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Abstract

Data translation consists of the task of moving data from a source database
to a target database. This task is usually performed by developing mappings,
i.e. executable transformations from the source to the target schema. How-
ever, a richer description of the target database semantics may be available in
the form of an ontology. This is typically defined as a set of views over the
base tables that provides a unified conceptual view of the underlying data. We
investigate how the mapping process changes when such a rich conceptualiza-
tion of the target database is available. We develop a translation algorithm
that automatically rewrites a mapping from the source schema to the target
ontology into an equivalent mapping from the source to the target databases.
Then, we show how to handle this problem when an ontology is available also
for the source. Di↵erently from previous approaches, the language we use in
view definitions has the full power of non-recursive Datalog with negation. In
the paper, we study the implications of adopting such an expressive language.
Experiments are conducted to illustrate the trade-o↵ between expressibility of
the view language and e�ciency of the chase engine used to perform the data
exchange.

Keywords: mapping, ontology, view, tuple generating dependency, equality
generating dependency, disjunctive embedded dependency.

1. Introduction1

Integrating data coming from disparate sources is a crucial task in many2

applications. An essential requirement of any data integration task is that of3

manipulating mappings between sources. Mappings are executable transfor-4

mations that define how an instance of a source repository can be translated5

into an instance of a target repository. Traditionally, mappings are developed6

to exchange data between two relational database schemas [1]. A rich body7

of research has been devoted to the study of this subject. This includes the8
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development of algorithms to simplify the specification of the mapping [2], the9

formalization of the semantics of the translation process [3], and various notions10

of quality of the results [4, 5, 6].11

This paper investigates how the mapping process changes in the presence of12

richer ontology schemas of the two data sources. Studying this variant of the13

problem is important for several reasons.14

(i) First, the emergence of the Semantic Web has increased the number of data15

sources on top of which ontology-like descriptions are developed.16

(ii) Second, ontologies play a key role in information integration since they are17

used to give clients a global conceptual view of the underlying data, which in18

turn may come from external, independent, heterogeneous, multiple information19

systems [7]. On the contrary, the global unified view given by the ontology is20

constructed independently from the representation adopted for the data stored21

at the sources.22

(iii) Finally, many of the base transactional repositories used in complex orga-23

nizations by the various processes and applications often undergo modifications24

during the years, and may lose their original design. The new schema can often25

be seen as a set of views over the original one. It is important to be able to run26

the existing mappings against a view over the new schema that does not change,27

thus keeping these modifications of the sources transparent to the users.28

It is therefore important to study how the mapping process changes in this29

setting.30

1.1. Contributions31

In this paper, we assume that an ontology is provided for the target and,32

possibly, for the source data repository. The relationship between the domain33

concepts in this ontology schema and the data sources is given by a set of views34

that define the ontology constructs in terms of the logical database tables using35

a relational language of conjunctive queries, comparisons and negations.36

We develop a number of techniques to solve this kind of ontology-based map-37

ping problem. More specifically:38

• we develop rewriting algorithms to automatically translate mappings over39

the ontology schema into mappings over the underlying databases; we first40

discuss the case in which an ontology schema is available for the target41

database only; then we extend the algorithm to the case in which an42

ontology schema is available both for the source and the target;43

• the algorithm that rewrites a source-to-ontology mapping into a classical44

and executable source-to-target mapping is based on the idea of unfolding45

views in mapping conclusions; in our setting this unfolding is far from46

being straightforward; in the paper, we show that the problem is made47

significantly more complex by the expressibility of the view-definition lan-48

guage, and more precisely, by the presence of negated atoms in the body49

of view definitions;50
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• we study the implications of adopting such an expressive language; to51

handle negation in view definitions we adopt a very expressive mapping52

language, namely, that of disjunctive embedded dependencies (deds) [8].53

Deds are mapping dependencies that may contain disjunctions in their54

heads, and are therefore more expressive than standard embedded depen-55

dencies (tgds and egds);56

• this increased expressive power makes the data-exchange step significantly57

more complex. As a consequence, we investigate restrictions to the view-58

definition language that may be handled using standard embedded de-59

pendencies, for which e�cient execution strategies exist. In the paper, we60

identify a restricted view language that still allows for a limited form of61

negation, but represents a good compromise between expressibility and62

complexity; we prove that under this language, our rewriting algorithm63

always returns standard embedded dependencies;64

• the classical approach to executing a source-to-target exchange consists65

of running the given mappings using a chase engine [3]. We build on the66

Llunatic chase engine [9, 10], and extend it to execute not only standard67

tgds and egds, but also deds. We discuss the main technical challenges68

related to the implementation of deds. Then, using the prototype, we69

conduct several experiments on large databases and mapping scenarios70

to show the trade-o↵s between expressibility of the view language, and71

e�ciency of the chase. To the best of our knowledge, this is the first72

practical e↵ort to implement execution strategies for deds, and may pave73

the way for further studies on the subject.74

This paper represents a significant step forward towards the goal of incorpo-75

rating richer ontology schemas into the data translation process. Given the76

evolution of the Semantic Web, and the increased adoption of ontologies, this77

represents an important problem that may lead to further research directions.78

This paper extends our prior research [11], where we first studied the prob-79

lem of rewriting ontology-based mappings. We make several important advance-80

ments, as follows:81

(i) First, previous papers only discussed rewritings based on standard embedded82

dependencies for a rather limited form on negation. In this paper, we extend83

our algorithms to handle arbitrary non-recursive Datalog with negation using84

deds, thus considerably extending the reach of our rewriting algorithm.85

(ii) At the same time, we make the su�cient conditions under which the rewrit-86

ing only contains embedded dependencies more precise, and extend the limited87

case discussed in previous papers.88

(iii) In addition, we present the first chase technique for deds, and a comprehen-89

sive experimental evaluation based on scenarios with and without deds. As we90

mentioned above, this is the first practical study of the scalability of the chase91

of high-complexity dependencies, an important problem in data exchange.92

(iv) Finally, we provide full proofs of all theorems (in Appendix A).93
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1.2. Outline94

The paper is organized as follows. Our motivating example is given in Section95

2. Section 3 recalls some basic notions and definitions. Section 4 introduces96

the ontology-based mapping problem. Section 5 defines disjunctive embedded97

dependencies which are required by the rewriting when the views that define98

the mapping are beyond conjunctive queries. Section 6 provides the definition99

of a correct rewriting. The rewriting algorithm and formal results are in Section100

7. Section 8 identifies a view-definition language that is more expressive than101

plain conjunctive queries but such that it computes correct rewritings only in102

terms of embedded dependencies. The chase engine is described in Section 9.103

Experiments are in Section 10. We discuss related work in Section 11.104

2. Motivating Example105

Assume we have the two relational schemas below and we need to translate106

data from the source to the target.107

Source schema: S-WorkerGrades(WorkerId,Year,Grade,SalaryInc)
S-Stats(WorkerId,WorkerName,MinGrade,MaxGrade)

Target schema: Employees(Id,Name)
Evaluations(EmployeeId,Year)
PositiveEvals(EmployeeId,Year,SalaryInc)
Penalized(EmployeeId,Year)
Warned(EmployeeId,Date)

Both schemas rely on the same domain, which includes data about employees108

and the evaluations they receive during the years. The source database stores109

grades within the S-WorkerGrades table, and statistical data in the form of110

minimum and maximum grades of workers in table Stats. The target database,111

on the contrary, stores data about employees and their positive evaluations, but112

also records warnings and penalties for those employees.113

Due to these di↵erent organizations, it is not evident how to define the114

source-to-target mapping. In particular, it is di�cult to relate information115

stored in table S-Stats from the source schema to the contents of the tables116

Penalized and Warned in the target schema.117

Suppose now that a richer ontology has been defined over the target rela-118

tional schema, as shown in Figure 1. The ontology distinguishes among prob-119

lematic, average, and outstanding workers, and it records whether the yearly120

evaluation of each worker is negative or positive, storing also the salary increase121

to apply to the worker for positive evaluations.122

Each class and association in the ontology is defined in terms of the database123

tables by means of a set of views, as follows (to simplify the reading, from now124

on we use di↵erent fonts for ontology classes and relational tables; in addition,125

source tables have a S-prefix in their name to be distinguished from base target126

tables): 2
127

2
The rules we use to specify views in our example are not safe in the sense that they contain
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Year 

Number: integer 
 

Worker 

Id: integer 
Name: string 

Evaluation 

PositiveEval NegativeEval 

* * 

{disjoint, complete} 

Problematic Average Outstanding 

{disjoint, complete} 

SalaryInc: real 
 

Figure 1: A Simple Target Ontology.

View definitions for the target ontology.
v1 : Worker(id, name) ( Employees(id,name)
v2 : Evaluation(employeeId, year) ( Evaluations(employeeId, year)
v3 : PositiveEval(employeeId, year, salaryInc) ( Evaluation(employeeId, year),

PositiveEvals(employeeId, year, salaryInc)
v4 : NegativeEval(employeeId, year) ( Evaluation(employeeId, year),

¬PositiveEval(employeeId, year, sinc)
v5 : Problematic(id, name) ( Worker(id, name),Penalized(id, year)
v6 : Problematic(id, name) ( Worker(id, name),¬PositiveEval(id, year, sinc)
v7 : Outstanding(id, name) ( Worker(id, name),¬NegativeEval(id, year),

¬Warned(id, date)
v8 : Average(id, name) ( Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)

The process of defining semantic abstractions over databases can bring benefits128

to data architects only as long as the view-definition language is expressive129

enough. To this end, the view-definition language adopted in this paper goes130

far beyond plain conjunctive queries, and has the full power of non-recursive131

Datalog [12] with negation. In fact:132

(i) we allow for negated atoms in view definitions; these may either correspond133

to negated base tables, as happens in view v7 (tableWarned), or even to negated134

views, as in v4 (view PositiveEval), v6 (PositiveEval), v7 (NegativeEval) and v8135

(Outstanding and Problematic);136

(ii) views can be defined as unions of queries; in our example, Problematic137

workers are the ones that either have been penalized or have received no positive138

variables appearing in negative literals that do not appear in a positive one. This is done for

the sake of readability since it is well-known that there is an equivalent safe rewriting for such

rules.
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evaluations at all.139

The semantics of this ontology is closer to the way the information is stored140

in the source schema than the one provided by the physical target tables (notice141

how the ontology hides tables Penalized and Warned). Therefore, the mapping142

designer will find it easier to define a mapping from the source schema to the143

target ontology. For instance, s/he could realize that the classification of work-144

ers as Average, Outstanding and Problematic in the ontology corresponds to a145

ranking of workers based on their grades in the source schema. In this way,146

employees with grades consistently above 9 (out of 10) are outstanding, those147

always graded less than 4 are considered to be problematic, and the rest are148

average.149

As is common [3], we use tuple generating dependencies (tgds) and equality-150

generating dependencies (egds) [8] to express the mapping. In our case, the151

translation of source tuples into the Average, Outstanding and Problematic target152

concepts can be expressed by using the following tgds with comparison atoms:153

m0 : 8id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9 ! Average(id, name)
m1 : 8id, yr, gr, sinc,name,maxgr,mingr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr � 9 ! Outstanding(id, name)

m2 : 8id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! Problematic(id, name)
m3 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! PositiveEval(id, yr, sinc)
m4 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr < 5 ! NegativeEval(id, yr)

Intuitively, tgd m0 specifies that, for each pair of tuples in the source tables154

S-WorkerGrades and S-Stats that have the same value for the id attribute and155

have a maxgrade attribute greater than 4 and a mingrade attribute lower than156

9, there should be a worker ranked as average in the ontology. Similarly for m1157

and m2 for Outstanding and Problematic, respectively.158

Mappings m3 and m4 relate the workers’ evaluation data in S-WorkerGrades159

to the instances PositiveEval and NegativeEval, respectively, using the grade to160

discriminate between the two subclasses of Evaluation.161

Notice that mappings m0,m1 and m2 do not completely encode the seman-162

tics of the desired transformation. In fact, an important part of the mapping163

process is to generate solutions, i.e. instances of the target that comply with the164

integrity constraints imposed over the database. To do this, it is necessary to165

incorporate the specification of these constraints into the mapping itself. This166

can be done easily using additional dependencies. The mapping literature [2]167

usually treats target dependencies in a di↵erent way. In fact, it is custom-168

ary to embed foreign-key constraints into the source-to-target tgds that express169

the mapping. In contrast, egds require special care [6], and therefore must be170

expressed as separate dependencies.171
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Mapping e0 below is an example of an egd used to express the key constraint172

on Worker: it states that whenever two workers have the same id, their names173

must also be the same:174

e0 : 8id,name1,name2 : Worker(id, name1),Worker(id, name2) ! name1 = name2

175

We want to emphasize the benefits of designing the mappings wrt the richer176

target ontology rather than wrt to the base tables. By taking advantage of the177

semantics of the ontology, the mapping designer does not need to care about178

the physical structure of the data in the target schema. As an example, s/he179

does not need to explicitly state in m0, m1, m2 that average, outstanding, and180

problematic workers are also workers, nor that a positive or negative evaluation181

is also an evaluation in m3, m4. The class-subclass relationships are encoded182

within the ontology schema, and we expect their semantics to carry on into the183

mappings.184

However, this increased flexibility comes at a cost. For example, mappings185

m0 to m4 above are not directly executable, since they refer to virtual entities186

— the constructs in the ontology schema — and not to the actual tables in the187

target. We therefore need to devise a way to translate such a source-to-ontology188

mapping into a classical source-to-target mapping, in order to execute the latter189

and move data from the source to the target database.190

The main technical problem addressed in this paper can therefore be stated191

as follows: given a source-to-ontology mapping, a target ontology schema, and192

the views defining this ontology schema in terms of the underlying database193

tables, we want to obtain the corresponding executable source-to-target map-194

ping.195

3. Preliminary Notions196

In this paper, we deal with mapping scenarios that involve two levels: the197

ontology and the database level. This section first introduces the basic concepts198

of these two levels, and then elaborates on the language of dependencies used199

to express mapping scenarios.200

3.1. Databases and Ontologies201

Databases We focus on the relational setting. A schema S is a set of relation202

symbols {R1, . . . , Rn}, each with an associated relation schema R(A1, . . . , Am).203

Given schemas S,T with disjoint relations symbols, hS,Ti denotes the schema204

corresponding to the union of S and T. An instance of a schema is a set of205

tuples in the form R(v1, . . . , vm), where each vi denotes either a constant, typi-206

cally denoted by a, b, c, . . ., or a labeled null, denoted by N1, N2, . . .. Constants207

and labeled nulls form two disjoint sets. Given instances I and J , a homomor-208

phism h : I ! J is a mapping from dom(I) to dom(J) such that for every209

c 2 const, h(c) = c, and for all tuples t = R(v1, . . . , vn) in I, it is the case210

that h(t) = R(h(v1), . . . , h(vn)) belongs to J . Homomorphisms immediately211
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extend to formulas, since atoms in formulas can be seen as tuples whose values212

correspond to variables.213

Ontologies In this paper, we focus on ontologies that deal with static aspects.214

In particular, we consider ontologies that consist of a taxonomy of entity types215

(which may have attributes), a taxonomy of relationship types (defined among216

entity types), and a set of integrity constraints (which a↵ect the state of the217

domain). The integrity constraints are expressed by means of dependencies (see218

Section 3.2).219

Views To bridge the gap between the ontology schema and the underlying
database, we assume that a set of GAV views (Global-As-View) is given for each
entity and relationship type, which defines this type in terms of the underlying
database. A view V is a derived relation defined over a schema S. The view
definition for V over S is a non-recursive rule of the form:

v : V (x) ( R1(x1), . . . , Rp(xp),¬Rp+1(xp+1), . . . ,¬Rp+g(xp+g)

with p � 1 and g � 0, where the variables in x are taken from x1, . . . , xp.220

Atoms in a view definition can be either base or derived. An atom V (x) is a221

derived atom if V denotes a view; otherwise it is a base atom. A view definition222

specifies how the extension of the view is computed from a given instance of223

the underlying schema, that is, given a homomorphism h from the definition of224

V to an instance I, h(V (x)) belongs to the extension of V i↵ h(R1(x)) ^ . . . ^225

¬h(Rp+g(xp+g)) is true on I.226

3.2. Dependencies and Mapping Scenarios227

Dependencies A tuple-generating dependency (tgd) over S is a formula of the228

form 8x, z
�
�(x, z) ! 9 y (x, y)

�
, where �(x, z) and  (x, y) are conjunctions of229

atoms. We allow two kinds of atoms in the premise: (a) relational atoms over230

S; (b) comparison atoms of the form v op c, where op is a comparison operator231

(=, >,<,�,), v is a variable that also appears as part of a relational atom,232

and c is a constant. Only relational atoms are allowed in the conclusion.233

An equality generating dependency (egd) over S is a formula of the form234

8x(�(x) ! xi = xj) where �(x) is a conjunction of relational atoms over S235

and comparison atoms as defined above, and xi and xj occur in x. A denial236

constraint is a special form of egd of the form 8x
�
�(x) ! ?), in which the237

conclusion only contains the ? atom, which cannot be made true. Tgds and238

egds [8] form the language of embedded dependencies.239

Mapping Scenarios A mapping scenario [3], M = {S,T,⌃ST ,⌃T }, is a240

quadruple consisting of:241

• a source schema S;242

• a target schema T;243

• a set of source-to-target (s-t) tgds ⌃ST , i.e. tgds such that the premise is244

a formula over S and the conclusion a formula over T;245
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• a set ⌃T of target tgds — tgds over T — and target egds — egds over T.246

Given a source instance I, a solution for I under M is a target instance J247

such that I and J satisfy ⌃ST , and J satisfies ⌃T . A solution J for I and M248

is called a universal solution if, for all other solutions J 0 for I and M, there249

is a homomorphism from J to J 0. The chase is a well-known algorithm for250

computing universal solutions [3]. We denote by Sol(M, I) the set of solutions251

for M and I, and by USol(M, I) the set of universal solutions for M and I.252

4. The Ontology-Based Mapping Problem253

The goal of this section is to introduce our mapping problem. Let us first254

assume that an ontology schema is only available for the target database (case255

a). Then, we discuss how things can be extended to handle a source ontology256

as well (case b).257

4.1. Case a: Source-to-Ontology Mappings258

The inputs to our source-to-ontology mapping problem are:259

1. a source relational schema, S, and a target relational schema T;260

2. a target ontology schema, V, defined by means of a set of view definitions,261

⌥TV , over T. View definitions may involve negations over derived atoms,262

as discussed in Section 3;263

3. a set of target constraints, ⌃V , i.e. target egds to encode key constraints264

and functional dependencies over the ontology schema;265

4. finally, a source-to-ontology mapping, ⌃SV , defined as a set of s-t tgds266

over S and V.267

Based on these, our intention is to rewrite the dependencies in ⌃SV [ ⌃V as268

a new set of source-to-target dependencies ⌃ST [ ⌃T , from the source to the269

target database. The process is illustrated in Figure 2a, where solid lines refer270

to inputs, and dashed lines to outputs produced by the rewriting.271

4.2. Case b: Ontology-to-Ontology Mappings272

The following sections are devoted to the development of the mapping rewrit-273

ing algorithm. Before we turn to that, let us discuss what happens when also274

an ontology schema over the source is given, as shown in 2b. In this case, we275

assume that in addition to the target-ontology view-definitions, ⌥V , view defi-276

nitions for the source ontology schema, ⌥V 0 , are also given, with the respective277

egds. We also assume that the mapping, ⌃V 0V , is designed between the two278

ontologies.279

It can be seen that this case can be reduced to the one above. We can see280

the problem as the composition of two steps:281
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Figure 2: Ontology Mapping Scenarios.

(i) applying the source view definitions in ⌥V 0 to the source instance, I, to282

materialize the extent of the source ontology, ⌥V 0(I);283

(b) consider this materialized instance as a new source database, and solve the284

source-to-ontology mapping problem as in Figure 2a.285

In light of this, in the following we concentrate on the scenario in Figure 2a286

only.287

5. Disjunctive Embedded Dependencies288

Mappings with views have been addressed in previous papers (e.g. [5, 4]).289

As is obvious, the complexity of the problem depends quite a lot on the ex-290

pressibility of the view-definition language allowed in our scenarios. Previous291

works have made almost exclusive reference to views defined using the language292

of conjunctive queries. In this case, the rewriting consists of an application of293

the standard view unfolding algorithm [13].294

To give an example, consider mapping m3 (from now on, we omit universal295

quantifiers), and recall the definition of views PositiveEval, and Evaluation:296

m3 : S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! PositiveEval(id, yr, sinc)
v2 : Evaluation(employeeId, year) ( Evaluations(employeeId, year)
v3 : PositiveEval(employeeId, year, sinc) ( Evaluation(employeeId, year),

PositiveEvals(employeeId, year, sinc)

Standard view unfolding replaces the view symbols of tgd conclusions by their297

definitions, while appropriately renaming the variables. In our example, this298

yields the following s-t tgd:299

m0
3 : S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! Evaluations(id, yr),

PositiveEvals(id, year, sinc)

However, the main purpose of having a semantic description of the target300

database stands in its richer nature with respect to the power of the pure301
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selection-projection-join paradigm. In this paper we allow for a more expressive302

language than conjunctive queries, i.e, non-recursive Datalog with negation.303

It is known [14] that the language of embedded dependencies (tgds and egds)304

is closed wrt unfolding conjunctive views, i.e. the result of unfolding a set of305

conjunctive view definitions within a set of tgds and egds is still a set of tgds306

and egds. A natural question is if this is also true for our more expressive view-307

definition language. Unfortunately, we can provide a negative answer to this308

question.309

Theorem 1. There exists a source-to-ontology mapping scenario MSV = {S,310

V, ⌃SV ,⌃V } with view definition ⌥V , and an instance I, such that MSV and311

I admit a universal solution JV 2 USol(MSV , I), and there exists no source-to-312

target scenario MST composed of embedded dependencies (tgds and egds) such313

that MST and I admit a solution JT , and JV = ⌥(JT ).314

The proof of the theorem is in Appendix A. Regardless of the technical de-315

tails, it is quite easy to get the intuition that stands behind this negative result:316

in essence, we are doomed to fail in some cases because of the limited expres-317

sive power of our mapping language. In essence, we are trying to capture the318

semantics of a view-definition language that allows for non-recursive negation,319

by means of a mapping language based on embedded dependencies, that does320

not use negation.321

This justifies two important choices wrt the algorithm:322

(i) To start, we follow a best-e↵ort approach. We design an algorithm that is323

sound, i.e. given MSV , it generates a rewritten source-to-target scenario MST324

such that, whenever MST admits a universal solution JT , then also the original325

source-to-ontology MSV admits universal solutions on I, and it is the case that326

⌥V (JT ) is a solution for MSV and I. In other terms, we give up completeness,327

and say nothing about the cases in which MST fails. This notion will be made328

more precise in the following.329

(ii) To better simulate the e↵ects of negation in view definitions, we choose a330

very expressive mapping language, i.e. we extend the language of embedded331

dependencies (tgds and egds), by introducing disjunctions in conclusions. This332

gives us the more expressive mapping language of disjunctive embedded depen-333

dencies (deds), that we use as a target language for our rewritings, formalized334

as follows.335

Definition 1 (Ded). A disjunctive embedded dependency (ded) is a first-order
formula of the form:

8x, z
�
'(x, z) !

n_

l=1

(9 yl l(x, yl))
�

where '(x, z) and each  l(x, yl) are conjunctions of atoms. Atoms in each336

conjunct  l(x, yl) may be either relational atoms, or comparison atoms of the337

form (xi = xj), or the special unsatisfiable atom ?.338

11



A ded is called a source-to-target ded if '(x, z) is a conjunction of relational339

atoms over S, and each  l(x, yl) is a conjunction of relational atoms over T. It340

is called a target ded if '(x, z) is a conjunction of relational atoms over T, and341

each  l(x, yl) is either a comparison atom, or a conjunction of relational atoms342

over T, or the unsatisfiable atom.343

In essence, the conclusion of a ded is the disjunction of various conjunctions,
as in the following examples, where Si are source symbols, and Tj are target
symbols:

md1 : 8x : S1(x) ! (9y : T1(x, y)) _ T2(x, x)
md2 : 8x, y : S2(x, y) ! T3(x, y) _ (9z : T3(x, z),T4(z, y))
md3 : 8x, y, z, y0, z0 : T1(x, y, z),T1(x, y0, z0) ! (y = y0) _ (z = z0)
md4 : 8x, y, z, y0, z0 : T1(x, y, z) ! (y = z) _ T3(x, y)
md5 : 8x, y, z, y0, z0 : T1(x, y, z),T1(x, y0, z0) ! ?

Here, md1 and md2 are source-to-target deds, while md3 , md4 and md5 are target344

deds. The semantics is easily explained: md1 is satisfied by instances I, J of S,345

T if, whenever there exists in I a tuple of the form S1(c), where c is a constant,346

then J either contains a tuple of the form T1(c, v) (where v is a constant or a347

labeled null), or it contains a tuple of the form T2(c, c). Similarly for md2 .348

Based on this, it is easy to see that ded md3 states that table T1 is such349

that, for any pair of tuples, whenever the first attributes are equal, then either350

the second ones, or the third ones must be equal too. In this respect, this is a351

generalization of an egd. It is also interesting to note that deds may freely mix352

equalities and relational atoms in their conclusions, as happens with md4 .353

Ded md5 states what is called a denial constraint : since its conclusion only354

contains the unsatisfiable atom, then it will fail whenever the premise is satisfied,355

since there is no way to satisfy the constraint. It is a way to state failure con-356

ditions for the mappings, i.e. configurations of the source and target instances357

for which there is no solution.358

Clearly the definition of deds contains, for l = 1, that of the classical em-359

bedded dependencies. A mapping scenario with deds is a quadruple Mded =360

{S,T,⌃ST ,⌃T } where ⌃ST is a set of source-to-target deds and ⌃T is a set of361

target deds.362

There are a few important di↵erences between ordinary mapping scenarios
with embedded dependencies, and their counterpart with deds. Recall from
Section 3 that the semantics of ordinary mapping scenarios is centered around
the notion of a universal solution. Given a scenario Memb and a source instance
I, in most cases there are countably many solutions, i.e. target instances that
satisfy the dependencies. Consider for example:

m1 : 8x : S1(x) ! 9y : T1(x, y)

Given I = {S1(a)}, all of the following are solutions for m1 (in the following,
a, b, c, . . . are constants and Ni denotes a labeled null, i.e. a null value with an
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explicit label introduced to satisfy existential quantifiers):

J1 = {T1(a,N)} J3 = {T1(a, b),T1(a,N)}
J2 = {T1(a, b)} J4 = {T1(a, b),T2(b, c)}

A solution for Memb and I is called a universal solution if it has a homomor-363

phism in every other solution for Memb and I. Universal solutions are consid-364

ered as “good” solutions, preferable to non universal ones. The intuition behind365

the formal definition is that a universal solution does not introduce any unnec-366

essary and unjustified information within the target. In fact, any unjustified367

tuples would not be mappable via homomorphisms in every other solution. In368

our example, only J1 is universal; every other solution in the example contains369

extra information that is not strictly necessary to enforce the tgd, either in the370

form of constants in place of nulls, or extra tuples.371

As soon as we introduce deds, the theoretical framework changes quite sig-372

nificantly. Deutsch and others have shown [15] that the definition of a universal373

solution is no longer su�cient for ded-based scenarios, and that the more ap-374

propriate notion of universal model set is needed.375

Definition 2 (Universal Model Set). Given an instance I under a scenario376

Mded, a universal model set is a set of target instances J = {J0, . . . , Jn} such377

that:378

• every Ji 2 J is a solution form Mded;379

• for every other solution J 0, there exists a Ji 2 J such that there is a380

homomorphism from Ji to J 0.381

It is not di�cult to understand why a set of di↵erent solutions is needed.382

Consider our ded md1 above. On source instance I = {S1(a)}, it has two com-383

pletely di↵erent solutions, namely J1 = {T1(a,N)}, J2 = {T2(a, a)}. Neither is384

universal in the ordinary sense, since they cannot be mapped into one another;385

on the contrary, both contribute to describe the “good” ways to satisfy md1 .386

In the following, we introduce our rewriting algorithm with deds. Before387

turning to it, it is important to emphasize another crucial di↵erence wrt stan-388

dard embedded dependency in terms of the complexity of generating solutions.389

The chase [3] is a well known, polynomial-time procedure to generate universal390

solutions for standard tgds and egds. It is possible, as we discuss in the following391

sections, to extend it to generate universal model sets for deds, but at a price392

in terms of complexity. Universal model sets, in fact, are usually of exponential393

size wrt to the size of the source instance, I.394

To see this, consider a simple example composed of ded md1 above:

md1 : 8x : S1(x) ! (9y : T1(x, y)) _ T2(x, x)

Given I = {S1(a), S1(b), S1(c)}, the universal model set for the ded contains
eight di↵erent solutions, each one corresponding to one way to choose among
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the branches in the conclusions of md1 for a tuple in S1:

J = { {T1(a,N1),T1(b,N2),T1(c,N3)}, {T1(a,N1),T1(b,N2),T2(c, c)}
{T1(a,N1),T2(b, b),T1(c,N3)}, {T1(a,N1),T2(b, b),T2(c, c)}
{T2(a, a),T1(b,N2),T1(c,N3)}, {T2(a, a),T1(b,N2),T2(c, c)}
{T2(a, a),T2(b, b),T1(c,N3)}, {T2(a, a),T2(b, b),T2(c, c)} }

In the general case, for source instances of size n we may have universal model395

sets of O(kn), where k depends on the number of disjunctions in ded conclusions.396

Therefore, one of the technical challenges posed by this problem is to tame this397

exponential complexity.398

6. Correctness399

We need to introduce a few preliminary notions. A crucial requirement400

about our rewriting algorithm is that the result of executing the source-to-target401

mapping is “the same” as the one that we would obtain if the source-to-ontology402

mapping were to be executed. Intuitively, we mean that a solution produced403

by the source-to-target mapping induces a solution for the source-to-ontology404

mapping when applying the view definitions.405

To be more precise, consider the source-to-ontology mapping scenario: MSV406

= {S, V,⌃SV ,⌃V }. For each source instance I, assume there exists a solution407

JV for I and MSV that complies with the view definitions in ⌃V (i.e. there408

exists an instance JT of schema T such that JV = ⌥V (JT )). Figure 3a and 3b409

show one example of I and JV .410

a. Source instance I
S-WorkerGrades(1 , 2012 , 7 , 100 ) S-Stats(1 , John, 7 , 8 )
S-WorkerGrades(1 , 2013 , 8 , 200 )

b. Ontology instance JT 0

Average(1, John) Worker(1, John)
Evaluation(1, 2012) Evaluation(1, 2013)
PositiveEval(1, 2012, 100) PositiveEval(1, 2013, 200)
Year(2012) Year(2013)

c. Target instance JT

Employees(1 , John) Evaluations(1 , 2012 ) Evaluations(1 , 2013 )
PositiveEvals(1 , 2012 , 100 ) PositiveEvals(1 , 2013 , 200 ) Warned(1 , N1)

Figure 3: Source, ontology, and target instances.

We compute our rewriting, and obtain a new source-to-target scenario:411

MST = {S,T, ⌃ST ,⌃T }, where we assume that ⌃ST and ⌃T are sets of deds.412

We may run MST on I to obtain solutions under the form of target instances.413

To any target instance JT of this kind, we may apply the view definitions in ⌥V414

in order to obtain an instance of V, JV = ⌥V (JT ).415
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Our first intuition about the correctness of the algorithm is that the rewritten416

source-to-target scenario, MST , should generate solutions, i.e. target instances417

that are guaranteed to generate views that, in turn, are solutions for the original418

source-to-ontology scenario, MSV . More precisely:419

Definition 3 (Correct Rewriting). Given a source-to-ontology scenarioMSV420

= {S, V,⌃SV ,⌃V } with view definitions ⌥V , we say that the source-to-target421

rewritten scenario MST = {S,T, ⌃ST ,⌃T } with deds is a correct rewriting of422

MSV if, for each instance I of the source database, whenever a universal model423

set J = {J0, . . . , Jn} for I and MST exists, then for each Ji 2 J, ⌥V (Ji) is also424

a solution for I and the original scenario MSV .425

The meaning of this definition is illustrated in Figure 4.426

view 
definitions

ΥV

I

MSV : 6SV  U 6V 

source
instance

source-to-
ontology mapping

source-to-target 
mapping

Sol(MSV, I)
solutions

MST : 6ST  U 6T

J = {J1, J2, … , Jk}
universal model set

Figure 4: Correctness Diagram.

Figure 3c reports a correct target solution for I (N1 is a labeled null). Note427

that ⌃V (JT ) is exactly the ontology instance JT 0 in Figure 3b. A di↵erent font428

is used for entity and relationship types in the ontology instance.429

7. The Rewriting Algorithm430

In the following, we always assume that the input mapping captures all431

of the semantics from the ontology level. This means that all referential con-432

straints implicit in the ontology (i.e. ontology tgds) have to be made explicit433

and properly encoded into the mapping dependencies [16]. In particular, when-434

ever a relational atom V (x̄) appears in the conclusion of a mapping dependency435

m and there is an ontology tgd e : V (x̄) !  (x̄), we replace V (x̄) by  (x̄)436

in m. We restrict the textual integrity constraints to be key constraints and437

functional dependencies, and assume they are expressed as logical dependencies438

(i.e. egds) over the views (an automatic OCL-to-logic translation is proposed439

in [17]). Figure 5 shows the complete set of mapping dependencies ⌃SV for our440

running example.441

Our algorithm generates:442

(a) a new set of source-to-target tgds, ⌃ST ;443
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m0 : 8id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9 ! Average(id, name),Worker(id, name)
m1 : 8id, yr, gr, sinc,name,maxgr,mingr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr � 9 ! Outstanding(id, name),Worker(id, name)

m2 : 8id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! Problematic(id, name),Worker(id, name)
m3 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! 9name : PositiveEval(id, yr, sinc),
Evaluation(id, yr),Worker(id, name),Year(yr)

m4 : 8id, yr, gr, sinc :
S-WorkerGrades(id, yr, gr, sinc), gr < 5 ! 9name : NegativeEval(id, yr),

Evaluation(id, yr),Worker(id, name),Year(yr)

Figure 5: Source-to-ontology mapping.

(b) a set of target dependencies, ⌃T . This latter set will contain:444

(b1) a set of target deds that model egds over the ontology schema. How-445

ever, it may also incorporate other constraints that were not in the446

input. More precisely:447

(b2) a set of target deds, i.e. deds defined over the symbols in the target448

only;449

(b3) a set of denial constraints.450

Denial constraints are crucial in our approach. Recall from Section 3 that a451

denial constraint is a dependency of the form 8x
�
'(x) ! ?). We use these to452

express the fact that some tuple configurations in the target are not compatible453

with the view definitions, and therefore should cause a failure in the mapping454

process. In other words, we are expressing part of the semantics of negations455

that comes with view definitions, in the form of failures of the data exchange456

process. This prevents our algorithm from being complete, as stated in Theorem457

1, but guarantees that it is sound.458

Given our input source-to-ontology mapping scenario, MSV = {S, V,⌃SV ,459

⌃V }, our approach is to progressively rewrite dependencies in ⌃SV and ⌃V in460

order to remove view symbols, and replace them with target relations. To do461

this, we apply a number of transformations that guarantee that the rewritten462

mapping yields equivalent results wrt to input one, in the sense discussed in463

Section 4.464

Algorithm 1 reports the pseudocode of our unfolding algorithm UnfoldDe-465

pendencies. To define the algorithm, we use the standard unfolding algorithm466

for (positive) conjunctive views, unfoldView [13], as a building block.467

The main intuition behind the algorithm is easily stated: it works with a set468

of dependencies, called ⌃, initialized as ⌃SV [⌃V , and progressively transforms469
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Algorithm 1 UnfoldDependencies(⌃SV ,⌃V ,⌥V )

⌃ := ⌃SV [ ⌃V

repeat
for all d 2 ⌃ do
// Transformation 1.
if d contains a positive derived atom L then
for all view definition vi of L in ⌥V do
⌃ := ⌃ [ {unfoldView(L, d, vi)}

end for
⌃ := ⌃� {d}

end if
// Transformation 2.
if d is a ded containing a negative derived atom ¬L(x̄i, ȳi) in  j(x̄, ȳj)
then
let TGDk be a new relation symbol
d := �(x̄) ! . . . _ ( j(x̄, ȳj)� {¬L(x̄i, ȳi)}) [ {TGDk(x̄i, ȳi)} _ . . .
d1 := TGDk(x̄i, ȳi) ^ L(x̄i, ȳi) ! ?
⌃ := ⌃ [ {d1}

end if
// Transformation 3.
if d is a denial �(x̄) ! ? containing a negative atom ¬L(x̄i) in �(x̄)
then
d := �(x̄)� {¬L(x̄i)} ! L(x̄i)

end if
// Transformation 4.
if d is a ded containing a negative atom ¬L(x̄i) in �(x̄) then
d := �(x̄)� {¬L(x̄i)} !  1(x̄, ȳ1) _ . . . _  n(x̄, ȳn) _ L(x̄i)

end if
end for

until fixpoint
⌃ST := the set of s-t deds in ⌃
⌃T := the set of target deds and denials in ⌃
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this set until a fixpoint is reached. Note that it always terminates, since we470

assume the view definitions are not recursive. The algorithm employs four main471

transformations in order to remove derived atoms from the dependencies of ⌃:472

Transformation 1: First, whenever a positive derived atom L(x̄i) is found473

in a dependency d, the algorithm uses the standard view unfolding algorithm474

as a building block in order to replace L(x̄i) by its view definitions. The al-475

ternative definitions that may exist for a single view are handled in parallel.476

Therefore, the unfolding algorithm replaces dependency d with a set of depen-477

dencies {d01, d02, . . .}, where each d0i is like d after replacing L(x̄i) by one of its478

definitions. To see an example, consider tgds m0 and m2, and views Average479

and Problematic:480

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9 ! Average(id, name),Worker(id, name)

m2 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr  4 ! Problematic(id, name),Worker(id, name)

v5 : Problematic(id, name) ( Worker(id, name),Penalized(id, year)
v6 : Problematic(id, name) ( Worker(id, name),¬PositiveEval(id, year, sinc)
v8 : Average(id, name) ( Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)
481

Standard unfolding with v8 changes m0 as follows:482

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9 ! Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)
483

Standard unfolding with v5 and v6, respectively, changes m2 as follows:484

m2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr  4 ! 9year0 : Worker(id, name),Penalized(id, year0)

m2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr  4 ! 9year0, sinc0 : Worker(id, name),¬PositiveEval(id, year0, sinc0)

485

Note that a single unfolding step might not be enough to fully remove all486

positive derived atoms, so successive applications of this first transformation487

may be required. In the example above, unfolding m0, m2a and m2b with view488

Worker yields:489

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9 ! Employees(id,name),¬Outstanding(id, name),

¬Problematic(id, name)
m2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! 9year0 : Employees(id,name),Penalized(id, year0)
m2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! 9year0, sinc0 : Employees(id,name),¬PositiveEval(id, year0, sinc0)
490

Transformation 2: The second, and most important transformation, han-491

dles negated view atoms ¬L(x̄i, ȳi) in tgd conclusions, e.g. Outstanding and492

18



Problematic in m0 and PositiveEval in m2b; we cannot directly unfold a negated493

derived atom of the conclusion in order to have an equivalent tgd; we need a494

way to express more appropriately the intended semantics, i.e, the fact that495

the tgd should be fired only if it is not possible to satisfy L(x̄i, ȳi); to express496

this, we replace the negated atom from the conclusion (let us focus on m0 and497

Outstanding for now) with a new relation symbol TGDi(x̄i, ȳi)498

m1
0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9 ! Employees(id,name),TGD0(id,name),
¬Problematic(id, name)

499

and introduce a new dependency d1, which states that d should fire only if it is500

not possible to satisfy L(x̄i, ȳi), by means of a denial constraint:501

m2
0 : TGD0(id,name),Outstanding(id, name) ! ?

502

Note that since a tgd may have more than one negated atom in the conclu-503

sion, the second transformation may have to be applied multiple times. The full504

result of the transformation when successively applied to m0, m2a and m2b is505

the following:506

m1
0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9 ! Employees(id,name),TGD0(id,name)
m2

0 : TGD0(id,name),Outstanding(id, name) ! ?
m3

0 : TGD0(id,name),Problematic(id, name) ! ?
m1

2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr  4 ! 9year0 : Employees(id,name),Penalized(id, year0)

m1
2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! 9year0, sinc0 : Employees(id,name),TGD1(id, year
0, sinc0)

m2
2b : TGD1(id, year, sinc),PositiveEval(id, year, sinc) ! ?

507

Transformation 3: The third transformation consists of moving negated508

atoms of the form ¬L(x̄i) in the premise of a denial constraint d to its conclusion,509

in order to remove the negation. To see an example of this, we advance in the510

rewriting of m2
0; transformation 1 needs to be applied again in order to unfold511

the Outstanding atom:512

m2
0 : TGD0(id,name),Worker(id, name),¬NegativeEval(id, year),

¬Warned(id, date) ! ?
513

However, the negative atoms may be moved easily to the conclusion, to yield514

a target dtgd:515

m2
0 : TGD0(id,name),Worker(id, name) ! 9year, date : NegativeEval(id, year)

_Warned(id, date)

516

To complete the rewriting of m2
0, the unfolding algorithm would keep on517

applying transformations 1 and 2.518
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Transformation 4: The fourth and final transformation is a variation of519

transformation 3 that is applied to deds. The only di↵erence is that the atoms520

being moved from the premise are disjuncted to the current contents of the521

conclusion instead of replacing it.522

The complete rewriting of the running example is reported in Appendix B.523

7.1. Correctness Result524

We are now ready to state our main result about the correctness of the rewrit-525

ing algorithm. Before we do that, we should make more precise the schemas526

that are involved in the translation. We start with a target schema, T, but527

during the rewriting we enrich it with new relation symbols, TGD0, TGD1, . . .,528

in order to be able to correctly specify denials. We call the resulting schema T0.529

Theorem 2 (Correctness). Given a source-to-ontology scenario MSV = {S,530

V, ⌃SV ,⌃V } with non-recursive view definitions ⌥V , then:531

(a) algorithm UnfoldDependencies always terminates;532

(b) when it does not fail, it computes a correct source-to-target rewritten scenario533

with deds MST 0 = {S,T0, ⌃ST 0 ,⌃T 0}, where T0 is obtained from T by enriching534

it with a finite set of new relation symbols TGD0, TGD1, . . ..535

8. A Restricted Case536

Theorem 2 shows that Algorithm 1 is correct. However, we also know that it537

may incur significant scalability issues, that we discuss in Section 9. This leaves538

us with a crucial question: is it possible to find a view-definition language539

that is at the same time more expressive than plain conjunctive queries, and540

computes correct rewritings in terms of embedded dependencies, i.e. tgds, egds,541

and standard denial constraints only?542

In this section, we show that such a view-definition language exists, and cor-543

responds to non-recursive Datalog with a limited negation. To be more precise,544

we limit negation in such a way that: (i) we disallow some pathological patterns545

within view definitions with negations; (ii) keys and functional dependencies —546

i.e. egds — are defined only for views whose definition does not depend on547

negated atoms.548

Definition 4 (Negation-Safe View Language). Given a set of non-recursive549

view definitions, ⌥V , we say that these are negation-safe if the following occur:550

1. there is no view Vi that negatively depends on a view Vj that in turn551

negatively depends on two negated atoms;552

2. keys and functional dependencies are defined only for views whose defini-553

tions do not contain negated atoms.554

In essence, item 1 above disallows very specific view-definition patterns, like555

the one below:556
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v1 : V1(x, y) ( T1(x, y),¬V2(x, y)
v2 : V2(x, y) ( T2(x, y),¬V3(x, y),¬V4(x, y)
...

Item 1 prohibits the definition of keys on views V1,V2 that contain negated557

views in their definitions. We can show that the condition in Definition 4 is a558

su�cient condition that guarantees that Algorithm 1 returns a set of embedded559

dependencies, and does not generate deds.560

Theorem 3 (Restriction). Given a source-to-ontology scenario MSV = {S,561

V, ⌃SV ,⌃V } with view definition ⌥V , assume ⌥V conforms to the restrictions562

in Definition 4. Call Memb
ST 0 = {S,T0, ⌃ST 0 ,⌃T 0}, the source-to-target rewritten563

scenario computed by algorithm UnfoldDependencies, where T0 is obtained from564

T by enriching it with a finite set of new relation symbols TGD0, TGD1, . . ..565

Then Memb
ST 0 only contains embedded dependencies (i.e. tgds, egds, and denial566

constraints).567

Theorem 3 guarantees that, under the conditions of Definition 4, the rewrit-568

ten source-to-target mapping is a set of standard tgds, egds, and denial con-569

straints. This has important implications on the scalability of the data-exchange570

process, as we discuss in the next section.571

9. The Chase Engine572

Once we have computed our source-to-target mapping, we can concretely573

attempt the actual data exchange, and move data from the source database to574

the target. The standard way to do this corresponds to running the well known575

chase [3] procedure, i.e. an operational semantics for embedded dependencies576

that we discuss in the following.577

9.1. The Chase578

Given a vector of variables v, an assignment for v is a mapping a : v !579

const[nulls that associates with each universal variable a constant in const,580

and with each existential variable either a constant or a labeled null. Given a581

formula �(x) with free variables x, and an instance I , we say that I satisfies582

�(a(x)) if I |= �(a(x)), according to the standard notion of logical entailment.583

Of the many variants of the chase, we consider the naive chase [4]. We first584

introduce the notions of chase steps for tgds, egds, and denial constraints, and585

then the notions of a chase sequence and of a chase result.586

Chase Step for Tgds: Given instances I , J , a tgd �(x) ! 9y( (x, y)) is fired587

for all assignments a such that I |= �(a(x)); to fire the tgd, a is extended to y588

by injectively assigning to each yi 2 y a fresh null, and then adding the facts in589

 (a(x), a(y)) to J . To give an example, consider the following tgd:590

m.Driver(name, plate) ! 9Bdate,CarId : Person(name,BDate,CarId),
Car(CarId, plate)

21



During the chase, the source tuple Driver(Jim, abc123) will generate the two591

target tuples Person(Jim,N1, C1), and Car(C1, abc123), whereN1, C1 are fresh592

labeled nulls.593

Chase Step for Egds: To chase an egd 8x̄ : �(x̄) ! xi = xj over an instance J ,594

for each assignment a such that J |= �(a(x)), if a(xi) 6= a(xj), the chase tries595

to equate the two values. We distinguish two cases: (i) both a(xi) a(xj) are596

constants; in this case, the chase procedure fails, since it attempts to identify597

two di↵erent constants; (ii) at least one of a(xi), a(xj) is a null, say a(xi); in this598

case chasing the egd generates a new instance J 0 obtained from J by replacing599

all occurrences of a(xi) by a(xj). To give an example, consider egd e1:600

e1.Person(name, b, c),Person(name, b’, c’) ! (b = b0) ^ (c = c0)

Assume two tuples have been generated by chasing the tgds, Person (Jim, 1980,601

N4), Person (Jim,N5, N6), chasing the egd has two di↵erent e↵ects: (i) it602

replaces nulls by constants; in our example, it equates N5 to the constant 1980,603

based on the same value for the key attribute, Jim; (ii) on the other side, the604

chase might equate nulls; in our example, it equates N4 to N6, to generate a605

single tuple Person(Jim, 1980, N4).606

Chase Step for Denial Constraints: Denial constraints can only generate fail-607

ures. More specifically, the chase of a denial constraint 8x̄ : �(x̄) ! ? over an608

instance J fails whenever there exists an assignment a such that J |= �(a(x))609

Given a mapping scenario M = (S,T,⌃ST ,⌃T ) and instance I, a chase610

sequence is a sequence of instances J0 = I, J1, . . . , Jk . . ., such that each Ji is611

generated by a chase step with ⌃ST [ ⌃T over Ji�1. The chase of ⌃ST [ ⌃T612

is an instance Jm such that no chase step is applicable. Notice that the chase613

may not terminate [3]. This may happen, for example, in the case of recursive614

target tgds. However, if it terminates, then Jm is a solution for M and I, called615

a canonical solution.616

Any canonical solution is a universal solution [3]. Since all solutions obtained617

by using the naive chase are equal up to the renaming of nulls, we often speak618

of the canonical universal solution.619

9.2. A Greedy Chase620

For the purpose of this work, we adopt the chase engine developed within621

the Llunatic project [10, 18], that is freely available.3 The chase engine was622

developed to guarantee high scalability, even for large sets of embedded depen-623

dencies, and large source instances.624

Therefore, we expect that the data-exchange step can be completed quite625

e�ciently under the conditions of Definition 4 and Theorem 3, i.e. when the626

rewriting algorithm returns a set of standard embedded dependencies.627

Things change quite dramatically when the rewriting algorithm returns a628

set of deds. As we noticed in Section 5, deds have a perverse e↵ect on the629

3
http://db.unibas.it/projects/llunatic
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complexity of computing solutions. Given an instance I, a set of deds may have630

a number of solutions over I that is exponential in the size of I.631

Intuitively, the chase also changes. In fact, the chase of deds generates chase
trees, not chase sequences. Consider the following example, where we are given
two deds:

md1 : 8x : S1(x) ! (9y : T1(x, y)) _ (T2(x, x))
md2 : 8x : S2(x) ! (9y : T3(x, y),T3(y, x)) _ (9z : T4(x, z))

We start chasing these on source instance I = {S1(a), S2(b)}. A first assign-
ment a(x) = ‘a’ such that I |= S1(a(x)) is found, and therefore we may fire
md1 . However, two alternative target instances may be generated, namely
J1 = {T1(a,N1)} and J2 = {T2(a, a)}. These need to be considered in par-
allel, and therefore a chase tree rooted at J0 = ;, i.e. the empty target instance,
with children J1, J2 is built. To proceed with the chase, we need to inspect every
leaf, and apply successive chase steps. This happens with assignment a(x) = ‘b’,
according to which the premise of the second ded is satisfied by I. It is easy
to see that we have two di↵erent ways to satisfy the ded, and therefore we end
up with a chase tree with four leaves, each of which is a solution for this simple
scenario. These, together, form a universal model set for the deds, as follows:

J = { {T1(a,N1),T3(b,N2),T3(N2, b)}, {T2(a, a),T3(b,N2),T3(N2, b)},
{T1(a,N1),T4(b,N4)}, {T2(a, a),T4(b,N5)} }

Recall that there are cases in which the size of the chase tree is exponential in632

the size of the input instance I. As a consequence, there is little hope that we633

are able to perform this parallel chase in a scalable way.634

Recall, however, that our rewriting algorithm follows a best-e↵ort approach.
Along the same lines, we may consider giving up the idea of generating the
entire tree, and rather concentrate on some of its branches, following a greedy
strategy. To be more precise, we notice that the four leaves of the chase tree
correspond each to the canonical solution of one of the following four sets of
(standard) tgds:

⌃11 : m11 : 8x : S1(x) ! (9y : T1(x, y))
m21 : 8x : S2(x) ! (9y : T3(x, y),T3(y, x))

⌃12 : m11 : 8x : S1(x) ! (9y : T1(x, y))
m22 : 8x : S2(x) ! (9z : T4(x, z))

⌃21 : m12 : 8x : S1(x) ! T2(x, x)
m21 : 8x : S2(x) ! (9y : T3(x, y),T3(y, x))

⌃22 : m12 : 8x : S1(x) ! T2(x, x)
m22 : 8x : S2(x) ! (9z : T4(x, z))

For example, ⌃11 generates those solutions that were generated by the chase of635

md1 ,md2 along those branches of the chase tree in which the first conjunct of636

both deds was always chosen. Similarly for the others.637
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We call these the greedy scenarios associated with a mapping scenario with638

deds. Greedy scenarios do not generate all of the canonical solutions associated639

with a mapping scenario with ded. In fact, they are not able to capture the640

chase strategies in which the same ded is fired according to the first conjunct641

at some step, and according to another conjunct at a following step. However,642

their canonical solutions can be computed in a scalable way.643

This justifies our chase strategy with deds:644

(i) given a mapping scenario Mded with a set of deds ⌃ded, we generate the as-645

sociated greedy scenarios, Memb
0 ,Memb

1 , . . . ,Memb
n ; each is obtained by picking646

a di↵erent combination of the conjuncts that are present in ded conclusions;647

(ii) given an instance I, we start chasing the greedy scenarios, one by one, on648

I; as soon as we get a canonical solution Ji for greedy scenario Memb
i and I, we649

return Ji and stop;650

(iii) if every greedy scenario fails on I, we fail and return no solution.651

In the following section, we study the scalability of this approach.652

10. Experiments653

We implemented a prototype of our rewriting algorithm in Java. In order654

to execute the mappings, we used the free and highly scalable chase engine655

Llunatic [18]. We performed our experiments on an Intel core i7 machine656

with a 2.6 GHz processor, 8 GB of RAM, and running MacOSX. We used657

PostgreSQL 9.2.1 (x64 version) as the DBMS.658

Scenarios We used three di↵erent datasets from which we derived a number659

of di↵erent scenarios:660

(a) Workers is obtained by applying the unfolding algorithm to the source-661

to-ontology mapping scenario described in the Appendix B. This is a ded-based662

scenario with 3 source and 15 target tables. It contains 23 deds that generate663

20 di↵erent greedy scenarios.664

(b) Recall that scenarios with deds are chased by successively chasing their665

greedy versions. Since we are also interested in studying how each of these666

greedy scenarios (without deds) impacts performance, in our tests we also667

consider the first greedy scenario generated for Workers, and denote it by668

Workers-Greedy-1. This has 10 st-tgds, 4 target tgds, 3 target egds, and 7669

denial constraints.670

(c) Employees is a traditional schema mapping scenario based on the example671

proposed in [11]. It contains 2 source and 10 target tables, 9 st-tgds, 5 target672

tgds, 2 target egds, and 2 denial constraints.673

(d) To study the impact of egds on the rewriting algorithm and on the chase, we674

also consider an egd-free version of Employees, called Employees No-Egd.675

(e) Finally, we want to test the scalability of the rewriting algorithm. For this676

purpose, we take a fully synthetic dataset, called Synthetic. Based on this,677
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we generated seven di↵erent scenarios, with a number of dependencies ranging678

from 50 to 30K dependencies.679

E↵ectiveness To measure the e↵ectiveness of our approach, we compared the680

size of the source-to-ontology mapping that users need to specify for the various681

scenarios, to the size of the actual source-to-target scenario generated by our682

rewriting. As a measure of the size of a scenario, we took the number of nodes683

and edges of the dependency graph [3], i.e. the graph in which each atom of a684

dependency is a node, and there is an edge from node n1 to node n2 whenever the685

corresponding atoms share a variable. Intuitively, the higher the complexity of686

this graph, the more complicated it is to express the mapping. Figure 6a reports687

the results for 5 scenarios. In all scenarios there was a considerable increase in688

the size of the dependency graph (up to 70%). This is a clear indication that in689

many cases our approach is more e↵ective with respect to manually developing690

the source-to-target mapping.691

Scalability of the Rewriting Algorithm The second set of experiments tests692

the scalability of our unfolding algorithm on mapping scenarios of a large size.693

Figure 6b summarizes results of these experiments on scenarios of increasing694

size. All source-to-ontology tgds in these scenarios have two source relations695

in the premise and two views in the conclusion. Each view definition has two696

positive target relational symbols and (if the view has negation) two negated697

view symbols. For each mapping scenario, 20% of the tgds have no negated698

atoms, the next 20% have 1 level of negation (i.e. negated atoms that do not699

depend in turn on other negations), the next 20% have 2 levels of negation, and700

so on, up to 4 levels of negations. The number of source relations in the mapping701

scenarios ranges from 10k to 60k, the number of view definitions ranges from702

238k to 1428k, and the number of target relations ranges from 228k to 1368k.703

The reported times are the running times of the unfolding algorithm running704

in main memory, and do not include disk read and write times. The rewriting705

algorithm scales nicely to large scenarios.706

Scalability of the Chase Our final goal is to study the scalability of the707

chase engine, i.e. how expensive it is to execute the source-to-target rewritten708

mapping. To do this, we first study the performance of the chase engine on709

schema mapping scenarios with no deds. This is important, since previous710

research [5, 19, 6] have shown that some of the existing chase engines hardly711

scale to large datasets. Figure 6c and 6d report the time needed to compute a712

solution for four of our scenarios. As expected, scenarios with no egds required713

lower computing times. However, in the case of egds the chase engine also scaled714

nicely to databases of 1 million tuples.715

To test scenarios with deds, we developed the greedy-chase algorithm de-716

scribed in Section 9.2 on top of Llunatic. Recall that, given a mapping scenario717

with deds, we generate a set of greedy scenarios with embedded dependencies718

only. The first experiment in this context was to test how many of the 20 greedy719

scenarios associated to the Workers scenario do return a solution.720

We first generated four di↵erent random source instances and in Figure 6e we721

report the results. The greedy algorithm generated a solution in all of the four722
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(a) Effectiveness! (b) Scalability of the rewriting algorithm!

(c) Scalability of the chase algorithm! (d) Scalability of the chase for EGDs!
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cases. Then, we studied the possible failure conditions, and manually crafted723

an instance with a high probability of triggering the denial constraints. With724

this fifth source instance, all of the 20 greedy scenarios failed. Notice that a725

solution still exists. However, this is not captured by the combinations of atoms726

in greedy scenarios, and would require the generation of the entire chase tree to727

be found.728

Finally in Figure 6f we report scalability results for the greedy chase algo-729

rithm. For each execution we also report the number of greedy scenarios that730

the chase engine needed to run in order to reach a solution. As can be seen, the731

chase scales nicely, even with databases of 1 million of tuples. Spikes in com-732

puting times are due to the need to execute fewer scenarios before a solution is733

found. To the best of our knowledge, this is the first scalability result for the734

chase of disjunctive embedded dependencies.735

11. Related Work736

The standard view unfolding algorithm [13] has been used extensively in data737

integration as a tool for query answering. In such a setting, users pose queries738

over a set of heterogeneous sources through a single global schema, which pro-739

vides a uniform view of all the sources. Mappings between the sources and the740

global schema are used to rewrite the users’ queries in terms of the sources. One741

way to define these mappings is the so-called global-as-view approach (GAV),742

in which the global schema is defined as a view over the sources. With this kind743

of mapping, answering a query posed on the global schema usually reduces to744

unfolding the view definitions [7] (unless integrity constraints are present in the745

global schema, which makes answering harder [14]).746

Another similar problem is that of accessing data through ontologies, in747

which users pose queries on an ontology that is defined on top of a set of748

databases; the ontology plays the role of global schema, and the databases749

play the role of data sources [20, 21]. The problem we address in this paper,750

however, is not about using view unfolding to answer queries, but to copy data751

into a target. As we have discussed in Section 7, standard view unfolding suf-752

fices only when the views that define the target conceptual schema in terms753

of the underlying database are plain conjunctive queries. In the presence of754

negation, copying data into the target gets more complicated, as negated atoms755

in mapping conclusions introduce new integrity constraints that standard view756

unfolding does not handle (intuitively, negated atoms must be kept false during757

all the process of copying data into the target).758

A problem that relates to our use of view unfolding in mappings is that of759

mapping composition [22, 23]. Composing a mapping between schemas A and760

B with a mapping between schemas B and C produces a new mapping between761

A and C. In a sense, our application of view unfolding to the conclusion of a762

mapping can be seen as a kind of mapping composition; one in which the map-763

ping between the source and the conceptual schema is composed with a second764

mapping that relates the conceptual schema with the underlying database (i.e.765

the views). However, mapping composition techniques take into account the766
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direction of the mapping, that is, one can compose a mapping from A to B only767

with another mapping that goes from B to some C in order to get a mapping768

that goes from A to C. In our case, we have a mapping from the source to769

the conceptual schema and another one from the database to the conceptual770

schema, which cannot be directly composed.771

The introduction of conceptual schemas into the mapping process has also772

been investigated in [24] with respect to a di↵erent problem, i.e. that of gen-773

erating mappings between databases. Since we assume that source-to-ontology774

mappings are given as inputs, the techniques developed in [24] can be used as a775

preliminary step to simplify the mapping specification phase.776

Another context where mappings involving conceptual schemas have been777

studied is that of Semantic Web ontologies; in particular, [25] proposes a tech-778

nique that translates a set of correspondences between source and target on-779

tologies into a set of SPARQL queries that can then be run against the data780

source to produce the target’s data. Comparing with our approach, we assume781

that the given mapping is not just a set of correspondences, but a complete782

declarative mapping expressed as tgds, and we also take into account that the783

target’s conceptual schema is a view of the underlying database.784

Mappings between conceptual schemas have also been studied in [26], where785

the authors propose an approach for finding “semantically similar” associations786

between two conceptual schemas. These similar associations are then used to787

generate a mapping. This approach is complementary to ours in the sense that788

it could be used to generate a semantic-based mapping, which would then be789

rewritten using the algorithm we present in this paper.790

12. Conclusion791

This paper studies the problem of mapping data in the presence of ontology-792

based descriptions of the source and target data sources. It shows that employ-793

ing an expressive view-definition language for the purpose of defining ontologies794

makes the rewriting process much more complicated than in the case of positive795

conjunctive views. The paper develops an algorithm to automatically perform796

the rewriting when views are defined by means of non-recursive Datalog rules797

with negation. This, in turn, required the adoption of a very expressive mapping798

language involving disjunctive embedded dependencies.799

To handle the increased complexity of this mapping language, we investi-800

gated restrictions to the view-definition language that may be handled using801

standard embedded dependencies (i.e. tgds and egds) for which e�cient execu-802

tion strategies exist. We conducted experiments on large databases and mapping803

scenarios to show the trade-o↵ between expressibility of the view language and804

the e�ciency of the data exchange step.805

As future work, we plan to investigate the use of other execution strategies806

to perform the actual data-exchange to move data from the source to the target807

database rather than the greedy chase considered here. We would also like to808

analyze the applicability of our techniques to ontology based updating, seen as809

a parallel notion to the classical problem of ontology based querying.810
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Appendix A. Proofs of the Theorems867

Theorem 1 There exist a source-to-ontology mapping scenario MSV = {S,868

V, ⌃SV ,⌃V } with view definition ⌥V , and an instance I, such that MSV and869

I admit a universal solution JV 2 USol(MSV , I), and there exists no source-to-870

target scenario MST composed of embedded dependencies (tgds and egds) such871

that MST and I admit a solution JT , and JV = ⌥(JT ).872

Proof: Consider the following scenario. The source database contains a single
table, S(A), the target database a single table, T(A), and we have two views,
V1(A),V2(A), defined as follows:

⌥V = { V1(x) ( T(x)
V2(x) ( T(x),¬V1(x) }

The source-to-ontology mappings are the following (⌃V is empty):

⌃SV = { S(x) ! V1(x)
S(x) ! V2(x) }

On instance I = {S(a)}, ⌃SV has a universal solution JV = {V1(a),V2(a)}.873

We now prove that there exists no target instance JT such that ⌥V (JT ) =874

JV . The view definitions in ⌥V are such that, for any target instance J , ⌥V (J)875

will not contain tuples V1(c),V2(c) for some constant c.876

Since JT does not exist, there is no source-to-target rewriting MST that877

may generate it as a universal solution for I, and the claim is proven. ⇤878

879

Theorem 2 Given a source-to-ontology scenario MSV = {S, V, ⌃SV ,⌃V }880

with non-recursive view definitions ⌥V , then:881

(a) algorithm UnfoldDependencies always terminates;882

(b) when it does not fail, it computes a correct source-to-target rewritten scenario883

with deds MST 0 = {S,T0, ⌃ST 0 ,⌃T 0}, where T0 is obtained from T by enriching884

it with a finite set of new relation symbols TGD0, TGD1, . . ..885

Proof: Let us first prove termination, and then correctness.886

Termination — The proof of part a. depends on the fact that the view def-887

initions in ⌥V are non-recursive by hypothesis. As a consequence, the set of888

view symbols, V1,V2, . . . ,Vk can be stratified, i.e. it can be partitioned in a889

sequence of subsets called strata such that any view that belongs to stratum i890

only depends directly or indirectly on those that appear in strata 1, 2, . . . i� 1.891

Algorithm UnfoldDependencies is composed of a main loop, and 4 di↵erent892

transformations (Transformation 1. to 4.) that are applied to all dependencies893

in the current set. The loop stops when a fixpoint is reached. The e↵ects of the894

various transformations are as follows:895
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• Transformation 1. unfolds view definition within a dependency d, i.e. it896

replaces a positively occurring view symbol by its definition; therefore, it897

removes a view symbol in stratum i and replaces it with target symbols898

or views that belong to strata up to i� 1;899

• Transformation 2. removes negatively derived atoms from dependency900

conclusions, and adds new dependencies;901

• Transformations 3. and 4. move negated atoms from a dependency902

premise to its conclusion.903

Given a set of dependencies, ⌃, we assign an integer score to it, based on the904

following function: the score for ⌃ is the sum of the scores for its dependencies.905

For each dependency, it is the sum of the scores of its atoms that contain view906

symbols. With a positive atom V(x̄, ȳ) it is associated an integer score ki, where907

i is the stratum of V. With a negative atom ¬V(x̄, ȳ) it is associated an integer908

score ki + 1, where i is again the stratum of V. It remains to define the value909

of k. Call n the maximum number of view symbols that appear in the body of910

a view definition of ⌥V . Then k = n+ 1.911

It is easy to see that the four transformations monotonically decrease the912

score of ⌃. In fact:913

• Transformation 1. replaces positive view atoms from stratum i by less914

than k view atoms that belong at most to stratum i� 1;915

• Transformation 2. removes a negated atom of stratum i from d, and916

introduces a new dependency d1 that (only) contains a positive atom of917

the same stratum;918

• Transformations 3. and 4. replace a negated atom of stratum i within d919

by a positive atom of the same stratum in d1.920

Since each iteration of the cycle monotonically reduces the score of ⌃, and this921

is initially finite, then the number of iterations is bounded, and the algorithm922

terminates.923

Correctness — To prove part b., i.e. that the rewritten scenario is correct, we924

need to show that the rewriting algorithm is sound wrt the view definitions. This925

guarantees that whenever we obtain a solution to the rewritten source-to-target926

mapping, we can apply the view definitions to obtain an instance of the ontology927

that is a solution to the source-to-ontology mapping. To prove soundness, we928

need to prove that the four transformations are sound with respect to the view929

definitions.930

We first notice that Transformation 1. corresponds to the standard view931

unfolding procedure, which is known to be sound.932

Transformation 3. and 4. generate dependencies that are logically equivalent
to the original ones. In Tranformation 3., we turn �(x̄) ^ ¬L(x̄) ! ? into
�(x̄) ! L(x̄). Call a the formula �(x̄), b atom L(x̄), then we have that:

a ^ ¬b ! ? ⌘ ¬(a ^ ¬b) ⌘ ¬a _ b ⌘ a ! b
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Similarly, in Tranformation 4., we turn �(x̄)^¬L(x̄) !
W
Li(x̄, ȳ) into �(x̄) !W

Li(x̄, ȳ) _ L(x̄). Call a the formula �(x̄), b atom L(x̄), and c the formulaW
Li(x̄, ȳ). Then we have that:

a ^ ¬b ! c ⌘ ¬(a ^ ¬b) _ c ⌘ ¬a _ b _ c ⌘ ¬a _ (b _ c) ⌘ a ! b _ c

We only need to discuss Transformation 2.. This takes a ded of this form:

d : 8x : �(x̄) ! 9ȳ :
_
 i(x̄, ȳ) _ (R0(x̄, ȳ) ^ . . . ^ ¬L(x̄, ȳ) ^ . . . Rk(x̄, ȳ))

with a negated ¬L(x̄, x̄) atom in one of its conjuncts, and replaces it by two
dependencies. The first one is obtained from d by replacing ¬L(x̄, ȳ) by a new
atom TGDi(x̄, ȳ), where TGDk is a new relation symbol:

d0 : 8x : �(x̄) ! 9ȳ :
_
 i(x̄, ȳ) _ (R0(x̄, ȳ) ^ . . . ^ TGDi(x̄, ȳ) ^ . . . Rk(x̄, ȳ))

The second one has the form:

d1 : 8x, y : L(x̄, ȳ), TGDi(x̄, ȳ) ! ?

It is easy to see that any solution for d0, d1 is also a solution for d. In fact,933

any solution for d0, d1 must be such that, for any homomorphisms h, facts934

h(TGDi(x̄, ȳ)), h(L(x̄, ȳ)) are not present at the same time. This implies that935

either the premise of d is true according to h, and h(L(x̄, ȳ)) is false, or the936

opposite. This proves that also Transformation 2. is sound.937

Since all transformations are sound, algorithm UnfoldDependencies is sound938

and the claim is proven. ⇤939

940

Theorem 3 Given a source-to-ontology scenario MSV = {S, V, ⌃SV ,⌃V }941

with view definition ⌥V , assume ⌥V conforms to the restrictions in Definition942

4. Call Memb
ST 0 = {S,T0, ⌃ST 0 ,⌃T 0}, the source-to-target rewritten scenario943

computed by algorithm UnfoldDependencies, where T0 is obtained from T by944

enriching it with a finite set of new relation symbols TGD0, TGD1, . . .. Then945

Memb
ST 0 only contains embedded dependencies (i.e. tgds, egds, and denial con-946

straints).947

Proof: Assume ⌥V conforms to Definition 4. We now show that algorithm948

UnfoldDependencies does not introduce any disjunction during the rewriting.949

To start, we notice that the original source-to-ontology mapping only con-950

tains ordinary embedded dependencies, and therefore no disjunction nor nega-951

tion is present. Notice also that the premise of source-to-target tgds only con-952

tains source symbols, and these are not rewritten.953

By looking at algorithm UnfoldDependencies, we notice that a disjunction954

can only be introduced when a dependency d : �(x̄) ! 9ȳ :  (x̄, ȳ) containing a955

negated atom ¬L(x̄) in the premise, and a non-empty conclusion, is rewritten956

to yield d0 : �(x̄) ! (9ȳ :  (x̄, ȳ)) _ L(x̄).957

33



To see in which cases this may happen, we now want to investigate how958

the negated atom in the premise of d has appeared in the first place. Recall959

that the original tgds and egds do not contain negations. By reasoning on the960

transformations, we notice that this may happen only in two cases:961

(i) the first case is the one in which d was originally a denial constraint of the962

form di : �(x̄) ! ? with two di↵erent negated atoms, L(x̄), L0(x̄) in the premise;963

in this case, di is initially rewritten to move L0(x̄) to the conclusion according964

to Tranformation 3. to yield d : �0(x̄) ! L0(x̄), and then also L(x̄) according965

to Transformation 4., to yield d0 as discussed above;966

(ii) the second case is the one in which d was originally an egd of the form967

dj : �(x̄) ! x = x0, and �(x̄) contained a negated atom that is then moved to968

the conclusion by introducing a disjunction.969

Consider first case (i). Recall that denial constraints are introduced exclu-970

sively by Tranformation 2. when one of the dependencies has a negated atom971

in its conclusion. Therefore, for case (i) to happen, we need:972

• a tgd with a view symbol V in its conclusion, that is unfolded according973

to Tranformation 1. to introduce a negated view atom V0(x̄, ȳ);974

• atom V0(x̄, ȳ) is removed by Tranformation 2., to generate a new tgd d1975

in which it appears positively in the premise;976

• atom V0(x̄, ȳ) in the premise of d1 is again unfolded according to Tranfor-977

mation 1., to introduce two di↵erent negated atoms ¬L(x̄),¬L0(x̄) in the978

premise of d1;979

• these are rewritten according to Transformation 3. first, and then Tran-980

formation 4., as discussed above, to generate a ded.981

We notice, however, that this is not possible by Definition 4, since it would982

require a view (V), that negatively depends on another (V’), and this in turn983

depends on two negated atoms.984

Let us now consider case (ii) above. This requires that one of the original985

egds contains a view symbol that is unfolded to introduce a negated atom in986

the premise. This is, however, also prevented by Definition 4.987

This proves that under the restrictions of Definition 4, no disjunction is988

introduced by the algorithm, and therefore the resulting set of dependencies is989

a set of standard embedded dependencies (tgds, egds, and denial constraints).990

⇤991
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Appendix B. Complete Rewriting for the Running Example992

Source schema: S-WorkerGrades(WorkerId,Year,Grade,SalaryInc)
S-Stats(WorkerId,WorkerName,MinGrade,MaxGrade)

Target schema: Employees(Id,Name)
Evaluations(EmployeeId,Year)
PositiveEvals(EmployeeId,Year,SalaryInc)
Penalized(EmployeeId,Year)
Warned(EmployeeId,Date)

993

Year 

Number: integer 
 

Worker 

Id: integer 
Name: string 

Evaluation 

PositiveEval NegativeEval 

* * 

{disjoint, complete} 

Problematic Average Outstanding 

{disjoint, complete} 

SalaryInc: real 
 

Figure B.7: Target Ontology.

View definitions for the target ontology:994

Worker(id, name) ( Employees(id,name)
Evaluation(workerId, year) ( Evaluations(workerId, year)
PositiveEval(workerId, year, salaryInc) ( Evaluation(workerId, year),

PositiveEvals(workerId, year, salaryInc)
NegativeEval(workerId, year) ( Evaluation(workerId, year),

¬PositiveEval(workerId, year, salaryInc)
Problematic(id, name) ( Worker(id, name),Penalized(id, year)
Problematic(id, name) ( Worker(id, name),¬PositiveEval(id, year, salaryInc)
Outstanding(id, name) ( Worker(id, name),¬NegativeEval(id, year),¬Warned(id, date)
Average(id, name) ( Worker(id, name),¬Outstanding(id, name),¬Problematic(id, name)
Year(number) ( Evaluations(employeeId,number)

995
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Source-to-ontology mapping dependencies:996

m0 : 8id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9 ! Average(id, name),Worker(id, name)
m1 : 8id, yr, gr, sinc,name,mingr,maxgr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr � 9 ! Outstanding(id, name),Worker(id, name)

m2 : 8id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! Problematic(id, name),Worker(id, name)
m3 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! 9name : PositiveEval(id, yr, sinc),
Evaluation(id, yr),Worker(id, name),Year(yr)

m4 : 8id, yr, gr, sinc :
S-WorkerGrades(id, yr, gr, sinc), gr < 5 ! 9name : NegativeEval(id, yr),

Evaluation(id, yr),Worker(id, name),Year(yr)

997

Ontology egds:998

e0 : 8id, name1, name2 : Worker(id, name1),Worker(id, name2) ! name1 = name2
e1 : 8id1, id2, name : Outstanding(id1, name),Outstanding(id2, name) ! id1 = id2

999

Rewriting of the mapping dependencies into source-to-target:1000

m1
0 : 8id, yr, gr, sinc,name,mingr,maxgr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9 ! Employees(id,name), TGD1(id,name)

m2
0 : 8id,name : TGD1(id,name),Employees(id,name) !

9yr : (Evaluations(id, yr), TGD2(id, yr))
_9date : Warned(id, date)

m3
0 : 8id, yr : TGD2(id, yr),Evaluations(id, yr),PositiveEvals(id, yr, sinc) ! ?

m4
0 : 8id,name, yr : TGD1(id,name),Employees(id,name),Penalized(id, yr) ! ?

m5
0 : 8id,name : TGD1(id,name),Employees(id,name) !

9yr, sinc : Evaluations(id, yr),PositiveEvals(id, yr, sinc)
m1

1 : 8id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

mingr � 9 ! Employees(id,name), TGD3(id)
m2

1 : 8id, yr : TGD3(id),Penalized(id, yr) ! ?
m3

1 : 8id, yr : TGD3(id),Evaluations(id, yr) ! 9sinc : PositiveEvals(id, yr, sinc)
m1

2 : 8id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr  4 ! 9yr0 : (Employees(id,name),Penalized(id, yr0))
_(Employees(id,name), TGD4(id))

m2
2 : 8id, yr : TGD4(id),Evaluations(id, yr),PositiveEvals(id, yr, sinc) ! ?

m1
3 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr � 5 ! Evaluations(id, yr),
PositiveEvals(id, yr, sinc)

m1
4 : 8id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr < 5 ! Evaluations(id, yr), TGD2(id, yr)
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1001

Rewriting of the ontology egds into target dependencies:1002

e10 : 8id,name1,name2 : Employees(id,name1),Worker(id,name2) ! name1 = name2

e11 : 8id1, id2,name : Worker(id1,name),Worker(id2,name) ! id1 = id2

_9year : (Evaluations(id1, year),TGD5(id1, year))
_9date0 : Warned(id1, date

0)
_9year : (Evaluations(id2, year),TGD5(id2, year))
_9date0 : Warned(id2, date

0)
e21 : 8id, year : TGD5(id, year),Evaluations(id, year),

PositiveEvals(id, year, sinc) ! ?
1003

The rewriting of mapping dependencies and ontology egds has been simpli-1004

fied (for readability sake): (1) removed redundant atoms, (2) reused relational1005

symbol TGD2 in m1
4 (instead of creating a new TGDi that would be identical1006

to TGD2), and similarly, (3) used symbol TGD5 twice in e11, instead of using1007

TGD5 and another fresh symbol TGD6.1008
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