
1

An Approach to Website Schema.org Design

Albert Tort and Antoni Olivé

Department of Service and Information System Engineering

Universitat Politècnica de Catalunya – Barcelona Tech
{atort,olive}@essi.upc.edu

Abstract. Schema.org offers to web developers the opportunity to enrich a

website’s content with microdata and schema.org. For large websites,

implementing microdata can take a lot of time. In general, it is necessary to

perform two main activities, for which we lack methods and tools. The first

consists in designing what we call the website schema.org, which is the

fragment of schema.org that is relevant to the website. The second consists in

adding the corresponding microdata tags to the web pages. In this paper, we

describe an approach to the design of a website schema.org. The approach

consists in using a human-computer task-oriented dialogue, whose purpose is to

arrive at that design. We describe a dialogue generator that is domain-

independent, but that can be adapted to specific domains. We propose a set of

six evaluation criteria that we use to evaluate our approach, and that could be

used in future approaches.

Keywords. Schema.org, Microdata, Ontologies, Conceptual Modeling

1. Introduction

Google, Bing and Yahoo’s initiative to create schema.org for structured data markup

has offered an opportunity and at the same time has posed a threat to many web

developers. The opportunity is to transform the website’s content to use HTML

microdata and schema.org, so that search engines can understand the information in

web pages and, as a consequence, they can improve the accuracy and the presentation

of search results, which can translate to better click through rates and increased

organic traffic [1,15]. Google, for example, uses schema.org markup to display rich

snippets in the search results it produces, and in Custom Search1, a service that

enables the creation of search engines for a website or a collection of websites. The

threat of not doing the website transformation is just the opposite: not reaping the

above benefits that other websites may gain. This is the reason why many web

developers are considering, or will consider in the near future, the schema.org markup

of their web pages.

For large websites, implementing microdata can take a lot of time and require some

big changes in the HTML source code [1]. In general, that implementation requires

1 http://googlecustomsearch.blogspot.com

2

two main activities. The first consists in designing what we call the website

schema.org, which is the fragment of schema.org that is relevant to the website. The

second consists in adding the microdata tags to the web pages, using the previously

designed website schema.org.

In this paper, we describe an approach to website schema.org design. Our approach

consists in a human-computer task-oriented dialogue, whose purpose is to design a

website schema.org. The dialogue uses the directive mode, in which the computer has

complete control [22]. In each dialogue step, the computer asks a question to the web

developer about the website content. Depending on the answer, a fragment of

schema.org is or is not added to the website schema.org. The dialogue continues until

the design is finished.

The methodology of our research is that of design science [2], which is defined in

[18] as “the scientific study and creation of artifacts as they are developed and used

by people with the goal of solving practical problems of general interest.” The

problem we try to solve is the design of a website schema.org. The problem is

significant because it is (or will be) faced by many developers and, due to the novelty

of the problem, they lack the knowledge and the tools required for solving it. In this

paper we present an approach to the solution of that problem. As far as we know, this

is the first work that explores the problem of website schema.org design.

According to [18], the main activities in design science research are: explicate

problem, define requirements, design and develop artifact, demonstrate artifact and

evaluate artifact. Many design science projects focus on one or two of the activities,

while the others are treated more lightly. In our project we have focused in the first

three activities: we formulate the problem to be solved, we outline a solution to that

problem in the form of an artifact, and we create an artifact that addresses the

problem2.

The structure of the paper is as follows3. Next section describes schema.org and

presents its metamodel. Section 3 defines the problem of website schema.org design

and reviews the relevant previous work to its solution. Section 4 explains our

approach to the solution of the problem. Section 5 presents the evaluation of the

approach. Finally, section 6 summarizes the conclusions and points out future work.

2. Schema.org

In this section, we briefly introduce schema.org and present its UML [3] metamodel,

which is shown in Fig. 1.

Schema.org is a large conceptual schema (or ontology) [4] comprising a set of

types. A type may be an object type or a property4. Each type has a name and a

description. An object type may be an entity type, a data type or an enumeration.

2 A free, public version of the tool can be found at http://mpi.upc.edu/gmc-

en/tools/schemaorg/introduction?set_language=en
3 This paper is a revised and extended version of [25]

4 At the time of writing, there are 428 object types and 581 properties, with a significant increase over time.

http://mpi.upc.edu/gmc-en/tools/schemaorg/introduction?set_language=en
http://mpi.upc.edu/gmc-en/tools/schemaorg/introduction?set_language=en

3

Fig. 1. The UML metamodel of Schema.org

Object types are identified by their names, and are arranged in a multiple

specialization/generalization hierarchy where each object type may have several

supertypes. For example, the entity type LocalBusiness is a subtype of both

Organization and Place. The top of the hierarchy is the entity type named Thing. All

other object types are a direct or indirect subtype of it.

An enumeration consists of a set of literals. Enumerations may have subtypes. For

example, MedicalSpecialty is a subtype of both Specialty and MedicalEnumeration,

which are in turn a subtype of Enumeration. The literals of an enumeration have

different names.

Schema.org includes a predefined set of data types comprising Text, Number,

Boolean and others. Data types may have subtypes too. For example Integer is a

subtype of Number.

Properties are identified by their name. Properties are similar to UML attributes or

binary associations, but with three important differences:

 The domain of a property may be one or more object types5. The property

may be a relevant property of any of these types. For example, the domain

of the property height may be a MediaObject, a Person or a Product. In

UML, this property would normally correspond to three distinct

attributes. The alternative of representing that property as a single UML

attribute would require an artificial entity type that is a generalization of

MediaObject, Person and Product.

 The range of a property may be one or more object types. The value(s) of the

property should be instances of at least one of these types. For example,

the range of the property creator may be an Organization or a Person.

The UML equivalent of that property would be two binary associations

5 The domain of almost all properties is an entity type. However, there are a few exceptions in which the

domain is an enumeration.

4

for each possible type of its domain (two in this case: CreativeWork and

UserComents).

 Schema.org neither defines nor takes into account the two cardinalities that

could be defined for a property.

In principle, a property might also be a subtype of another one, although this is

possible only in user extensions, and therefore it has not been considered in the

metamodel of Fig. 1.

The main additional constraint of the metamodel is that a property cannot be

redefined in a subtype. In OCL, this can be formalized by the following invariant:

context ObjectType

inv doesNotRedefineProperties:

self.relevantProperty->

 forAll(p|not self.inheritedProperties()->includes(p))

where inheritedProperties is an operation defined in the same context as:

inheritedProperties():Set(Property) =

self.allParents()->collect(p|p.relevantProperty)->asSet())

and

allParents():Set(ObjectType) =

self.supertype->

 union(self.supertype->collect(p|p.allParents()))->asSet

Given that schema.org allows multiple specializations, in principle it is possible

that an object type inherits the same property from two different paths. This happens,

for example, in LocalBusiness whose supertypes are Place and Organization, and

both have review as relevant property.

3. Website Schema.org Design

In this section, we formalize the concept of website schema.org (3.1), define the

problem of designing that schema (3.2), and review the relevant previous work (3.3).

Our approach to the solution of that problem will be presented in the next section.

3.1 Website Schema.org

In general, the web pages of a website include the representation of many facts, some

of which are an instance of concepts (object types and properties) defined in

schema.org while others are an instance of concepts that are not defined in

schema.org. We call website schema.org of a website the set of concepts of

schema.org that have (or may have) instances represented in its web pages.

5

Fig. 2. The UML metamodel of a website schema.org

However, a website schema.org is not simply a subset of the schema.org concepts,

because there are facts of a concept that are represented in a context of the website,

but not represented in another one of the same website. For example, consider a

website that represents instances of the entity type Offer, including values for the

properties seller and itemOffered, among others. The value of seller is an

Organization, for which the website shows only its name, address an email. On the

other hand, the value of itemOffered is a Product, for which the website may show its

manufacturer, which is also an Organization. However, for manufacturing

organizations the website only shows their name, and not their address and email. The

website schema.org of this example must indicate that the address and email of an

organization are shown only for sellers.

Figure 2 shows the metamodel in UML of a website schema.org, which must be

seen as an extension to the metamodel shown in Fig. 1. A website schema.org consists

of a set of one or more components, which are instances of Item. We use here the term

item with the same meaning as in the microdata model: a group of name-value pairs

(that we call property-value pairs) [17]. An Item has a type, which is an EntityType.

A website schema.org has a set of one or more roots. The type of a root is an entity

type that is the main subject of one or more pages of the website. For example, a root

of a recipe website schema.org is an Item whose type is Recipe. Another root of the

same website may be Book if there are web pages whose main subject is information

about books. The roots of a website schema.org are a subset of its components.

An Item consists of an ordered set of at least one PropertyValuePair. Each instance

of a PropertyValuePair has a property and a value. The property is an instance of

Property and the value is an instance of the abstract class ValueType, which is a

generalization of Item, Datatype and Enumeration.

We use a textual notation for defining a website schema.org (that is, an instance of

the metamodel shown in Fig. 2). Figure 3 shows the example corresponding to the

restaurant presented in “schema.org/Recipe”. There are two Items, with types Recipe

(the root) and NutritionInformation. The first has twelve property-value pairs, one of

6

which (nutrition) has as value an Item, and the other eleven have as value a Datatype

(Text, Date, URL or Duration). NutritionInformation has two property-value pairs,

whose values are Datatypes (Text).

<Recipe, name,Text>

<Recipe, author, Text>

<Recipe, datePublished, Date>

<Recipe, image,URL>

<Recipe, description,Text>
<Recipe, prepTime,Duration>

<Recipe, cookTime,Duration>

<Recipe, recipeYield,Text>

<Recipe, nutrition, NutritionInformation>

 <NutritionInformation, calories,Text>

 <NutritionInformation, fatContent,Text>

< Recipe, ingredients,Text>

< Recipe, recipeInstructions,Text>

< Recipe, interactionCount, Text>

Fig. 3. A website schema.org example, using a textual notation

Fig. 4. Example of microdata markup using the website schema.org of Figure 3.

Once the website schema.org is known, the web developer can add the

corresponding microdata to the webpages. Figure 4 shows an example (an excerpt

from the example shown in schema.org/Recipe).

7

There are five important additional constraints in the metamodel of Fig. 2, which

we formalize in the following. The first is that for a given item there cannot be two

property-value pairs with the same property and value. Formally:

context Item

inv hasUniquePropertyValuePairs:

self.pair->isUnique(Tuple{p:property,v:value})

The second is that the property of a property-value pair must be one of the direct or

inherited relevant properties of the type of the item associated with that pair.

Formally:

context Item

inv includesRelevantProperties:

self.pair->forAll(self.type.allProperties()->includes(property))

where allProperties is an operation defined as:

context ObjectType

allProperties():Set(Property) =

relevantProperty->union(inheritedProperties())

The third is that the value of a property-value pair must be one of the ObjectType

that are the range of the corresponding property, or a subtype of one of those

ObjectType. For example, consider the property citation of a recipe, whose range may

a CreativeWork (a supertype of Recipe) or a Text. For a particular recipe shown in a

web page, a value of citation may be an instance of:

 CreativeWork

 Any subtype of CreativeWork

 Text

 URL (the subtype of Text)

Formally:

context PropertyValuePair

inv hasAValidValue:

let valueofPair:ObjectType =

if self.value.oclIsTypeOf(Datatype) then self.value.oclAsType(Datatype)

else

if self.value.oclIsTypeOf(Enumeration) then

 self.value.oclAsType(Enumeration)

else self.value.oclAsType(Item).type

endif

endif

in

self.property.range -> exists(

 r|Set{valueofPair}->closure(supertype)->includes(r))

The fourth constraint states that a root item cannot be the value of a property-value

pair. Formally,

context Item

inv isUnnestedIfRoot:

websiteSchema->notEmpty implies self.propertyValuePair->isEmpty

8

The last constraint states that a non-root item must be the value of one and only

one property-value pair. Formally,

context Item

inv isNestedIfNonRoot:

websiteSchema->isEmpty implies self.propertyValuePair->size()= 1

and not self.propertyValuePair.item->includes(self)

3.2 Problem definition

Once we have defined what we mean by website schema.org, we can now state the

problem we try to solve in this paper: the design of the website schema.org of a given

website. The problem can be formally defined as follows:

Given:

 A website W consisting of a set of web pages. The website W may be fully

operational or under design.

 The current version S of schema.org

Design:

 The website schema.org WS of W.

A variant of the problem occurs when the input includes a database D that is the

source of the data displayed in W. A subvariant occurs when the database is not fully

operational yet, and only its schema DS is available. Usually, DS will be relational.

All web developers that want to markup the web pages with schema.org microdata

are faced with this problem. Once WS is known, the developers can add the

corresponding markup in the web pages. Tools that illustrate how to add microdata

once WS is known start to appear in the market6.

3.3 Related Work

As far as we know, there have not been reported attempts to solve the design of a

website schema.org. However, there is some previous work that is relevant to our

problem, and that we briefly review in the following.

The task of web information extraction (WIE) could be seen as similar to website

schema.org design, and therefore the work done in WIE systems [5, 19] could be

relevant to our problem. The input to a WIE system is a set of online documents that

are semi-structured and usually generated by a server-side application program. The

extraction target can be a relation tuple or a complex object with hierarchically

organized data. In these systems users must program a wrapper to extract the data (as

in W4F [6] or DEQA [7]) or to show (examples of) the data to be extracted (as in

Thresher [8]). There are a few differences that make WIE systems inappropriate for

website schema.org design. In our case, the target is a fragment of a schema, without

6 For example http://schema-creator.org/ or http://www.microdatagenerator.com/

9

the facts, and if the website is under design, the online documents are not available.

On the other hand, it is unfeasible to build wrappers because web developers do not

know what to extract.

The table interpretation problem is a specialization of WIE focused on extracting

data from HTML tables [9, 19]. [10] describes one of the more recent systems, which

is an example of the ontology-guided extraction approach. In this case, the ontology is

the universal probabilistic taxonomy called Probase, which contains over 2.7 million

concepts. The system uses that ontology to determine the concepts corresponding to

the rows of a table, and to its columns, from the names of the table headers and the

values of the columns. This approach cannot be used in our case because in general

web pages display many facts in a non-table format, and on the other hand the web

pages may not be available.

Another related problem is schema matching, which deals with finding semantic

correspondences between elements of two schemas or ontologies [11, 12, 20, 21, 23].

Schema matching may be relevant to our problem when the source of the website is a

database and we know its schema [13]. Assuming the database is relational, in our

context the correspondences are between table attributes and schema.org properties.

There exist a large spectrum of possible matchers (see [14] for a recent review) but in

our context they would require the involvement of users who know both the database

schema and schema.org.

4. Our Approach to Website Schema.org Design

In this section we describe our approach to the design of a website schema.org. We

start with an overview of the approach (sect. 4.1) and then we continue with a detailed

explanation of its main components (sect. 4.2-4.4). Throughout this section we use

examples from the websites allrecipes.com and food.com, which deal with cooking

recipes [15]. Users publish their recipes in those websites, including for each of them

its name, a description, the ingredients, nutritional information, cooking time,

preparation videos, and so on.

4.1 Overview

Our approach to the design of a website schema.org is based on a computer-controlled

dialogue (see Fig. 5). The dialogue is automatically generated (see sect. 4.4) from

schema.org, enriched with domain knowledge by domain experts (as indicated in

sections 4.2 and 4.3). In most cases, the dialog asks simple yes/no questions in natural

language to the web developer. Figure 6 shows a fragment of that dialogue in our

example. The answer to a question requires the web developer to know only the

contents of the website. Prior knowledge on schema.org is not needed. Note that in

our approach the website could be under design and that we do not need to know the

schema of the website source database (if it exists).

10

Fig. 5. A dialog approach to website schema.org design

Fig. 6. Fragment of a dialogue in the allrecipes.com example

11

Fig. 7 Enrichment of the schema.org metamodel

4.2 Enriching Schema.org

The dialogue generator can generate dialogues from the content of schema.org.

However, if domain experts provide additional knowledge then the generated

dialogues can be some times more understandable (by improving the phrasing of the

questions) and more selective (by asking only the most relevant questions). Figure 7

shows the enrichment of the metamodel of schema.org (Fig.1) that allows defining

that additional knowledge.

The dialog generator deals with a property P always in a context. The context is an

entity type that has P as a direct or indirect relevant property. In absence of additional

knowledge, the dialog generator deals with P taking into account only the “official”

names and descriptions of the involved types.

However, domain experts may add new knowledge by means of instances of

PropertyInContext (PIC). An instance of that type has a few attributes and links that

are useful when the dialog generator deals with a property in a particular context.

A PIC contextualizes a property (contextualizedProperty). The context in which a

PIC is applicable is a set of one or more EntityTypes (type). For example, there may

be a PIC for property inLanguage in the context of CreativeWork.

For any given pair of contextualizedProperty and type there must be at most one

PIC. This is a constraint of the metamodel shown in Fig.7, which can be formally

expressed by:

context PropertyInContext

inv hasUniquePropertyAndType:

PropertyInContext.allInstances->

isUnique(Tuple{p:contextualizedProperty,t:type})

The three first attributes of a PIC are the specific name form, normalized name and

description of the contextualized property. The specific name form indicates the

12

grammatical form of the name, which may be a noun in singular form or a verb in

third-person singular form. By default, it is assumed to be a noun. The specific

normalized name and description may be used in the cases where the original name

and description defined in schema.org can be improved in a given context. Such

improvements (which are the equivalent of the “semantic label normalizations”

performed in a different context [24]) allow the dialog generator to generate “better”

questions.

For example, CreativeWork includes the property inLanguage. A PIC could

specify a better name for this contextualizedProperty. The specific name form could

be a verb, and the specific name could be “is written in the language”. In this case,

the type would be CreativeWork. As another example, Recipe includes the property

prepTime. A PIC could specify that a more expressive name for that property in the

context of Recipe is preparation time.

The last attribute of a PIC is isApplicable. The attribute may be used to indicate

that a property is not applicable in a given context. For example, a domain expert can

define that the property genre of CreativeWork is non-applicable for Recipe.

The applicableRange of a PIC may be used to restrict the set of ranges for the

contextualized property. For example, the property author of CreativeWork has the

range {Organization, Person}. If we want to specify that for Recipes the author must

be a Person, then we create a link between the corresponding PIC and Person as its

applicableRange. The applicable range must be a subset of the range of the

corresponding property. This is formally expressed by:

context PropertyInContext

inv hasAValidRange:

self.contextualizedProperty.range->includesAll(applicableRange)

 Finally, there are properties that cannot be defined in a particular context if

another one has previously been defined. For example, author is a property of

CreativeWork, and creator is a property of CreativeWork and UserComments.

However, in the context of CreativeWork only one of the two should be defined. We

can then indicate in the corresponding PICs that author and creator are incompatible

with each other in the context of CreativeWork (type).

The definition of properties in context is a task that must be done by domain

experts. However, a tool (like ours) may make it easy to define at any time a new

enrichment, ensure that it satisfies all relevant constraints, and make it available for

all future dialogue generations.

4.3 Reference exemplars

A basic approach to website schema.org design could be that the web developer first

defines a root of the website (such as Recipe), then the dialogue generator

automatically determines the schema.org properties that could be relevant, and finally

the system asks the web developer which of those properties are relevant for the

website.

However, that approach would not be practical, for two main reasons. The first is

that there can be many schema.org properties for a given root, but not all of them are

13

Fig. 8. Schema of reference exemplars

actually used in practice. For example, Recipe (a subtype of CreativeWork, which in

turn is a subtype of Thing) has 81 properties (8 for Thing, 63 for CreativeWork and 10

for Recipe), but a representative website such as allrecipes.com only shows 14 of

those properties (3 from Thing, 4 from CreativeWork and 7 from Recipe). Clearly, if

the dialog generator were able to select a subset of properties that might be of interest

for a given website, the system would ask much less questions to the web developer.

The second reason why the simple approach described above would not be

practical is that the system would ask questions without any particular order, mixing

questions belonging to different topics. For example, the system could ask about the

presence of property prepTime (of Recipe), followed by aggregateRaing (of

CreativeWork), name (of Thing) and then cookTime (again of Recipe). Clearly, such

approach would confuse the web developer. Ideally, the questions posed by the

system should be grouped by topic and unfold in a logical order, as required in, for

example, questionnaire design [16].

Our solution to those problems is what we propose to call reference exemplars.

Figure 8 shows their schema (an extension to the metamodel shown in Fig. 1). There

are two kinds of reference exemplars: root and dependent. A root reference exemplar

of a given type (which is an EntityType) is an ordered set of one or more properties

that are shown in recommended websites of the given root. The order of the properties

of the set is the order in which those properties are usually displayed in those

websites. A root reference exemplar can be seen as a recommended practice for the

schema.org markup of websites of a given root.

For example, if a domain expert recommends the properties displayed in food.com

as a reference exemplar for Recipe, then the root reference exemplar of Recipe would

comprise a set of 15 ordered properties. Other schema.org properties could be added

to this set, if so desired. For example, given that a popular website such as

allrecipes.com also displays the schema.org video and review properties, such

properties could be added to the reference exemplar.

There must be a root reference exemplar for the type Thing, which is used when

other more specific exemplars are not available. Moreover, for any given EntityType

there may be at most one root reference exemplar. Formally, this is expressed by:

14

context EntityType

inv hasAtMostOneRootReferenceExemplar:

self.referenceExemplar->select(r|r.theContext->isEmpty)->size()<= 1

Note that root reference exemplars are those that do not have context.

The properties of a reference exemplar must be a subset of those of its type.

Formally:

context ReferenceExemplar

inv includesRelevantProperties:

self.type.allProperties()->includesAll(property)

A dependent reference exemplar of a given type E and property P (theContext) is

an ordered set of one or more properties that are usually shown in current websites of

the given type E when it is the value of the property P. As before, the order of the

properties of the set is the order in which those properties are usually displayed in

recommended websites. A dependent reference exemplar can also be seen as a

recommended practice. The same dependent reference exemplar can have several

properties in its context meaning that it applies to any of them.

For any given EntityType (type) and Property (theContext) there may be at most

one dependent reference exemplar. This is formally captured by the expression:

context Property

inv andATypeHaveAtMostOneDependentReferenceExemplar:

self.referenceExemplar->isUnique(type)

For example, food.com includes the property nutrition of Recipe, whose value is

the entity type NutritionInformation. For this type, nine properties are shown

(calories, etc.). A domain expert that wishes to recommend these properties in that

context could define a dependent reference exemplar, with type NutritionInformation

and theContext = {nutrition}.

Reference exemplars have the boolean attribute excludesOtherProperties. We use

it to indicate whether or not the dialog generator should consider other properties of

the type beyond those indicated by the reference exemplar. For example, Energy has

seven properties (all of Thing), but when used as a property of calories, only one of

those properties are likely to be used (a text of the form <Number> <Energy unit of

measure>). We could define a dependent reference exemplar for the type Energy and

property calories, consisting of a single property (name) and excluding other

properties. In this way, the dialogs can be highly simplified.

Reference exemplars are defined by domain experts. A tool (like ours) may make it

easy to define at any time a new reference exemplar, ensure that it satisfies all

relevant constraints, and make it available for all future dialogue generations. In the

simplest case, a domain expert indicates a recommended website, from which the

properties and their order can be automatically extracted using tools such as the

Google Rich Snippet tool7. Another possibility is to just adopt the recommendations

7 https://www.google.com/webmasters/tools/richsnippets

15

from search engines8. An even better possibility, not explored further here, is to

integrate the properties shown in several recommended websites.

4.4 Dialog generation and execution

In the following, we describe the main steps of the process needed to design the

schema of a website using our approach (see Fig. 5). The starting point is the creation

of an instance w of WebsiteDesign (see Fig. 2), followed by the determination (by the

web developer) of a root entity type e of w, and the invocation of the procedure

designSchema indicated in Algorithm 1. The procedure is executed for each root

entity type of w. As it can be seen, the procedure creates a root item i of w and then

invokes (in line 5) the procedure designSchemaForItem i.

Algorithm 1. designSchema

input: An instance w of WebsiteDesign; an instance e of EntityType.

output: The complete design of website schema.org for w.
1. i := new Item;

2. i.websiteSchema :=w;

3. i.parent := w;
4. i.type := e;

5. designSchemaForItem(i,null,null);

6. if i.pair -> isEmpty() then destroy i; end;

Note that in line 6 of the above algorithm, the item is deleted if no property-value

pairs have been found for it. This may happen when the website does not represent

any fact about the schema.org properties of the root entity type e.

The procedure for the design of the schema for an item i is indicated in Algorithm

2. We first determine the nearest (root) reference exemplar ref for i (there is always

one), and then we generate and execute two dialogs: the reference and the

complementary dialogs. The first (lines 1-4) is based on the reference exemplar ref

and considers only the properties of ref, and in their order. The second (lines 6-8) is

performed only if ref does not exclude other properties and the web developer wants

to consider all remaining properties. These properties are presented in the order of

their position in the hierarchy of schema.org.

Algorithm 2. designSchemaForItem

input: An instance i of Item, its parent Item parent_i and its parent Property parent_prop
output: The complete design of the fragment corresponding to i.

1. ref:= determineReferenceExemplarForItem(i);

2. for each p in ref.property do
3. generatePairsForProperty(i,p,parent_i,parent_prop);

4. end;

5. if not ref.excludesOtherProperties and userWantsAllProperties then
6. for each p in (i.type.allProperties() - ref.property->asSet()) ->sortedBy(positionInHierarchy) do

7. generatePairsForProperty(i,p,parent_i,parent_prop);

8. end

9. end

8 For example, in https://support.google.com/webmasters/topic/4598337?hl=en&ref_topic=3309300,

Google suggests properties for 11 entity types. In particular, it suggests 14 schema.org properties for

recipes.

https://support.google.com/webmasters/topic/4598337?hl=en&ref_topic=3309300

16

Fig. 9. Example of a question on the presence of property inLanguage of Recipe

The procedure generatePairsForProperty (algorithm 3) generates the property-

values pairs of a property, if it is applicable and it is not incompatible with previously

defined ones (see Fig. 7).

In line 2, the system asks the user whether or not the property p of item i is shown

in the website, as illustrated in the examples of Fig. 6. The paraphrasing of the

question uses the name and description indicated in the corresponding property in

context, if it exists. A question may take one of the following forms (shown as

examples):

 Does your website include at least one “description” of a Recipe? This form

is used for properties (description) of root items (Recipe) whose name

form is a noun.

 In your website, a Recipe “is written in the language” (something)? This

form is used for properties (is written in the language) of root items

(Recipe) whose name form is a verb.

 Does your website include at least one “name” of a Person that is an “author”

of a Recipe? This form is used for properties in noun-form (name) of non-

root items (Person) that are the value of a property (author) of a type

(Recipe).

 In your website, a Review that is the “review” of a Recipe, “is written in the

language” (something)? This form is used for properties in verb-form (is

written in the language) of non-root items (Review) that are the value of a

property (review) of a type (Recipe).

Figure 9 shows an example question in our tool. The system displays in the bottom

the schema.org design that has been done already. The user may access to the

complete description of the requested property by clicking the lens icon.

17

If the property p of item i is present in the website, the system determines its

possible ranges, taking into account what is indicated in the corresponding

PropertyInContext (Fig.7) or, if any, the definition of the property in schema.org (Fig.

1). If the range is not unique, then the operation asks the user the possible ranges of

the property (one or more). If one of the possible ranges of p is an instance E of

EntityType, then that operation asks whether the range of p is E or one of its subtypes.

For example, the possible ranges of author are Person and Organization. If the user

selects Organization as a possible range, then the system asks whether the range is

Organization or one of its subtypes (there are no subtypes of Person in schema.org).

Algorithm 3. generatePairsForProperty

input: An instance i of Item; a property p; its parent Item parent_i and its parent Property parent_prop

output: The property value pairs of p for item i.

1. if isApplicable(i,p) and not incompatible(i,p)
2. ranges := askQuestion(i,p,parent_i,parent_prop);

3. for each r in ranges do

4. pvp := new PropertyValuePair;
5. pvp.property := p;

6. pvp.item := i;

7. if r is an EntityType then
8. inew := new Item;

9. pvp.value := inew;

10. inew.parent := i.parent;
11. inew.type := r;

12. designSchemaForItem(inew,i,p);
13. if inew.pair -> isEmpty() then destroy inew; end;

14. else

15. pvp.value = r;
16. end;

17. end

For each range, a property value pair is created (line 4), and if its value is an

instance of EntityType, then the corresponding instance of Item is created (inew, line

8), and it is requested to generate its design by recursively invoking the operation

designSchemaForItem in line 12. The execution of this operation now uses dependent

reference exemplars. The process always ends because the depth of the compositions

(Fig. 2) is finite in all practical websites.

5. Evaluation

As far as we know, ours is the first approach that has been proposed in the literature

for solving the problem of website schema.org design, and therefore we cannot

evaluate our proposal with respect to others. We propose in the following a set of six

evaluation criteria that could be used to evaluate future new approaches to that

problem, and we provide an evaluation of our approach with respect to those criteria.

The criteria are: generality, precision, recall, human effort, cohesiveness and

computation time.

18

Generality. Solutions may be general or domain specific. A general solution is

applicable to any website, while a domain specific one is applicable to only one or

more websites in domains such as, for example, online shops or recipes. The approach

presented in this paper is general because it can deal with any root entity type defined

in schema.org.

Precision and Recall. Precision and recall are two classical criteria used in

information retrieval [26], which can be used here also. In our context, the

information request is an entity type E for which we want to know its schema.org

properties in a website W, and the answer is the set A of schema.org properties that

have been generated in the design of a website schema.org WS for W. Let P be the set

of all properties of E defined in schema.org, and PW the subset of P that is relevant to

W. For example, E = Recipe, P is the set comprising the 81 relevant properties to

Recipe defined in schema.org, PW is the subset of those properties that is relevant to

W, and A is the set of properties that have been obtained in the design WS.

Precision is the fraction of the generated properties (the set A) which is relevant,

and recall is the fraction of the relevant properties (the set PW) which has been

generated. Formally,

 Precision = |PW  A| / |A|

 Recall = |PW  A| / |PW|

In our approach, if a complete dialog is performed (algorithm 2), and the web

developer correctly identifies the relevant properties, then PW = A and therefore both

precision and recall have the value one.

When only the reference dialog is performed (first dialog of algorithm 2), and the

web developer correctly identifies the relevant properties, then A  PW and therefore

the precision is still one. However, in this case the recall may be less than one if W

displays properties not included in the reference exemplar. For example, assume that

the dialog is based on the reference exemplar comprising the 16 properties from

food.com and that W displays 13 of those properties and two more not included in the

reference exemplar. In this case, we would have |PW| = 15, |A| = 13, |PW  A| = 13,

and therefore Precision = 1 and Recall = 0.87. This is the reason why we would

recommend to perform always the two dialogs of algorithm 2.

In the above evaluation, we have assumed that the web developer correctly

identifies the relevant properties. That is, we assume that when the system asks

whether or not a property is present in a website, its web developer provides the

correct answer.

Human effort. This criterion evaluates the amount of human effort required by an

approach. In general, two kinds of effort may be required: system administration and

design. System administration effort may be needed to update the system whenever

schema.org changes, or to provide any additional data required by the system. This

effort is not necessary if the update is automatic and the system does not need

additional data, or it is automatically captured. Design effort is the effort required by a

web developer to design his website schema.org. This effort would not be necessary if

an approach were completely automated, but it is difficult to see that such approach is

possible and, if it were, it would not be applicable in the problem variant in which the

website is under design.

19

In our approach, there is a significant system administration effort. Updating the

system with the latest version of schema.org is not a problem, because changes are

basically additions (new entity types and properties). The problem may be the effort

required by domain experts to enrich the schema.org (Sect. 4.2) and to define

reference exemplars (Sect. 4.3). Our approach may work without such enrichments

and reference exemplars, but then the design effort is greater.

Thanks to the enrichment and to the reference exemplars, in our approach the

design effort is small. Web developers have to answer one question for each

potentially relevant property. Questions are simple, and the answer is easy in most

cases.

Cohesiveness. Approaches that, like ours, are based on a human-computer dialog

in a directive mode, face the problem of dialog cohesiveness. Intuitively, we define

cohesiveness as the degree in which the questions posed by the system are grouped by

topic and unfold in a logical order, as required in questionnaire design [16]. The

lowest value would correspond to dialogs in which questions are randomly selected.

In our approach, we achieve maximum cohesiveness when the dialog is based only

on reference exemplars, because then the order of the questions is the same as (or

based on) the order used in recommended practices. However, if the web developer

chooses a complementary dialog, then the overall cohesiveness may decrease,

because the additional properties considered are presented in a top-down order, which

should be better than random, but not necessarily the most logical.

Computation time. The computation time criterion evaluates the amount of time

required by the computer. We conjecture that this time will normally be small and

insignificant, because the number of schema properties relevant to a website is

normally small, and the design must be performed only once. In our tool, the

computation time has been less than one second per question.

In summary, we believe that in general our approach gets reasonable good results

in the six proposed evaluation criteria. An exception may the criterion of system

administration effort, although it remains to be seen if it is possible to get similar

overall results with less system administration effort.

6. Conclusions

We have seen that the creation of schema.org for structured data markup has posed a

problem to the (many) developers of websites that want to implement it in their web

pages. We have formally defined that problem, which we call the problem of

designing the website schema.org of a given website. We have identified two variants

of the problem.

We have presented an approach to that design, consisting in a human-computer

dialogue. The dialogue is automatically generated from schema.org, possibly enriched

with domain knowledge. In the dialogue, the system asks simple questions in natural

language to the web developer. The answer to a question requires the web developer

20

to know only the contents of the website. Prior knowledge on schema.org is not

needed. In our approach the website could be under design, and we do not need to

know the schema of the website source database (if it exists). We have implemented

our approach in a prototype tool that is publicly available.

We have proposed a set of six criteria for the evaluation of possible solutions to the

design of website schema.org, and we have evaluated our approach with respect to

those criteria. Due to the novelty of the problem, there are not comparable alternative

solutions yet. We believe that our approach will be useful to web developers because

–among other things- it is easy to use, and it provides a systematic method to discover

all schema.org microdata that could be added to the web pages.

The work reported here can be extended in many directions. First, the approach

should be tested in the development of industrial websites in order to experimentally

confirm its usefulness in practice. The experiment should be performed using our tool

(or a professional version of it), fully loaded with relevant domain knowledge

(properties in context and reference exemplars). Second, the approach could be

extended to automatically generate examples of microdata markup from the design.

Those examples could be useful to the web developers. An even better solution would

be to provide an effective support to the web developer in adding the microdata tags

to the web pages, using the previously designed website schema.org. Third, in the

variant of the design problem in which the website is operational, it could be

interesting to analyze the existing web pages in order to guess the presence of

potential schema.org properties, which could then be suggested to the web developer.

Finally, it would be interesting to develop a (semi-) automatic way of obtaining

reference exemplars by integrating several recommended websites.

Acknowledgments. We thank the anonymous reviewers for their valuable comments

to the previous version of the paper. We would also like to thank to Martin Menes for

the work he has done in the development of the new version of the tool. This work

has been partly supported by the Ministerio de Economía y Competitividad and

FEDER under project TIN2008-00444, Grupo Consolidado.

References

1. Seochat: Schema.org and microdata markups for SEO (May 2013)

http://www.seochat.com/c/a/search-engine-optimization-help/schema-org-and-microdata-

markups-for-seo/.

2. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems

research. MIS Quarterly (2004) 75-105

3. OMG. UML Superstructure v.2.4.1 (2011) http://www.omg.org/spec/UML.

4. Olive, A.: Conceptual Modeling of Information Systems. Springer, Berlin (2007)

5. Chang, C.H., Kayed, M., Girgis, R., Shaalan, K.F.: A survey of web information extraction

systems. IEEE Transactions on Knowledge and Data Engineering 18(10) (2006) 1411-1428

6. Sahuguet, A., Azavant, F.: Building intelligent web applications using lightweight wrappers.

Data & Knowledge Engineering 36(3) (2001) 283-316.

7. Lehmann, J., Furche, T., Grasso, G., Ngomo, A.C.N., Schallhart, C., Sellers, A.,Unger, C.,

Buhmann, L., Gerber, D., Honer, K.: DEQA: Deep web extraction for question answering. In:

ISWC 2012, Springer (2012) 131-147.

21

8. Hogue, A., Karger, D.: Thresher: Automating the unwrapping of semantic content from the

World Wide Web. In: WWW2005, ACM (2005) 86-95.

9. Embley, D.W., Hurst, M., Lopresti, D., Nagy, G.: Table-processing paradigms: A research

survey. IJDAR Journal 8(2-3) (2006) 66-86.

10. Wang, J., Wang, H., Wang, Z., Zhu, K.Q.: Understanding tables on the web. In: ER 2012,

Springer (2012) 141-155.

11. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB

Journal 10(4) (2001) 334-350.

12. Bellahsene, Z.: Schema Matching and Mapping. Springer (2011)

13. An, Y., Borgida, A., Mylopoulos, J.: Discovering the semantics of relational tables through

mappings. Journal on Data Semantics VII (2006) 1-32.

14. Shvaiko, P., Euzenat, J.: Ontology matching: State of the art and future challenges. IEEE

Transactions on Knowledge and Data Engineering 25(1) (2013) 158-176.

15. Krutil, J., Kudelka, M., Snasel, V.: Web page classification based on schema.org collection.

In: CASoN 2012, IEEE (2012) 356-360

16. Pew Research Center: Question Order. http://www.people-press.org/methodology

/questionnaire-design/question-order/

17. W3C: HTML microdata. http://www.w3.org/TR/microdata/

18. Johannesson, P., Perjons E.: An Introduction to Design Science. Springer 2014.

19. Embley, D.W, Liddle, S.W., Londsdale, D.W.: Conceptual Modeling Foundations for a

Web of Knowledge. In Handbook of Conceptual Modeling, Springer 2011, pp. 477-516.

20. Bergamaschi, S., Beneventano, D., Guerra, F. Orsini, M.: Data Integration. In: Handbook of

Conceptual Modeling, Springer 2011, pp. 441-476.

21. Shvaiko, P., Euzenat, J.: Ten Challenges for Ontology Matching. OTM Conferences (2)

2008: 1164-1182.

22. Smith, R.W., Hipp, D.R., Biermann, A.W.: A dialog control algorithm and its performance.

In Proceedings of the third conference on Applied natural language processing (ANLC '92).

Association for Computational Linguistics, Stroudsburg, PA, USA, 9-16., 1992

DOI=10.3115/974499.974502

23. Arnold, P., Rahm, E.: Enriching ontology mappings with semantic relations. Data Knowl.

Eng. 93: 1-18 (2014)

24. Sorrentino, S., Bergamaschi, S., Gawinecki, M., Po, L.: Schema label normalization for

improving schema matching. Data Knowl. Eng. 69(12): 1254-1273 (2010).

25. Tort, A., Olivé, A.: A Computer-Guided Approach to Website Schema.org Design. ER

2014: 28-42.

26. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval - the concepts and

technology behind search. Second edition. Pearson Education Ltd., Harlow, England 2011.

http://www.people-press.org/methodology%20/questionnaire-design/question-order/
http://www.people-press.org/methodology%20/questionnaire-design/question-order/

