
ar
X

iv
:2

01
2.

13
68

5v
1

 [
cs

.D
B

]
 2

6
D

ec
 2

02
0

Discovering Closed and Maximal Embedded

Patterns from Large Tree Data

Xiaoying Wu*1, Dimitri Theodoratos†2, and Nikos Mamoulis‡3

1School of Computer, Wuhan University, China
2New Jersey Institute of Technology, USA

3University of Ioannina, Greece

Abstract

Many current applications and systems produce large tree datasets and

export, exchange, and represent data in tree-structured form. Extracting in-

formative patterns from large data trees is an important research direction

with multiple applications in practice. Pattern mining research initially fo-

cused on mining induced patterns and gradually evolved into mining em-

bedded patterns. Induced patterns cannot capture many useful relationships

hidden deeply in the datasets which can discovered by embedded patterns.

A well-known problem of frequent pattern mining is the a huge number of

patterns it produces. This affects not only the efficiency but also the effective-

ness of mining. A typical solution to this problem is to summarize frequent

patterns through closed and maximal patterns. Previous techniques on min-

ing closed induced tree patterns do not apply to embedded tree patterns. No

previous work addresses the problem of mining closed and/or maximal em-

bedded tree patterns, not even in the framework of mining multiple small

trees.

We address the problem of summarizing embedded tree patterns extracted

from large data trees. We do so by defining and mining closed and maximal

embedded unordered tree patterns from a single large data tree. We design an

embedded frequent pattern mining algorithm extended with a local closed-

ness checking technique. This algorithm is called closedEmbTM-prune as

it eagerly eliminates non-closed patterns. To mitigate the generation of in-

termediate patterns, we devise pattern search space pruning rules to proac-

tively detect and prune branches in the pattern search space which do not

correspond to closed patterns. The pruning rules are accommodated into

the extended embedded pattern miner to produce a new algorithm, called

closedEmbTM-prune, for mining all the closed and maximal embedded fre-

quent patterns from large data trees. Our extensive experiments on synthetic

*xiaoying.wu@whu.edu.cn
†dth@njit.edu
‡nikos@cs.uoi.gr

1

http://arxiv.org/abs/2012.13685v1

and real large-tree datasets demonstrate that, on dense datasets, closedEmbTM-

prune not only generates a complete closed and maximal pattern set which is

substantially smaller than that generated by the embedded pattern miner, but

also runs much faster with negligible overhead on pattern pruning.

1 Introduction

An important task in the analysis of the voluminous loosely structured datasets of

big data applications is the mining of frequent patterns. Mining frequent patterns

is also a core process of other important data mining processes like classification,

clustering and detection of outliers and it has applications in numerous practical

domains like database design, query optimization, chemical compound prediction,

protein-protein interaction etc. The number of patterns produced from pattern min-

ing is often huge. Besides the efficiency, this can also reduce the effectiveness of

the mining process, since it is not realistic to comprehend and store such a large

number of patterns. It is well known that the real problem in pattern mining is

not the efficiency of the mining process but rather the usability of the mined fre-

quent pattern set. One way to address this problem is to “summarize” the patterns.

A high-quality pattern summarization technique essentially preserves the general

information on the frequent patterns while reducing substantially the number of

patterns.

The framework. In this paper we study summarizing patterns extracted from large

tree data. A tree is a data structure most frequently used in big data senarios. Trees

organize the data in the form of hierarchies, but at the same time they have the flex-

ibility of allowing arbitrary horizontal and vertical expansions. Trees are employed

in data models like XML and JSON which are standard formats for integrating, ex-

changing, exporting and representing web data and in databases including (e.g., in

the NoSQL database MongoDB).

Tree pattern mining has been researched extensively, because it is important

for data analysis [1, 27, 22, 2, 39, 29, 23, 19, 6, 42, 43, 15, 12, 26, 28, 25, 10, 16,

44, 31, 35, 36]. Two parameters characterize the tree patterns mined from the data:

(a) the kind of morphism used to match the nodes of a tree pattern to the nodes of

the data structure, and (b) the kind of edges the tree pattern can have. Edges can

be either child edges or descendant edges. A child edge matches an edge in the

data structure. A descendant edge matches a path in the data structure. In previous

works, the morphisms adopted are almost exclusively embeddings. Embeddings

are injections which preserve node labels and not-on-the-same-path relationships

between the pattern nodes [42, 43]. When an embedding matches the edges of the

tree pattern to edges in the data tree (that is, the edges of the pattern are seen as

child edges), it is an isomorphism [6, 16].

Initially, the extracted tree patterns were induced patterns [1, 22, 2, 39, 23, 29,

6, 15, 12, 28, 10, 16]. Induced patterns are matched to the data structure through

isomorphisms and, of course, they contain exclusively child edges. Gradually,

2

the mined tree patterns evolved to embedded patterns [42, 43, 26, 25, 44, 31, 36].

Embedded patterns generalize induced patterns since they are matched to the data

structure through embeddings, and contain exclusively descendant edges. In this

sense, embedded patterns are able to discover relationships “hidden” (or embed-

ded) deeply within the data structure which might not be discovered by induced

patterns [43, 42]. However, extracting embedded patterns is computationally more

challenging than extracting induced patterns. For instance, the problem of check-

ing whether an isomorphism of an unordered tree pattern with child edges exists

in a tree is polynomial [17]. In contrast, the problem of checking whether an em-

bedding of an unordered tree pattern with descendant edges exists in a tree is NP-

Complete [18].

Current algorithms that mine trees almost exclusively focus on extracting pat-

terns from a collection of small trees. Extracting patterns from a large tree was

addressed only recently [31, 32, 36]. The large tree framework generalizes the

framework of a set of small trees. Indeed, a set of small trees can be represented by

a single large tree with an unlabeled virtual root. A plethora of applications input

and generate datasets which are structured as a large data tree [9, 30].

The present study is placed in the broad framework of mining embedded pat-

terns from large tree data which can be a list of small trees or a single large tree.

The problem. Typically, with a high frequency threshold, mining will gener-

ate only trivial patterns, while with a low frequency threshold, it will generate a

huge number of patterns. This drawback seriously impedes the utility and usage

of frequent-pattern mining. To address this issue, an obvious solution would be

to summarize the patterns. A well-known solution for high-quality summarization

consists in generating clusters of frequent patterns based on a similarity metric, and

then choose and return only a representative pattern from each cluster [40]. This

reduction enjoys many advantages: (a) Computing a much smaller pattern set re-

sults in improved efficiency; (b) a small number of mined patterns allows the users

to examine them and understand the mining results; and (c) larger and more com-

plex datasets can be handled. In fact, in multiple real-world scenarios, the primary

goal is not the enumeration of all frequent patterns. Rather, the extracted patterns

are potentially exploited as input in the following analysis or modeling phases, and

therefore, a small set of representative patterns might be sufficient [14].

A popular summarization technique employed in the setting of induced patterns

mined from multiple small data trees is to compute maximal and closed patterns. A

frequent pattern is closed if there is no isomorphic pattern with the same support.

A maximal pattern is a frequent pattern such that there is no frequent isomorphic

proper superpattern. When mining patterns from multiple small trees, pattern sup-

port is the number of small trees containing the pattern. This way of measuring

pattern support is called document support. Unfortunately, these definitions do not

apply to the broad setting we consider in this paper because: (a) document support

does not make sense in the setting of a large tree dataset, and (b) the concept of

isomorphic subpattern/superpattern is not meaningful in the setting of embedded

3

:root :books :literature :fiction :classic :drama :philosophy
:humanities :computer science :data science :data mining
:machine learning :data analytics

Figure 1: A data tree and frequent embedded patterns.

patterns which involve embeddings and contain descendant edges. To the best of

our knowledge, there is not any work on maximal or closed embedded tree patterns,

even in the framework of multiple small trees.

Let’s look at the data tree of Figure 1(a) which integrates categorized biblio-

graphic information from two different data sources (the book entries are omitted).

We adopt root support for the patterns (the number of the distinct images of the

root of the pattern under all possible embeddings of the pattern to the tree dataset)

and the support threshold is 2. Figures 1(b) and (c) show some frequent embedded

patterns. As one can see, pattern P of Figure 1(c) is larger in size and more infor-

mative than the other patterns. Instead of presenting to the user all these patterns,

we can just present the pattern P . The patterns of Figure 1(b) might not be isomo-

prphic subpatterns of pattern P but they are all emdedded subpatterns of P (that

is, they have an embedding to P). Later, we introduce the concepts of embedded

maximal and embedded closed pattern which can be used for clustering the embed-

ded frequent patterns and also can act as representatives of the embedded frequent

pattern clusters. Based on these definitions, it will become evident that pattern P
is a closed (and a maximal) embedded frequent pattern. This fact justifies omitting

the patterns of figure 1(b) on behalf of pattern P .

In this paper, we address the problem of summarizing embedded frequent un-

ordered patterns mined from a single or multiple large data trees by defining the

concepts of maximal and closed embedded tree patterns and by designing algo-

rithms for mining those types of patterns.

Contribution. The main contributions of this paper are the following: :

• Defining meaningful closed and maximal patterns is tricky in the context of em-

bedded patterns over a single large tree. Therefore, we employ a new way for

defining pattern support which enjoys useful monotonic characteristics. Fur-

ther, in order to account for embedded patterns, we generalize the concept of

subpattern by introducing the concept of embedded subpattern. Based on these

concepts, we introduce closed and maximal embedded unordered tree patterns

4

over large tree data and study their properties.

• We present a frequent pattern mining algorithm extended with a local closed-

ness checking technique, called closedEmbTM-eager, to eagerly eliminate non-

closed patterns. To allow for closedness checking, closedEmbTM-eager com-

putes and stores the embedded occurrence lists of all the nodes of candidate

frequent patterns.

• To further reduce the generation of frequent patterns which turn out to be non-

closed, we design pruning rules to proactively detect branches in the pattern

search space that do not correspond to closed patterns. These branches are

pruned to avoid unnecessary computations. The pruning rules are leveraged in

the design of a new algorithm, named closedEmbTM-prune, for mining all the

closed and maximal embedded frequent patterns from large data trees.

• We conducted a comprehensive experimentation to assess the scalability and

performance of our algorithms on synthetic and real datasets. We also com-

pared with a post-processing algorithm which first extracts all frequent patterns

using a state-of-the-art algorithm [36] before filtering out non-closed (or non-

maximal) ones. The experimental results show that: (a) Our algorithms gen-

erate a complete closed and maximal pattern set which is substantially smaller

than the set of embedded patterns generated by an embedded pattern miner. (b)

Algorithm closedEmbTM-eager outperform the baseline post-processing algo-

rithm as the latter checks for closedness the entire frequent pattern set; this

set might be exponentially larger than the closed pattern set. (c) On sparse

datasets, closedEmbTM-prune has comparable time and memory performance

with closedEmbTM-eager; this is due to a small overhead incurred by the appli-

cation of the pattern pruning rule; (d) On dense datasets, closedEmbTM-prune

outperforms in all cases closedEmbTM-eager in regard to run-time by orders

of magnitude and also in regard to memory footprint and scalability.

Paper outline. The following section introduces the concept of embedded subat-

tern, formally describes the problem addressed and provides preliminary results.

Section 3 sets the framework of our approach for extracting closed embedded pat-

terns. Algorithms closedEmbTM-eager and closedEmbTM-prune are presented in

Sections 4 and 5, respectively. In Section 6, we present and analyze our compara-

tive experimental results. We review related work in Section 7. A conclusion and

suggestions for future work are provided in Section Section 8.

2 Framework, Preliminary Results and Problem State-

ment

2.1 Generalities and Support Definition

Trees. A rooted labeled tree is a directed acyclic connected graph T = (V,E)
where V is a set of nodes and E ⊆ V ×V is a set of edges satisfying the following

properties: (1) There is a function lb, called labeling function, which maps nodes

5

to labels. (2) Set V has a unique node called the root which has no incoming

edges; (3) Every node in V is linked to the root through a unique path. A tree is

ordered if it there is a predefined left-to-right order among the child nodes of each

node. Otherwise, it is unordered. We define the size of a tree to be the number

of its nodes. Unless stated differently, in the following trees are rooted, labeled,

unordered trees. Table 1 summarizes the notation used throughout this paper.

Notation Description

T data tree

lb(.) label function on graph nodes

P ′ ⊑i P pattern P ′ is an isomorphic subpattern of pattern P.
P ′ ⊑e P pattern P ′ is an embedded subpattern of pattern P.
Lroot(P1|P2) the set of the images of nodes n1, . . . , nk under all embedding of P2 to T , where

n1, . . . , nk are are images (nodes in P2) of the root of P1 under all embeddings

of P1 to P2.

rml rightmost leaf of a given pattern

k-pattern a pattern of size k
[P] equivalence class of pattern P
P i
x the pattern formed by adding a child node labeled by x to the node with position

i in P as its rml.

P i
x ⊗c P

j
y child join of P i

x and P j
y

P i
x ⊗s P

j
y cousin join of P i

x and P j
y

A//B node B is a descendant of node A
OC(P) occurrence relation of pattern P on T
LX occurrence list of pattern node X on T
OL(P) occurrence list set of P : the set of all the occurrence lists of the nodes of P on T
P1 ≤ P2 order relation on patterns defined on page 18.

P ≡ P ′ patterns P and P ′ are occurrence equivalent.

Table 1: Notation used throughout the paper.

An encoding scheme for data trees. We employ the regional encoding scheme

[4] to encode the input data tree T in a preprocessing step. This encoding repre-

sents each node in T by a triple (begin, end, level) whose elements correspond,

respectively, to the first, and last encounter of the node in a depth-first preorder

traversal of T , and its level in the tree. For every label a in T , the pre-processing

step produces an inverted list La for a. List La comprises the triples of the nodes in

T labeled by a, ordered on their begin field. In Fig. 2(a) one can see a data tree T1

and the encoding of the nodes. Nodes with the same label in T are distinguished

using different subscripts (e.g., nodes a1 and a2). In Fig. 2(b) one can see the

inverted lists of the labels of the tree.

Tree patterns. The tree patterns considered in the literature for mining fall into

two categories: patterns with child edges (that is edges representing child relation-

ships) and patterns with descendant edges (that is edges representing descendant

relationships). Patterns with descendant edges are more general since a child rela-

tionship between two nodes implies also a descendant relationship. The opposite

is not true. The focus in this paper is on patterns with descendant edges which are

6

1

a

b

c

1 1

a1

b1

a2

2

2

3

Figure 2: A tree and its inverted lists.

called embedded patterns and are defined below.

Tree morphisms. In order to decide if a pattern occurs in a data tree different

types of morphisms are adopted in the literature. Given a pattern P and a tree T , a

homomorphism from a pattern P to a data tree T is a mapping m associating every

node of P to a node in T , such that: (1) for every node x ∈ P , lb(x) = lb(m(x));
and (2) for every edge (x, y) ∈ P , if (x, y) is a child edge, (m(x),m(y)) is an edge

of T , while if (x, y) is a descendant edge, m(y) is a descendant of m(x) in T .

Different constraint versions of homomorphisms have been considered in pre-

vious mining papers: an isomorphism from pattern P to T is an injective mapping

m associating every node of P to a node in T , such that: (1) for every node x of

P , lb(x) = lb(m(x)); and (2) (x, y) is an edge of P if and only if (m(x),m(y))
is an edge in T . In Fig. 3 one can see the two possible isomorphisms of pattern

P to the data tree T1 shown in Fig. 2(a). Obviously, isomorphisms are special

cases of homomorphisms. The patterns mined when isomorphisms are adopted for

mapping the patterns to the data tree are qualified as induced [1, 22, 6].

Embeddings are another kind of restricted homomorphisms considered in the

literature: consider a pattern P which has descendant edges. An embedding from

P to T is an injective function m associating nodes in P to nodes in T , such that:

(1) for every node x ∈ P , lb(x) = lb(m(x)); and (2) (x, y) is an edge in P iff m(y)
is a descendant of m(x) in T . Consequently, if x1, . . . , xn are the child nodes of a

node x in P , m(xi) and m(xj), i, j ∈ [1, n], i 6= j, are not on the same path (or

coincide) in T . We term this constraint satisfied by embeddings sibling constraint.

Obviously, an embedding is also a restricted case of a homomorphism. In Fig. 3

one can see the data tree T1 of Fig. 2(a), a pattern P and four embeddings of P
to T1. Pattern P has one more embedding to T1 which is not shown in the figure.

Among the embeddings shown on the figure, the two on the left are isomorphisms.

When embeddings are used, the mined patterns are called embedded [42, 43]. In

contrast to an isomorphism, an embedding can associate two adjacent nodes in the

pattern to non-adjacent nodes on a path in the data tree.

The set of frequent induced patterns whose edges are seen as descendant edges

is a subset of the set of frequent embedded patterns on the same tree T . In this

paper, the mined patterns are embedded patterns.

Support. When the dataset is a set of small trees, a natural way to define the sup-

port (frequency) of a pattern is to let it be equal to the number of trees that contain

7

c1

a1

b1

a2

b2

c2

c2

1

isomorphisms/

embeddings

embeddings

Figure 3: Embeddings of a pattern P to the data tree T1 of Figure 2(a)

the pattern (called in the literature document frequency). However, document fre-

quency is meaningless in the framework of a dataset which is a single large tree,

as there is only one document. Therefore, a new definition for pattern support is

needed for the setting of a single large tree. A desirable property for the support is

the antimonotonicity property [43]. The antimonotonicity property is fundamental

for efficiently enumerating patterns in the mining process.

In this framework, a natural candidate for the definition of pattern support is

the number of occurrences (that is, embeddings) of the pattern in the dataset (oc-

currence frequency). Unforunately, occurrence frequency does not enjoy the anti-

monotonicity property. As we want to take advantage of the benefits of antimono-

tonicity, we adopt root frequency for embedded tree patterns:

Definition 2.1 (Root frequency) Let R be the root of a tree pattern P on a data

tree T . The root frequency of P on T is the number of distinct images (which are

nodes in T) of R under all possible embeddings of P to T .

It can be shown [31] that root frequency has the antimonotonicity property.

2.2 Embedded Subpatterns

Usually, the mining process on a large data tree results in a large number of em-

bedded tree patterns. It is therefore desirable to devise a concise and nonredundant

representation for frequent embedded tree patterns. To this end, we introduce later

the concepts of closed and maximal frequent embedded tree pattern. Closed and

maximal tree patterns have been introduced before albeit in the context of induced

tree patterns [6]. To define closed tree patterns we need the concept of subpattern.

In the case of induced patterns, isomorphic subpatterns are employed: a pattern P ′

is an isomorphic subpattern of a pattern P iff there is an isomorphism from P ′ to

P . This means that P ′ is a subtree of P . In other words, P ′ can be obtained from P
by removing, in sequence, zero or more dangling edges (that is, edges incident to

a leaf or root node) from P . We write P ′ ⊑i P to indicate that P ′ is an isomorphic

subpattern of P . Consider, for instance, the patterns shown in Figure 4. As one

can see, P1 ⊑i P2 ⊑i P3 ⊑i P4, while P5 6⊑i P4, P6 6⊑i P4 and P6 6⊑i P5. In

particular, a root isomorphic subpattern is a special type of isomorphic subpattern:

a pattern P ′ is a root isomorphic subpattern of a pattern P if and only if there is

8

i

e

i

e

i

e

e

i

e

i

1 2 3 4 5 6

Figure 4: Tree patterns.

an isomorphism from P ′ to P which maps the root of P ′ to the root of P . For

example, the pattern P2 of Figure 4 is a root isomorphic subpattern of P3, while P1

is an isomorphic subpattern but not root isomorphic subpattern of P2.

However, the concept of isomorphic subpattern is not sufficient for embedded

patterns since it cannot account for descendant relationships between nodes. We

therefore generalize the concept of subpattern by introducing the concept of em-

bedded subpattern to account for embedded patterns.

Definition 2.2 (Embedded subpattern) A pattern P ′ is an embedded subpattern

of a pattern P (and P is an embedded superpattern of P ′) iff there is an embedding

from P ′ to P . We write P ′ ⊑e P to indicate that P ′ is an embedded subpattern of

P , .

Consider again the patterns of Figure 4. One can see that P1 ⊑e P2 ⊑e P3 ⊑e

P4 and also that P6 ⊑e P5 ⊑e P4. Besides removing dangling edges, as is the

case with isomorphic subpatterns, an embedded subpattern of a pattern P , can be

obtained from P by replacing paths in P by edges. For instance, P6 which is an

embedded subpattern of P4, can be obtained from P4 by replacing the paths from

A to C and from A to D by the edges A/C and A/D, respectively.

Embedded subpatterns are related to isomorphic subpatterns the way the next

proposition shows.

Proposition 2.1 P ′ ⊑e P if P ′ ⊑i P . The opposite is not necessarily true.

Indeed, if P ′ ⊑i P , there is an isomorphism from P ′ to P . Therefore, there

is an embedding from P ′ to P , i.e., P ′ ⊑e P . As we can see in Figure 4, all the

induced subpatterns are also embedded subpatterns. There are also examples in the

figure of a pattern which is an embedded subpattern of another pattern but not an

isomorphic subpattern. For instance, P5 ⊑e P4 and P5 6⊑i P4.

2.3 Maximal and Closed Embedded Patterns and Problem Definition

Frequent induced patterns over multiple trees with document support are summa-

rized using closed and maximal (induced) patterns. We want to introduce analo-

gous concepts for embedded frequent patterns over a single tree with root support.

In the context of induced patterns over multiple trees with document support, a

closed pattern is a frequent pattern such that no proper isomorphic superpattern has

the same support. Note that an isomorphic superpattern of a pattern cannot have

9

1 2

1

1

2

2

3

1 2

1 2

1

2

1

2

Figure 5: An example for embedded pattern closedness and maximality definition.

higher document support than the pattern itself. As a consequence, an induced

pattern P is closed iff there is a proper superpattern P ′ which has an isomorphism

i′ to T whenever P has an isomorphism i to T such that i′ is an extension of

i. In the context of embedded patterns we use the following definition for closed

patterns:

Definition 2.3 (Closed pattern) Given a data tree T , an embedded frequent pat-

tern P is closed iff there is no proper embedded superpattern P ′ satisfying the

following property: for every embedding e of P to T there is also an embedding e′

of P ′ to T such that e(root(P)) = e′(m(root(P))) for some embedding m of P
to P ′.

Consider, for instance, the patterns P1 and P2 and the data tree T depicted in

Figure 5. Pattern P1 is an embedded subpattern of P2 as there is an embedding

from P1 to P2. In fact, there are two such embeddings, shown in Figure 5(a),

which map the root A of P1 to the nodes A1 and A2 of P2. Pattern P1 has six

embeddings to T which map the root of P1 to node a2 in T (one embedding),

to a3 (one embedding) and to a1 (four embeddings). In Figure 5(b), the dashed

lines show possible mappings of the nodes of P1 and P2 to T . Pattern P2 has

two embeddings to T which map the root of P2 to a1. One can see that for every

one of the six embeddings of P1 to T , one of the two embeddings of P2 is its

extension. For instance, for the embedding e of P1 to T (e(A) = a1, e(B) = b1,

e(C) = c1), the embedding e′ of P2 to T (e′(A1) = a1, e′(A2) = a1, e′(B) = b1,

e′(C) = c1) is an extension of e based on the embedding m(A) = A1, m(B) = B,

and m(C) = C of P1 to P2. Therefore, P1 is not closed, and P2 or another

superpattern which will turn out to be closed should be returned to the user instead.

One can see that, in general, if a pattern P has an embedding to a pattern P ′ which

maps the root of P to the root of P ′, P is not closed.

Note that it would not be appropriate to define closed patterns in a simpler way

based on root support (as this is done with induced patterns and document support).

For instance, consider the data tree T and the patterns P1 and P2 of Figure 5.

Assume that the support threshold is 1. As mentioned above, P1 ⊑e P2. The root

support of P1 on T is 3 while that of P2 is 1. Therefore, if pattern closedness is

decided based on root support, the presence of the embedded superpattern P2 does

not allow us to deduce, as Definition 5.1 postulates, that P1 is not closed. In fact,

10

it can be shown that, based on root support, P1 is closed with support threshold 3,

which counters our intuition.

We provide next a proposition which characterizes closed embedded patterns.

Let Lroot(P1) denote the set of the images of the root of pattern P1 under all em-

beddings of P1 to a data tree T . Given two patterns P1 and P2 such that P1 ⊑e P2,

let n1, . . . , nk be the nodes in P2 which are images of the root of P1 under all

embeddings of P1 to P2. Then, let Lroot(P1|P2) denote the set of the images of

nodes n1, . . . , nk under all embedding of P2 to T . As an example, in Figure 5,

Lroot(P1|P2) = {a1, a2, a3}.

Proposition 2.2 A frequent pattern P is closed if there is no proper embedded

superpattern P ′ such that Lroot(P) = Lroot(P |P ′)

The proof follows easily from the definitions. In the example of Figure 5,

P1 is not closed since for its proper embedded superpattern P2, Lroot(P1) =
Lroot(P1|P2) = {a1, a2, a3}.

Maximal patterns can be defined without referring explicitly to the embeddings

to the data tree (only their number matters):

Definition 2.4 (Maximal pattern) Given a data tree, an embedded frequent pat-

tern is maximal if and only if there is no proper embedded superpattern which is

also frequent.

Clearly, every maximal pattern is also closed. The opposite is not necessarily

true. That is, the set of closed patterns is a superset of the set of maximal patterns

for a given frequency threshold. Although maximal patterns provide a tighter sum-

marization of the frequent embedded patterns than closed patterns, closed patterns

are important as are they are more informative than maximal patterns about the

frequent embedded pattern set they summarize.

Problem statement. Given a minimum support threshold and a large data tree

T , find all the frequent unordered maximal and all the frequent unordered closed

embedded patterns in T .

One of the reasons this problem is challenging is that, unlike the property of

a pattern being frequent, pattern closedness (resp. maximality) does not have the

antimonotonicity property: a superpattern of a non-closed (resp. non-maximal)

pattern can be closed (resp. maximal).

3 Mining Framework

We present in this section the framework of our approach for mining frequent em-

bedded patterns: we introduce the techniques for generating candidate patterns and

those for computing their support.

11

3.1 Candidate Generation

In order to mine embedded patterns, our approach alternates between a step that

generates candidate patterns and a step that computes the support of the patterns.

The first step employs a process for systematically generating potentially frequent

candidate patterns. For the second step, a novel technique is designed which com-

putes the support of candidate patterns in an incremental way. We start by outlining

below the candidate generation.

Canonical form. Because unordered patterns can have many different isomorphic

representations, an efficient pattern mining process needs a method for avoiding the

superfluous generation of isomorphic pattern representations and the superfluous

isomorphism checking between pattern representations.

Several mining algorithms exploit the notion of tree canonical form which is a

unique ordered representation of an unordered pattern and can be used as a repre-

sentative of this pattern. Here we use a canonical from similar to the one adopted

by [42] for tree patterns. A variety of alternative canonical tree representations is

studied in [8].

Equivalence classes. For the generation of candidate patterns we follow the equiv-

alence class-based pattern technique presented in [43, 42]. We briefly outline next

this technique, in order to also introduce concepts and notation which are needed

along the paper.

The nodes of a pattern P are encoded by their depth-first position in P . The

depth-first position of a node is the number assigned to the node in its first en-

counter during a depth first traversal of the pattern tree which sequentially assigns

numbers starting with zero. The rightmost leaf of P is the node with the largest

depth-first position and is denoted as rml. The rightmost path of P is the path from

the root of P to the node rml. The immediate prefix of P is the sub-pattern of P
obtained by removing the node rml from P . A prefix of P is the sub-pattern of P
obtained by a series of deletions of the node rml .

We call k-pattern a pattern with k nodes. The equivalence class of a (k-1)-

pattern P (denoted as [P]) is the set of all frequent k-patterns whose immediate

prefix is P . The k-pattern constructed by adding a node labeled by x to the node

at position i in P as the rightmost leaf node of [P] is denoted by P i
x.

Let the term k-pattern refer to a pattern of size k. Given a (k-1)-pattern P
(k ≥ 1), its equivalence class is the set of all frequent k-patterns which have P as

immediate prefix. We write P i
x to denote a k-pattern in [P] formed by adding a

child node labeled by x to the node with position i in P as its rightmost leaf node.

Expansion of patterns. The successor equivalence classes of an equivalence class

[P] are constructed by expanding the patterns in [P]. This expansion works as

follows: each pattern P i
x ∈ [P] is joined with any other pattern P j

y ∈ [P], including

itself (self expansion). The result is the equivalence class [P i
x]. Two types of

expansions are used: child expansion, implemented by a join operation, denoted

P i
x ⊗c P

j
y (child join), and cousin expansion, implemented by a join operation,

12

1 2

11

12

13

14

21

22

23

24

.
.
.

.
.
.

1 2

11 12 13 14 21 22 23 24.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Figure 6: Equivalence class expansion example. The immediate prefix of a pattern

is represented by its black nodes.

denoted P i
x ⊗s P

j
y (cousin join). Formally:

• Child join can be applied only if j = i, and P i
x⊗cP

j
y = Qk−1

y , where Q = P i
x.

Note that k − 1 is the position of the last element, x, in the k-pattern P i
x since

the numbering of nodes starts from 0.

• Cousin join can be applied only if j ≤ i, and P i
x ⊗s P

j
y = Qj

y , where Q = P i
x.

No expansion is possible if i < j. The two outcome patterns Qk−1
y and Qj

y are

respectively called child and cousin expansions of P i
x by P j

y . Joining P i
x with all

elements P j
y of [P] produces all possible k-patterns in class [P i

x]. The patterns P i
x

and P j
y are called, respectively, the left-parent and right-parent of a join outcome,

respectively. Notice that each join outcome has its left-parent as its immediate

prefix, and its righmost leaf is the rightmost leaf of its right-parent.

Fig. 6 shows an example of an equivalence class expansion. The depth-first

position of each node is shown by the node in the figure.

An example of the equivalence class-based pattern expansion is given in Fig. 6.

The number associated with each pattern node in the figure is the depth-first posi-

tion of that node. The left and right child rectangles surround, respectively, the pat-

terns of the equivalence classes of the patterns A//B and A//C (note that A//B
denotes that node A is an ancestor of node B).

Pattern search tree. Starting with patterns of size k=1, we can iteratively apply

the equivalence class expansion to produce larger patterns. The construction of a

pattern from another pattern defines a partial order, ≺, on patterns. This partial

order is characterized by the prefix containment relationship, that is, P ≺ Q iff

P is a prefix of Q. It is represented as a pattern search tree, in which node Q
is descendant of P iff P ≺ Q. All the children of a given node P belong to its

equivalence class [P], since they all have the same immediate prefix P . Patterns in

the search tree are organized in layers, where the 0th layer is the root denoting an

empty pattern, and the kth layer consists of patterns with k nodes. Fig. 6(b) shows

a fragment of an example pattern search tree for the patterns of Fig. 6(a).

13

The internal nodes of the search tree represent frequent patterns in canonical

form. The execution of the pattern mining algorithm follows the growth a pattern

search tree from the root. One-node frequent patterns are used as the initial pattern

seeds. To augment a node P i
x ∈ [P], we require that P i

x is frequent and in canon-

ical form. Such a pattern P i
x can only be expanded using patterns from [P]. To

guarantee that all the children of P i
x in the tree will be generated, [P] comprises all

the possible frequent expansion outcomes of P (including non-canonical). Since

infrequent or non-canonical patterns are not further grown, they correspond to leaf

nodes.

3.2 Support Computation

From homomorphic occurrences to embedded ocurrences. We call embedded

occurrence or simply occurrence of a pattern P on a data tree T a tuple indexed by

the nodes of P whose values are the images of the corresponding nodes in P under

an embedding of P to T . The occurrence relation OC(P) of P on T is the relation

containing the occurrences of P under all possible embeddings of P to T . If X is

a node in P , the occurrence list LX of X on T is the projection of relation OC(P)
on attribute X sorted in the preorder appearance of the nodes in T . The occurrence

list set OL(P) of P on T is the set of all the occurrence lists of the nodes of P on

T ; that is, OL(P) = {LX | X ∈ nodes(P)}. The concepts of homomorphic oc-

currence, homomorphic occurrence relation OCh(P), homomorphic occurrence

list, and homomorhic occurrence list set OLh(P) are defined analogously.

As mentioned above, in order to compute the support of a pattern P on a data

tree T , we need to compute the size of the embedded occurrence list LR of the

root R of P on T . A straightforward method for computing LR consists of first

computing OC(P), and then projecting OC(P) on column R to get LR. A ma-

jority of existing tree mining algorithms [1, 2, 23, 6, 42, 43, 12, 26, 28, 25, 10, 16]

explicitly compute and store OC(P). Unfortunately, the problem of finding an

unordered embedding of P to T is NP-Complete [18]. On the other hand, finding

a homomorphism from P to T can be done in PTIME [21].

Based on the above observation, we design a construction-pruning approach

which first constructs OCh(P) and then, prunes non-embedded occurrences to get

OC(P) (as mentioned above an embedding is a special case of homomorphisms).

For the first step (the homomorphic occurrence construction) we employ a holistic

twig-join algorithm. The second step (the non-embedded occurrence filtering) is

implemented by checking whether two sibling nodes of P are mapped to nodes on

the same path in T .

Holistic Twig-join Algorithms for computing homomorphic occurrences. Holis-

tic twig-join algorithms (e.g., TwigStack [4]) are the state of the art algorithms

for computing all the homomorphic occurrences of tree-patterns on tree data [4, 5,

13, 20, 3]. These algorithms were initially developed for computing tree-pattern

queries over trees. They can provably compute all the homomorphic occurrences

14

in time linear on the size of the input (the data tree) and the output (set of homo-

morphic occurrences) [4].

Filtering out non-embedded occurrences. Given a homomorphic occurrence occ
checking whether it is also an embedded one is performed by traversing, in post

order, the nodes of P ; if Y1, . . . , Ym are the child nodes of a node X under consid-

eration we check if for no Yi and Yj , i 6= j, occ.Yi and occ.Yj are on one path (or

coincide). As mentioned in Section 2.1 this constraint is termed sibling constraint.

Clearly, we can deduce that occurrence occ is embedded if the sibling constraint is

met. We can check whether two nodes are on one path in a tree T efficiently: each

node in T is mapped to its positional representation which is a (begin, end, level)
triple. This regional encoding allows for checking efficiently the existence of an

descendant-ancestor relationship between two nodes: for two nodes n1 and n2, n2

is a descendant of n1 iff n2.begin > n1.begin, and n1.end > n2.end.

Encoding pattern occurrences as occurrence list sets. For computing the pattern

support we adopt an incremental technique which uses the materialized embedded

occurrences of its parent patterns. We use an original materialization technique for

the embedded occurrences of patterns which are processed earlier: we store the

embedded occurrence lists of the nodes of the pattern instead of storing the embed-

ded occurrence relation. The space efficiency of the method lies on the fact that the

occurrence lists can encode in linear space in the number of pattern occurrences

which is exponential on the number of pattern nodes [4]. In contrast, the state-of-

the-art embedded pattern mining techniques [43, 42] record information about all

the embedded occurrences of the processed patterns in the data tree.

Bitmap representation of occurrence lists. The pattern occurrence lists are stored

as bitmaps. This choice allows for a big reduction in the storage cost. In addition,

using bitmaps also allows for important CPU and I/O cost reductions. Indeed,

occurrence list intersection of the nodes of a pattern can be realized as a two-step

bitwise operation: the first step consists in bitwise ANDing the bitmaps of the

occurrence lists of the pattern nodes. The second step materializes the intended

occurrence list by fetching in memory, from the corresponding inverted list, the

nodes indicated by the resulting bitmap. The benefit of the use of bitmaps in time

consumption is twofold: certainly bitwise ANDing is cheaper than the intersection

of the possibly long corresponding occurrence lists. Further, retrieving in memory

only the nodes indicated by the result bitmap has less I/O cots than the retrieval

of the entire—possibly very large—operand occurrence lists. The latter retrieval is

necessary for applying the intersection operation in the traditional way. We used

bitmaps for the storage and processing of occurrence lists initially in [37, 38, 34,

33] in the context of evaluating queries using tree-pattern materialized views.

15

4 An Eager Closedness Checking Algorithm

We provide in this section an algorithm which produces embedded frequent pat-

terns and eagerly filters out non-closed ones. The pattern support is computed

in this algorithm by extending a procedure presented in [31, 36] for computing

frequent embedded patterns. The algorithm involves an efficient local closedness

checking technique which is integrated in the mining process so that non-closed

patterns can be eliminated early on.

4.1 Closedness Checking

Pattern-subpattern relationship checking. In order to determine if a given pat-

tern P is closed, we first need to check if P is a proper subpattern of some other

pattern Q, and find all the nodes in Q which are images of the root of P under an

embedding from P to Q (Proposition 2.2). For this, we can utilize the unordered

tree inclusion algorithm described in [18]. Provided two unordered trees P and Q,

this algorithm finds all the nodes v in Q, such that there exists a root-preserving

embedding from P to the subtree of Q rooted at node v. The time complexity of

the algorithm is O(|P |× Pf ×22Pf ×|Q|), with Pf being the max outdegree of the

nodes in P . However, in the experiments, we found that this algorithm runs very

slowly for patterns with large fan-out. We therefore use a procedure we presented

in [31] which computes embeddings of a pattern to a tree and this turns out to be

faster.

Once we have obtained the root images r1, . . . rk of P on Q, the computation

of L(P |Q) is straightforward, as it is the union of Lri(Q)s, i ∈ [1, . . . , k]. Observe

that, since the occurrence lists are represented as bitmaps, a bitwise OR operation

will allow this union operation to be performed efficiently.

Pattern closedness checking. A straightforward method for determining whether

a frequent pattern P is closed (or maximal) is to employ a postprocessing filtering

technique. This technique starts by finding and storing in a set S all frequent em-

bedded patterns, and then performs a pairwise checking of patterns in S to elim-

inate those patterns that are not closed (or maximal). Note that the problem of

checking if one pattern is an embedded subpattern of another is NP-Complete

[18]. This technique requires storing all the frequent patterns and doing O(|S|2)

such checks. Clearly, this technique is not efficient since the number of closed

and maximal patterns can be exponentially smaller than the number of frequent

patterns.

An alternative way is to check each pattern P for closedness as soon as it is dis-

covered to be frequent. In this case one can enumerate all the possible embedded

superpatterns having one more node than P , and then check whether there is a fre-

quent superpattern P ′ s.t. Lroot(P) = Lroot(P |P ′). For maximality, we just need

to check if the superpattern P ′ is frequent. Although this method does not need to

store any discovered patterns, it has to enumerate a large number of patterns, and

16

it is possible that a big number of superpatterns might be repeatedly generated and

checked throughout the mining process.

Therefore, we develop a method which does not have the drawbacks of the

techniques above. During the frequent pattern mining process, this method iden-

tifies a subset of frequent patterns which is a superset of closed patterns, and are

called locally closed patterns. A frequent pattern P is locally closed if its root

occurrence list is not equal to that of any pattern which can be obtained by join-

ing P (as a left or right operand) with a pattern from its class. A pattern P is

locally maximal if there are no canonical patterns in the class [P]. Obviously, a

pattern which is not locally closed (or locally maximal) is not closed (or maximal).

Consequently, we can find the “globally” closed patterns, by checking only locally

closed patterns for closedness. Maximal patterns can be found similarly. This way,

the search is narrowed to only those potentially closed (or maximal) patterns. Pro-

cedure MineEmbPatterns of Fig. 7 implements this method opportunistically.

Pruning non-closed patterns eagerly. In order to prune non-closed patterns, we

maintain a set C of all the patterns that are found to be closed w.r.t. frequent pat-

terns discovered so far. Set C is initially empty. When all the possible expansions

of a current pattern P have been processed and P has been found to be locally

closed, it is compared with patterns in C. It is added to C, if there is no pattern

Q in C which is a proper superpattern of P and Lroot(P) = Lroot(P |Q). At

the same time, patterns Q in C that are sub-patterns of P and satisfy the property

Lroot(Q) = Lroot(Q|P) are removed from C. During the pattern comparison pro-

cess, any pattern that is found to be a subpattern of another pattern is characterized

as non-maximal. Procedure CheckClosedMaxSubpattern of Fig. 7 implements

this process.

4.2 The Closed Embedded Tree Pattern Mining Algorithm closedEmbTM-

eager

We describe below the closed embedded tree pattern mining algorithm which checks

for closedness eagerly. The algorithms is called closedEmbTM-eager and is shown

in Fig. 7. Algorithm closedEmbTM-eager first generates frequent 1-patterns (set

F1) and 2-patterns (set F2). The equivalence class-based expansion technique

(Section 3.1) is used to recursively constructs larger patterns by expanding each

2-pattern ∈ F2 in a depth-first manner. While generating the patterns, closedEmb-

TM-eager uses the eager pattern closedness checking method described in Sec. 4.1

for reducing the pattern search space.

The outer procedure calls MineEmbPatterns on each frequent 2-pattern

(lines 4-5). MineEmbPatterns confirms that a pattern P i
x is in canonical form

before expanding it (line 2). Subsequently, pattern P i
x is expanded through a join

with each pattern P j
y ∈ [P] (if this is possible) and the occurrence list set of every

join result is computed by evoking function computeEmbOL (lines 5-7). Func-

tion computeEmbOL computes the embedded occurrence lists for all the pattern

nodes. It is an variation of the function computeEmbOL introduced in [31, 36]

17

Input: minsup and set L of inverted lists of tree T .

Output: set C of frequent closed and set M of frequent maximal embedded

k-patterns in T (k > 1).

1. F1 := {frequent 1-patterns};

2. F2 := {classes [P] of frequent 2-patterns};

3. C := ∅;

4. for (every [P] ∈ F2) do

5. MineEmbPatterns([P]);
6. M := {P | P ∈ C and P.isMax = true}

Procedure MineEmbPatterns(Equivalence class [P])
1. for (each P i

x ∈ [P]) do

2. if (P i
x is in canonical form) then

3. P i
x.isLocallyClosed := true;

4. [P i
x] := ∅;

5. for (each P j
y ∈ [P]) do

6. for (each expansion outcome Q of P i
x ⊗ P j

y) do

7. OL(Q) := computeEmbOL(Q, P i
x, P j

y , OL(P i
x), OL(P j

y));
8. if (Q is frequent) then

9. add Q to [P i
x];

10. let Lri ,Lrj , LrQ be the emb. root occur. lists of P i
x, P j

y and Q, respec-

tively;

11. if (LrQ = Lri) then

12. P i
x.isLocallyClosed := false;

13. if (LrQ = Lrj) then

14. P j
y .isLocallyClosed := false;

15. if (P i
x.isLocallyClosed is true) then

16. CheckClosedMaxSubpattern(P i
x);

17. MineEmbPatterns([P i
x])

Procedure CheckClosedMaxSubpattern(P)

1. for (each Q ∈ C) do

2. if (Q ⊑e P) then

3. Q.isMax := false;

4. if (L(Q) = L(Q|P)) then

5. remove Q from C;

6. else if (P ⊑e Q) then

7. P.isMax := false;

8. if (L(P) = L(P |Q)) then

9. P.isClosed := false;

10. if (P.isClosed) then

11. add P to C;

Figure 7: Algorithm closedEmbTM-eager for mining closed embedded tree pat-

terns.

18

for computing the pattern support extended so that it computes the embedded oc-

currence lists of all the nodes of the pattern and not only the embedded occurrence

list of the root of the pattern. Patterns that are discovered to be frequent are in-

cluded in the class [P i
x] under construction (line 9). Also, P i

x and P j
y can possibly

be marked as non-locally closed (lines 12 and 14). After all patterns P j
y have been

joined with P i
x, the class [P i

x] comprises all frequent patterns which share the com-

mon immediate prefix P i
x. At this time, if P i

x has not been marked as non-locally

closed, MineEmbPatterns calls procedure CheckCloMaxSubpattern on P i
x

to prune non-closed patterns (lines 15-16). Finally, MineEmbPatterns is re-

cursively called on [P i
x] to extract bigger frequent patterns which have a common

prefix P i
x (line 17). This process iterates recursively till all frequent patterns are

produced.

5 A Search Space Pruning Algorithm

Despite the early pattern closedness checking, Algorithm closedEmbTM-eager may

generate numerous intermediate patterns which do not expand to become closed

patterns. This motivates the need for developing an algorithm which exploits tech-

niques for further pruning the generation of such non-promising intermediate pat-

terns. We start by introducing these search space pruning techniques.

5.1 Pattern Search Space Pruning Techniques

Ordering the search space tree. In order to introduce our search space pruning

rules, we impose an order on the search space tree (Section 3.1). We first define a

linear order ≤ on tree pattern representations. Let there be a linear order ≤ on the

labels of nodes in the input data tree. Let P1 and P2 be two tree patterns represen-

tations whose roots are r1 and r2, respectively, and let cr1
1
, . . . , cr1m and cr2

1
, . . . , cr2n

be, respectively, the lists of the children of r1 and r2. If x is a node in a tree, st(x)
denotes the subtree (tree pattern representation) rooted at node x. Then, P1 ≤ P2

iff:

• lb(r1) < lb(r2), or

• lb(r1) = lb(r2), and either: (a) n ≤ m and st(cr1i) = st(cr2i), ∀i ∈ [1, n], i.e.,

P2 is equal to, or a prefix of P1,or (b) ∃j ∈ [1,min(m,n)] s.t. st(cr1i) = st(cr2i),
∀i, i < j, and st(cr1j) < st(cr2j).

A pattern search tree becomes ordered when we enforce the linear order ≤ on

sibling patterns of the tree. A pattern is created before its right sibling patterns in

the ordered search space tree.

Our pruning rule is based on the observation that if it is known that a generated

pattern and all (or some) of its descendant patterns in the pattern search tree are

not closed, then these descendants need not be generated at all (they can be pruned

from the pattern search tree). Our pruning rules are expressed using the concepts

19

of child and cousin surrogates introduced below.

Child and cousin surrogates. We start by defining child surrogates. We first

define the concept of occurrence equivalent patterns. Let P be an embedded sub-

pattern of a pattern P ′. If e and e′ are embeddings of P and P ′ to a data tree T ,

respectively, e′ is an extension of e if there exists an embedding m of P into P ′ s.t.

e(X) = e′(m(X)), for every node X in P .

Definition 5.1 (Pattern occurrence equivalence) Let P be an embedded subpat-

tern of P ′, and let M(P,P ′) represent the set of possible embeddings from P to P ′.

Patterns P and P ′ are occurrence equivalent iff for every embedded occurrence e
of P to T there exists an embedded occurrence of P ′ to T which is an extension to

e for some m ∈ M(P,P ′). We use the notation P ≡ P ′ for occurrence equivalent

patterns P and P ′.

The concept of occurrence equivalence was first introduced in [41] for mining

induced subgraphs, and was also later used in [6], with a different name, for min-

ing induced subtrees. Our definition generalizes these definitions, as it considers

patterns related through embeddings not merely isomorphisms.

Since non-canonical patterns are not further expanded, we focus on finding

canonical patterns. We call an expansion “canonical” if the expansion outcome is a

canonical pattern. In the following discussion, except when stating differently, we

assume canonical expansions.

Consider the example of Fig. 8. In this figure, focus on the data tree T and

the frequent patterns (assuming minimum support 2) P0 = A,P1 = A//B,P2 =
A//C , and P3 = A//D shown in Fig. 8(a). One can see that the equivalence

class [A] of A is {A//B,A//C,A//D}. Let’s now look at a property of patterns

P1 = A//B and P2 = A//C in [A]. Observe that in every embedding of pattern

P2 = A//C to the T , B is an ancestor of C below node A in the data tree. In other

words, every time P2 has an embedding to T , pattern Q1 = P1⊗cP2 = A//B//C
also has an embedding to T which coincides with P2 on their common part (nodes

A and C). This means that P2 ≡ Q1. Fig. 8(b) shows the occurrence sets OC(P2)
and OC(Q1) of P1 and Q1, respectively.

Further, let’s see another property of patterns P1 and P2 in [A]. Consider pat-

tern P3 = A//D ∈ [A] shown in Fig. 8(c). It is, P2 < P3. Observe that in every

embedding of the pattern P2 ⊗c P3 (or P2 ⊗s P3) to T , node B is an ancestor of

node C below the common part of P2 = A//C and P3 = A//D (which is node

A) in the data tree. In other words, every time P2 ⊗c P3 (resp. P2 ⊗s P3) has an

embedding to T , pattern Q1 ⊗c Q2 (resp. Q2 ⊗s Q3) also has an embedding to T
which coincides with P2 ⊗c P3 (resp. P2 ⊗s P3) on their common part (nodes A,

C and D). That is, (P2 ⊗c P3) ≡ (Q1 ⊗c Q2) (resp. (P2 ⊗c P3) ≡ (Q1 ⊗c Q2)
). When this property holds for patterns P1 and P2 not only in relation to pattern

P3 but also in relation to every pattern Pz (P2 ≤ Pz) in the class [A] in which P1

and P2 belong, we say that P1 = A//B is a surrogate pattern of P2 = A//C . A

formal definition follows.

20

1 2 1

1 3 2

1 2 3

1

1 1

3

2

2

2

C

C

S

2 3

C

2 3

S

1 2

2 1

C

1 2

1 2 3

2 1 1 2 2

1 1 1 1 2 3 2

Figure 8: An example of child surrogate: P1 is a child surrogate of both P2.

Definition 5.2 Consider two distinct patterns P i
x and P i

y in the class [P], such that

P i
x < P i

y , and let Q be the child expansion of Px with Py (Q = P i
x ⊗c P

i
y). We say

that P i
x is a child surrogate of P i

y , if:

(a) P i
y ≡ Q, and

(b) for any P i
z ∈ [P] such that P i

y ≤ P i
z , (P i

y⊗sP
i
z) ≡ (P i

x⊗cP
i
y)⊗s (P

i
x⊗cP

i
z)

or (P i
y ⊗s P

i
z) ≡ (P i

x ⊗c P
i
y)⊗s (P

i
x ⊗s P

i
z).

Example 5.1 As mentioned above, Fig. 8 shows an example of a child surrogate:

P1 is a child surrogate of P2. Fig. 9 shows a non-example of a child surrogate:

P1 is not a child surrogate of P2. Indeed, as shown in the figure even though

the condition (a) of Definition 5.2 is satisfied, there is pattern P4 = A//E in

the class [A] such that P2 > P4, (P2 ⊗s P4) 6≡ (P1 ⊗c P2) ⊗s (P1 ⊗c P4) and

(P1 ⊗s P4) 6≡ (P1 ⊗c P2)⊗s (P1 ⊗s P4). That is, condition (b) of Definition 5.2 is

violated.

If P i
x is a child surrogate of P i

y then, clearly, P i
y is not closed and the same is

true for any canonical expansion (child or cousin) of P i
y . We will show later that

every node in the pattern tree rooted at P i
y is also not closed and therefore, these

nodes need not be generated.

Analogously to child surrogates, we define cousin surrogates.

Definition 5.3 Consider two distinct patterns P i
x and P j

y , i ≥ j, in the class [P],
such that P i

x < P j
y , and let Q be the cousin expansion outcome of P i

x with P j
y

(Q = P i
x ⊗s P

j
y). We say that P i

x is a cousin surrogate of P j
y , if:

21

1
4 2

1

1 1

2

2

2

2

1 4 3

1 2

1

S

2 4

S

1 3

C

C

S

S

2 4

S

1
4

2 1

2 1 1 2 2

1 1 1 1 2 3 2

2 1 1 1

3 1 2 1 2 3 2

4 1 1 2 2

1 2 3 4

1 2 3 4

S

2 4

c

1 3

Figure 9: A non-example of child surrogate: P1 is not a child surrogate of P2.

(a) P j
y ≡ Q, and

(b) for any P k
z ∈ [P], such that P j

y ≤ P k
z , P j

y⊗sP
k
z ≡ (P i

x⊗sP
j
y)⊗s(P

i
x⊗sP

k
z).

Example 5.2 Consider the data tree T of Fig. 10(a) and the frequent patterns (as-

suming minimum support 2) P = A,P1 = A//B,P2 = A//C,P3 = A//D,P4 =
A//E, and P5 = A//F . The equivalence class [A] of A is {P1, P2, P3, P4, P5}.

Pattern P1 is a cousin surrogate of P4 since, as shown in Fig. 10(b), both con-

ditions of Definition 5.3 are satisfied: (1) P4 ≡ Q2 (= P1 ⊗ P4), and (2) for

P5 ∈ [A] (P5 is the only pattern in the class [A] which follows P4), P4 ⊗s P5 ≡
(P1 ⊗s P4) ⊗s (P1 ⊗s P5). Note that P4 ⊗c P5 does not have any occurrences in

the data tree T .

In contrast, pattern P1 is not a cousin surrogate of P2. Indeed, as shown in

Fig. 10(c), even though P2 ≡ Q3 (= P1 ⊗ P2), for the pattern P3 in the class

[A] (P1 ≺ P3), P2 ⊗s P3 6≡ (P1 ⊗s P2) ⊗s (P1 ⊗s P3). That is, condition (2) of

Definition 5.3 is not satisfied.

Under certain circumstances, checking for cousin surrogates can be simplified

as the next proposition shows.

22

1 2 2

1 4 1

1

1 2

2

22

S

S

2 3

S

2

S

4 5

S

1

S

1 2 3 4 5

1 2

3 4 5

4 1 1 2 2

1 1 1 1 2 2 2

2 1 1 2 2 2 1 1 1 2 2 2

Figure 10: Examples and non-examples of cousin surrogates: P1 is not a cousin

surrogate of P2, but it is a cousin surrogate of P4.

Proposition 5.1 Consider two distinct patterns P i
x and P j

y , i ≥ j, in the class [P],
such that P i

x < P j
y . If P j

y ≡ P i
x ⊗s P

j
y , and for any P k

z ∈ [P] such that P j
y < P k

z ,

we have i > k, then P i
x is a cousin surrogate of P j

y .

Example 5.3 Consider the data tree T of Fig. 11(a) and the frequent patterns

(assuming minimum support 2) P,P1, P2, and P3. The equivalence class [P] of

P = A//B is {P1, P2, P3}. Patterns P1 and P2 satisfy condition (a) of Definition

5.3 as P2 ≡ P1 ⊗s P2. There is only one pattern (pattern P3) in [P] which follows

pattern P1 (P1 < P3). Observe that the position of the rightmost leaf of P3 (po-

sition 0) is inferior to the position of the rightmost leaf of P1 (position 1). In this

case, we can conclude that condition 2 of definition 5.3 is satified without checking

(and that P1 is a cousin surrogate of P2). Indeed, in every occurrence of P2⊗s P3,

D occurs under B in T (P2 ⊗c P3 does not have any occurrence in T) .

Pattern search tree pruning. We exploit the concepts of child and cousin surro-

gates to design a technique which allows pruning branches (subtrees) of patterns

from the pattern search tree. We start by providing a lemma.

Lemma 5.1 If a pattern has a child or a cousin surrogate, then neither itself nor

anyone of its (child or cousin) expansion can be closed.

Based on lemma 5.1, we design a pruning rule:

Prunning Rule: If a pattern has a child or cousin surrogate, then none of its de-

scendants in the pattern search tree needs to be generated.

The correctness of the prunning rule is shown by the next proposition.

23

1 2 1

S

S
S

2 3

1 2

1 2 3

1 2

3

2 1 1 1 2 2 2

1 1 1 1 1 2 2 2 2
1

1

2

2 4

21

3 2

3

3

Figure 11: The rightmost leaf position of P1 is larger than that of P3 : P1 is a

cousin surrogate of P2.

Proposition 5.2 If a pattern has a child or a cousin surrogate, then neither itself

nor anyone of its descendants in the pattern search tree can be closed (or maximal).

For instance, in the example of Fig. 8, pattern P1 is shown to be a child sur-

rogate of pattern P2. Therefore, P2 does not need to be expanded: none of its

descendants will be closed (or maximal). The same holds for pattern P4 in the

example of Fig. 10 since it was shown there that pattern P1 is a cousin surrogate

of P4.

5.2 The Closed and Maximal Embedded Pattern Mining Algorithm closedEmbTM-prune

We now present closedEmbTM-prune, an efficient algorithm which allows extract-

ing all closed and maximal embedded frequent patterns. The pseudo-code for

closedEmbTM-prune for patterns with at least two nodes appears in Fig. 12. The

main computation is performed by Procedure MineClosedMaxEmbPatterns called

on frequent 2-patterns (Line 3-4). While the high level structure of MineClosed-

MaxEmbPatterns is similar to Procedure MineEmbPatterns (Fig. 7), MineClosed-

MaxEmbPatterns comprises several important extensions which are described be-

low.

Class element ordering. As mentioned in Section 5.1, in order to facilitate pattern

pruning, we impose a tree order among sibling nodes in the pattern search tree.

To implement the ordering efficiently, we maintain the elements P i
x in every class

primarily ordered on the position i (in descending order) and secondarily by the

node label x (in ascending order). It is not difficult to see that this class element

ordering coincides with the tree order defined in Section 3.1. Given the sorted

element list of a class, for each pair of elements, the equivalence class expansion

process first tries to apply child expansion (Lines 7-8), and then cousin expansion

(Lines 10-11). The class under expansion is associated with two lists for storing the

outcomes of child and cousin expansions. The expansion outcomes are added into

24

Input: frequency threshold minsup and inverted lists L of tree T .
Output: set C of the closed embedded patterns, set M of the maximal embedded
patterns in T which have at least two nodes.

1. F2 := {classes [P] of frequent 2-patterns};

2. C := ∅;

3. for (each [P] ∈ F2) do

4. MineClosedMaxEmbPatterns([P], C);

5. M := {P | P ∈ C and P.isMax = true}
6. return C, M;

Procedure MineClosedMaxEmbPatterns(Pattern equivalence class [P], pattern set C)

1. for (each P i
x ∈ [P] in ascending order) do

2. if (P i
x is non-canonical or a cousin surrogate of P i

x has been identified using Prop.

5.1) then

3. continue;

4. [P i
x] := ∅;

5. for (each P j
z ∈ [P] in ascending order) do

6. ComputeExpansion(P i
x, P j

z , P i
x ⊗c P

j
z , [P i

x]);
7. ComputeExpansion(P i

x, P j
z , P i

x ⊗s P
j
z , [P i

x]);
8. if (i = j and P i

x ≤ P j
z) then

9. for (every P j
y ∈ [P] s.t. P i

x < P j
y ≤ P j

z) do

10. if (P i
x is in the child candidate list of P j

y , and P j
z violates the conditions of

Prop. 5.3) then

11. remove P i
x from the child candidate list of P j

y ;

12. if (P i
x is in the cousin candidate list of P j

y , and P j
z violates the conditions

of Prop. 5.4) then

13. remove P i
x from the cousin candidate list of P j

y ;

14. if (P i
x.isLocallyClosed is true) then

15. CheckClosedMaxSubpattern(C, P);

16. if (no pattern in the candidate child and cousin surrogate lists of P i
x is a surrogate

of P i
x) then

17. MineClosedMaxEmbPatterns([P i
x], C)

Procedure ComputeExpansion(P i
x, P j

y , Q, [P i
x])

1. OL(Q) := computeEmbOL(Q, P i
x, P j

y , OL(P i
x), OL(P j

y));
2. if (OL(Q) is frequent) then

3. add Q to [P i
x];

4. if (Q is in canonical form) then

5. FindSurrogateCandidate(P i
x, P j

y , Q);

Figure 12: Closed and maximal embedded pattern mining Algorithm

closedEmpTM-prune.
their corresponding lists in the order they are generated. After all the expansion

operations for the current class are finished, the cousin expansion list is appended

to the child expansion list. This expansion process guarantees that the candidate

generation phase returns an ordered set of patterns (no explicit ordering is needed).

Pattern expansion pruning. The pruning rule presented above is applied through-

out the pattern mining process. The pruning rule requires identifying child/cousin

25

surrogates of patterns during the mining process. In order to determine whether a

given pattern P has a child or cousin surrogate, we first need to identify a pattern

preceding1 P which satisfies condition (a) in the definition 5.2 or 5.3. Then we

expand P with each of the patterns that follow P in the class ordering, in order to

check if condition (b) of definitions 5.2 and 5.3 is satisfied. Proposition 5.1 allows

identifying a cousin surrogate of P without exhaustively expanding P.

Improving the pruning process. Next, we introduce two propositions which can

help avoiding part of the computation while determining child and cousin surro-

gates. Let ΠP i
x
(OC(P i

x ⊗c P
i
y)) denote the projection of the embedded occurrence

set OC(P i
x ⊗c P

i
y) on the attributes corresponding to the nodes of P i

x.

Proposition 5.3 If P i
x is a child surrogate of P i

y then for any P i
z ∈ [P] such that

P i
y < P i

z and ΠP (P
i
y) = ΠP (P

i
z), ΠP i

x
(OC(P i

x ⊗c P
i
y)) ⊆ ΠP i

x
(OC(P i

x ⊗c P
i
z))

or ΠP i
x
(OC(P i

x ⊗c P
i
y)) ⊆ ΠP i

x
(OC(P i

x ⊗s P
i
z)).

Going back to the example of Figure 9, we can see that the conditions of Propo-

sition 5.3 are not satisfied when P i
x = P1, P i

y = P2 and P i
z = P4. Therefore, we

can conclude that P1 is not a child surrogate of P2 without recurring to exhaustively

checking the conditions of Definition 5.2.

Proposition 5.4 If P i
x is a cousin surrogate of P i

y , then for any P i
z ∈ [P] such that

P i
y < P i

z , ΠP i
x
(OC(P i

x ⊗s P
i
y)) is disjoint from both ΠP i

x
(OC(P i

x ⊗c P
i
z)) and

ΠP i
x
(OC(P i

z ⊗c P
i
x)).

In the example of Fig. 10, the conditions of Proposition 5.4 are not satisfied

when P i
x = P1, P i

y = P2 and P i
z = P3. Therefore, we can conclude that P1 is

not a child surrogate of P2 avoiding the exhaustive checking of the conditions of

Definition 5.3.

Algorithm description. We describe now in more detail how the pruning rule is in-

tegrated into the mining process. Let P i
x be the pattern under consideration in class

[P]. Pattern P i
x is not expanded if it is non-canonical or a cousin surrogate of it

has been identified earlier using Proposition 5.1 (Lines 2-3 of MineClosedMaxEm-

bPatterns). Otherwise, Procedure ComputeExpansion is invoked to compute the

joins P i
x ⊗ P k

z of P i
x with a patern P k

z in [P] (Lines 6-7). Procedure ComputeEx-

pansion, in turn, calls computeEmbOL which computes the embedded occurrence

lists of the join outcome. Let Q denote the outcome of P i
x ⊗ P j

z . If Q is frequent

and canonical, CompExpansion goes on to check, via a call to FindSurrogateCan-

didate, shown in Figure 13, whether: (1) P i
x and P j

z are locally closed (Lines 2-5),

and (2) P i
x and P j

z satisfy Condition (a) of the child/cousin surrogate definition

(Line 6). To facilitate this checking, each pattern in an equivalence class is associ-

ated with two lists recording its child and cousin surrogate candidates (Lines 8 and

1We say that a pattern Q precedes a pattern P , (and that P follows Q) in the ordered search space

tree if Q ≤ P .

26

Procedure FindSurrogateCandidate(P i
x, P j

y , Q)

1. let Lri ,Lrj , LrQ be the embedded root occurrence lists of P i
x, P j

y and Q, respectively;

2. if (LrQ = Lri) then

3. P i
x.isLocallyClosed := false;

4. if (LrQ = Lrj) then

5. P j
y .isLocallyClosed := false;

6. if (P j
y ≡ Q) then

7. if (Q = P i
x ⊗s P

j
y) then

8. add P i
x to the cousin surrogate candidate list of P j

y ;

9. if (i > j) then

10. mark P i
x as a cousin surrogate of P j

y ;

11. else if (Q = P i
x ⊗s P

j
y) then

12. add P i
x to the child surrogate candidate list of P j

y ;

Figure 13: Find candidate child and cousin surrogates.

12). Pattern P i
x can be determined to be a cousin surrogate when the condition of

Proposition 5.1 is satisfied (Lines 9-10). A child/cousin surrogate candidate added

by FindSurrogateCandidate to a candidate list may be removed later, when a pat-

tern in the same class disqualifies it (Lines 8-13 of MineClosedMaxEmbPatterns).

The patterns in the class [P i
x] are expanded only when no candidate in the child and

cousin surrogate candidate lists of P i
x is indeed a surrogate of P i

x (Lines 16-17 of

Procedure MineClosedMaxEmbPatterns).

Theorem 5.1 Algorithm closedEmpTM-prune produces all and only closed and

maximal embedded tree patterns.

Proof. Algorithm closedEmpTM-prune correctly identifies all the closed frequent

embedded tree patterns since its search is based on a complete traversal of the pat-

tern search tree. The only branches that are pruned are those that either do not have

sufficient support or those that have a child or cousin surrogate (Proposition 5.2 es-

tablishes the correctness of the latter pruning). In addition, throughout the mining

process, closedEmpTM-prune maintains a set C that stores all the locally closed

patterns that are found to be closed w.r.t. frequent patterns discovered so far. A

locally closed pattern P is inserted into C only if Procedure CheckClosedMaxSub-

pattern cannot find any embedded superpattern in C which violates the closedness

of P . If P is inserted into C, all embedded subpatterns of P which Procedure

CheckClosedMaxSubpattern identifies as non-closed are eliminated from C. The

closedness checking process also identifies and marks non-maximal patterns in C.

When the mining process terminates, C contains exactly all the closed patterns,

while the non-marked patterns in C are the maximal patterns. �

27

6 Experimental Evaluation

Algorithms in comparison. To evaluate our approach, we have designed different

experiments. We implemented and compared our algorithms closedEmbTM-eager

and closedEmbTM-prune. To the best of our knowledge, there is no previous algo-

rithm for mining closed and maximal embedded patterns from data trees. There-

fore, we compared the performance of our two algorithms with a baseline algorithm

which first computes the embedded tree patterns and then filters out non-closed (or

non-maximal) ones. We call this post-processing algorithm closedEmbTM-base. In

order to compute frequent embedded patterns, closedEmbTM-base extends the al-

gorithm embTM [31, 36] which mines frequent embedded patterns from data trees

so that it computes the occurrence lists not only of the root but also of the other

nodes of a pattern. The pattern node occurrence lists are used in the post-processing

phase for checking pattern closedness.

In order to contrast the performance of mining closed embedded patterns with

mining frequent embedded pattrens, we also compare these three algorithms with

sleuth [42], which is a state-of-the-art unordered embedded tree mining algorithm.

The goal of this algorithm was to mine embedded patterns from small tree collec-

tions. In order to make the comparison meaningful, sleuth was slightly altered so

that it mines patterns from a single large tree. This was achieved by having sleuth

adopting root frequency instead of document frequency as the support of a pattern.

The performance of sleuth is not affected by this adaptation. In fact, by design,

all the embedded occurrences of a pattern under consideration in a data tree are

computed by sleuth. Note that algorithm embTM was shown to outperform Sleuth

[31, 36] but we included also Sleuth in this comparison since embTM is employed

in closedEmbTM-base.

6.1 Experimental Setting

We implemented our approach in Java. For the experiments we ran JVM 1.8 on a

workstation having an Intel Xeon CPU 3565 @3.20 GHz processor.

Datasets. For the experiments we employed three datasets with diverse structural

features which are popular in pattern mining. The Table 2 below summarizes teir

main characteristics.

Dataset Max/Avg depth Tot. #nodes #labels #paths

XMark 13/6.4 180769 24245 138840

DBLP 7/3.6 7146542 941664 6410975

CSlogs 86/4.4 772188 13355 59691 (#trees)

Table 2: Dataset statistics.

The XMark2 dataset models an auction website and has been used as a bench-

mark. The dataset has many regularly structured patterns and is deep. It also

2
http://xml-benchmark.org

28

 0

10000

20000

30000

40000

50000

60000

70000

80000

 0 2 4 6 8 10 12 14 16 18

N
u

m
b

er
 o

f
F

re
q

u
en

t
P

at
te

rn
s

Pattern Size

(a) Number of frequent embedded patterns vs.

sizes

 0

 5

10

15

20

25

 2 4 6 8 10 12 14 16 18

N
u

m
b

er
 o

f
P

at
te

rn
s

Pattern Size

closed
max

(b) Number of closed and max patterns vs.

sizes

10
2

10
3

10
4

10
5

 600 700 800 900 1000 1100

N
u
m

b
er

 o
f

P
at

te
rn

s

Minimum Support

frequent
closed

max

(c) Number of patterns vs. minsup

Figure 14: Pattern distributions on XMark.

comprises few recursive nodes (i.e., nodes which coexist on the same path with

other nodes having the same label).

The DBLP3 dataset provides bibliographic information and is a real dataset.

The dataset is bushy, flat and shallow. It comprises few regularly structured pat-

terns. As XMark, it includes very few recursive elements.

The CSlogs4 dataset is presented in [43] and comprises real data. It contains

navigation trees of different users on the website of the RPI CS department. The

dataset involves 13355 distinct web pages which are accessed in 59,691 trees (with

an average tree size of 12.94).

Pattern distribution. To get a better understanding of the characteristics of the

datasests, we show the distribution of frequent, closed, and maximal embedded

patterns on the three datasets in Figs. 14, 15, and 16. The distribution of fre-

quent embedded patterns in relation to pattern size is shown in Figs. 14(a)-(b),

15(a), and 16(a) (the support threshold used is the lowest one considered on the

three datasets). In the case of XMark, as the embedded patterns are subtantially

more numerous than the closed and maximal patterns, we show the distributions

of these patterns in two different figures (Figs. 14(a) and 14(b)). The number of

frequent embedded patterns are shown in figures 14(c), 15(b), and 16(b). Different

support thresholds on the three datasets are considered. DBLP and XMark both

exhibit an almost symmetric distribution. The mean values of the distributions

3
http://dblp.uni-trier.de/xml/

4
http://www.cs.rpi.edu/∼zaki/software/

29

 0

50

100

150

200

250

300

 0 2 4 6 8 10

N
u

m
b

er
 o

f
P

at
te

rn
s

Pattern Size

frequent
closed

max

(a) Number of patterns vs. sizes

10
0

10
1

10
2

10
3

 70 80 90 100 110 120 130 140 150

N
u

m
b

er
 o

f
P

at
te

rn
s

Minimum Support (k)

frequent
closed

max

(b) Number of patterns vs. minsup

Figure 15: Pattern distributions on DBLP.

 0

50

100

150

200

250

300

350

 0 2 4 6 8 10 12 14 16 18

N
u

m
b

er
 o

f
P

at
te

rn
s

Pattern Size

frequent
closed

max

(a) Number of patterns vs. sizes

 500

 1000

 1500

 2000

 300 400 500 600 700 800

N
u
m

b
er

 o
f

P
at

te
rn

s

Minimum Support

frequent
closed

max

(b) Number of patterns vs. minsup

Figure 16: Pattern distributions on CSlogs.

though are different. The distribution of CSlogs is right-skewed. Many patterns

in CSlogs are of small size. XMark has substantially larger frequent embedded

patterns, and considerably more patterns than the other two datasets. The maxi-

mal patterns are contained in the closed patterns and both of them are contained

in the set of frequent embedded patterns. We observe that, on XMark and DBLP,

the closed patterns and maximal patterns are substantially less numerous than the

frequent embedded patterns; on CSlogs, the number differences among the three

pattern types are moderate. As we show below, the distribution of patterns affects

the effectiveness of the closed pattern pruning rules.

6.2 Execution time and memory usage.

Figures 17, 18 and 19 show the the total elapsed time and the memory footprint

varying the support threshold of the four algorithms on XMark, DBLP and CSlogs,

respectively. The Y-axis of Figs. 17(a) and 19(a) is in a logarithmic scale. Table 3

shows statistics for patterns generated and evaluated by closedEmbTM-prune and

closedEmbTM-eager at the two smallest support levels tested on each dataset. The

column #computed records the number of generated patterns whose support has

been computed. Columns #lclosed and #lmax record the number of locally closed

and locally maximal embedded patterns, respectively. Note that closedEmbTM-

base computes the same set of frequent and candidate patterns as closedEmbTM-

30

 1

 10

 100

 1000

 10000

 600 700 800 900 1000 1100

T
o
ta

l
T

im
e

(s
ec

)

Minimum Support

sleuth
closedEmbTM-base

closedEmbTM-eager
closedEmbTM-prune

(a) Run time for closed & max. patterns

 500

 1000

 1500

 2000

 2500

 3000

 600 700 800 900 1000 1100

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support

sleuth
closedEmbTM-base

closedEmbTM-eager
closedEmbTM-prune

(b) Memory usage for closed & max. patterns

Figure 17: Performance comparison on XMark for mining closed and maximal

patterns.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 70 80 90 100 110 120 130 140 150

T
o

ta
l

T
im

e
(s

ec
)

Minimum Support (k)

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(a) Run time for closed & max. patterns

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 70 80 90 100 110 120 130 140 150

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support (k)

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(b) Memory usage for closed & max. patterns

Figure 18: Performance comparison on DBLP for mining closed and maximal

patterns.

 1

 10

 100

 1000

 400 600 800 1000 1200 1400 1600 1800

T
o
ta

l
T

im
e

(s
ec

)

Minimum Support

sleuth
closedEmbTM-base

closedEmbTM-eager
closedEmbTM-prune

(a) Run time for clo. & max. patterns

 200

 400

 600

 800

 1000

 1200

 1400

 400 600 800 1000 1200 1400 1600 1800

M
em

o
ry

 U
sa

g
e

(M
B

)

Minimum Support

sleuth
closedEmbTM-base

closedEmbTM-eager
closedEmbTM-prune

(b) Memory usage for closed & max. patterns

Figure 19: Performance comparison on CSlogs for mining closed and maximal

patterns.

eager, but it does not generate locally closed and maximal patterns. The following

observations can be made.

First of all, sleuth runs orders of magnitude slower than the three algorithms

closedEmbTM-base, closedEmbTM-eager and closedEmbTM-prune. On DBLP,

sleuth cannot complete the computation within 12 hours not even at the largest

31

dataset minsup #closed #max.
algorithm cEmbTM-eager algorithm cEmbTM-prune

#computed #freq. #lclosed #lmax. #computed #freq. #lclosed #lmax.

XMark
650 59 34 857820 74722 21064 20343 9370 720 148 123

600 83 49 3834456 334220 87146 86146 30283 286 2080 240

DBLP
80k 56 4 10836 973 668 384 2480 186 60 30

70k 65 5 12282 1103 745 433 2782 213 69 35

CSlogs
260 1479 458 463151 3972 2874 1255 458891 2985 2081 915

250 1732 502 488113 7188 5020 2336 474364 4448 3008 1306

Table 3: Statistics for patterns computed by the algorithms in comparison.

support level tested. In addition, the rate at which the execution time of the three

algorithms increases as the support level decreases is slower compared to sleuth.

The explanation for this big performance difference is not the fact that sleuth com-

putes embedded patterns which are more numerous than closed patterns. Instead, it

is the fact that our algorithms calculate the pattern support more efficiently. sleuth

is forced to record all embedded occurrences of each considered pattern in the data,

and join them. As a consequence, its performance suffers when mining dense data

at low support levels. sleuth is also forced to keep in memory the occurrences of

the considered patterns and this negatively affects memory consumption. Never-

theless, when the number of embedded occurrences at the corresponding support

level is not large, sleuth does not consume too much memory and can complete the

computation within a reasonable amount of time.

Second, closedEmbTM-prune outperforms closedEmbTM-base and closedEmb-

TM-eager on both XMark and DBLP by a great margin, with a speeding factor

of up to 212 and 8 respectively. The large performance gap is due to the large

number of candidate patterns pruned by closedEmbTM-prune on the two datasets.

For instance, as shown in Table 3, on XMark at minsup = 600, the candidate

patterns enumerated and the frequent patterns computed by closedEmbTM-prune

are respectively 37 times and 49 times less than with closedEmbTM-eager (and

closedEmbTM-base). Also, comparing to closedEmbTM-eager, closedEmbTM-

prune reduces the number of locally closed (resp. locally maximal) patterns that

need to go through the closedness (resp. maximality) checking by a factor of 76

(resp. 87). On DBLP, the number of patterns checked and the number of frequent

patterns computed by closedEmbTM-prune are also significantly smaller than with

the other two methods.

The large gap in the number of generated patterns explains also the smaller

memory usage by closedEmbTM-prune on both XMark and DBLP (Figs. 17(b)

and 18(b)). The advantage of memory consumption by closedEmbTM-prune is

more prominent on DBLP. The reason is that DBLP contains a large number of

patterns having repeated siblings. Checking the sibling constraint is more costly

for patterns with repeated siblings. closedEmbTM-prune is able to skip computing

the support of many of those patterns. These results demonstrate the effectiveness

of the pruning techniques used by closedEmbTM-prune, which allow skipping a

large number of non-closed patterns from the pattern search space.

32

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

T
o

ta
l

T
im

e
(s

ec
)

Dataset ID

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(a) Run time

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8 9 10

M
em

o
ry

 U
sa

g
e

(M
B

)

Dataset ID

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(b) Memory usage

Figure 20: Scalability comparison for mining closed and maximal patterns on

XMark with increasing size (minsup = 1800).

On CSlogs, closedEmbTM-prune runs slightly slower than closedEmbTM-eager

until minsup reaches 400. After that, closedEmbTM-prune catches up and runs

faster as minsup becomes smaller, with a speedup factor of 2 when minsup is 200.

A similar trend can be observed on memory usage: closedEmbTM-prune consumes

a bit more memory than closedEmbTM-eager when minsup exceeds 400; after

that, its memory usage becomes similar to that of closedEmbTM-eager. This can

be explained by the fact that finding the child and cousin surrogates for the pruning

rules incur an overhead. When the benefit from the reduction on the number of

patterns considered due to pruning exceeds the pruning overhead, closedEmbTM-

prune outperforms closedEmbTM-eager.

The time and memory performance of closedEmbTM-eager and closedEmbTM-

base are in general very close. However, closedEmbTM-eager has a noticeable per-

formance advantage over closedEmbTM-base once the support level becomes very

small. Note that the frequent patterns generated by the two algorithms are exactly

the same. By maintaining a set of locally-closed patterns, closedEmbTM-eager

succesfully reduces the total number of pair-wise pattern containment checking to

identify closed patterns. With closedEmbTM-base, the entire set of frequent pat-

terns, whose size can be exponential in the size of the locally-closed pattern set,

is checked for closedness. In general, when the frequent pattern set examined is

not very large, the total time spent on pattern closedness checking is very small.

For instance, on XMark, when the frequent patterns are less than 100k, the closed-

ness checking time does not even represent 2.6% of the total execution time of

closedEmbTM-base. However, this percentage jumps to 31.6% when minsup is

600 and the number of frequent patterns is around 430k. Also, at this point, the

memory consumption of closedEmbTM-base exceeds that of closedEmbTM-eager

by a factor of over 7.

6.3 Scalability Comparison

We studied the scalability of closedEmbTM-prune, closedEmbTM-eager and

closedEmbTM-base as the size of the input data on XMark (which is a single large

data tree) and CSlogs (which is a collection of small trees) increases. For the exper-

33

 50

 100

 150

 200

 250

 300

 350

 40 50 60 70 80 90 100

T
o

ta
l

T
im

e
(s

ec
)

of Trees (K)

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(a) Run time

 200

 400

 600

 800

 1000

 1200

 1400

 40 50 60 70 80 90 100

M
em

o
ry

 U
sa

g
e

(M
B

)

of Trees (K)

closedEmbTM-base
closedEmbTM-eager
closedEmbTM-prune

(b) Memory usage

Figure 21: Scalability comparison for mining closed and maximal patterns on

CSlogs with increasing size (minsup = 400).

iments with XMark, 10 XMark trees were generated. The scaling factor parameter

of XMark was set to 0.01, 0.02, . . . , 0.10 and the minsup was fixed at 1800. For

the experiments with CSlogs, seven datasets of different sizes (ranging from 40k

to 100k trees) were generated. The data trees were randomly selected from the

original CSlogs dataset. The minsup was fixed at 400.

The results on XMark (Fig. 20) show that closedEmbTM-base and closedEmbTM-

eager have similar time performance and memory usage, and

closedEmbTM-prune has the best time performance. The execution time of

closedEmbTM-prune progresses smoothly as the input data size increases, whereas

the execution time of the other two algorithms increases sharply. Overall,

closedEmbTM-prune has a speedup factor up to 125 over the other two. Its memory

consumption is also smaller than the other two in all the testing cases.

The results on CSlogs (Fig. 21) show that closedEmbTM-base and closedEmbTM-

eager have similar time performances, while closedEmbTM-prune runs noticeably

faster than the other two when the dataset size reaches and goes above 70k. The

three methods have overall similar memory performances.

7 Related Work

We review in this section related literature and comment on how it relates to our

work. Because of its importance, the problem of extracting tree patterns from

collections of small trees has attracted a lot of attention in recent years. Different

algorithms have been proposed [1, 27, 2, 39, 7, 23, 11, 6, 42, 43, 12, 26, 28, 25, 10,

16, 31, 36], but only a handful of them address the problem of mining unordered

embedded patterns [27, 11, 42, 31, 36]. None of them introduces closed or maximal

unordered embedded tree patterns or discusses pattern summarization.

There are some algorithms [39, 6, 24, 28] which deal with extracting closed or

maximal induced patterns. Recall that induced patterns are based on isomorphisms

which, contrary to embeddings, cannot map pattern edges to paths in the data.

Further, these algorithms are restricted to extracting patterns from collections of

small trees as opposed to extracting patterns from a single large tree. We briefly

34

review these approaches below.

CMTreeMiner [6] mines both closed and maximal frequent patterns from

a set of small trees. This approach exploits a concept called blanket of a pattern

which is the set of all its frequent immediate super patterns. The occurrences of a

pattern under consideration are compared with those of its blanket pattern to deter-

mine whether it is closed or not. In order to reduce the search space, CMTree-

Miner employs heuristic and pruning techniques. Unlike previous algorithms, it

precisely extracts maximal and closed patterns without previously producing all

frequent patterns. Nevertheless, it is restricted on mining only induced patterns.

Two mining algorithms for closed induced ordered patterns are described in [24].

These algorithms combine the pruning techniques of CMTreeMiner with two

different pattern enumeration strategies.

PathJoin [39] operates on a collection of small trees and extracts maximal

unordered induced patterns. PathJoin accepts only datasets where sibling nodes

in the data tree cannot be labeled by the same label. It proceeds by initially dis-

covering all the maximal frequent paths. Candidate frequent tree patterns are then

found by joining the maximal frequent paths. These candidate patterns are then

used to select maximal frequent patterns through a post-processing filtering phase.

This method has a considerable performance penalty, in particular, when there are

many false positive patterns.

DryadeParent [28] also operates on collections of small trees and extracts

closed induced patterns. It proceeds by first computing all closed frequent patterns

of depth one which are called tiles. It then employs a hooking method which

uses these tiles to construct closed frequent patterns. The authors observe that

one parameter that dramatically affects the performance of previous algorithms is

the outdegree of the tree patterns. Therefore, similar to PathJoin, it restricts the

input data trees to those that do not have two sibling nodes with the same label.

Even though this assumption certainly makes the problem easier, it also narrows

the usability of the approach in real cases.

As we have explained in the introduction, the approaches above cannot be

leveraged for mining closed and maximal embedded patterns from a large tree.

There has been only very limited contributions on mining tree patterns from a

single tree or graph. They are restricted to [12, 10, 16] which focus on extracting

from a graph patterns with child edges, and to [31, 36] which leverage homomor-

phisms to extract embedded patterns from a tree. We are not aware of any paper on

efficiently summarizing embedded tree patterns from a single large data tree.

8 Conclusion

Data from many modern applications are represented, exchanged and exported in

tree-structured form. Large tree datasets are continuously produced by those appli-

cations. To produce knowledge from this type of data, we have studied the problem

of summarizing frequent embedded tree patterns from large tree datasets. To the

35

best of our knowledge, this problem has not been investigated by existing studies.

We have introduced the concepts of closed and maximal embedded unordered

tree patterns and studied their properties in the setting of a single large data tree.

We have designed a local closedness checking technique to eagerly eliminate non-

closed patterns. We have further designed pattern search space pruning rules to

proactively detect and prune patterns that do not correspond to closed ones. These

techniques have been integrated into embedded frequent pattern mining algorithms

in order to mine all the maximal and closed embedded frequent patterns from large

tree data. The experimental results on synthetic and real datasets demonstrate that,

on dense datasets, our approach generates a complete closed and maximal pat-

tern set which is substantially smaller than that generated by the embedded pattern

miner, but also runs much faster with negligible overhead on pattern pruning.

Our future work focuses on incorporating user-specified constraints to the pro-

posed approach in order to further reduce the size of the result set and to enable

constraint-based mining of compact sets of frequent embedded tree patterns.

References

[1] T. Asai, K. Abe, S. Kawasoe, H. Arimura, H. Sakamoto, and S. Arikawa. Efficient

substructure discovery from large semi-structured data. In SDM, pages 158–174,

2002.

[2] T. Asai, H. Arimura, T. Uno, and S.-I. Nakano. Discovering frequent substructures

in large unordered trees. In Discovery Science, pages 47–61, 2003.

[3] R. Baca, M. Krátký, T. W. Ling, and J. Lu. Optimal and efficient generalized twig

pattern processing: a combination of preorder and postorder filterings. VLDB J.,

22(3):369–393, 2013.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern

matching. In SIGMOD, pages 310–321, 2002.

[5] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, and K. S. Candan.

Twig2Stack: bottom-up processing of generalized-tree-pattern queries over XML

documents. In VLDB, 2006.

[6] Y. Chi, Y. Xia, Y. Yang, and R. R. Muntz. Mining closed and maximal frequent

subtrees from databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng.,

17(2):190–202, 2005.

[7] Y. Chi, Y. Yang, and R. R. Muntz. Hybridtreeminer: An efficient algorithm for mining

frequent rooted trees and free trees using canonical form. In SSDBM, pages 11–20,

2004.

[8] Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for labelled trees and their

applications in frequent subtree mining. Knowl. Inf. Syst., 8(2):203–234, 2005.

[9] H. Choi, K. Lee, and Y. Lee. Parallel labeling of massive XML data with mapreduce.

The Journal of Supercomputing, 67(2):408–437, 2014.

[10] A. Dries and S. Nijssen. Mining patterns in networks using homomorphism. In SDM,

pages 260–271, 2012.

36

[11] Z. Feng, W. Hsu, and M.-L. Lee. Efficient pattern discovery for semistructured data.

In ICTAI, pages 294–301, 2005.

[12] B. Goethals, E. Hoekx, and J. V. den Bussche. Mining tree queries in a graph. In

KDD, pages 61–69, 2005.

[13] N. Grimsmo, T. A. Bjørklund, and M. L. Hetland. Fast optimal twig joins. PVLDB,

3(1):894–905, 2010.

[14] M. A. Hasan, V. Chaoji, S. Salem, J. Besson, and M. J. Zaki. ORIGAMI: mining

representative orthogonal graph patterns. In (ICDM.

[15] S. Hido and H. Kawano. Amiot: Induced ordered tree mining in tree-structured

databases. In ICDM, pages 170–177, 2005.

[16] A. M. Kibriya and J. Ramon. Nearly exact mining of frequent trees in large networks.

Data Min. Knowl. Discov., 27(3):478–504, 2013.

[17] P. Kilpeläinen. Tree Matching Problems with Applications to Structured Text

Databases. PhD thesis, 1992.

[18] P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J. Com-

put., 24(2):340–356, 1995.

[19] W. Lian, N. Mamoulis, D. W.-L. Cheung, and S.-M. Yiu. Indexing useful structural

patterns for xml query processing. IEEE Trans. Knowl. Data Eng., 17(7):997–1009,

2005.

[20] J. Lu, T. W. Ling, Z. Bao, and C. Wang. Extended XML tree pattern matching:

Theories and algorithms. IEEE Trans. Knowl. Data Eng., 23(3):402–416, 2011.

[21] G. Miklau and D. Suciu. Containment and equivalence for a fragment of xpath. J.

ACM, 51(1):2–45, 2004.

[22] S. Nijssen and J. N. Kok. Efficient discovery of frequent unordered trees. pages

55–64, 2003.

[23] S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a

difference. In KDD, pages 647–652, 2004.

[24] T. Ozaki and T. Ohkawa. Efficient mining of closed induced ordered subtrees in

tree-structured databases. In ICDM Workshops, pages 279–283, 2006.

[25] H. Tan, F. Hadzic, T. S. Dillon, E. Chang, and L. Feng. Tree model guided candidate

generation for mining frequent subtrees from XML documents. TKDD, 2(2):9:1–

9:43, 2008.

[26] S. Tatikonda, S. Parthasarathy, and T. M. Kurç. Trips and tides: new algorithms for

tree mining. In CIKM, pages 455–464, 2006.

[27] A. Termier, M.-C. Rousset, and M. Sebag. Treefinder: a first step towards xml data

mining. In ICDM, pages 450–457, 2002.

[28] A. Termier, M.-C. Rousset, M. Sebag, K. Ohara, T. Washio, and H. Motoda. Dryade-

parent, an efficient and robust closed attribute tree mining algorithm. IEEE Trans.

Knowl. Data Eng., 20(3):300–320, 2008.

[29] C. Wang, M. Hong, J. Pei, H. Zhou, W. Wang, and B. Shi. Efficient pattern-growth

methods for frequent tree pattern mining. In PAKDD, pages 441–451, 2004.

37

[30] Z. Wang and S. Chen. Exploiting common patterns for tree-structured data. In SIG-

MOD, pages 883–896, 2017.

[31] X. Wu and D. Theodoratos. Leveraging homomorphisms and bitmaps to enable the

mining of embedded patterns from large data trees. In DASFAA, pages 3–20, 2015.

[32] X. Wu and D. Theodoratos. Homomorphic pattern mining from a single large data

tree. Data Science and Engineering, 1(4):203–218, 2016.

[33] X. Wu and D. Theodoratos. Template-based bitmap view selection for optimizing

queries over tree data. Int. J. Cooperative Inf. Syst., 25(3):1–28, 2016.

[34] X. Wu, D. Theodoratos, and A. Kementsietsidis. Configuring bitmap materialized

views for optimizing XML queries. World Wide Web, 18(3):607–632, 2015.

[35] X. Wu, D. Theodoratos, and Z. Peng. Efficiently mining homomorphic patterns from

large data trees. In DASFAA, pages 180–196, 2016.

[36] X. Wu, D. Theodoratos, and T. Sellis. From homomorphisms to embeddings: A novel

approach for mining embedded patterns from large tree data. Big Data Research,

2018.

[37] X. Wu, D. Theodoratos, and W. H. Wang. Answering XML queries using material-

ized views revisited. In CIKM, pages 475–484, 2009.

[38] X. Wu, D. Theodoratos, W. H. Wang, and T. Sellis. Optimizing XML queries:

Bitmapped materialized views vs. indexes. Inf. Syst., 38(6):863–884, 2013.

[39] Y. Xiao, J.-F. Yao, Z. Li, and M. H. Dunham. Efficient data mining for maximal

frequent subtrees. In ICDM, pages 379–386, 2003.

[40] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed frequent-pattern sets. In

VLDB, pages 709–720, 2005.

[41] X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In SIGKDD,

pages 286–295, 2003.

[42] M. J. Zaki. Efficiently mining frequent embedded unordered trees. Fundam. Inform.,

66(1-2):33–52, 2005.

[43] M. J. Zaki. Efficiently mining frequent trees in a forest: Algorithms and applications.

IEEE Trans. Knowl. Data Eng., 17(8):1021–1035, 2005.

[44] S. Zhang, Z. Du, and J. T. Wang. New techniques for mining frequent patterns in

unordered trees. IEEE Trans. Cybernetics, 45(6):1113–1125, 2015.

38

APPENDIX

Proposition 3 Consider two distinct patterns P i
x and P j

y , i ≥ j, in the class [P],
such that P i

x < P j
y . If P j

y ≡ P i
x ⊗s P

j
y , and for any P k

z ∈ [P] such that P j
y < P k

z ,

we have i > k, then P i
x is a cousin surrogate of P j

y .

Proof. Clearly condition (a) of Definition 5.3 is satisfied since P j
y ≡ P i

x ⊗s P
j
y .

This occurrence equivalence implies that for every embedding e of P j
y to a data

tree T , there is also an embedding of P i
x ⊗s P

j
y to T which is an extension of e

such that the parent of the image of node y is an ancestor-or-self of the image of

node x in T and the images of node x and node y are not on the same path in T .

To show that condition (b) of Definition 5.3 is also satisfied, we first consider

P j
y ⊗c P

k
z (which means that j = k). Every embedding e′ of P j

y ⊗c P
k
z to T maps

node z to a descendant of the image of node y under e′ in T . For every embedding

e′ of P j
y ⊗c P

k
z , a restriction e′′ of e′ obtained by excluding the mapping of node

z is an embedding of P j
y . Therefore, there is an extension of e′′ which is also an

embedding of P i
x ⊗s P

j
y to T such that the images of node x and node y are not on

the same path in T (and therefore, the images of node x and node z are not on the

same path in T). This extension is also an embedding of (P i
x⊗sP

j
y)⊗c (P

i
x⊗sP

k
z).

That is, P j
y ⊗c P

k
z ≡ (P i

x ⊗s P
j
y)⊗c (P

i
x ⊗s P

k
z).

Let’s now consider P j
y ⊗s P

k
z . Every embedding e′ of P j

y ⊗s P
k
z to T maps the

parent of node z to an ancestor-or-self of the image of the parent of node y under

e′ in T . For every embedding e′ of P j
y ⊗s P

k
z , a restriction e′′ of e′ obtained by

excluding the mapping of node z is an embedding of P j
y . Therefore, there is an

extension of e′′ which is also an embedding of P i
x ⊗s P

j
y to T such that the images

of node x and node y are not on the same path in T . Since i > k, the image of

node x under e′′ is not in the same path as the image of node z under e′ in T .

Consequently, this extension is also an embedding of (P i
x ⊗s P

j
y)⊗s (P

i
x ⊗s P

k
z).

That is, P j
y ⊗s P

k
z ≡ (P i

x ⊗s P
j
y)⊗s (P

i
x ⊗s P

k
z).

Lemma 1 If a pattern has a child or a cousin surrogate, then neither itself nor

anyone of its (child or cousin) expansion outcomes can be closed.

Proof. If a pattern P j
y has a child or a cousin surrogate P i

x, then by Condition (a)

in Definition 5.2 or 5.3, respectively, the pattern is not closed. Also, if a pattern

P j
y has a child or a cousin surrogate P i

x, then by Condition (b) in Definition 5.2 or

5.3, respectively, for any P k
z ∈ [P] such that P j

y ≤ P k
z , all the possible expansion

outcomes on P j
y by P k

z are not closed.

To show that all the possible expansions on P j
y by P k

z are not closed also for

any P k
z ∈ [P] such that P j

y > P k
z , we first observe that the cousin expansion on P j

y

by P k
z is either not possible (when k > j), or the outcome is not canonical (when,

k = j). The child expansion of P j
y by P k

z (which means that k = j) is split in two

cases:

The first case assumes that P i
x is a cousin surrogate of P j

y . Then, the child

39

expansion of P j
y by P k

z can be shown to be non-closed by an argument similar to

the one presented in the proof of Proposition 5.1.

The second case assumes that P i
x is a child surrogate of P j

y (which means that

i = j). By condition (a) of Definition 5.2 for every embedding e of P j
y to a data

tree T , there is also an embedding of P i
x ⊗s P

j
y to T which is an extension of e

such that the parent of the image of node y is a descendant of the image of node x
in T . Every embedding e′ of P j

y ⊗c P
k
z to T (remember that we consider a child

expansion of P j
y by P k

z) maps node z to a descendant of the image of node y under

e′ in T . But then, there is an extension e′′ of e′ which maps node x to an ancestor

of node y in T . Extension e′′ is an embedding of (P i
x ⊗c P

j
y)⊗c (P

i
x ⊗c P

k
z), i.e.,

P j
y ⊗cP

k
z ≡ (P i

x⊗cP
j
y)⊗c (P

i
x⊗cP

k
z). This implies that P j

y ⊗cP
k
z is non-closed.

Therefore, all the possible expansions on P j
y by P k

z are not closed also for any

P k
z ∈ [P] such that P j

y > P k
z .

Proposition 4 If a pattern has a child or a cousin surrogate, then neither itself nor

anyone of its descendants in the pattern search tree can be closed (or maximal).

Proof. Let P i
x be a (child or cousin) surrogate of P j

y . In order to prove Proposi-

tion 4, it suffices to prove that any descendant pattern Q of P j
y in the pattern search

tree has a superpattern Q′, obtained by augmenting Q with a node x, such that

Q ≡ Q′. If P i
x is a child surrogate of P j

y , node x is added in Q as the parent of

node y. If P i
x is a cousin surrogate of P j

y , node x is added in Q as the direct left

sibling of node y (when i = j), or as the leaf node on the path from the left sibling

of node y (when i > j). We will prove this claim by induction on the number of

nodes m added to P j
y to construct Q.

Base Case: m = 1. The base case corresponds to Lemma 5.1 which has been

proven above.

Inductive Case: Assuming that the proposition holds for m ≤ n− 1 (n ≥ 2), we

prove next that it also holds for m = n. Let node z be the m-th node added to P j
y

resulting in pattern Q. Let also S be the pattern before the addition of z.
By the inductive assumption, we know that there is some pattern S′, obtained

by augmenting S with a node x, such that S ≡ S′. We construct a pattern Q′ by

attaching z to S′ in the same position as z was added in Q. We show below that

Q ≡ Q′.

Consider an embedding e of Q extended to a mapping e′ which maps node x to

T so that its restriction obtained by removing node z is an embedding for S′. This

is possible by the induction hypothesis. We show next that e′ is an embedding also

for Q′. In order to do so, we need to prove that if nodes x and z are not on the same

path in Q′, their images under e in T are not on the same path either. If nodes x and

z are not on the same path in Q′, they can have three relative positions in Q′: (1) z
is a descendant of the rightmost sibling of x; (2) z is a descendant of an ancestor

of the parent of x; and (3) z is the rightmost sibling of x. Clearly, in the first two

cases, the images of x and z under e cannot be on the same path. Condition (b) in

Definition 5.2 and 5.3 guarantees that they cannot be on the same path in the third

40

case either. Hence, e′ is an embedding of Q′. Therefore, Q ≡ Q′.

Proposition 5 If P i
x is a child surrogate of P i

y then for any P i
z ∈ [P] such that

P i
y < P i

z and ΠP (P
i
y) = ΠP (P

i
z), ΠP i

x
(OC(P i

x ⊗c P
i
y)) ⊆ ΠP i

x
(OC(P i

x ⊗c P
i
z))

or ΠP i
x
(OC(P i

x ⊗c P
i
y)) ⊆ ΠP i

x
(OC(P i

x ⊗s P
i
z)).

Proof. We prove the proposition by contradiction. Suppose that P i
x is a child

surrogate of P i
y but there exists P i

z ∈ [P] such that P i
y < P i

z , ΠP i
x
OC((P i

x ⊗c

P i
y)) 6⊆ ΠP i

x
(OC(P i

x ⊗c P
i
z)) and ΠP i

x
(OC(P i

x ⊗c P
i
y)) 6⊆ ΠP i

x
(OC(P i

x ⊗s P
i
z)).

That is, there exists an occurrence of P i
x which is part of an occurrence of P i

x⊗cP
i
y

but is not part of any occurrence of P i
x ⊗c P

i
z , and there exists a (not necessarily

distinct) occurrence of P i
x which is part of an occurrence of P i

x ⊗c P
i
y , but it is not

part of an occurrence of P i
x⊗sP

i
z . But then, (P i

y⊗sP
i
z) 6≡ (P i

x⊗cP
i
y)⊗s(P

i
x⊗cP

i
z)

and (P i
y ⊗s P

i
z) 6≡ (P i

x ⊗c P
i
y)⊗s (P

i
x ⊗s P

i
z). That is, condition (b) of Definition

5.2 is violated. This means that P i
x is not a child surrogate of P i

y , a contradiction.

�

Proposition 6 If P i
x is a cousin surrogate of P i

y , then for any P i
z ∈ [P] such that

P i
y < P i

z , ΠP i
x
(OC(P i

x ⊗s P
i
y)) is disjoint from both ΠP i

x
(OC(P i

x ⊗c P
i
z)) and

ΠP i
x
(OC(P i

z ⊗c P
i
x)).

Proof. We prove it by contradiction. Suppose that P i
x is a cousin surrogate of P i

y

and there exists P i
z ∈ [P], P i

y ≤ P i
z , such that ΠP i

x
(OC(P i

x⊗sP
i
y)) intersects with

ΠP i
x
(OC(P i

x ⊗c P
i
z)) or ΠP i

x
(OC(P i

z ⊗c P
i
x)). Then, there exists an image of z

under an embedding of P i
x ⊗c P

i
z or of P i

z ⊗c P
i
x to the data graph which is on the

same path with the image of x under an embedding of P i
x⊗sP

i
y. That is, condition

(b) of Definition 5.3 is violated. This means that P i
x is not a cousin surrogate of

P i
y , a contradiction. �

41

	1 Introduction
	2 Framework, Preliminary Results and Problem Statement
	2.1 Generalities and Support Definition
	2.2 Embedded Subpatterns
	2.3 Maximal and Closed Embedded Patterns and Problem Definition

	3 Mining Framework
	3.1 Candidate Generation
	3.2 Support Computation

	4 An Eager Closedness Checking Algorithm
	4.1 Closedness Checking
	4.2 The Closed Embedded Tree Pattern Mining Algorithm closedEmbTM-eager

	5 A Search Space Pruning Algorithm
	5.1 Pattern Search Space Pruning Techniques
	5.2 The Closed and Maximal Embedded Pattern Mining Algorithm closedEmbTM-prune

	6 Experimental Evaluation
	6.1 Experimental Setting
	6.2 Execution time and memory usage.
	6.3 Scalability Comparison

	7 Related Work
	8 Conclusion

