
ATOLL – A framework for the automatic induction of
ontology lexica

Sebastian Walter, Christina Unger, Philipp Cimiano

Semantic Computing Group, CITEC, Bielefeld University

Abstract

There is a range of large knowledge bases, such as Freebase and DBpedia, as
well as linked data sets available on the web, but they typically lack lexical
information stating how the properties and classes they comprise are realized
lexically. Often only one label is attached, if at all, thus lacking rich linguistic
information, e.g. about morphological forms, syntactic arguments or possible
lexical variants and paraphrases. While ontology lexicon models like lemon allow
for defining such linguistic information with respect to a given ontology, the cost
involved in creating and maintaining such lexica is substantial, requiring a high
manual effort. Towards lowering this effort we present ATOLL, a framework
for the automatic induction of ontology lexica, based both on existing labels
and dependency paths extracted from a text corpus. We instantiate ATOLL
with respect to DBpedia as dataset and Wikipedia as corresponding corpus, and
evaluate it by comparing the automatically generated lexicon with a manually
constructed one. Our results clearly corroborate that our approach shows a high
potential to be applied in a semi-automatic fashion in which a lexicon engineer
can validate, reject or refine the automatically generated lexical entries, thus
having a clear potential to contributing to the reduction the overall cost of
creating ontology lexica.

Keywords: ontology lexicalization, knowledge bases, ontologies, natural
language processing

1. Introduction

The amount of structured knowledge available on the web is increasing. The
linked data cloud, consisting of a large amount of interlinked RDF (Resource
Description Framework1) datasets, has been growing steadily in recent years,
now comprising more than 30 billion RDF triples2. Knowledge bases such as

1http://www.w3.org/TR/rdf-primer/
2http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Preprint submitted to Elsevier July 28, 2014

Freebase3 and DBpedia4 are huge and become more and more popular for var-
ious applications. Structured data is by now also collected and exploited by
search engines such as Google, e.g. in the form of knowledge graphs5 that are
used to enhance search results. As the amount of structured knowledge available
keeps growing, intuitive and effective paradigms for accessing and querying this
knowledge become more and more important. An appealing way of accessing
this growing body of knowledge is through natural language. In fact, in recent
years several researchers have developed question answering systems that pro-
vide access to the knowledge in the linked data cloud (e.g. [17], [27], [30], [5]).
Further, there have been approaches to applying natural language generation
techniques to RDF in order to verbalize knowledge contained in RDF datasets
(e.g. [20], [26], [7]).

For all such systems, knowledge about how properties, classes and individ-
uals are verbalized in natural language is required. One way to capture such
knowledge are ontology lexica. The lemon model, for example, has been devel-
oped for exactly this purpose: creating a standard format for publishing lexical
information about how ontology elements are verbalized in different languages
as RDF data. However, the creation of lexica for large ontologies and knowledge
bases such as the ones mentioned above involves a high manual effort. Towards
reducing the costs involved in building such lexica, we propose a corpus-based
approach for the induction of lexica for a given ontology which is capable of
automatically inducing an ontology lexicon given a knowledge base or ontology
and an appropriate text corpus. Our approach is supposed to be deployed in
a semi-automatic fashion by proposing a set of lexical entries for each property
and class, which are to be validated by a lexicon engineer, e.g. using a web
interface such as lemon source6.

As an example, consider the property spouse as defined in DBpedia. In
order to be able to answer natural language questions such as ‘Who is Obama
married to?’ or ‘Who is the wife of Obama?’, we need to know possible lex-
icalizations of this property, such as ‘married to’, ‘wife of’, and so on. Our
approach is able to find such lexicalizations on the basis of a sufficiently large
corpus. The approach relies on the fact that many existing knowledge bases are
populated with instances, i.e. triples relating entities through properties, such as
〈 resource:Barack Obama, dbpedia:spouse, resource:Michelle Obama 〉. On
the basis of these instances, it searches for occurrences of both entities in sen-
tences in the corpus. These sentences are then parsed using a dependency parser,
and the resulting dependency graphs are used to extract lexicalization patterns
that very likely express the property or class in question.

The approach is trained on the 20 classes and 60 properties available as part
of the ontology lexicon induction task of the CLEF 2013 challenge on Question

3http://www.freebase.com/
4http://dbpedia.org/
5http://www.google.com/insidesearch/features/search/knowledge.html
6http://lemon-model.net/source/

2

Answering over Linked Data, and is evaluated on the recently manually created
English DBpedia lexicon [28], which contains lexicalizations for 353 classes as
well as the 232 most frequent properties. We present the results in terms of
precision, recall and F-measure and discuss its usefulness for semi-automatic
lexicon engineering.

The paper is structured as follows. In Section 2 we briefly introduce lemon.
Then we present our approach to automatically inducing lemon lexica in Sec-
tion 3, and give details of an evaluation of our approach with respect to 585
classes and properties from the DBpedia ontology in Section 4. Before conclud-
ing, we discuss some related work in Section 5 and our future plans in Section 6.

2. The lexicon-ontology interface

While ontologies formalize a shared conceptualization, ontology lexica [23]
describe the lexical encoding of that conceptualization in a particular language.
A number of models were proposed for describing the ontology-lexicon interface,
among them lemon7 (Lexicon Model for Ontologies) [18], which is currently
subject to standardization efforts in a W3C community group8. lemon is a
model for the declarative specification of multilingual, machine-readable lexica
in RDF that capture morphological, syntactic and semantic aspects of lexical
items relative to some ontology.

The core of the lemon model comprises lexical entries together with their
forms, specified by a simple string or some phonological representation, and
their meaning, given by reference to an ontology element. For example, an
entry for the DBpedia class Star could look as follows:

:star a lemon:Word;

lemon:canonicalForm [lemon:writtenRep "star"@en];

lemon:sense [lemon:reference dbpedia:Star].

It specifies the entry as a word with the English lemma ‘star’ and a meaning
referring to the ontology class Star. In the same way we can specify entries for
lexical variants, such as ‘sun’, which refer to the same class, as well as lexical
entries in different languages.

By specifying the meaning as reference to an ontology element, lemon en-
sures a clean separation between the ontological and lexical layer.

Since lemon abstracts from specific linguistic theories and grammar for-
malisms, all linguistic categories such as parts of speech, syntactic frames and
argument roles have to be defined in an external linguistic ontology. In this
paper we assume this linguistic ontology to be LexInfo [8], but it can easily
be adapted to any other. Using LexInfo, the above entry can be extended as
follows, now also specifying the part of speech as well as singular and plural
forms:

7http://lemon-model.net
8http://www.w3.org/community/ontolex/

3

:star a lemon:Word;

lexinfo:partOfSpeech lexinfo:noun;

lemon:canonicalForm [lemon:writtenRep "star"@en;

lexinfo:number lexinfo:singular];

lemon:otherForm [lemon:writtenRep "stars"@en;

lexinfo:number lexinfo:plural];

lemon:sense [lemon:reference dbpedia:Star].

In addition to the core classes and properties, lemon provides several mod-
ules for capturing further aspects of the lexicon-ontology interface. One of them
is the syntax and mapping module that allows for specifying syntactic frames
as well as their arguments and how those arguments map to the semantic ar-
guments. As an example, consider the following verb entry ‘discover’ for the
DBpedia property discoverer.

:discover a lemon:Word;

lexinfo:partOfSpeech lexinfo:verb;

lemon:canonicalForm [lemon:writtenRep "discover"@en];

lemon:synBehavior [a lexinfo:TransitiveFrame;

lexinfo:subject :arg1;

lexinfo:directObject :arg2];

lemon:sense [lemon:reference dbpedia:discoverer;

lemon:subjOfProp :arg2;

lemon:objOfProp :arg1].

It specifies the part of speech, the lemma ‘discover’, a transitive verb frame
as the entry’s typical syntactic context with two arguments (a subject and a
direct object) as well as a meaning referring to the property discoverer with
two semantic arguments. Using the same URIs for syntactic and semantic ar-
guments describes a specific argument mapping, in this case that the semantic
subject of the property corresponds to the syntactic direct object, and the se-
mantic object corresponds to the syntactic subject. This means that the triple
〈 resource:Uranus, dbpedia:discoverer, resource:William Herschel 〉 can
be verbalized as ‘William Herschel discovered Uranus’ (and not ‘Uranus discov-
ered William Herschel’).

In order to support lexicon engineers in the construction of lexical entries
and liberate them from the need of writing RDF, lemon comes with a design
patterns library9 [19]. Using these patterns, the above entries would have the
following equivalent representations:

ClassNoun ("star",dbpedia:Star) with plural "stars"

ClassNoun ("sun", dbpedia:Star) with plural "suns"

StateVerb (" discover",dbpedia:discoverer ,

propSubj = DirectObject ,

propObj = Subject)

9https://github.com/jmccrae/lemon.patterns

4

Figure 1: ATOLL system architecture

The lexical entries induced by our approach are specified using these pat-
terns, as this makes them shorter, more concise and easier to read than RDF,
and therefore facilitate a manual validation and correction step following the
automatic induction of lexical entries.

3. Approach

The architecture of ATOLL is depicted in Figure 1. The input is an ontol-
ogy together with an RDF knowledge base as well as an (ideally in-domain) text
corpus; the output is a lexicon in lemon format, specifying lexicalizations both
for ontology classes and properties. The approach relies on two basic processing
chains: one label-based method that extracts lexicalizations from ontology labels
and additional information, such as synonyms, from external lexical resources,
and one dependency-based method that extracts lexicalization patterns for prop-
erties from the available text corpus. The main idea is to start from pairs of
entities that are related by a given property, find occurrences of those entities in
the text corpus, and generalize over the dependency paths that connect them.

We instantiate the approach using the DBpedia ontology and a correspond-
ing English Wikipedia corpus. The DBpedia ontology covers a wide range of

5

domains and describes over two million individuals, i.e. it provides a large
cross-domain dataset for which corresponding text corpora in a multitude of
languages are available. It is thus an ideal basis to assess the performance and
benefits of automatic ontology lexicalization. Moreover, with DBpedia being
the central hub of the linked data cloud, a lexicon capturing verbalizations of
the DBpedia ontology in several languages will prove useful beyond a particular
project or application. However, our approach is general enough to apply also
to other ontologies, knowledge bases and corpora.

In the following, we first present the procedure behind constructing lexical
entries from dependency paths, and then describe the lexicalization of ontology
elements on the basis of their labels.

3.1. Dependency-based approach
Figure 2 provides an overview of the dependency-based approach. The input

is a property from a given ontology and a related text corpus; the output is a
lemon lexicon. The approach comprises the following steps:

1. First, all pairs of entities connected through a given property are extracted
from the knowledge base.

2. These pairs of entities are then used to find sentences in the text corpus
that mention both entities, assuming that such sentences contain potential
lexicalizations for the property in question.

3. Next, the retrieved sentences are preprocessed and parsed with a depen-
dency parser, and the shortest path between the two given entities is
extracted from the resulting dependency graph.

4. Depending on the path in question and the involved parts of speech, lexical
entries are generated.

In the following, we describe these steps in more detail.

3.1.1. Triple retrieval and sentence extraction

Given a property, the first step consists in extracting all entities that are
connected through the property from a given RDF knowledge base. For the DB-
pedia property spouse, for example, the following triples are returned (among
many others):10

〈res:Barack_Obama , dbpedia:spouse , res:Michelle_Obama〉
〈res:Hilda_Gadea , dbpedia:spouse , res:Che_Guevara〉
〈res:Mel_Ferrer , dbpedia:spouse , res:Audrey_Hepburn〉

Next, for each triple 〈s,p,o〉 that was extracted for a property p, we retrieve
all sentences from the text corpus in which the labels of both entities s and o

occur, relying on an inverted Lucene index, which in our case contains around 25
million English sentences from Wikipedia, pre-tagged using the part-of-speech
tagger included in the Natural Language Toolkit11. Currently, this lookup step

10Throughout the paper, we use the prefix dbpedia for http://dbpedia.org/ontology/ and
resource or res for http://dbpedia.org/resource/.

11http://nltk.org/api/nltk.tag.html

6

Figure 2: Overview of the dependency path approach

does not include any entity disambiguation.
In order to increase the number of retrieved entity pairs, and therefore the

number of relevant sentences, we extract entity synonyms from the hyperlinks
and corresponding labels provided by Wikipedia anchor texts. For the entity
Barack Obama, for example, the anchor texts provide additional 45 written
forms, including ‘Barak Obama’, ‘Barack Hussein Obama’, and ‘44th President
of the United States’. For practical reasons, we use only the top 10 most frequent
labels as synonyms for a given entity term, as otherwise the number of pairs and
therefore lookups in the index become intractable. For the property spouse, for
example, around 40,000 entity pairs are retrieved. Choosing the top 10 entity
synonyms already increases the number of pairs to be looked up to 4 million.
Table 1 lists the top 10 most frequent anchor texts for Barack Obama and
Michelle Obama, together with their number of occurrences in Wikipedia.

3.1.2. Sentence preprocessing

After successfully retrieving sentences for a given triple, those sentences are
preprocessed in order to improve parsing results. As an example, consider the
following sentence for the entity pair Barack and Michelle Obama:

‘Michelle Obama is the wife of Barack Obama, the current president.’

First, this sentence is tagged with part of speech information and stored in the
index in the following form:

[(Michelle ,NNP), (Obama ,NNP),

(is ,VBZ), (the ,DT), (wife ,NN), (of ,TO),

(Barack ,NNP), (Obama ,NNP),

(the ,DT), (current ,JJ), (president ,NN)]

7

Next we apply a simple strategy for contracting entity names by concate-
nating all tokens tagged as NNP in a sequence. In our example, this leads to
(Michelle Obama,NNP) and (Barack Obama,NNP). As a further step, the re-
sulting NNP terms are replaced with the entity labels that were used to retrieve
the sentence, in this case ‘Barack Obama’ and ‘Michelle Obama’. For the above
sentence it does not make a difference, but it would, for example, normalize
terms like ‘First Lady Michelle Obama’ or ‘U.S. President Obama’. In order to
minimize errors during parsing, also all whitespaces are removed, in our case
reducing the proper nouns to (BarackObama,NNP) and (MichelleObama,NNP).

Alternatively, we could include a named entity recognition tool, but have
refrained from doing so in order to keep the approach very simple and not
introduce additional sources of errors.

This sentence preprocessing procedure is slightly more complicated for data-
type properties, as datatypes require a different kind of normalization. Consider,
for example, the property birthDate with range xsd:Date. One of the received
triples is 〈res:Barack Obama,dbo:birthDate,1961-08-04〉. Since searching
for sentences with an occurence of ‘1961-08-04’ in the corpus will not give results,
the date has to be changed to the usual date representations occurring in text,
such as ‘08.04.1986’, ‘August 4 1961’, ‘4 August 1961’, and so on. Given these
reformulations, one of the retrieved sentences is ‘Barack Obama was born on
August 4 1961’, stored as:

[(Barack,NNP), (Obama,NNP),

(was,VBD), (born,VBN), (on,TO)

(August,NNP), (4,CD), (1961,CD)]

Again all tokens tagged with NNP are joined, as well as groups of tokens tagged
with NNP and CD, often describing a date, yielding:

[(Barack Obama,NNP),

(was,VBD), (born,VBN), (on,TO),

(August 4 1961,NNP)]

In the last step we again replace the entity names with the labels that were used
for searching, and replace white spaces.

A list of the ten most frequent ranges for datatype properties in DBpedia
3.8 is given in Table 2. For each of these datatypes, a number of language-
specific heuristics need to be implemented, as we have detailed above for the
case of dates. Currently, ATOLL has built-in support for all those datatypes
except for xsd:double, as this includes negative numbers. Attributes with
negative numbers have turned out to be difficult to recognize, as the expression
of negativity is very specific to the property in question. For instance, for
altitude negativity is expressed as ‘below see level’, while for temperatures it
is expressed as ‘below zero’. We intend to cover such negative values in future
work.

8

3.1.3. Dependency parsing

After successful preprocessing, the retrieved sentences are parsed using the
MaltParser12 [21] in an off-the-shelf fashion with the pre-trained English model.
We have not yet tried to improve the results using the MaltOptimizer [3] or
other dependency parsers such as the Stanford Parser, which—according to
Stevenson [25]—delivers better results.

For the above example sentence ‘Michelle Obama is the wife of Barack
Obama, the current president’ the following dependency parse is built:

MichelleObama is the wife of BarackObama the current president

nsubj

cop

det

root

det

amodprep pobject

amod

In order to minimize further work, all parsed sentences are stored in a Lucene
index, together with the corresponding entities, the corresponding URI of the
property and the ID of the Wikipedia article from which the sentence was ex-
tracted.

3.1.4. Pattern extraction

In order to extract lexicalization patterns, we start from one of the given
entities and traverse the dependency graph in order to find the shortest path
connecting it to the other entity. We focus on the shortest path, as this contains
all words relevant for lexicalization while removing irrelevant ones such as mod-
ifiers. (We briefly discuss a resulting shortcoming of this in Section 4.4.) For the
example ‘Michelle Obama is the wife of Barack Obama, the current president’,
the direct and shortest path is the following one (which disregards the copula
‘is’, the determiner ‘the’, and the appositive ‘the current president’):

MichelleObama wife of BarackObama

nsubj

root

prep

pobject

This graph is captured as the pattern [MichelleObama (subject), wife (root),

of (preposition), BarackObama (object)], which represents one possible noun
lexicalization for the property spouse. Another lexicalization pattern for spouse
is retrieved from the depedency graphs for sentences like ‘Barack Obama is
married to Michelle Obama’ with the following shortest path (which is again
disregarding the copula):

12http://www.maltparser.org/

9

BarackObama married to MichelleObama

nsubjpass

root

prep pobj

The resulting pattern is [BarackObama (subject), married (root), to (prepo-
sition), MichelleObama (object)].

In order to determine the frequency of such patterns in the corpus, we replace
the specific arguments by variables x and y, and thereby group all equivalent
paths. This allows us to implement a simple frequeny-based cut-off, as for
example done in [9] and [12], in order to reduce noise among the candidate
lexicalizations by only generating lexical entries for patterns that occur at least
twice.

3.1.5. Generation of lexical entries

In the following step each pattern is converted into a lexical entry, based
on the part of speech of the root and the types of its arguments (direct ob-
ject, prepositional object, etc.). The pattern [x (subject), wife (root),

of (preposition), y (object)], for example, would correspond to the fol-
lowing noun entry:

:wife a lemon:LexicalEntry ;

lexinfo:partOfSpeech lexinfo:noun ;

lemon:canonicalForm [lemon:writtenRep "wife"@en] ;

lemon:synBehavior [rdf:type lexinfo:NounPPFrame ;

lexinfo:copulativeArg :x_subj ;

lexinfo:prepositionalObject :y_pobj] ;

lemon:sense [lemon:reference dbpedia:spouse;

lemon:subjOfProp :x_subj ;

lemon:objOfProp :y_pobj] .

:y_pobj lemon:marker [lemon:canonicalForm

[lemon:writtenRep "of"@en]] .

This entry comprises a part of speech (noun), a canonical form (the head noun
‘wife’), a sense referring to the property spouse in the ontology, and a syntactic
behavior specifying that the noun occurs with two arguments, a copulative
argument that corresponds to the subject of the property and a prepositional
object that corresponds to the object of the property and is accompanied by
a marker ‘of’. From a standard lexical point of view, the syntactic behavior
might look weird. Instead of viewing the specified arguments as elements that
are locally selected by the noun, they should rather be seen as elements that
occur in a prototypical syntactic context of the noun. They are explicitly named
as it would otherwise be impossible to specify the mapping between syntactic
and semantic arguments.

10

As it is easier for non-experts to read and validate or correct the less complex
representation offered by the lemon design patterns, we rather generate the
following RelationalNoun pattern, equivalent to the above RDF representation:

RelationalNoun("wife",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg),

Since lexical entries always specify the lemma of the lexical item, while
patterns usually contain inflected forms, we need to carry out an additional step
that retrieves the lemma and the base form of the root word occurring in the
pattern. To this end, we exploit the SPARQL endpoint containing Wiktionary
at http://wiktionary.dbpedia.org. For the noun ‘wife’, the result is ‘wife’,
while for the participle ‘married’ the lemma is ‘married’, and the base form is
‘marry’. In case the base form of the participle is found, we generate a verb
entry:

StateVerb("marry",dbpedia:spouse),

propSubj = Subject,

propObj = DirectObject)

If the base form cannot be retrieved, then a relational adjective entry for the
participle form is constructed:

RelationalAdjective("married",dbpedia:spouse),

propSubj = Subject,

propObj = PrepositionalObject("to"))

3.2. Label-based approach

The label-based approach to the induction of lexical entries differs from the
corpus-based approach described above in that it relies on the ontology label
and external lexical resources to find synonyms for that label.

In our approach we use WordNet for finding synonyms. In order to disam-
biguate the relevant WordNet synset, we implement a LESK-based disambigua-
tion algorithm [15] inspired by [4]. To this end, we first create a list of all synsets
found for a given ontology label. In case the label belongs to a class, we retrieve
100 resources belonging to this class and then for each resource collect a bag
of all words that are contained in the corresponding Wikipedia article. These
bags of words are compared to the lemma of each synset, using normalized Lev-
enshtein distance, finally averaging the results for each synset and choosing the
highest ranked one.

The label of the DBpedia class Activity, for example, is ‘activity’, for which
we retrieve the synonym ‘action’ from WordNet. For both nouns lexical entries
are generated:

ClassNoun("activity",dbpedia:Activity)

ClassNoun("action",dbpedia:Activity)

11

The same processing is done for labels of properties, yielding, for example,
the following entries for the property spouse:

RelationalNoun("spouse",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg)

RelationalNoun("partner",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg))

RelationalNoun("better half",dbpedia:spouse,

propSubj = PossessiveAdjunct,

propObj = CopulativeArg)

As we will show in the following section, the label-based approach comple-
ments the dependency-based approach quite nicely.

4. Evaluation

We developed ATOLL using the data from the ontology lexicalization task
of the QALD-3 challenge as development set, and then evaluated the approach
on a manually constructed lemon lexicon for DBpedia. Results are reported
using precision and recall, as well as frame accuracy as defined below. In this
section, we describe in more detail the methodology and measures of evaluation,
followed by a presentation and discussion of the results, including a comparison
of how well the dependency-based and label-based approaches work on different
kinds of properties.

We do not attempt to compare these results to previous results reported
in [29]. First of all, the system has been significantly re-designed, for example
now computing the frequency of lexicalizations on the basis of the resulting lex-
ical entries, as several dependency patterns can be mapped to the same entry.
Further, the corpus we use now is much bigger than the one previously used,
containing more than 66 million sentences from English Wikipedia articles. Fi-
nally, the previous system was evaluated with respect to a much smaller gold
standard comprising 30 properties and 10 classes, while we now evaluate on 177
properties and 326 classes (all properties and classes contained in the manual
lexicon minus its overlap with the develoment set), thus yielding more reliable
results.

4.1. Methodology and dataset

As development dataset we use the dataset associated to the ontology lexical-
ization task of the QALD-3 challenge13 at CLEF 2013. It consists of 20 DBpedia

13http://www.sc.cit-ec.uni-bielefeld.de/qald

12

classes and 60 DBpedia properties that were randomly selected from different
frequency ranges, i.e. including properties with a large amount of instances as
well as properties with very few instances.

For testing purposes, we use the manually created lemon lexicon for DBpe-
dia [28]14, which comprises lexicalizations of 326 classes and the 232 properties,
thus covering 98% of the classes and approximately 20% of the properties. The
lexicon currently contains 1,217 entries (443 class lexicalizations and 774 prop-
erty lexicalizations), which amounts to approximately 1.8 entries per ontology
concept (1.3 per class and 2.4 per property). From this dataset we removed all
classes and properties used for training, in order to avoid any overlap, leaving
a test dataset that is approximately 14 times bigger than the training dataset.

4.2. Evaluation measures

For each property and class, we evaluate the automatically generated lexical
entries by comparing them to the manually created lexical entries along two
dimensions: i) lexical precision, lexical recall and lexical F-measure at the lemma
level, and ii) frame accuracy. In the first dimension, we evaluate how many of the
gold standard entries for a property are generated by our approach (recall), and
how many of the automatically generated entries are among the gold standard
entries (precision), where two entries count as the same lexicaliztation if their
lemma, part of speech and sense coincide. Thus lexical precision Plex and recall
Rlex for a property p are defined as follows:

Plex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesauto(p)|

Rlex(p) =
|entriesauto(p) ∩ entriesgold(p)|

|entriesgold(p)|

Where entriesauto(p) is the set of entries for the property p in the auto-
matically constructed lexicon, while entriesgold(p) is the set of entries for the
property p in the manually constructed gold lexicon. The F-measure Flex(p) is
then defined as the harmonic mean of Plex(p) and Rlex(p), as usual.

The second dimension, frame accuracy, is necessary in order to evaluate
whether the specified subcategorization frame and its arguments are correct,
and whether these syntactic arguments have been mapped correctly to the se-
mantic arguments (domain and range) of the property in question. The accu-
racy of an automatically generated lexical entry lauto for a property p w.r.t. the
corresponding gold standard entry lgold is therefore defined as:

Ap(lauto) =(frameEq(lauto, lgold) +
|args(lauto) ∩ args(lgold)|

|args(lgold)|
+

∑
a∈args(lauto)

map(a)

|args(lauto)|
)/3

14https://github.com/cunger/lemon.dbpedia

13

Where frameEq(l1, l2) is 1 if the subcategorization frame of l1 is the same
as the subcategorization frame of l2, and 0 otherwise, where args(l) returns the
syntactic arguments of l’s frame, and where map(a) is defined as follows:

map(a) =

1, if a in lauto has been mapped to the same semantic argument

of p as in lgold
0, otherwise

When comparing the argument mapping of the automatically generated entry
with that of the gold standard entry, we only consider the class of the argu-
ment, simply being subject or object. This abstracts from the specific type of
subject (e.g. copulative subject) and object (e.g. indirect object, prepositional
object, etc.) and therefore allows for an evaluation of the argument mappings
independently of the correctness of the frame and frame arguments. The frame
accuracy Alex(p) for a property p is then computed as the average mean of the
accuracy values of each generated lexicalization. All measures are computed for
each property and then averaged for all properties. In the section below, we
report only the average values.

4.3. Results

In this section, we present the results for the dependency-based and the
label-based approach, as well as a hybrid strategy which returns the union of the
lexical entries delivered by the label-based and dependency-based approaches at
a number k of top lexical entries. During training phase we determine k such
that it yields a good balance between recall and precision.

Figure 3 depicts the training results of the dependency-based strategy for
object properties in terms of precision, recall and F-measure with respect to the
number k of top lexical entries that were considered. The maximal F-measure
obtained is 0.24, resulting from a precision of 0.3 and recall of 0.2. For k greater
than 10, recall increases further but precision drops significantly. We therefore
choose 10 as optimal value for k, which will be used in all further experiments
on the test dataset.

Table 3 shows the results of all three strategies (label-based, dependency-
based and hybrid) over the classes, object and datatype properties of the test
dataset in terms of lexical precision Plex, recall Rlex and F-measure Flex as well
as frame accuracy Alex, with the above mentioned choice of k = 10. Table 4 then
gives a more detailed account of the results for the object properties depending
on the number of entity pairs that are retrieved for those properties. The table
is divided into properties with 0–1,000 entity pairs, properties with 1,000–10,000
entity pairs, properties with 10,000–100,000 entity pairs, and finally properties
with more than 100,000 entity pairs. Recall continuously increases with the
number of entity pairs and drops only for properties with more than 100,000
entity pairs (mainly because such properties are very few which also happen to
be difficult to lexicalize).

One important observation in both tables is that the recall of the label- and
dependency-based approach is additive, which means that both approaches in
fact find different lexicalizations for the same properties. From Table 3 we can

14

0 5 10 15 20 25 30

0.1

0.2

0.3

0.4

Top k lexical entries

R
es
u
lt

Recall
Precision

F-measure

Figure 3: Recall, precision and F-measure for object properties in the training
dataset

also see that the label-based approach gives better results for datatype prop-
erties, while the dependency-based approach works slightly better for object
properties (although Table 4 shows that it fails for properties that are instan-
tiated by less than 1,000 entity pairs). For these two reasons it makes sense
to combine both approaches in a hybrid strategy. The overall results for the
whole test dataset, containing all 326 classes and 177 properties, obtained by
the hybrid approach are given in the last row of Table 3, showing an overall
recall of 0.67 and an overall precision of 0.51.

While precision is rather poor for all approaches, except for the dependency-
based approach over the datatype properties (where most patterns are filtered
out before generating lexical entries), frame accuracy is generally very high,
always being highest for the label-based approach.

It is also worthy to note that the threshold k = 10 was determined on a rather
small training set and in fact turned out to not lead to optimal results on the
test datatset. We recomputed the results for the dependency-based approach
over object properties, setting k to 5 and 8, which resulted in an increase of
precision from 0.09 to 0.12 for k = 5 and from 0.09 to 0.11 for k = 8, with only
a small drop of recall from 0.35 to 0.27 for k = 5 and no drop in recall for k = 8.

With respect to performance, our implementation is rather efficient. It takes
around two hours to extract patterns for all 177 properties, given that an index
for the corpus was created (in our case requiring about 72 hours to tag and
parse the whole of Wikipedia).

15

4.4. Discussion

Overall the results of the hybrid strategy over the whole dataset is decent
but still far from being able to be used in a fully automatic setting. Roughly
speaking, every second lexical entry that is generated is not appropriate (see
precision of 0.51 in Table 3). In fact, we rather envision it as the basis of a
semi-automatic scenario, in which lexical entries are generated automatically,
but are then manually checked by a lexicon engineer and corrected if necessary.
From this perspective, our approach has a clear potential to reduce the amount
of manual work required to develop a high-quality lexicon.

In order to simulate such a semi-automatic procedure, we randomly selected
five object properties, four datatype properties, and five classes from the test
dataset, for which we inspected the top ten lexical entries generated by the
dependency-based approach, both removing all incorrect lexicalizations and cor-
recting those lexicalizations that were appropriate but contained some error in
the generated lexical entry. Finally we also adapted these changes in the gold
standard lexicon. We then recomputed precision, recall and F-measure for the
examples; the results are listed in Table 5. The effect is quite strong: For object
properties, F-measure increased from 0.26 to 0.39, and for datatype properties
from 0.17 to 0.33.

These results mean that a lexicon engineer would on average have to examine
ten lexical entries per property and discard a bit more than half of them, yielding
about four lexical entries per property. After this manual correction step and
adapting the changes to the gold standard, the lexicon reaches a precision of
nearly 1, as all incorrect entries have been discarded, and a recall of about 0.8
(assuming that no new entries have been inserted).

A general limitation of our tool is that up to now it only knows four frame
types (class nouns, relational nouns, relational adjectives and state verbs) but
has no way to construct complex entries. Therefore more complex lexicalizations
such as ‘write music for’ for the property musicBy cannot be captured yet.

Also, our assumption that the lexicalization of a property is equal to the
direct dependency path between the entities it relates is too simple, as was
also observed by Yao and Riedel et al. [31, 24]. Especially if the root is a
verb, the path should include not only the entities but also other required argu-
ments of the verb. For the property almaMater, for example, we find sentences
of the form ‘x received a degree from y’, from which we extract the pattern
[(x,subject), (receive,root), (from,preposition), (y,object)], accord-
ing to the direct path between x and y, while the correct pattern would rather be
[(x,subject), (receive,root), (degree,directObject), (from,preposi-
tion), (y,prepositionalObject)]. In addition, it could be possible that one
sentence contains several lexicalization patterns—a case that is not yet consid-
ered in our approach but is, for example, addressed in [31].

Another limitation of the approach is that not always all possible lexical-
izations are contained in the corpus. For example, neither the lexicalization
‘write music for’ for the property musicBy, nor the lexicalization ‘sublime at’
for the property sublimationPoint are contained in the Wikipedia corpus and

16

therefore cannot be found by our approach. One future goal thus is to extend
the information sources, finally moving to the whole web as corpus.

5. Related work

An approach to extracting lexicalization patterns from corpora that is similar
in spirit to our approach is Wanderlust [2], which relies on a dependency parser
to find grammatical patterns in a given corpus—Wikipedia in their case as in
ours. These patterns are generic and non-lexical and can be used to extract
any semantic relation. However, Wanderlust also differs from our approach
in one major aspect. We start from a given property and use instance data
to find all different lexical variants of expressing one and the same property,
while Wanderlust maps each dependency path to a different property (modulo
some postprocessing to detect subrelations). They are therefore not able to find
different variants of expressing one and the same property, thus not allowing for
semantic normalization across lexicalization patterns.

Another related tool is DIRT [16] (Discovery of Inference Rules from Text),
also very similar to Snowball [1], which is based on an unsupervised method for
finding inferences in text, thereby for example establishing that ‘x is author of
y is a paraphrase of ‘x wrote y’. DIRT relies on a similarity-based approach
to group dependency paths, where two paths count as similar if they show a
high degree of overlap in the nouns that appear at the argument positions of
the paths. Such a similarity-based grouping of dependency paths could also be
integrated into our approach, in order to find further paraphrases. The main
difference to our approach is that DIRT does not rely on an existing knowledge
base of instantiated triples to bootstrap the acquisition of patterns from textual
data, thus being completely unsupervised. Given the fact that nowadays there
are large knowledge bases such as Freebase and DBpedia, there is no reason why
an approach should not exploit the available instances of a property or class to
bootstrap the acquisition process.

A system that does rely on existing triples from a knowledge base, in par-
ticular DBpedia, is BOA [13]. BOA applies a recursive procedure, starting with
extracting triples from linked data, then extracting natural language patterns
from sentences and inserting this patterns as RDF data back into the Linked
Data Cloud. The main difference to our approach is that BOA relies on sim-
ple string-based generalization techniques to find lexicalization patterns. This
makes it difficult, for example, to discard optional modifiers and thus can gener-
ate a high amount of noise, which has been corroborated by initial experiments
in our lab on inducing patterns from the string context between two entities.

Espresso [22] employs a minimally supervised bootstrapping algorithm which,
based on only a few seed instances of a relation, learns patterns that can be used
to extract more instances. Espresso is thus comparable to our approach in the
sense that both rely on a set of seed sentences to induce patterns. In our case,
these are derived from a knowledge base, while in the case of Espresso they are
manually annotated. Besides a constrast in the overall task (relation extraction
in the case of Espresso and ontology lexicalization in our case), one difference

17

is that Espresso uses string-based patterns, while we rely on dependency paths,
which constitutes a more principled approach to discarding modifiers and yield-
ing more general patterns. A system that is similar to Espresso and uses depen-
dency paths was proposed by Ittoo and Bouma [14]. A further difference is that
Espresso leverages the web to find further occurrences of the seed instances. The
corpus we use, Wikipedia, is bigger than the compared text corpora used in the
evaluation by Espresso. But it would be bery interesting to extend our approach
to work with web data in order to overcome data sparseness, e.g. as in [6], in
case there is not enough instance data or there are not enough seed sentences
available in a given corpus to bootstrap the pattern acquisition process.

What sets our approach appart from all above mentioned approaches is the
combination of a dependeny-based and a label-based approach, benefiting from
the complementary lexicalizations they find.

Furthermore, we improved the implementation of ATOLL by adding two
simple constraints that were proposed by Fader et al. [11] and were shown to
have a positive influence for pattern extraction. One constraint requires every
multi-word pattern to begin with a verb, end with a preposition, and be a
contiguous sequence of words in the sentence. The second constraint requires a
two-word phrase to appear with at least a minimal number of distinct argument
pairs in a large corpus. These constraints were extended in [10], additionally
training a classifier to determine left and right bounds for the first argument of
a pattern and the right bound of the second argument.

6. Future work

Currently our approach faces two main principled shortcomings, both con-
cerning the lexicalization of more complex senses. First, ATOLL does not yet
check whether patterns are appropriate lexicalizations only for a restricted do-
main or range of the target property. For example, the property team, which
connects an athlete or manager with a sports team, could be verbalized as ‘play
for’ in case the subject is a football, basketball or volleyball player, as ‘race for’
in case the subject is a cyclist or race driver, and as ‘manage’ if the subject is
a sports manager. This could be captured by additionally checking the set of
entity pairs that led to a certain pattern for a common subclass of the domain
or range of the target property.

Second, ATOLL only finds lexicalizations for simple classes and properties,
but not for more complex constructs such as property chains. For example,
‘born in’ is found as verbalization for the property birthPlace, connecting
people to the city and sometimes also the country of their birth. This, how-
ever, misses the fact that in the dataset the country of birth is not always
expressed by birthPlace directly, but often indirectly by the property chain
birthPlace ◦ country. A generated lexicon should contain both senses for ‘born
in’. Similarly, a lexicon would benefit, e.g., from containing the verbalization
‘grandchildren’ for the propert chain child ◦ child. To be able to find patterns
for such kinds of complex senses, we plan to extend ATOLL with other depen-

18

dency models, in addition to the shortest path model currently used, which were
proven to be useful in [25].

Furthermore, we will explore ways to increase the number and quality of
lexicalization patterns found. One such way is to investigate the extent to which
our approach can benefit from the preprocessing of corpus sentences, e.g. by
applying coreference resolution. Consider, for example, the following sentences:
‘Barack Obama hosted a White House dinner. He and his personal secretary
decided to mainly serve vegan food.’ The pattern ‘and his personal secretary’
in the second sentence can only be extracted if the reference of the pronoun
‘he’ is resolved to the entity Barack Obama. One simple solution to start with,
for example, would be to replace all pronouns by the label of the Wikipedia
article from which the sentence was retrieved. So if the sentence ‘He and his
personal secretary decided to mainly serve vegan food’ was retrieved from the
Wikipedia article for Barack Obama, the pronoun ‘he’ would be replaced with
‘Barack Obama’.

Most importantly, the next goal is to port ATOLL to other languages, start-
ing with German and Spanish, later also moving to Non-Indo-European lan-
guages. Such porting mainly involves including a new language model for the
dependency parser, importing language resources, such as Wiktionary, for the
target language, and adapting the normalization procedure for datatypes. We
plan to investigate how well our approach generalizes across different languages
and to which extent it suffers from data sparsity for under-resourced languages.

7. Conclusion

We presented ATOLL, an approach for the automatic induction of ontology
lexica, and instantiated it for DBpedia and a corresponding Wikipedia corpus.
ATOLL starts from instance data and combines two strategies in order to find
possible lexicalizations, one based on dependency paths extracted from a given
text corpus, and one based on ontology labels and corresponding paraphrases
that can be retrieved from external linguistic resources. Both strategies are
independent of the particular RDF dataset and text corpus. We also presented
a detailed evaluation of the dependency- and label-based strategies with respect
to the different kinds of properties and classes, and sketched the use of ATOLL in
a semi-automatic scenario, in which lexical entries are generated automatically,
but are then manually checked and corrected if necessary.

Acknowledgment

This work was funded within the EU project PortDial (FP7-296170).

References

[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from
large plain-text collections. In Proceedings of the fifth ACM conference on
Digital libraries, pages 85–94. ACM, 2000.

19

[2] Alan Akbik and Jürgen Broß. Wanderlust: Extracting semantic relations
from natural language text using dependency grammar patterns. In Pro-
ceedings of the Workshop on Semantic Search in Conjunction with the 18th
Int. World Wide Web Conference, 2009.

[3] Miguel Ballesteros and Joakim Nivre. Maltoptimizer: an optimization tool
for maltparser. In Proceedings of the Demonstrations at the 13th Confer-
ence of the European Chapter of the Association for Computational Lin-
guistics, EACL ’12, pages 58–62, Stroudsburg, PA, USA, 2012. Association
for Computational Linguistics.

[4] Satanjeev Banerjee and Ted Pedersen. An adapted lesk algorithm for word
sense disambiguation using wordnet. In Computational linguistics and in-
telligent text processing, pages 136–145. Springer, 2002.

[5] Abraham Bernstein, Esther Kaufmann, and Christian Kaiser. Querying
the semantic web with ginseng: A guided input natural language search
engine. In 15th Workshop on Information Technologies and Systems, Las
Vegas, NV, pages 112–126, 2005.

[6] Sebastian Blohm and Philipp Cimiano. Using the web to reduce data
sparseness in pattern-based information extraction. In JoostN. Kok, Jacek
Koronacki, Ramon Lopez de Mantaras, Stan Matwin, Dunja Mladenič, and
Andrzej Skowron, editors, Knowledge Discovery in Databases: PKDD 2007,
volume 4702 of Lecture Notes in Computer Science, pages 18–29. Springer
Berlin Heidelberg, 2007.

[7] N Bouayad-Agha, G Casamayor, and L Wanner. Natural language gener-
ation and semantic web technologies. Semantic Web Journal, 2012.

[8] Philipp Cimiano, Paul Buitelaar, John McCrae, and Michael Sintek. Lex-
Info: A declarative model for the lexicon-ontology interface. Web Seman-
tics: Science, Services and Agents on the World Wide Web, 9(1):29–51,
2011.

[9] Hang Cui, Renxu Sun, Keya Li, Min-Yen Kan, and Tat-Seng Chua. Ques-
tion answering passage retrieval using dependency relations. In Proceedings
of the 28th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 400–407. ACM, 2005.

[10] Oren Etzioni, Anthony Fader, Janara Christensen, Stephen Soderland, and
Mausam Mausam. Open information extraction: The second generation.
In Proceedings of the Twenty-Second international joint conference on Ar-
tificial Intelligence-Volume Volume One, pages 3–10. AAAI Press, 2011.

[11] Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying rela-
tions for open information extraction. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, pages 1535–1545.
Association for Computational Linguistics, 2011.

20

[12] André Freitas, JoãoGabriel Oliveira, Seán O’Riain, Edward Curry, and
JoãoCarlos Pereira da Silva. Querying linked data using semantic relat-
edness: A vocabulary independent approach. In Rafael Muñoz, Andrés
Montoyo, and Elisabeth Métais, editors, Natural Language Processing and
Information Systems, volume 6716 of Lecture Notes in Computer Science,
pages 40–51. Springer Berlin Heidelberg, 2011.

[13] Daniel Gerber and Axel-Cyrille Ngonga Ngomo Ngomo. Bootstrapping
the linked data web. In Proc. of 1st Workshop on Web Scale Knowledge
Extraction ISWC, 2011.

[14] Ashwin Ittoo and Gosse Bouma. On learning subtypes of the part-whole
relation: do not mix your seeds. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics, pages 1328–1336. Asso-
ciation for Computational Linguistics, 2010.

[15] Michael Lesk. Automatic sense disambiguation using machine readable
dictionaries: how to tell a pine cone from an ice cream cone. In Proceedings
of the 5th annual international conference on Systems documentation, pages
24–26. ACM, 1986.

[16] Dekang Lin and Patrick Pantel. DIRT - discovery of inference rules of
text. In Proceedings of the 7th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 323–328. ACM, 2001.

[17] Vanessa Lopez, Miriam Fernández, Enrico Motta, and Nico Stieler. Pow-
eraqua: Supporting users in querying and exploring the semantic web.
Semantic Web, 3(3):249–265, 2012.

[18] John McCrae, Dennis Spohr, and Philipp Cimiano. Linking lexical re-
sources and ontologies on the semantic web with lemon. In Grigoris Anto-
niou, Marko Grobelnik, Elena Simperl, Bijan Parsia, Dimitris Plexousakis,
Pieter De Leenheer, and Jeff Pan, editors, The Semantic Web: Research
and Applications, volume 6643 of Lecture Notes in Computer Science, pages
245–259. Springer Berlin Heidelberg, 2011.

[19] John McCrae and Christina Unger. Design patterns for engineering the
ontology-lexicon interface. In P. Buitelaar and P. Cimiano (eds.): Towards
the Multilingual Semantic Web. Springer, to appear.

[20] Chris Mellish and Xiantang Sun. The semantic web as a¡ i¿ linguistic¡/i¿
resource: Opportunities for natural language generation. Knowledge-Based
Systems, 19(5):298–303, 2006.

[21] Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven
parser-generator for dependency parsing. In Proceedings of the fifth inter-
national conference on Language Resources and Evaluation (LREC2006),
May 24-26, 2006, Genoa, Italy, pages 2216–2219. European Language Re-
source Association, Paris, 2006.

21

[22] Patrick Pantel and Marco Pennacchiotti. Espresso: Leveraging generic pat-
terns for automatically harvesting semantic relations. In Proceedings of the
21st International Conference on Computational Linguistics and the 44th
annual meeting of the Association for Computational Linguistics, pages
113–120. Association for Computational Linguistics, 2006.

[23] Laurent Prévot, Chu-Ren Huang, Nicoletta Calzolari, Aldo Gangemi,
Alessandro Lenci, and Alessandro Oltramari. Ontology and the lexicon:
a multi-disciplinary perspective. In Ontology and the Lexicon: A Natural
Language Processing Perspective, pages 3–24. Cambridge University Press,
2010.

[24] Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M Marlin.
Relation extraction with matrix factorization and universal schemas. In
Proceedings of NAACL-HLT, pages 74–84, 2013.

[25] Mark Stevenson and Mark A. Greenwood. Dependency pattern models for
information extraction. Research on Language and Computation, 7(1):13–
39, 2009.

[26] Allan Third, Sandra Williams, and Richard Power. Owl to english: a tool
for generating organised easily-navigated hypertexts from ontologies. In
Proceedings of of 10th International Semantic Web Conference (ISWC),
pages 298—-303, 2011.

[27] Christina Unger, Lorenz Bühmann, Jens Lehmann, Axel-Cyrille
Ngonga Ngomo, Daniel Gerber, and Philipp Cimiano. Template-based
question answering over rdf data. In Proceedings of the 21st international
conference on World Wide Web, pages 639–648. ACM, 2012.

[28] Christina Unger, John McCrae, Sebastian Walter, Sara Winter, and Philipp
Cimiano. A lemon lexicon for dbpedia. In Proceedings of 1st International
Workshop on NLP and DBpedia, October 21–25, Sydney, Australia, volume
1064 of NLP & DBpedia 2013, Sydney, Australia, October 2013. CEUR
Workshop Proceedings, http://ceur-ws.org/Vol-1064.

[29] Sebastian Walter, Christina Unger, and Philipp Cimiano. A corpus-based
approach for the induction of ontology lexica. In Elisabeth Métais, Farid
Meziane, Mohamad Saraee, Vijayan Sugumaran, and Sunil Vadera, edi-
tors, Natural Language Processing and Information Systems, volume 7934
of Lecture Notes in Computer Science, pages 102–113. Springer Berlin Hei-
delberg, 2013.

[30] Sebastian Walter, Christina Unger, Philipp Cimiano, and Daniel Bär.
Evaluation of a layered approach to question answering over linked data.
In Philippe Cudré-Mauroux, Jeff Heflin, Evren Sirin, Tania Tudorache,
Jérôme Euzenat, Manfred Hauswirth, JosianeXavier Parreira, Jim Hendler,

22

Guus Schreiber, Abraham Bernstein, and Eva Blomqvist, editors, The Se-
mantic Web – ISWC 2012, volume 7650 of Lecture Notes in Computer
Science, pages 362–374. Springer Berlin Heidelberg, 2012.

[31] Limin Yao, Sebastian Riedel, and Andrew McCallum. Unsupervised re-
lation discovery with sense disambiguation. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics: Long
Papers-Volume 1, pages 712–720. Association for Computational Linguis-
tics, 2012.

23

TF TF
Barack Obama 16,809 Michelle Obama 866
Obama 957 Michelle Robinson 14
Barack H. Obama 63 First Lady Michelle Obama 9
Barak Obama 60 Michelle LaVaughn Robinson Obama 4
Barack Obama’s 47 Michele Obama 4
Barrack Obama 41 Michelle Robinson Obama 3
Barack 31 Melvinia Shields 2
Barack Obama 22 Mrs. Obama 1
Obama, Barack 13 Michelle obama 1
Sen. Barack Obama 10 Michelle Obama 1

Table 1: The most frequent anchor texts for Barack Obama and Michelle Obama
together with their term frequency (TF)

Range Number of occurences
xsd:string 319
xsd:double 163
xsd:nonNegativeInteger 133
xsd:date 133
xsd:gYear 51
xsd:integer 37
xsd:float 18
http://dbpedia.org/datatype/kilogram 17
http://dbpedia.org/datatype/kilometre 15
xsd:positiveInteger 15

Table 2: Top ten ranges of datatype properties (using the prefix xsd for
http://www.w3.org/2001/XMLSchema#).

24

Rlex Plex Flex Alex

Classes

Label-based approach 0.83 0.79 0.81 0.99

Object properties

Label-based approach 0.15 0.09 0.11 0.95
Dependency-based approach 0.35 0.09 0.14 0.81
Hybrid approach 0.50 0.08 0.14 0.77

Datatype properties

Label-based approach 0.35 0.19 0.24 0.96
Dependency-based approach 0.05 0.60 0.09 0.90
Hybrid approach 0.39 0.13 0.20 0.94

Whole dataset (classes and properties)

Hybrid approach 0.67 0.51 0.58 0.93

Table 3: Results for the label-based approach over classes from the test dataset,
and for all approaches over object and datatype properties from the test dataset

25

Rlex Plex Flex Alex

Properties with 0–1,000 entity pairs

Label-based approach 0.45 0.29 0.35 0.70
Dependency-based approach 0.00 0.00 0.00 0.00
Hybrid approach 0.45 0.18 0.25 0.70

Properties with 1,000–10,000 entity pairs

Label-based approach 0.13 0.08 0.10 0.95
Dependency-based approach 0.36 0.08 0.13 0.81
Hybrid approach 0.50 0.06 0.11 0.77

Properties with 10,000–100,000 entity pairs

Label-based approach 0.12 0.07 0.09 0.96
Dependency-based approach 0.41 0.07 0.13 0.78
Hybrid approach 0.53 0.07 0.13 0.78

Properties with more than 100,000 entity pairs

Label-based approach 0.27 0.18 0.22 0.95
Dependency-based approach 0.16 0.03 0.05 0.90
Hybrid approach 0.41 0.06 0.11 0.88

Table 4: Results for all approaches over object properties from the test dataset,
depending on the number of instances

26

Fully automatic Manually corrected Adapted gold standard
Rlex Plex Flex Rlex Plex Flex Rlex Plex Flex

Classes

Brain (1) 1.00 0.50 0.66 1.00 0.50 0.66 1.00 1.00 1.00
Legislature (0) 1.00 0.50 0.66 1.00 1.00 1.00 1.00 1.00 1.00
Philosopher (0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Planet (1) 1.00 0.50 0.66 1.00 0.50 0.66 1.00 1.00 1.00
Politican (0) 1.00 0.50 0.66 1.00 1.00 1.00 1.00 1.00 1.00

Average (0.4) 1.00 0.60 0.72 1.00 0.80 0.86 1.00 1.00 1.00

Object properties

almaMater (4) 0.66 0.20 0.30 0.66 0.33 0.44 0.83 1.00 0.90
birthPlace (1) 0.33 0.10 0.15 0.33 0.50 0.39 0.50 0.50 0.50
designer (5) 1.00 0.33 0.50 1.00 0.38 0.54 1.00 1.00 1.00
militaryUnit (7) 1.00 0.10 0.18 1.00 0.13 0.22 1.00 1.00 1.00
stateOfOrigin (3) 0.50 0.11 0.18 0.50 0.33 0.38 0.80 1.00 0.88

Average (4) 0.70 0.17 0.26 0.70 0.33 0.39 0.82 0.90 0.86

Datatype properties

abbreviation (1) 0.33 0.10 0.15 0.33 0.50 0.39 0.50 1.00 0.66
birthDate (6) 0.33 0.11 0.16 0.33 0.14 0.20 0.77 1.00 0.87
militaryCommand (7) 1.00 0.10 0.18 1.00 0.13 0.22 1.00 1.00 1.00
title (3) 1.00 0.10 0.18 1.00 0.33 0.49 1.00 1.0 1.00

Average (4.3) 0.63 0.10 0.17 0.66 0.27 0.33 0.81 1.0 0.88

Table 5: Sample results of a semi-automatic procedure, where numbers in brack-
ets indicate how many of the inspected ten lexicalizations were kept and added
to the gold standard

27

