas Section 3 briefly reviews
preliminaries in graphs employed in our approach. A motivating example, the proposed approach, an extension for signed
networks and its complexity analysis, are described in Section 4. Experimental results are given in Section 5. Section 6 discusses
solutions to problems in the link prediction task. Finally, Section 7 concludes this paper.

2. Related work

The research for link prediction in OSNs consists of local and global approaches [24]. The local approaches focus mainly on the
local node's structure, whereas the global approaches, detect the overall path structure in a network.

There is a variety of local-based similarity measures [24,25,49], which are node-dependent (i.e. Common Neighbors index or else
known as FOAF [6] algorithm, Adamic/Adar [2] index, Jaccard Coefficient, etc.) for analyzing the “proximity” of nodes in a network.
Common Neighbors index, also known as Friend of a Friend algorithm (FOAF) [6], is adopted by many popular OSNs, such as
facebook.com and hi5.com for the friend recommendation task. FOAF is based on the common sense that two nodes vx, vy are more
likely to form a link in the future, if they have many common neighbors. In addition to FOAF algorithm, there are also more
complicated local-based measures such as Jaccard Coefficient and Adamic/Adar index. Jaccard Coefficient [24] is a commonly used
similarity metric in Information Retrieval. Tomeasure proximity between two nodes vx and vy, Jaccard Coefficient measures the ratio
of the number of common neighbors between vx and vy to the number of non-common neighbors. Adamic/Adar index [2], which is
based on Jaccard Coefficient, measures how strongly “related” twoweb pages are. To do this, it exploits features of the web pages and
defines a similarity measure between them, by refining the simple counting of common features (Jaccard Coefficient) by weighting
rarer features more heavily.

There are a variety of global approaches [24], which are path-dependent (i.e. Katz [17] status index, RWR [33] algorithm, SimRank
[16] algorithm, the commute time [8] algorithm etc.). Leo Katz [17] introduced a status index derived from sociometric analysis. His
method computes the important and influential nodes in a social network. He also used the concept of attenuation in influence
transmitted through intermediary nodes. RWR algorithm [33] (Random Walk with Restart algorithm) is based on a Markov-chain
model of random walk through a graph. RWR considers a random walker that starts from node vx and chooses randomly among the
available edges every time, except that before making a choice, with probability c he goes back to node vx (restart). Thus, the relevance
score of node vxwith respect to node vy is defined as the steady-state probabilityrvx ;vy that the randomwalkerwill finally stay at node vy.

As far as PPINs are concerned, there are a lot of biochemical and biophysicalmethods to detect interactions in such networks [19,26].
However, since molecular biology techniques are quite expensive and very often time-consuming, it is by far preferable to apply graph
theory techniques to study such kind of problems. Authors in [36] use sequence data to apply spectral clustering techniques. They prove
that their algorithm offers competitive performance on the clustering of biological sequence data. Authors in [13] also present a simple
and unified derivation of the spectral algorithms and they apply it to microarray datasets. They illustrate the performance of spectral
algorithms by providing numerous experimental results. Stelzl et al. [40] also studied a humanprotein–protein interaction network and
they developed a tool for the identification of PPINs, which can be used to detect interactions across the entire proteome of an organism.
Algorithms for reducing the noise presented in PPI networks [23] and predicting protein functions from weighted PPIs [18] have also
been proposed. Another tool, named Local Protein Community Finder has also been developed from the authors in [44]. This tool finds a
community close to a queried protein in any network specified by the user. Generally, a variety of computational methods have been
investigated so far for the protein network inference problem [4,5]. Authors in [27] present a local path index to estimate the likelihood
of the existence of a link between two nodes. Authors in [46] introduce a method based on a variant of kernel canonical correlation
analysis to predict the protein network of a yeast. Other methods try to predict protein interactions from evolutionary similarities [35],
while others combine different sources of data to infer the network [30].

Spectral clustering, is one of themost popularmodern clustering algorithms. Its efficacy ismainly based on the fact that it does not
make any assumptions on the form of the clusters [38,47]. This property comes from the mapping of the original space to an
eigensystem. Due to this virtue, Spectral clustering is applied in many different research areas, such as bioinformatics [13] for
clustering biological sequence data and computer imaging [38] for image segmentation.

There are two main categories of spectral clustering algorithms based on the number of eigenvectors they use. The first category
[29,38,39] uses a matrix of affinities between nodes and clusters the nodes based on the second smallest eigenvector of the Laplacian
matrix. Then, recursively uses the second smallest eigenvector to further partition these clusters. A representative example of this
category is the two-way Ncut algorithm [29,38,39]. The second category, which is similar to our new enhanced method, directly
computes a multi-way partition of the data [32]. In particular, it selects the largest k eigenvectors and their corresponding
eigenvalues. Then, it extracts the clusters by finding the approximate equal elements in the selected eigenvectors using any clustering
algorithm e.g. k-means.

Recently, Yan et al. [47] proposed a general framework for fast approximate spectral clustering in which a distortion-minimizing
local transformation is first applied to the data. This framework is based on a theoretical analysis that provides a statistical
characterization of the effect of distortion on themis-clustering rate. Moreover, Abbassi andMirronki [1] proposed a spectral method
for designing a recommender system for blogs. However, the fact that they do not weight differently the similarities between nodes
that belong in the same cluster and nodes that belong in different clusters is questionable. Jerome Kunegis and Andreas Lommatzsch
[21] proposed a unified framework for learning link prediction and edge weight prediction functions in large networks, based on the
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transformation of a graph's algebraic spectrum. Kunegis et al. [20] also introduced a link prediction algorithm based on the
extrapolation of a network's spectral evolution, a method which generalizes several common graph kernels that can be expressed as
spectral transformations. In addition, Kunegis et al. [22] studied the problem of signed global networks as well, by identifying
unpopular users and predicting the sign of links. Finally, Yen et al. [48] addressed the problem of clustering the nodes of a weighted
and undirected graph by using the sigmoid commute-time kernel, a measure for detecting similarity between nodes of a graph.

The novelty of our new proposed method compared to existing approaches is as follows:

• Recently, extensive empirical analysis has demonstrated that FOAF [6] algorithm, performs better than other complicated
variants [25,49] such as Adamic/Adar index and Jaccard Coefficient. Thus, we compare our method against FOAF algorithm as
representative of the local-basedmeasures, and as will be experimentally shown later, our method outperforms FOAF algorithm
in terms of accuracy.

• In contrast to global algorithms, such as the Katz index [17] and the Random Walk with Restart (RWR) algorithm [33], our
method is more efficient. This means that our method, which is based on the top few eigenvectors and eigenvalues of the
normalized Laplacian matrix, requires less time and space complexity than global algorithms. We compare our method against
RWR, as representatives of the global algorithms, and as will be shown experimentally later, our method outperforms RWR in
terms of accuracy and time complexity.

• In contrast to traditional clustering algorithms, such as k-means and DBSCAN, our method is more flexible, because it captures
(i) the non-connected components of a graph, and (ii) a wider range of cluster geometries and shapes [47]. Thus, it results to
better friend recommendations and protein link predictions. We have compared our method against k-means, as representative
of the clustering algorithms, and as will be shown experimentally later, our method is more effective than k-means.

Besides the aforementioned link prediction algorithms that are based solely on the graph structure, there are alternative
methods that exploit other data sources such as messages among users, co-authored paper, common tagging etc. For instance, Ido
Guy et al. [12], proposed a novel user interface widget for providing users with recommendations of people. Their people
recommendations were based on aggregated information collected from various sources across IBM organization (i.e. common
tagging, common link structure, common co-authored papers etc.). Chen et al. [6] evaluated four recommender algorithms
(Content Matching, Content-plus-Link, FOAF algorithm and, SONAR) to help users discover new friends on IBM's OSN. TidalTrust
[10] and MoleTrust [31] are also hybrid approaches combining the rating data of collaborative filtering systems with the link data
of trust-based social networks (i.e. Epinions.com) to improve the prediction accuracy. In contrast to the above methods, we focus
only on predictions based on the link structure of an OSN and a PPIN and thus, we will exclude them from our experimental
comparison.

3. Preliminaries in graphs

A graph G ¼ V; Eð Þ is a set V of vertices and a set E of edges such that an edge joins a pair of vertices. In this paper, Gwill always
be a general undirected and unvalued graph as shown in Fig. 1. G can express friendships among users of an OSN or interactions
among proteins of a PPIN and will be used as our running example, throughout the paper. Notice that our running example
concerns a friendship network.

The adjacency matrixA of graphG is a matrix with rows and columns labeled by graph vertices, with a 1 or 0 in position (vi, vj)
according to whether vi and vj are connected or not. For an undirected graph, the adjacency matrix is symmetric. In Table 1, we
present the resulting adjacency matrixA of graph G. Notice that inAwe use zeros along the diagonals, to depict that a node is not
connected to itself. In case of a large graph G, it is important to note that its adjacency matrix A can be characterized by high
dimensionality and sparsity.

The spectral algorithms are based on eigenvectors of Laplacians, which are a combination of the adjacency and the degree
matrix. The normalized Laplacian matrix of graph G is computed by equation L ¼ D−∞

∈ � D−Að Þ � D−∞
∈, where D is the degree

matrix of graph G. The normalized Laplacian matrix L is positive semi-definite and has n non-negative real-valued eigenvalues
0 = λ1 ≤ … ≤ λn. Moreover, the number of 0 eigenvalues equals the number of the connected components in a graph.

Table 2 presents the most important symbols and their corresponding definitions, which are used frequently in the sequel.
Table 1
Adjacency matrix A of graph G.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0 1 1 0 1cp 1 0 1 0 1
U2 1 0 0 1 0 0 0 0 0 0
U3 1 0 0 1 0 0 0 0 0 0
U4 0 1 1 0 0 0 0 0 1 0
U5 1 0 0 0 0 0 1 0 0 0
U6 1 0 0 0 0 0 1 0 0 0
U7 0 0 0 0 1 1 0 0 0 1
U8 1 0 0 0 0 0 0 0 1 0
U9 0 0 0 1 0 0 0 1 0 0
U10 1 0 0 0 0 0 1 0 0 0
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Table 2
Symbols used throughout the study.

Symbol Description

G Undirected and unvalued graph
V Set of graph nodes (vertices)
E Set of graph edges
A Adjacency matrix of graph G
D Degree matrix of graph G
L Normalized Laplacian matrix of graph G
ui Eigenvector of L
λi Eigenvalue of L
vi Graph node
ei Graph edge
sim(vi,vj) Similarity between nodes vi and vj
n Number of vertices in graph G
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4. The proposed approach

In this section, through a motivating example we first provide the outline of our approach, named SpectralLink. Next, we
analyze the steps of the proposed algorithm.
4.1. Outline

Here, we describe how SpectralLink is applied on OSNs/PPINs and how the link prediction is performed according to the
detected associations.

When using an OSN, users explicitly declare their friends so that they are able to share information items with them (i.e.
photos, news etc.). After some time, the social network accumulates a set of connection data (graph of friendships), which can be
represented by an undirected graph similar to that of Fig. 1.

Our SpectralLink approach finds similarities between nodes in an undirected graph constructed from these connection data.
The SpectralLink algorithm uses as input the connections of a graphG and outputs a similarity matrix between any two nodes inG.
Therefore, friends can be recommended to a target user u according to their weights in the similarity matrix.

In the following, to illustrate how our approach works, we apply the SpectralLink algorithm to our running example. As
illustrated in Fig. 1, 10 users are connected in a graph. If we have to recommend a new friend to U1, then there is no direct
indication for this task in the original adjacency matrix A, as shown in Table 1. However, after performing the SpectralLink
algorithm, we can get a similarity matrix between any two nodes of graph G and recommend friends according to their weights.

Firstly, SpectralLink computes the first k eigenvectors u1, …, uk with the corresponding λ1, …, λk eigenvalues of L based on
equationL � U ¼ λ� U , whereU matrix has columns, the eigenvectors u1,…, uk and nodes vi ∈ R, with i = 1,…, n, corresponding
to the i-row of U . In our running example, we compute the first k = 2 eigenvectors and λ = 2 of L, respectively, as shown in
Tables 3 and 4.

Secondly, we cluster nodes vi of U with the k-means algorithm into clusters C1, …, Ck. In our running example, k is equal to 2.
Thus, we will partition data in 2 clusters. In Table 5, we present vector IDX with i = 1, …, n rows, which correspond to the
assignment of a node vi in one of the two clusters. Thus, node U1 is assigned in cluster C1, node U2 is assigned in cluster C2, etc.
Moreover, based on the k-means algorithm, we can compute the centroids of each cluster. This information is shown, in Table 7.
Based on the distances of each node from each cluster centroid we can define matrix D, which is shown in Table 6. Vector IDX and
matrix Dwill be used in the next step of SpectralLink to calculate the similarity between nodes that belong in the same cluster and
similarity between nodes that belong in different clusters.
Table 3
The first k = 2 eigenvectors of L.

u1 u2

1 −0.440 0.072
2 −0.291 −0.220
3 −0.291 −0.220
4 −0.325 −0.426
5 −0.295 0.304
6 −0.295 0.304
7 −0.334 0.453
8 −0.285 −0.244
9 −0.278 −0.417
10 −0.295 0.304
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Table 4
The first λ = 2 eigenvalues of L.

λ1 λ2

0.892 0.750

Table 5
Vector IDX which assigns each ui node in a
specific cluster.

User Cluster

U1 1
U2 2
U3 2
U4 2
U5 1
U6 1
U7 1
U8 2
U9 2
U10 1
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Moreover, in Fig. 2a,we present the 10 nodes of our running example, in the 2-dimensional space based on the first 2 eigenvectors
ofLmatrix. Additionally, in Fig. 2b, we present the resulting partition of the 10 nodes of graphG in 2 clusters. Thus, the nodes that are
assigned in cluster C1 = {U2,U3,U4,U8,U9}, whereas the nodes that are assigned in cluster C2 = {U1,U5,U6,U7,U10}. As shown, the
partition of k-means is in accordance with the visual representation in the 2-dimensional space of the nodes in Fig. 2a.

Thirdly, in contrast to a previous proposed work published in [15], in order to quantify the similarity between nodes, we
are based on triangle inequality which states that for any triangle the sum of the lengths of any two sides must be greater
than the length of the remaining side. Since we have calculated matrix Dwith the distances of each node from the centroid of
each cluster, based on triangle inequality the distance (i.e. dissimilarity) between any pair of nodes i and j is bounded in this
space: |D(i, IDX(i)) − D(j, IDX(j))| ≤ dist(i,j) ≤ D(i, IDX(i)) + D(j, IDX(j)).

For similarity bounded by 0 and 1, when similarity is one (i.e. exactly similar), the distance (dissimilarity) is zero andwhen the
similarity is zero (i.e. very different), the dissimilarity is one. To quantify the similarity between nodes that belong in the same
cluster, we have adapted the Bray–Curtis similarity measure [3], which also ranges in [0,1], using Eq. (1):
Pleas
clust
SimSC i; jð Þ ¼ D i; IDX ið Þð Þ−D j; IDX jð Þð Þj j
D i; IDX ið Þð Þ þ D j; IDX jð Þð Þ : ð1Þ
Notice that, in contrast to Bray–Curtis similarity measure, our measure does not violate the property of triangular inequality.
In our running example the similarity between nodes U1 and U7 that belong to same cluster C1 based on Eq. (1) is:
D 1;1ð Þ−D 7;1ð Þj j
D 1;1ð ÞþD 7;1ð Þ ¼ 0:144−0:027j j

0:144þ0:027 ¼ 0:684. Moreover, to quantify the similarity between nodes that belong to different clusters we use
Eq. (2):
SimDC i; jð Þ ¼ D i; IDX jð Þð Þ−D j; IDX ið Þð Þj j
D i; IDX jð Þð Þ þ D j; IDX ið Þð Þ : ð2Þ
Table 6
Matrix D with the distances of each node from the centroid of each cluster.

C1 C2

U1 0.144 0.412
U2 0.783 0.009
U3 0.783 0.0009
U4 1.053 0.010
U5 0.005 1.011
U6 0.005 1.011
U7 0.027 1.145
U8 0.843 0.003
U9 1.115 0.020
U10 0.005 1.011
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Table 7
The coordinates in the 2-D space of each cluster centroid.

x y

Centroid_C1 −0.734 0.624
Centroid_C2 −0.703 −0.697
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Thus, in our running example the similarity between nodes U1 and U4 that belong to different clusters based on Eq. (2) is:
D 1;2ð Þ−D 4;1ð Þj j
D 1;2ð ÞþD 4;1ð Þ ¼ 0:412−1:053j j

0:412þ1:053 ¼ 0:437. It is obvious that Eq. (1) promotes similarity between nodes that belong to the same cluster. In
contrast, Eq. (2) penalizes similarities between nodes that belong to different clusters.

In Table 8, we present the node similarity matrix of graph G. For readability reasons, we put zero values to already adjacent
nodes. In our running example, as shown in Table 8, node U1 would receive node U7 as recommendation. The resulting
recommendation is reasonable, because U1 has 3 common interactors with node U7. In contrast, U1 has only 2 common interactors
with node U4. That is, the SpectralLink approach is able to capture the associations among the graph data objects. The associations
can then be used to improve the friend/protein recommendation procedure, as will be verified by our experimental results.
4.2. The SpectralLink algorithm

In this section, we describe our new SpectralLink algorithm in detail. Our SpectralLink algorithm computes node similarity for
a node vi with each node vj in a graph G.

As shown in Fig. 3, our SpectralLink algorithm is based on matrix L of a graph G. It takes the first k eigenvectors u1, …, uk of L.
Then, based on these eigenvectors it clusters nodes v1 … vn of graph G with k-means algorithm. Next, based on the distances of
each node vi from the nearest cluster centroid it calculates similarities between a test node and the other nodes in graphG. Finally,
for a test node we rank the calculated similarities with other nodes and predict the top ranked ones as his possible friends or
interacting proteins.
4.3. Extending SpectralLink for signed networks

In this Section, we derive variants of SpectralLink that apply to directed networks and networks with weighted edges,
including the case of edges with negative weights (signed networks).

Signed networks edges have positive (+1) as well as negative (−1) weights. Such signed graphs arise for instance in social
networks (i.e. Epinions.com, Shashdot Zoo, etc.) where negative edges denote distrust instead of trustiness. In biology, proteins in
cells tend to form complex signaling networks that respond to various signals, ranging from environmental conditions, hormones
or neurotransmitters to ions, and perform a series of tasks such as cell growth, maintenance of cell survival, proliferation,
differentiation, development and apoptosis [40]. In such signed graphs, SpectralLink algorithm, can be adjusted accordingly.
Firstly, we can use an alternative definition of diagonal degree matrix [14,21] by using the absolute diagonal degree matrix

Dii ¼
Xn

j¼1

Aij
�� ��. Then, we can define the signed normalized Laplacian matrix, by giving L ¼ D−1

2 � D−Að Þ � D−1
2.

As the unsigned normalized Laplacian matrix, the signed normalized Laplacian matrix is positive semi-define. However, when
each connected component of the graph contains a cycle with an odd number of negatively weighted edges, then the signed
normalized Laplacian matrix can be positive-definite.
Fig. 2. For our running example, we present the (a) 2-D space plot of nodes of graph G based on the second eigenvector of L and (b) the resulting partition of the
10 nodes of graph G in 2 clusters.
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Table 8
Node similarity matrix. It presents the possibility of interaction between two nodes.

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

U1 0.000 0.000 0.000 0.437 0.000 0.000 0.684 0.000 0.460 0.000
U2 0.000 0.000 0.000 0.000 0.127 0.127 0.187 0.500 0.379 0.127
U3 0.000 0.000 0.000 0.000 0.127 0.127 0.187 0.500 0.379 0.127
U4 0.437 0.000 0.000 0.000 0.020 0.020 0.041 0.538 0.000 0.020
U5 0.000 0.127 0.127 0.020 0.000 0.000 0.000 0.090 0.048 0.000
U6 0.000 0.127 0.127 0.020 0.000 0.000 0.000 0.090 0.048 0.000
U7 0.684 0.187 0.187 0.041 0.000 0.000 0.000 0.151 0.013 0.000
U8 0.000 0.500 0.500 0.538 0.090 0.090 0.151 0.000 0.000 0.090
U9 0.460 0.379 0.379 0.000 0.048 0.048 0.013 0.000 0.000 0.048
U10 0.000 0.127 0.127 0.020 0.000 0.000 0.000 0.090 0.048 0.000
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4.4. Complexity analysis

Social and protein–protein interaction networks are large and contain a significant amount of information. Global based
algorithms that can be used for link prediction, such as RandomWalk with Restart (RWR) [33,43] is computationally prohibitive for
large graphs. In particular, RWR'smain computational cost consists of a large matrix inversion, which has O(n3) time complexity. It is
important to mention here that Tong et al. [43] proposed a faster version of RWR. However, it preserves almost 90% quality of the
original RWR, which is a questionable solution for the link prediction problem, where accuracy is the most important parameter.
Moreover, space complexity is another limitation of the RWR algorithms, since they require O(n2) memory space.

Friend of a Friend algorithm (FOAF), as a representative of the local-based methods, considers very small paths between any pair
of nodes inG. In particular, for each vx node, FOAF traverses all its neighbors and then traverses the neighbors of each of vx's neighbor.
Since the time complexity to traverse the neighborhood of a node is simply h (h is the average node degree in a network) and our
graph G is sparse, it holds that h b b n. Thus, the time complexity of FOAF is O(n × h2). The space complexity for FOAF is O(n × h).

Solving a standard eigenvalue problem for all eigenvectors takes O(n3) operations, where n is the number of graph nodes. This
becomes impractical for applications with n on the order of millions. However, real social and protein–protein interaction networks
have often the following properties: 1) The graphs are often only locally connected and the resulting eigensystems are very sparse,
and 2) only the top few eigenvectors are needed for graph partitioning. These special properties of our problem can be fully exploited
by an eigensolver called the Lanczosmethod [11]. The time complexity of a Lanczos algorithm is O(m × n) + O(m × M(n)), wherem
is a usually small constant number of matrix–vector computations required, n is the number of nodes in a graph, andM(n) is the cost
of a matrix–vector computation of L� x, where L is the normalized Laplacian matrix and x is an eigenvector.
Fig. 3. The SpectralLink algorithm.
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The running time of the two-way Ncut algorithm is O(m × n), where n is the number of nodes and m is the number of steps
Lanczos takes to converge. Moreover, the time complexity of k-means is O(n × k × i × d), where n is the number of nodes, k is the
number of clusters, i is the number of iterations until k-means converge, and d is the number of attributes, where each node can be
expressed as a d-dimensional real vector. The space complexity of k-means is O((n + k) × m), wherem is the number of centroids,
that are stored in each iteration.

Recently Yan et al. [47] proposed a k-means-based approximate spectral clustering algorithm (KASP), which applies firstly
k-means to cluster the nodes of a graph and then applies spectral clustering only on the cluster centroids (representative nodes of
graph). By using this implementation, the overall computation cost of SpectraLink is O(k3) + O(n × k × i × d).

5. Experimental evaluation

In this section, we experimentally compare our new approach SpectralLink, with k-means [28] algorithm, the two-way
normalized cut algorithm [29,38,39], the Random Walk with Restart [33] algorithm, and the Friend of a Friend [6] algorithm,
denoted as k-means, two-way Ncut, RWR, and FOAF, respectively. Our experiments were performed on a 3 GHz Pentium IV, with
2 GB of memory, running Windows XP. All algorithms were implemented in Matlab.

5.1. Algorithms settings

In this section, we present detailed information of the algorithms that will be compared experimentally with our proposed
method:

k-means algorithm: Given a set of nodes (v1,v2,…,vn) of a graphG and its adjacencymatrix, k-means aims to partition the n nodes
into k sets (k b n) C = (C1, C2…, Ck) to minimize the within-cluster sum of squared error(SSE), as shown by Eq. (3):
P
c

SSE ¼
Xk

i¼1

∑
vx∈Ci

dist vx; cið Þ2; ð3Þ

where vx is a node in cluster Ci and ci is the centroid point for cluster Ci. k-means chooses k initial centroids, where k is a user-
specified parameter, namely, the number of clusters desired. Each node is then assigned to the closest centroid, and each
collection of nodes assigned to a centroid is a cluster. The centroid of each cluster is then updated based on the nodes assigned
to the cluster. This procedure is repeated until no node changes cluster, or equivalently, until the centroids remain the same.
After the cluster formation, for a node vi compute its similarity with each node vj that belongs in the same cluster based on
Eq. (1). Moreover, for a node vi compute its similarity with each node vj that belongs to a different cluster based on Eq. (2).
Two-wayNcut clustering algorithm: Given a set of nodes (v1,v2,…,vn) of a graphG, and its adjacencymatrix, two-way normalized
cut (two-way Ncut) algorithm aims to bipartition the n nodes to minimize the Normalized Cut [29,38,39]. In particular, two-way
Ncut solves the generalized eigenvalue problem for the second smallest eigenvalue, as shown by Eq. (4):

D−Að Þy ¼ λDy ð4Þ

where D is a diagonal matrix, A is the adjacency matrix, λ is the second smallest eigenvalue and y is the second smallest
eigenvector. Two-way Ncut uses the eigenvector with the second smallest eigenvalue to bipartition the graph, and decides if
the current partition should be subdivided again by checking Ncut variable stability. In other words, the algorithm decides if
the current partition should be subdivided by checking the stability of the Ncut and making sure that Ncut is below the pre-
specified threshold. Finally, it recursively performs repartition of the segmented parts if necessary and gives as a result a
number of groups, in which the clustered nodes are contained.
Random Walk with Restart Algorithm: The “random walk with restart” (RWR) algorithm [33] operates as follows: consider a
randomwalker that starts fromnode vx. The randomwalker chooses randomly among the available edges every time, except that,
before hemakes a choice, with probability c, he goes back to node vx (restart). Thus, the relevance score of node vx wrt. node vy is
defined as the steady-state probability rvx ;vy that the random walker will finally stay at node vy, as shown by Eq. (5):

r
→

vx
¼ c⋅A⋅ r→vx

þ 1−cð Þ⋅e→vx
; ð5Þ

where e
→

vx is the n ⋅ 1 starting vector with the vx
th element equal to 1 and 0 for the other elements of the vector, and A is the

adjacency matrix of graph G.
Eq. (5) defines a linear system problem where r

→
vx is a n ⋅ 1 ranking vector and element rvx ;vy is the relevance score of node vy

wrt. node vx, as shown by Eq. (6):

r
→

vx
¼ 1−cð Þ⋅ I−c⋅Að Þ−1⋅e→vx

: ð6Þ

In our experiments, we tuned the c parameter and the best results were produced when c is equal to 0.005.
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Friend of a Friend algorithm: The Friend of a Friend (FOAF) algorithm [6] leverages only network information of Friending
based on the intuition that “if many of my friends consider Alice a friend, perhaps Alice could be my friend too”. The clear
intuition behind it, is the primary algorithmic foundation of the “People You May Know” feature on Facebook, which is one of
the few known people recommenders deployed on a social networking site. Formally speaking, if we define predicate F(vi,vj)
to be true if and only if node vi has a connection with node vj, the algorithm can be described as follows: for a node vx being the
recipient of a recommendation, its recommendation candidate set is defined as follows [6]:

RC vxð Þ ¼ node vc ∃ node vi s:t: F vxvið Þ and F vivcð Þj g:f

For each candidate node vc�RC vxð Þ, its common interactor node set is CF(vx,vc) = {node vi|F(vx,vi) and F(vi,vc)}, which
represents the interactors of vx that connect to vc and thus serve as a bridge between vx and vc. We then define the score of
each candidate vc for recipient vx as the size of CF(vx,vc).
The candidates are recommended to vx in decreasing order of their score. For a single recommended candidate vc, we supply the
common interactors in CF(vx,vc) as the explanation for recommending vc. Thus, FOAF provides recommendations, considering only
pathways of maximum length 2 between an individual and his possible interactors in a social or a protein–protein interaction
network. Therefore, users/proteins can be recommended to vx according to the number on length-2 paths connecting them with
him in the network.

5.2. Real and synthetic evaluation data sets

To evaluate the examined algorithms, we have used two synthetic data sets (50K,100K), three real social networks (Facebook,
Hi5 and Epinions) and three real human protein data sets (Human, Human Disease and Human Signaling).

5.2.1. Real OSNs datasets
We crawled the graph data from the Facebook and Hi5 web sites at two different time periods. In particular, we crawled the

Facebook web site on the 30th of October 2009 and on the 15th of December 2010. Our data crawling method was the following:
For each user u, we traverse all his friends and then traverse the friends of each of u's friends etc. From the first crawl of Facebook
web site we created a training data set with 3694 users (network size N = 3.694, number of edges E = 13,692), denoted as
Facebook 3.7K, where the initial starting node of our crawling was a random user in Germany. From the second crawl of Facebook
web site we created the probe data set with the same users by only preserving 3912 new emerged edges among them. We
followed the same crawling procedure from the Hi5 web site. From the first crawl of Hi5 web site we created a training data set
with 63,329 users and 88,261 edges among them, denoted as Hi5 63K, where the initial starting node of our crawling was a
random user in the US. From the second crawl of Hi5 web site we created the probe data set with the same users by only
preserving 16,512 new emerged edges connecting them. The graph data from the first crawl are used to predict the new links
emerging in the second crawl. Moreover, we use in our comparison the Epinions4 132K data set, which is a who-trusts-whom
social network that consist of positive and negative edges. A positive edge implies trust whereas a negative edge implies distrust.

5.2.2. Real PPINs datasets
The first protein data set5 used in this paper contains a total of 3269 unique interactions between 1925 different human

proteins and is denoted as Human Data-set. The second protein data set6 is a part of the Human Disease Network [9] containing
1200 interactions between 868 proteins and is denoted as Human Disease Data-set. Finally, the third network7 tested here, called
Human Signaling Data-set contains 2938 interactions between 1221 proteins.

5.2.3. Synthetic datasets
The size of real online social networks is huge. For instance, Facebook has over 500 million users with an average of roughly

100 friends each. To study the algorithms' computational complexity performance, we used synthetic network models of different
sizes. Although real networks have many complex structural properties [7], such as degree heterogeneity, the rich-club
phenomenon, etc., as a start point for generating synthetic data sets, we consider a very simple model.

In contrast to purely random (i.e., Erdos-Renyi) graphs, where the connections among nodes are completely independent random
events, our synthetic model follows similar directions with [34,42]. It ensures dependency among the connections of nodes, by
characterizing each node with a ten-dimensional vector with each element a randomly selected real number in the interval [−1,1].
This vector represents the node's intrinsic features such as the profile of a person. Two nodes are considered to be similar and thus of
high probability to connect to each other if they sharemany close attributes. Given a network size n and the degree k of each node, we
start with an empty network with n nodes. At each time step, a node with the smallest degree is randomly selected. Among all other
nodes whose degrees are smaller than k, this selected node will connect to the most similar node with probability 1 − p, while a
4 http://www.trustlet.org/wiki/Downloaded_Epinions_dataset.
5 http://www.cell.com/cgi/content/full/122/6/957/DC1/.
6 http://www.pnas.org/content/suppl/2007/05/03/0701361104.DC1.
7 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174632/?tool=pubmed.
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randomly chosen one with probability p. This process will be terminated when all nodes are of degree k. The parameter p ∈ [0,1]
represents the strength of randomness in generating links, which can be understood as noise or irrationality that exists in almost
every real system. Based on the above procedure, we have created 2 synthetic data sets based on different network sizes n (50,000,
100,000), by keeping an identicalm nodes degree equal to 50 and for both data sets (p is fixed to 0.2).

5.2.4. Topological properties of all datasets
Table 9 presents several calculated topological properties for all the aforementioned data sets. In Table 9, N represents the total

number of nodes, E the total number of edges, ASD the average shortest path distance between node pairs, ADEG is the average node
degree, LCC is the average local clustering coefficient andGD is the graph diameter (maximum shortest path distance). Regarding real
PPINs, in the first protein data set denoted as Human, the average shortest path distance (ASD) between any two proteins of the
network is 5.34. This means that most proteins are very closely linked, a phenomenon that has been described as small world
property of networks [41]. According to a definition introduced in [45], a small-world network is defined to be a network where the
typical distance between two randomly chosen nodes (ASD) grows proportionally to the logarithm of the number of nodes N in the
network. Small-world networks have sub-networks that are characterized by the presence of connections between almost any two
nodes within them i.e. high local clustering coefficient (LCC). Moreover, most pairs of nodes are connected by at least one short path
(i.e. small ASD). On the other hand, the second protein network denoted as Human Disease, does not consist a small world network
since its average shortest path distance is equal to 7.97 though its logarithm of N is equal to 2.9.

Regarding real OSNs, Hi5 63K has a very small LLC (0.02) and a quite big ASD (7.18). Thus, Hi5 data set cannot be considered as
a small-world network. In contrast, Facebook 3.7K presents (i) a large clustering coefficient (LCC) equal to 0.11, and (ii) a small
average shortest path length (ASD) equal to 4.23 and it can be also considered as a “small world” network.

5.3. Experimental protocol and evaluation metrics

As already described in Section 5.2, in our evaluation we consider the division of Facebook 3.7K, Hi5 63K, Human and Human
Disease data sets into two sets, according to the exact time stamp of the links downloaded: (i) the training set ET is treated as
known information and, (ii) the probe set EP is used for testing. No information in the probe set is allowed to be used for
prediction. It is obvious that ET ∩ EP ¼ ⊘. For each user/protein that has at least one new friend/interacting protein in EP we
generate recommendations based on his interactors in ET . Then, we average the results for each user/protein and compute the
final performance of each algorithm.

Epinions, Synthetic, Human and Human Disease data sets do not have time stamps of the edges. The performance of the
algorithms is evaluated by applying double cross-validation (internal and external). Each data set was divided into 10 subsets.
Each subset (EP) was in turn used for performance estimation in the external cross-validation. The 9 remaining subsets (ET ) were
used for the internal cross-validation. In particular, we performed an internal 9-fold cross-validation to determine the best values
of the algorithms' needed parameters. We chose as values for the parameters those providing the best performance on the
internal 9-fold cross-validation. Then, their performance is averaged on the external 10-fold cross-validation. The presented
results, based on two-tailed t-test, are statistically significant at the 0.05 level.

We use the classic precision/recall metric as performance measure for friend/protein recommendations. For a test user/protein
receiving a list of n recommended friends/proteins (top-n list), precision and recall are defined as follows:

Precision is the ratio of the number of relevant users/proteins in the top-n list (i.e., those in the top-n list that belong in the
future set of users/proteins of the target user/protein) to n.
Recall is the ratio of the number of relevant users/proteins in the top-n list to the total number of relevant users/proteins (all
users/proteins in the future set of the target user/protein).

5.4. Sensitivity analysis for the SpectralLink algorithm

In this Section, we study the sensitivity of SpectralLink accuracy performance in a synthetic, a real social network and in two
real human protein data sets (i) with different similarity measures that capture proximity between nodes, (ii) with different k
number of clusters and (iii) with different controllable sparsity.
Table 9
Topological properties of the synthetic and the real data sets.

Data-Set N E ASD ADEG LCC GD Network type

Hi5 63K 63,329 88,261 7.18 2.78 0.02 19 Unsigned
Facebook 3.7K 3694 13,692 4.23 7.21 0.11 10 Unsigned
Epinions 132K 131,828 841,372 1.78 6.38 0.24 14 Signed
Synthetic 50K 50,000 1,250,000 5.65 50 0.11 12 Unsigned
Synthetic 100K 100,000 2,500,000 8.72 50 0.05 15 Unsigned
Human 1925 3269 5.34 3.4 0.02 14 Unsigned
Human Disease 868 1200 7.97 1.9 0.011 18 Unsigned
Human Signaling 1221 2938 3.02 4.56 0.046 10 Signed
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Fig. 4. Precision diagram comparing SpectralLink with and without triangular similarity for all data sets.
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As discussed in Section 4.1, we have introduced two new similarity equations (Eqs. (1) and (2)) to quantify the similarity
between nodes that belong to same clusters and between nodes that belong to different clusters. Here, we perform experiments
by considering also the following similarity measures [15]:
(a)

(c)

Pleas
clust
SimSC i; jð Þ ¼ 1− min D ið Þð Þ−min D jð Þð Þj j ð7Þ

SimDC i; jð Þ ¼ 1
D i; IDX jð Þð Þ þ D j; IDX ið Þð Þ : ð8Þ
Eqs. (7) and (8) capture the proximity between two nodes by taking into consideration their distance from the cluster
centroid. However, they do not consider the triangular inequality between the two nodes and the cluster centroid.

Fig. 4 summarizes the precision performance of the examined data sets, using SpectralLink with triangular inequality (Eqs. (1)
and (2)) and SpectralLink without triangular inequality (Eqs. (7) and (8)). It is obvious that our new proposed equations
outperform in all cases and this happens because we take full advantage of the upper and lower bound of the triangular
inequality, as shown in Section 4.1. Thus, henceforth we will use Eqs. (1) and (2) for all experiments.

In Section 2, one of the required input values for the SpectralLink algorithm is the number k of clusters. To improve our
recommendations in terms of effectiveness, it is important to fine-tune the k variable. For the synthetic 50K data set, we examine the
performance of precision metric when we recommend a top 1 friend (i.e. %precision@1) vs. different values of k. Fig. 5a illustrates
precision for varying k values in the synthetic 50K data set.
(b)

(d)

Fig. 5. Precision vs. number k of clusters diagrams for: (a) Synthetic 50K, (b) Facebook 3.7K, (c) Human and (d) Human Disease data sets.
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As expected, the best precision performance of SpectralLink is attained with k = 1000 clusters. The reason is the average node
degree (ADEG) of the 50K data set, which is equal to 50. Thus, with a number k = 1000 of clusters, we get an average cluster size,
which corresponds to ADEG of this data set. In the following, we keep k = 1000 as the default initial value for the SpectralLink
algorithm for this data set. For the Facebook 3.7K data set, we follow the same tuning procedure. Fig. 5b illustrates precision for
varying number k of clusters. The best result is attained for k = 500. Once again, the initial k number is analogous to ADEG (i.e. 7.21)
and the network size (i.e. 3694/7.21 = 512).We also tuned the k variable for the two protein data sets. As shown in Fig. 5c and d, for
the Human Protein data set, best performance is obtained when k equals 600 and for the Human Disease Protein data set when k is
equal to 500. These numbers are also accordant to ADEG and the size of each network.We have to notice that the number of selected
clusters could reduce the gains over the predicting accuracy. This is why ourmethod requires a fine-tuning on the number of selected
clusters. However, the final number of selected clusters can be easily estimated by dividing the N number of nodes in a graph with
ADEG, as already shown above.

Next, we measure the accuracy that SpectralLink attains, with different controllable sparsity. To examine the accuracy
performance of SpectralLink in terms of different network sparsity, we have created for the 50K synthetic data set 5 different
sparsity cases, by changing the m number of friends that a node has (50, 60, 70, 80, 90), as shown in Fig. 6a.

As expected, with k increasing, the precision increases too. For the Facebook 3.7K data set, we also examine 5 different sparsity
cases, by changing the m number of friends that a node has (i.e. 3, 4, 5, 6, 7), as shown in Fig. 6b. As expected, the best precision
value is attained when we consider more adjacent nodes (i.e. m equal to 7). This is reasonable since the ADEG of Facebook 3.7K
data set is equal to 7.21. SpectralLink can predict more effectively new friends for largerm values, since in such cases the network
density is increased. Fig. 6c and d show precision diagrams for the two protein data sets and present the increase in precision
when a larger amount of protein-neighbors is known. As expected, with increasing the percentage of observed links, the precision
increases too. Thus, SpectralLink can predict more effectively new links between proteins for larger node degree values, since in
such cases the network density is increased.
5.5. Accuracy comparison of SpectralLink with other methods

We proceed with the comparison of SpectralLink with k-means, two-way Ncut, RWR, and FOAF algorithms, in terms of
precision and recall. We examine the ranked list, which is recommended to a target user/protein, starting from the top one. For
the Facebook 3.7K data set, in Fig. 7a we plot a precision versus recall curve for all five algorithms.

As shown, SpectralLink outperforms k-means, because it takes into consideration also the degree of connectivity of a graph.
Moreover, SpectralLink is more flexible than k-means, because it captures a wider range of cluster geometries and shapes and not
only cyclic clusters. Although the two-way Ncut algorithm benefits from the advantages of spectral clustering, it fails to provide
good link predictions. That is, SpectralLink outperforms Two-way Ncut because the latter relies only on the second eigenvector,
(a) (b)

(c) (d)

Fig. 6. Precision diagram presenting the increase in precision when a larger amount of neighbors is known for a data set. The data sets represented are: (a) Synthetic
50K, (b) Facebook 3.7K, (c) Human and (d) Human Disease.
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Fig. 7. Comparison of SpectralLink, k-means, RWR, Two-Way Ncut and FOAF algorithms for the: (a) Facebook 3.7K, (b) Hi5 63K, (c) Human and (d) Human
Disease data sets.
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cutting the subsequent eigenvectors, which might be perfect partitioning vectors. RWR traverses globally the social/protein
network, failing to capture adequately the local characteristics of the graph. FOAF cannot provide accurate recommendations
because it exploits only length-2 paths, failing to capture the notion of the global characteristic of a graph.

We also plot a precision versus recall diagram for the Hi5 63K data set, depicted in Fig. 7. The precision of SpectralLink is
decreased in this specific data set. The main reason is the topological characteristics of Hi5 63K data set (i.e. high ASD = 7.18 and
small ADEG = 2.78) [45]. Based on these characteristics, Hi5 63K cannot be considered as a small-world network. Thus, it is not
well-connected and results to lower recommendation accuracy.

Finally, we plot a precision versus recall curve for each Human Protein data set as shown in Fig. 7c and d. The recall and precision
vary as we increase the number of recommended proteins. These experiments show that SpectralLink and k-means are more robust
in predicting relevant proteins and the reason is that SpectralLink and k-means, identify clusters with high within-cluster nodes
similarity and low between-cluster similarity. Thus, the highwithin-cluster node similarity captures effectively the notion of the local
characteristics of a graph,whereas the lowbetween-cluster dissimilarity captures effectively the notion of the global characteristics of
a graph.

As already mentioned in Section 5.2 the Human data set consists a small-world network, while the Human Disease data-set
does not possess this property. This is why it results to low recommendation accuracy.
5.6. Time comparison of SpectralLink with other methods

In this section, we compare SpectralLink, against k-means, RWR, two-way Ncut and FOAF algorithms in terms of efficiency using
two synthetic, two real social and three real human protein data sets. We have created 2 synthetic data sets based on different
network sizes n (50,000, 100,000), by keeping anm node degree equal to 50 for all data sets. Then, wemeasured the clock time for the
Table 10
Time performance (in s) of RWR, k-means, SpectralLink, FOAF and Two-Way Ncut algorithms for all data sets.

Algorithms

Data-set RWR k-means SpectralLink FOAF Two-Way Ncut

Hi5 63K 1.106 0.745 0.562 0.179 0.516
Facebook 3.7K 0.135 0.105 0.085 0.029 0.058
Human 0.542 0.391 0.153 0.028 0.109
Human Disease 0.438 0.312 0.129 0.021 0.068
Human Signaling 0.496 0.364 0.138 0.025 0.083
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Fig. 8. Accuracy performance of SpectralLink in terms of precision/recall in: (a) Epinions 132K and (b) Human Signaling data sets.
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off-line parts of all algorithms. The off-line part refers to the average computation time for calculating the similarities for a target node.
The results are presented in Table 10.

As shown, SpectralLink outperforms RWR, which presents theworst time complexity because it calculates the inverse of an n × n
matrix, whereas SpectralLink performs calculations on the decomposed normalized Laplacian matrix. Moreover, SpectralLink
outperforms k-means because it requires only the top feweigenvectors for graph partitioning. Furthermore, SpectralLink outperforms
two-way Ncut because it is computationally wasteful, since it is a recursive algorithm and only the second eigenvector is used in each
bipartition.

As expected, FOAF outperforms the other algorithms due to its simpler complexity. However, as already shown in Section 5.5,
FOAF performs the worst results in terms of accuracy prediction. This means, that it is not suitable for the link prediction task,
even if FOAF presents small time complexity. Finally, notice that these experimental results correspond to the algorithms'
complexities, as previously discussed in Section 4.4.

5.7. SpectralLink accuracy in signed networks

In this section, we present the accuracy performance of SpectralLink when we take into account positive and negative links of
a signed network, i.e. Epinions 132K data set. We have two different variants of SpectralLink: The first variation considers only
positive links and is denoted as SpectralLink+. The second variation considers both positive and negative links and is denoted as
SpectralLink−

+. Fig. 8 presents the precision and recall diagram for both versions of SpectralLink. As shown, SpectralLink−+

outperforms SpectralLink+. The reason is that SpectralLink−
+ exploits positive and negative links. This means that if we use

information about negative edges for predicting the presence of positive edges we get an accuracy improvement of SpectralLink
predictions. These results clearly demonstrate that there is, in some settings, a significant improvement to be gained by using
information about negative edges, even to predict the presence or absence of positive edges.

6. Discussion

There are many difficulties in the study of the link prediction problem. A basic problem is the data sparsity [37] of OSNs/PPINs.
That is, the prior probability of a link is typically quite small for building a statistical model. To overcome this limitation, we
studied a synthetic network model with controllable density.

Real networks have many complex structural properties [7], such as degree heterogeneity, the rich-club phenomenon, the mixing
pattern, etc. These network properties are not considered by our synthetic networkmodel, since they are out of the scope of this paper.
However, our synthetic network model can be easily extended to better resemble real networks. For example, by applying the degree
heterogeneity index [7] with a probability p, a synthetic network with different level of degree heterogeneity can be composed.

This paper concerns unweighted and undirected networks. However, our algorithm can be easily extended tomore general cases.
For example, we can handle the directed networks by replacing the original adjacencymatrix A by an asymmetric one. Also, this paper
concerns the prediction problem in static networks. In reality, many networks are continuously evolving, and the links created in
different times should be assigned with different weights. Our algorithm could deal with weighted networks by replacing A by a
weighted matrix.

7. Conclusions

In this paper, we introduced a framework that uses an enhanced multi-way spectral clustering method, which is based on
triangular inequality to measure node proximity in OSNs/PPINs. We compared our method with previous related work, k-means,
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two-way Ncut spectral clustering algorithm, and other well-known link prediction algorithms, using two synthetic, three real
social networks and three real human protein data sets. We have shown that our SpectralLink algorithm provides more accurate
and faster link predictions. In future, we intend to improve link prediction by combining unipartite with bipartite social/biological
networks. Bipartite social networks can also provide valuable information by also exploiting users' co-commenting on written
posts, co-rating products and co-participating in groups. Bipartite protein–gene networks can provide valuable information based
on the information of proteins with genes interactions.
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