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Abstract. Schema.org offers to web developers the opportunity to enrich a 

website’s content with microdata and schema.org. For large websites, 

implementing microdata can take a lot of time. In general, it is necessary to 

perform two main activities, for which we lack methods and tools. The first 

consists in designing what we call the website schema.org, which is the 

fragment of schema.org that is relevant to the website. The second consists in 

adding the corresponding microdata tags to the web pages. In this paper, we 

describe an approach to the design of a website schema.org. The approach 

consists in using a human-computer task-oriented dialogue, whose purpose is to 

arrive at that design. We describe a dialogue generator that is domain-

independent, but that can be adapted to specific domains. We propose a set of 

six evaluation criteria that we use to evaluate our approach, and that could be 

used in future approaches. 
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1. Introduction 

Google, Bing and Yahoo’s initiative to create schema.org for structured data markup 

has offered an opportunity and at the same time has posed a threat to many web 

developers. The opportunity is to transform the website’s content to use HTML 

microdata and schema.org, so that search engines can understand the information in 

web pages and, as a consequence, they can improve the accuracy and the presentation 

of search results, which can translate to better click through rates and increased 

organic traffic [1,15]. Google, for example, uses schema.org markup to display rich 

snippets in the search results it produces, and in Custom Search1, a service that 

enables the creation of search engines for a website or a collection of websites. The 

threat of not doing the website transformation is just the opposite: not reaping the 

above benefits that other websites may gain. This is the reason why many web 

developers are considering, or will consider in the near future, the schema.org markup 

of their web pages. 

For large websites, implementing microdata can take a lot of time and require some 

big changes in the HTML source code [1]. In general, that implementation requires 

                                                           
1 http://googlecustomsearch.blogspot.com 
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two main activities. The first consists in designing what we call the website 

schema.org, which is the fragment of schema.org that is relevant to the website. The 

second consists in adding the microdata tags to the web pages, using the previously 

designed website schema.org.  

In this paper, we describe an approach to website schema.org design. Our approach 

consists in a human-computer task-oriented dialogue, whose purpose is to design a 

website schema.org. The dialogue uses the directive mode, in which the computer has 

complete control [22]. In each dialogue step, the computer asks a question to the web 

developer about the website content. Depending on the answer, a fragment of 

schema.org is or is not added to the website schema.org. The dialogue continues until 

the design is finished. 

The methodology of our research is that of design science [2], which is defined in 

[18] as “the scientific study and creation of artifacts as they are developed and used 

by people with the goal of solving practical problems of general interest.” The 

problem we try to solve is the design of a website schema.org. The problem is 

significant because it is (or will be) faced by many developers and, due to the novelty 

of the problem, they lack the knowledge and the tools required for solving it. In this 

paper we present an approach to the solution of that problem. As far as we know, this 

is the first work that explores the problem of website schema.org design. 

According to [18], the main activities in design science research are: explicate 

problem, define requirements, design and develop artifact, demonstrate artifact and 

evaluate artifact. Many design science projects focus on one or two of the activities, 

while the others are treated more lightly. In our project we have focused in the first 

three activities: we formulate the problem to be solved, we outline a solution to that 

problem in the form of an artifact, and we create an artifact that addresses the 

problem2.  

The structure of the paper is as follows3. Next section describes schema.org and 

presents its metamodel. Section 3 defines the problem of website schema.org design 

and reviews the relevant previous work to its solution. Section 4 explains our 

approach to the solution of the problem. Section 5 presents the evaluation of the 

approach. Finally, section 6 summarizes the conclusions and points out future work. 

2. Schema.org 

In this section, we briefly introduce schema.org and present its UML [3] metamodel, 

which is shown in Fig. 1.  

Schema.org is a large conceptual schema (or ontology) [4] comprising a set of 

types. A type may be an object type or a property4. Each type has a name and a 

description. An object type may be an entity type, a data type or an enumeration.  

                                                           
2 A free, public version of the tool can be found at http://mpi.upc.edu/gmc-

en/tools/schemaorg/introduction?set_language=en 
3 This paper is a revised and extended version of [25] 

4 At the time of writing, there are 428 object types and 581 properties, with a significant increase over time. 

http://mpi.upc.edu/gmc-en/tools/schemaorg/introduction?set_language=en
http://mpi.upc.edu/gmc-en/tools/schemaorg/introduction?set_language=en
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Fig. 1. The UML metamodel of Schema.org 

Object types are identified by their names, and are arranged in a multiple 

specialization/generalization hierarchy where each object type may have several 

supertypes. For example, the entity type LocalBusiness is a subtype of both 

Organization and Place. The top of the hierarchy is the entity type named Thing. All 

other object types are a direct or indirect subtype of it.  

An enumeration consists of a set of literals. Enumerations may have subtypes. For 

example, MedicalSpecialty is a subtype of both Specialty and MedicalEnumeration, 

which are in turn a subtype of Enumeration. The literals of an enumeration have 

different names. 

Schema.org includes a predefined set of data types comprising Text, Number, 

Boolean and others. Data types may have subtypes too. For example Integer is a 

subtype of Number. 

Properties are identified by their name. Properties are similar to UML attributes or 

binary associations, but with three important differences:  

 The domain of a property may be one or more object types5. The property 

may be a relevant property of any of these types. For example, the domain 

of the property height may be a MediaObject, a Person or a Product. In 

UML, this property would normally correspond to three distinct 

attributes. The alternative of representing that property as a single UML 

attribute would require an artificial entity type that is a generalization of 

MediaObject, Person and Product. 

 The range of a property may be one or more object types. The value(s) of the 

property should be instances of at least one of these types. For example, 

the range of the property creator may be an Organization or a Person. 

The UML equivalent of that property would be two binary associations 

                                                           
5 The domain of almost all properties is an entity type. However, there are a few exceptions in which the 

domain is an enumeration. 
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for each possible type of its domain (two in this case: CreativeWork and 

UserComents).  

  Schema.org neither defines nor takes into account the two cardinalities that 

could be defined for a property. 

In principle, a property might also be a subtype of another one, although this is 

possible only in user extensions, and therefore it has not been considered in the 

metamodel of Fig. 1. 

The main additional constraint of the metamodel is that a property cannot be 

redefined in a subtype. In OCL, this can be formalized by the following invariant: 

 
context ObjectType 

inv doesNotRedefineProperties: 

self.relevantProperty-> 

 forAll(p|not self.inheritedProperties()->includes(p)) 

 

where inheritedProperties is an operation defined in the same context as: 
 

inheritedProperties():Set(Property) =  

self.allParents()->collect(p|p.relevantProperty)->asSet()) 

 

and 

 
allParents():Set(ObjectType) = 

self.supertype-> 

  union(self.supertype->collect(p|p.allParents()))->asSet 

 

Given that schema.org allows multiple specializations, in principle it is possible 

that an object type inherits the same property from two different paths.  This happens, 

for example, in LocalBusiness whose supertypes are Place and Organization, and 

both have review as relevant property. 

3. Website Schema.org Design 

In this section, we formalize the concept of website schema.org (3.1), define the 

problem of designing that schema (3.2), and review the relevant previous work (3.3). 

Our approach to the solution of that problem will be presented in the next section. 

3.1 Website Schema.org 

In general, the web pages of a website include the representation of many facts, some 

of which are an instance of concepts (object types and properties) defined in 

schema.org while others are an instance of concepts that are not defined in 

schema.org. We call website schema.org of a website the set of concepts of 

schema.org that have (or may have) instances represented in its web pages.  
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Fig. 2. The UML metamodel of a website schema.org 

However, a website schema.org is not simply a subset of the schema.org concepts, 

because there are facts of a concept that are represented in a context of the website, 

but not represented in another one of the same website. For example, consider a 

website that represents instances of the entity type Offer, including values for the 

properties seller and itemOffered, among others. The value of seller is an 

Organization, for which the website shows only its name, address an email. On the 

other hand, the value of itemOffered is a Product, for which the website may show its 

manufacturer, which is also an Organization. However, for manufacturing 

organizations the website only shows their name, and not their address and email. The 

website schema.org of this example must indicate that the address and email of an 

organization are shown only for sellers. 

Figure 2 shows the metamodel in UML of a website schema.org, which must be 

seen as an extension to the metamodel shown in Fig. 1. A website schema.org consists 

of a set of one or more components, which are instances of Item. We use here the term 

item with the same meaning as in the microdata model: a group of name-value pairs 

(that we call property-value pairs) [17]. An Item has a type, which is an EntityType.  

A website schema.org has a set of one or more roots. The type of a root is an entity 

type that is the main subject of one or more pages of the website. For example, a root 

of a recipe website schema.org is an Item whose type is Recipe. Another root of the 

same website may be Book if there are web pages whose main subject is information 

about books. The roots of a website schema.org are a subset of its components. 

An Item consists of an ordered set of at least one PropertyValuePair. Each instance 

of a PropertyValuePair has a property and a value. The property is an instance of 

Property and the value is an instance of the abstract class ValueType, which is a 

generalization of Item, Datatype and Enumeration.  

We use a textual notation for defining a website schema.org (that is, an instance of 

the metamodel shown in Fig. 2). Figure 3 shows the example corresponding to the 

restaurant presented in “schema.org/Recipe”. There are two Items, with types Recipe 

(the root) and NutritionInformation. The first has twelve property-value pairs, one of 
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which (nutrition) has as value an Item, and the other eleven have as value a Datatype  

(Text, Date, URL or Duration). NutritionInformation has two property-value pairs, 

whose values are Datatypes (Text).  

<Recipe, name,Text> 

<Recipe, author, Text> 

<Recipe, datePublished, Date> 

<Recipe, image,URL> 

<Recipe, description,Text> 
<Recipe, prepTime,Duration> 

<Recipe, cookTime,Duration> 

<Recipe, recipeYield,Text> 

<Recipe, nutrition, NutritionInformation> 

     <NutritionInformation, calories,Text> 

     <NutritionInformation, fatContent,Text> 

< Recipe, ingredients,Text> 

< Recipe, recipeInstructions,Text> 

< Recipe, interactionCount, Text>  

Fig. 3. A website schema.org example, using a textual notation 

 

Fig. 4. Example of microdata markup using the website schema.org of Figure 3. 

 

Once the website schema.org is known, the web developer can add the 

corresponding microdata to the webpages. Figure 4 shows an example (an excerpt 

from the example shown in schema.org/Recipe).  
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There are five important additional constraints in the metamodel of Fig. 2, which 

we formalize in the following. The first is that for a given item there cannot be two 

property-value pairs with the same property and value. Formally: 

 
context Item 

inv hasUniquePropertyValuePairs: 

self.pair->isUnique(Tuple{p:property,v:value}) 

 

The second is that the property of a property-value pair must be one of the direct or 

inherited relevant properties of the type of the item associated with that pair. 

Formally: 

 
context Item 

inv includesRelevantProperties: 

self.pair->forAll(self.type.allProperties()->includes(property)) 

 

where allProperties is an operation defined as: 

 
context ObjectType 

allProperties():Set(Property) =  

relevantProperty->union(inheritedProperties()) 

 

The third is that the value of a property-value pair must be one of the ObjectType 

that are the range of the corresponding property, or a subtype of one of those 

ObjectType. For example, consider the property citation of a recipe, whose range may 

a CreativeWork (a supertype of Recipe) or a Text. For a particular recipe shown in a 

web page, a value of citation may be an instance of: 

 CreativeWork 

 Any subtype of CreativeWork 

 Text 

 URL (the subtype of Text) 

Formally: 

 
context PropertyValuePair 

inv hasAValidValue:  

let valueofPair:ObjectType =  

if self.value.oclIsTypeOf(Datatype) then self.value.oclAsType(Datatype) 

else 

if self.value.oclIsTypeOf(Enumeration) then 

 self.value.oclAsType(Enumeration) 

else self.value.oclAsType(Item).type 

endif  

endif 

in 

self.property.range -> exists( 

 r|Set{valueofPair}->closure(supertype)->includes(r)) 

 

The fourth constraint states that a root item cannot be the value of a property-value 

pair. Formally, 

 
context Item 

inv isUnnestedIfRoot: 

websiteSchema->notEmpty implies self.propertyValuePair->isEmpty 
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The last constraint states that a non-root item must be the value of one and only 

one property-value pair. Formally, 

 
context Item 

inv isNestedIfNonRoot: 

websiteSchema->isEmpty implies self.propertyValuePair->size()= 1 

and not self.propertyValuePair.item->includes(self) 

3.2 Problem definition 

Once we have defined what we mean by website schema.org, we can now state the 

problem we try to solve in this paper: the design of the website schema.org of a given 

website. The problem can be formally defined as follows: 

 

Given: 

 A website W consisting of a set of web pages. The website W may be fully 

operational or under design. 

 The current version S of schema.org 

Design: 

 The website schema.org WS of W. 

 

A variant of the problem occurs when the input includes a database D that is the 

source of the data displayed in W. A subvariant occurs when the database is not fully 

operational yet, and only its schema DS is available. Usually, DS will be relational. 

All web developers that want to markup the web pages with schema.org microdata 

are faced with this problem. Once WS is known, the developers can add the 

corresponding markup in the web pages. Tools that illustrate how to add microdata 

once WS is known start to appear in the market6. 

3.3 Related Work 

As far as we know, there have not been reported attempts to solve the design of a 

website schema.org. However, there is some previous work that is relevant to our 

problem, and that we briefly review in the following. 

The task of web information extraction (WIE) could be seen as similar to website 

schema.org design, and therefore the work done in WIE systems [5, 19] could be 

relevant to our problem. The input to a WIE system is a set of online documents that 

are semi-structured and usually generated by a server-side application program. The 

extraction target can be a relation tuple or a complex object with hierarchically 

organized data. In these systems users must program a wrapper to extract the data (as 

in W4F [6] or DEQA [7]) or to show (examples of) the data to be extracted (as in 

Thresher [8]). There are a few differences that make WIE systems inappropriate for 

website schema.org design. In our case, the target is a fragment of a schema, without 

                                                           
6 For example http://schema-creator.org/ or http://www.microdatagenerator.com/  
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the facts, and if the website is under design, the online documents are not available. 

On the other hand, it is unfeasible to build wrappers because web developers do not 

know what to extract. 

The table interpretation problem is a specialization of WIE focused on extracting 

data from HTML tables [9, 19]. [10] describes one of the more recent systems, which 

is an example of the ontology-guided extraction approach. In this case, the ontology is 

the universal probabilistic taxonomy called Probase, which contains over 2.7 million 

concepts. The system uses that ontology to determine the concepts corresponding to 

the rows of a table, and to its columns, from the names of the table headers and the 

values of the columns. This approach cannot be used in our case because in general 

web pages display many facts in a non-table format, and on the other hand the web 

pages may not be available. 

Another related problem is schema matching, which deals with finding semantic 

correspondences between elements of two schemas or ontologies [11, 12, 20, 21, 23]. 

Schema matching may be relevant to our problem when the source of the website is a 

database and we know its schema [13]. Assuming the database is relational, in our 

context the correspondences are between table attributes and schema.org properties. 

There exist a large spectrum of possible matchers (see [14] for a recent review) but in 

our context they would require the involvement of users who know both the database 

schema and schema.org. 

4. Our Approach to Website Schema.org Design 

In this section we describe our approach to the design of a website schema.org. We 

start with an overview of the approach (sect. 4.1) and then we continue with a detailed 

explanation of its main components (sect. 4.2-4.4). Throughout this section we use 

examples from the websites allrecipes.com and food.com, which deal with cooking 

recipes [15]. Users publish their recipes in those websites, including for each of them 

its name, a description, the ingredients, nutritional information, cooking time, 

preparation videos, and so on.   

4.1 Overview 

Our approach to the design of a website schema.org is based on a computer-controlled 

dialogue (see Fig. 5). The dialogue is automatically generated (see sect. 4.4) from 

schema.org, enriched with domain knowledge by domain experts (as indicated in 

sections 4.2 and 4.3). In most cases, the dialog asks simple yes/no questions in natural 

language to the web developer. Figure 6 shows a fragment of that dialogue in our 

example. The answer to a question requires the web developer to know only the 

contents of the website. Prior knowledge on schema.org is not needed. Note that in 

our approach the website could be under design and that we do not need to know the 

schema of the website source database (if it exists). 
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Fig. 5. A dialog approach to website schema.org design 

 

Fig. 6. Fragment of a dialogue in the allrecipes.com example 
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Fig. 7 Enrichment of the schema.org metamodel 

4.2 Enriching Schema.org 

The dialogue generator can generate dialogues from the content of schema.org. 

However, if domain experts provide additional knowledge then the generated 

dialogues can be some times more understandable (by improving the phrasing of the 

questions) and more selective (by asking only the most relevant questions). Figure 7 

shows the enrichment of the metamodel of schema.org (Fig.1) that allows defining 

that additional knowledge. 

The dialog generator deals with a property P always in a context. The context is an 

entity type that has P as a direct or indirect relevant property. In absence of additional 

knowledge, the dialog generator deals with P taking into account only the “official” 

names and descriptions of the involved types. 

However, domain experts may add new knowledge by means of instances of 

PropertyInContext (PIC). An instance of that type has a few attributes and links that 

are useful when the dialog generator deals with a property in a particular context. 

A PIC contextualizes a property (contextualizedProperty). The context in which a 

PIC is applicable is a set of one or more EntityTypes (type). For example, there may 

be a PIC for property inLanguage in the context of CreativeWork. 

For any given pair of contextualizedProperty and type there must be at most one 

PIC. This is a constraint of the metamodel shown in Fig.7, which can be formally 

expressed by: 

 
context PropertyInContext 

inv hasUniquePropertyAndType: 

PropertyInContext.allInstances-> 

isUnique(Tuple{p:contextualizedProperty,t:type}) 
 

The three first attributes of a PIC are the specific name form, normalized name and 

description of the contextualized property. The specific name form indicates the 
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grammatical form of the name, which may be a noun in singular form or a verb in 

third-person singular form. By default, it is assumed to be a noun. The specific 

normalized name and description may be used in the cases where the original name 

and description defined in schema.org can be improved in a given context. Such 

improvements (which are the equivalent of the “semantic label normalizations” 

performed in a different context [24]) allow the dialog generator to generate “better” 

questions. 

For example, CreativeWork includes the property inLanguage. A PIC could 

specify a better name for this contextualizedProperty.  The specific name form could 

be a verb,  and the specific name could be “is written in the language”. In this case, 

the type would be CreativeWork. As another example, Recipe includes the property 

prepTime. A PIC could specify that a more expressive name for that property in the 

context of Recipe is preparation time. 

The last attribute of a PIC is isApplicable. The attribute may be used to indicate 

that a property is not applicable in a given context. For example, a domain expert can 

define that the property genre of CreativeWork is non-applicable for Recipe. 

The applicableRange of a PIC may be used to restrict the set of ranges for the 

contextualized property. For example, the property author of CreativeWork has the 

range {Organization, Person}. If we want to specify that for Recipes the author must 

be a Person, then we create a link between the corresponding PIC and Person as its 

applicableRange. The applicable range must be a subset of the range of the 

corresponding property. This is formally expressed by: 

 
context PropertyInContext 

inv hasAValidRange: 

self.contextualizedProperty.range->includesAll(applicableRange) 
 

 Finally, there are properties that cannot be defined in a particular context if 

another one has previously been defined. For example, author is a property of 

CreativeWork, and creator is a property of CreativeWork and UserComments. 

However, in the context of CreativeWork only one of the two should be defined. We 

can then indicate in the corresponding PICs that author and creator are incompatible 

with each other in the context of CreativeWork (type).   

The definition of properties in context is a task that must be done by domain 

experts. However, a tool (like ours) may make it easy to define at any time a new 

enrichment, ensure that it satisfies all relevant constraints, and make it available for 

all future dialogue generations. 

4.3 Reference exemplars 

A basic approach to website schema.org design could be that the web developer first 

defines a root of the website (such as Recipe), then the dialogue generator 

automatically determines the schema.org properties that could be relevant, and finally 

the system asks the web developer which of those properties are relevant for the 

website.   

However, that approach would not be practical, for two main reasons. The first is 

that there can be many schema.org properties for a given root, but not all of them are  
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Fig. 8. Schema of reference exemplars 

 

actually used in practice. For example, Recipe (a subtype of CreativeWork, which in 

turn is a subtype of Thing) has 81 properties (8 for Thing, 63 for CreativeWork and 10 

for Recipe), but a representative website such as allrecipes.com only shows 14 of 

those properties (3 from Thing, 4 from CreativeWork and 7 from Recipe). Clearly, if 

the dialog generator were able to select a subset of properties that might be of interest 

for a given website, the system would ask much less questions to the web developer. 

The second reason why the simple approach described above would not be 

practical is that the system would ask questions without any particular order, mixing 

questions belonging to different topics. For example, the system could ask about the 

presence of property prepTime (of Recipe), followed by aggregateRaing (of 

CreativeWork), name (of Thing) and then cookTime (again of Recipe). Clearly, such 

approach would confuse the web developer. Ideally, the questions posed by the 

system should be grouped by topic and unfold in a logical order, as required in, for 

example, questionnaire design [16]. 

Our solution to those problems is what we propose to call reference exemplars. 

Figure 8 shows their schema (an extension to the metamodel shown in Fig. 1). There 

are two kinds of reference exemplars: root and dependent. A root reference exemplar 

of a given type (which is an EntityType) is an ordered set of one or more properties 

that are shown in recommended websites of the given root. The order of the properties 

of the set is the order in which those properties are usually displayed in those 

websites. A root reference exemplar can be seen as a recommended practice for the 

schema.org markup of websites of a given root.  

For example, if a domain expert recommends the properties displayed in food.com 

as a reference exemplar for Recipe, then the root reference exemplar of Recipe would 

comprise a set of 15 ordered properties. Other schema.org properties could be added 

to this set, if so desired. For example, given that a popular website such as 

allrecipes.com also displays the schema.org video and review properties, such 

properties could be added to the reference exemplar. 

There must be a root reference exemplar for the type Thing, which is used when 

other more specific exemplars are not available. Moreover, for any given EntityType 

there may be at most one root reference exemplar. Formally, this is expressed by: 
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context EntityType 

inv hasAtMostOneRootReferenceExemplar: 

self.referenceExemplar->select(r|r.theContext->isEmpty)->size()<= 1 

 

Note that root reference exemplars are those that do not have context.  

The properties of a reference exemplar must be a subset of those of its type. 

Formally: 

 
context ReferenceExemplar 

inv includesRelevantProperties: 

self.type.allProperties()->includesAll(property) 

 

A dependent reference exemplar of a given type E and property P (theContext) is 

an ordered set of one or more properties that are usually shown in current websites of 

the given type E when it is the value of the property P. As before, the order of the 

properties of the set is the order in which those properties are usually displayed in 

recommended websites. A dependent reference exemplar can also be seen as a 

recommended practice. The same dependent reference exemplar can have several 

properties in its context meaning that it applies to any of them.  

For any given EntityType (type) and Property (theContext) there may be at most 

one dependent reference exemplar. This is formally captured by the expression: 
 

context Property 

inv andATypeHaveAtMostOneDependentReferenceExemplar: 

self.referenceExemplar->isUnique(type) 

 

For example, food.com includes the property nutrition of Recipe, whose value is 

the entity type NutritionInformation. For this type, nine properties are shown 

(calories, etc.). A domain expert that wishes to recommend these properties in that 

context could define a dependent reference exemplar, with type NutritionInformation 

and theContext = {nutrition}. 

Reference exemplars have the boolean attribute excludesOtherProperties. We use 

it to indicate whether or not the dialog generator should consider other properties of 

the type beyond those indicated by the reference exemplar. For example, Energy has 

seven properties (all of Thing), but when used as a property of calories, only one of 

those properties are likely to be used (a text of the form <Number> <Energy unit of 

measure>). We could define a dependent reference exemplar for the type Energy and 

property calories, consisting of a single property (name) and excluding other 

properties. In this way, the dialogs can be highly simplified. 

Reference exemplars are defined by domain experts. A tool (like ours) may make it 

easy to define at any time a new reference exemplar, ensure that it satisfies all 

relevant constraints, and make it available for all future dialogue generations. In the 

simplest case, a domain expert indicates a recommended website, from which the 

properties and their order can be automatically extracted using tools such as the 

Google Rich Snippet tool7. Another possibility is to just adopt the recommendations 

                                                           
7 https://www.google.com/webmasters/tools/richsnippets 



15 

 

from search engines8. An even better possibility, not explored further here, is to 

integrate the properties shown in several recommended websites. 

4.4 Dialog generation and execution 

In the following, we describe the main steps of the process needed to design the 

schema of a website using our approach (see Fig. 5). The starting point is the creation 

of an instance w of WebsiteDesign (see Fig. 2), followed by the determination (by the 

web developer) of a root entity type e of w, and the invocation of the procedure 

designSchema indicated in Algorithm 1. The procedure is executed for each root 

entity type of w. As it can be seen, the procedure creates a root item i of w and then 

invokes (in line 5) the procedure designSchemaForItem i. 

 
Algorithm 1. designSchema 

input: An instance w of WebsiteDesign; an instance e of EntityType. 

output: The complete design of website schema.org for w. 
1. i := new Item; 

2. i.websiteSchema :=w; 

3. i.parent := w; 
4. i.type := e; 

5. designSchemaForItem(i,null,null); 

6. if i.pair -> isEmpty() then destroy i; end; 

 

Note that in line 6 of the above algorithm, the item is deleted if no property-value 

pairs have been found for it. This may happen when the website does not represent 

any fact about the schema.org properties of the root entity type e.  

The procedure for the design of the schema for an item i is indicated in Algorithm 

2. We first determine the nearest (root) reference exemplar ref for i (there is always 

one), and then we generate and execute two dialogs: the reference and the 

complementary dialogs. The first (lines 1-4) is based on the reference exemplar ref 

and considers only the properties of ref, and in their order. The second (lines 6-8) is 

performed only if ref does not exclude other properties and the web developer wants 

to consider all remaining properties. These properties are presented in the order of 

their position in the hierarchy of schema.org. 

 
Algorithm 2. designSchemaForItem 

input: An instance i of Item, its parent Item parent_i and its parent Property parent_prop 
output: The complete design of the fragment corresponding to i. 

1. ref:= determineReferenceExemplarForItem(i); 

2. for each p in ref.property do 
3.  generatePairsForProperty(i,p,parent_i,parent_prop); 

4. end;  

5. if not ref.excludesOtherProperties and userWantsAllProperties then 
6.      for each p in (i.type.allProperties() - ref.property->asSet()) ->sortedBy(positionInHierarchy) do 

7.   generatePairsForProperty(i,p,parent_i,parent_prop); 

8.     end 

9. end 

                                                           
8 For example, in https://support.google.com/webmasters/topic/4598337?hl=en&ref_topic=3309300, 

Google suggests properties for 11 entity types. In particular, it suggests 14 schema.org properties for 

recipes. 

https://support.google.com/webmasters/topic/4598337?hl=en&ref_topic=3309300
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Fig. 9. Example of a question on the presence of property inLanguage of Recipe 

 

The procedure generatePairsForProperty (algorithm 3) generates the property-

values pairs of a property, if it is applicable and it is not incompatible with previously 

defined ones (see Fig. 7).  

In line 2, the system asks the user whether or not the property p of item i is shown 

in the website, as illustrated in the examples of Fig. 6. The paraphrasing of the 

question uses the name and description indicated in the corresponding property in 

context, if it exists. A question may take one of the following forms (shown as 

examples): 

 Does your website include at least one “description” of a Recipe? This form 

is used for properties (description) of root items (Recipe) whose name 

form is a noun. 

 In your website, a Recipe “is written in the language” (something)? This 

form is used for properties (is written in the language) of root items 

(Recipe) whose name form is a verb. 

 Does your website include at least one “name” of a Person that is an “author” 

of a Recipe? This form is used for properties in noun-form (name) of non-

root items (Person) that are the value of a property (author) of a type 

(Recipe). 

 In your website, a Review that is the “review” of a Recipe, “is written in the 

language” (something)? This form is used for properties in verb-form (is 

written in the language) of non-root items (Review) that are the value of a 

property (review) of a type (Recipe). 

Figure 9 shows an example question in our tool. The system displays in the bottom 

the schema.org design that has been done already. The user may access to the 

complete description of the requested property by clicking the lens icon. 
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If the property p of item i is present in the website, the system determines its 

possible ranges, taking into account what is indicated in the corresponding 

PropertyInContext (Fig.7) or, if any, the definition of the property in schema.org (Fig. 

1). If the range is not unique, then the operation asks the user the possible ranges of 

the property (one or more). If one of the possible ranges of p is an instance E of 

EntityType, then that operation asks whether the range of p is E or one of its subtypes. 

For example, the possible ranges of author are Person and Organization. If the user 

selects Organization as a possible range, then the system asks whether the range is 

Organization or one of its subtypes (there are no subtypes of Person in schema.org).  

 
Algorithm 3. generatePairsForProperty 

input: An instance i of Item; a property p; its parent Item parent_i and its parent Property parent_prop 

output: The property value pairs of p for item i. 

1. if isApplicable(i,p) and not incompatible(i,p)  
2.  ranges := askQuestion(i,p,parent_i,parent_prop); 

3.  for each r in ranges do 

4.  pvp := new PropertyValuePair; 
5.  pvp.property := p; 

6.  pvp.item := i; 

7.  if r is an EntityType then   
8.   inew := new Item; 

9.   pvp.value := inew; 

10.   inew.parent := i.parent; 
11.   inew.type := r; 

12.   designSchemaForItem(inew,i,p); 
13.   if inew.pair -> isEmpty() then destroy inew; end; 

14.  else 

15.   pvp.value = r; 
16.  end; 

17. end  

 

For each range, a property value pair is created (line 4), and if its value is an 

instance of EntityType, then the corresponding instance of Item is created (inew, line 

8), and it is requested to generate its design by recursively invoking the operation 

designSchemaForItem in line 12. The execution of this operation now uses dependent 

reference exemplars. The process always ends because the depth of the compositions 

(Fig. 2) is finite in all practical websites. 

5. Evaluation 

As far as we know, ours is the first approach that has been proposed in the literature 

for solving the problem of website schema.org design, and therefore we cannot 

evaluate our proposal with respect to others. We propose in the following a set of six 

evaluation criteria that could be used to evaluate future new approaches to that 

problem, and we provide an evaluation of our approach with respect to those criteria. 

The criteria are: generality, precision, recall, human effort, cohesiveness and 

computation time. 
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Generality. Solutions may be general or domain specific. A general solution is 

applicable to any website, while a domain specific one is applicable to only one or 

more websites in domains such as, for example, online shops or recipes. The approach 

presented in this paper is general because it can deal with any root entity type defined 

in schema.org. 

 

Precision and Recall. Precision and recall are two classical criteria used in 

information retrieval [26], which can be used here also. In our context, the 

information request is an entity type E for which we want to know its schema.org 

properties in a website W, and the answer is the set A of schema.org properties that 

have been generated in the design of a website schema.org WS for W. Let P be the set 

of all properties of E defined in schema.org, and PW the subset of P that is relevant to 

W. For example, E = Recipe, P is the set comprising the 81 relevant properties to 

Recipe defined in schema.org, PW is the subset of those properties that is relevant to 

W, and A is the set of properties that have been obtained in the design WS. 

Precision is the fraction of the generated properties (the set A) which is relevant, 

and recall is the fraction of the relevant properties (the set PW) which has been 

generated. Formally, 

 Precision = |PW  A| / |A| 

 Recall = |PW  A| / |PW| 

In our approach, if a complete dialog is performed (algorithm 2), and the web 

developer correctly identifies the relevant properties, then PW = A and therefore both 

precision and recall have the value one.  

When only the reference dialog is performed (first dialog of algorithm 2), and the 

web developer correctly identifies the relevant properties, then A  PW and therefore 

the precision is still one. However, in this case the recall may be less than one if W 

displays properties not included in the reference exemplar. For example, assume that 

the dialog is based on the reference exemplar comprising the 16 properties from 

food.com and that W displays 13 of those properties and two more not included in the 

reference exemplar. In this case, we would have |PW| = 15, |A| = 13, |PW  A| = 13, 

and therefore Precision = 1 and Recall = 0.87. This is the reason why we would 

recommend to perform always the two dialogs of algorithm 2. 

In the above evaluation, we have assumed that the web developer correctly 

identifies the relevant properties. That is, we assume that when the system asks 

whether or not a property is present in a website, its web developer provides the 

correct answer.  

 

Human effort. This criterion evaluates the amount of human effort required by an 

approach. In general, two kinds of effort may be required: system administration and 

design. System administration effort may be needed to update the system whenever 

schema.org changes, or to provide any additional data required by the system. This 

effort is not necessary if the update is automatic and the system does not need 

additional data, or it is automatically captured. Design effort is the effort required by a 

web developer to design his website schema.org. This effort would not be necessary if 

an approach were completely automated, but it is difficult to see that such approach is 

possible and, if it were, it would not be applicable in the problem variant in which the 

website is under design.  
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In our approach, there is a significant system administration effort. Updating the 

system with the latest version of schema.org is not a problem, because changes are 

basically additions (new entity types and properties). The problem may be the effort 

required by domain experts to enrich the schema.org (Sect. 4.2) and to define 

reference exemplars (Sect. 4.3). Our approach may work without such enrichments 

and reference exemplars, but then the design effort is greater.  

Thanks to the enrichment and to the reference exemplars, in our approach the 

design effort is small. Web developers have to answer one question for each 

potentially relevant property. Questions are simple, and the answer is easy in most 

cases. 

 

Cohesiveness.  Approaches that, like ours, are based on a human-computer dialog 

in a directive mode, face the problem of dialog cohesiveness. Intuitively, we define 

cohesiveness as the degree in which the questions posed by the system are grouped by 

topic and unfold in a logical order, as required in questionnaire design [16]. The 

lowest value would correspond to dialogs in which questions are randomly selected.  

In our approach, we achieve maximum cohesiveness when the dialog is based only 

on reference exemplars, because then the order of the questions is the same as (or 

based on) the order used in recommended practices. However, if the web developer 

chooses a complementary dialog, then the overall cohesiveness may decrease, 

because the additional properties considered are presented in a top-down order, which 

should be better than random, but not necessarily the most logical.   

 

Computation time. The computation time criterion evaluates the amount of time 

required by the computer. We conjecture that this time will normally be small and 

insignificant, because the number of schema properties relevant to a website is 

normally small, and the design must be performed only once. In our tool, the 

computation time has been less than one second per question.   

 

In summary, we believe that in general our approach gets reasonable good results 

in the six proposed evaluation criteria. An exception may the criterion of system 

administration effort, although it remains to be seen if it is possible to get similar 

overall results with less system administration effort. 

6. Conclusions 

We have seen that the creation of schema.org for structured data markup has posed a 

problem to the (many) developers of websites that want to implement it in their web 

pages. We have formally defined that problem, which we call the problem of 

designing the website schema.org of a given website. We have identified two variants 

of the problem. 

We have presented an approach to that design, consisting in a human-computer 

dialogue. The dialogue is automatically generated from schema.org, possibly enriched 

with domain knowledge. In the dialogue, the system asks simple questions in natural 

language to the web developer. The answer to a question requires the web developer 
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to know only the contents of the website. Prior knowledge on schema.org is not 

needed. In our approach the website could be under design, and we do not need to 

know the schema of the website source database (if it exists). We have implemented 

our approach in a prototype tool that is publicly available. 

We have proposed a set of six criteria for the evaluation of possible solutions to the 

design of website schema.org, and we have evaluated our approach with respect to 

those criteria. Due to the novelty of the problem, there are not comparable alternative 

solutions yet. We believe that our approach will be useful to web developers because 

–among other things- it is easy to use, and it provides a systematic method to discover 

all schema.org microdata that could be added to the web pages. 

The work reported here can be extended in many directions. First, the approach 

should be tested in the development of industrial websites in order to experimentally 

confirm its usefulness in practice. The experiment should be performed using our tool 

(or a professional version of it), fully loaded with relevant domain knowledge 

(properties in context and reference exemplars). Second, the approach could be 

extended to automatically generate examples of microdata markup from the design. 

Those examples could be useful to the web developers. An even better solution would 

be to provide an effective support to the web developer in adding the microdata tags 

to the web pages, using the previously designed website schema.org. Third, in the 

variant of the design problem in which the website is operational, it could be 

interesting to analyze the existing web pages in order to guess the presence of 

potential schema.org properties, which could then be suggested to the web developer. 

Finally, it would be interesting to develop a (semi-) automatic way of obtaining 

reference exemplars by integrating several recommended websites. 
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