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Abstract: the need for a reliable and complementary identifier mechanism in a digital forensic 

analysis is the focus of this study. Mouse dynamics have been applied in information security 

studies, particularly, continuous authentication and authorization. However, the method applied 

in security is void of specific behavioral signature of a user, which inhibits its applicability in 

digital forensic science. This study investigated the likelihood of the observation of a unique 

signature from mouse dynamics of a computer user. An initial mouse path model was developed 

using non-finite automata. Thereafter, a set-theory based adaptive two-stage hash function and a 

multi-stage rule-based semantic algorithm were developed to observe the feasibility of a unique 

signature for forensic usage. An experimental process which comprises three existing mouse 

dynamics datasets were used to evaluate the applicability of the developed mechanism. The 

result showed a low likelihood of extracting unique behavioral signature which can be used in a 

user attribution process. Whilst digital forensic readiness mechanism could be a potential 

approach that can be used to achieve a reliable behavioral biometrics modality, the lack of unique 

signature presents a limitation.  In addition, the result supports the logic that the current state of 

behavioral biometric modality, particularly mouse dynamics, is not suitable for forensic usage. 

Hence, the study concluded that whilst mouse dynamics-based behavioral biometrics may be a 

complementary modality in security studies, more will be required to adopt it as a forensic 

modality in litigation. Furthermore, the result from this study finds relevance in other human 

attributional studies such as user identification in recommender systems, e-commerce, and online 

profiling systems, where the degree of accuracy is not relatively high.  

Keywords: User-attribution, digital forensic readiness, behavioral fingerprint, mouse dynamics, 

a hash function. 

Introduction 

Biometric modalities, either physiological or behavioral, have been applied in the science of 

forensics for user identification 1,2 for decades. While physiological attributes involve the usage of 

human physiological composition, behavioral attributes, on the other hand, involve the usage of 

invariant behavior-based features associated with a human in interaction with the device or 

environment. A behavior-based biometric recognition system usually comprises identity 

identification and identity verification process. The verification process is usually a one-to-one 

matching process. However, the former, identity identification, involves the process of identifying 

a singular identity from a larger sample of the user (a 1: N matching process). Forensic science in 

a digital medium often involves identification, while security such as authorization and 

authentication involves verification. User attribution in the digital forensic analysis (DFAn) is the 

process of identifying the individual (and or device in some cases) ‘who did what’ on a given 

system under observation. The science behind this process is crucially important in a forensic 

investigation since such a process requires that the method employed should be reliable and 

repeatable. Reliability in forensic science is generally measured using error rate with specific 

acceptable threshold/bounds. This notion is held by various forensic scientists and has recently 
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been affirmed as a procedure that should be satisfied before the admissibility of such an evidence3. 

Mouse dynamics studies that focus on information security -authentication and authorization- do 

employ error rates such as equal error rate (EER), receiver operating characteristic curve (ROC), 

false acceptance rate (FAR), as well false rejection rate (FRR) for reliability. These error rates (in 

the context of authentication and authorization) are extracted based on the combination of 

behavioral features through a machine learning process, either based on rules or other metrics of 

boundary establishment. The training process takes in a series of preprocessed data from the user 

and tries to observe frequent pattern based on the semantic relationship among features. This 

process is then used to populate a training model, through which testing (validation) is carried out. 

Measures based on such a process requires high volume of data for model training and testing, low 

probability of fingerprinting a user (since hyperplane boundaries are extremely disorderly and 

nonlinear), high volume of data for re-identification process (which is usually not feasible, as such 

a process may not generate sufficient data required), as well as frequent training-retraining process. 

Sadly, these error rates do not present a behavioral marker which satisfies the science employed 

for digital forensics, hence, cannot be integrated for a user attribution process (in its current form). 

As highlighted in a digital forensic manifesto2, the reliability of forensic science is limited by the 

accuracy with which the underlying science can predict. However, the underlying science and the 

intuitive composition of mouse dynamics comprises critical behavioral markers4–6 which can 

satisfy the criteria as a potential forensic attribute that can be used in a DFAn process7. The Daubert 

and Frye Standards are the two fundamental standards (a legal truth which is decided by the court. 

Such a legal truth is often deemed as the final authority unless changed in such an explicit manner 
2) employed for admissibility and reliability of evidence. As highlighted in 3, the Fryer standard

can be defined within this five basis: “(1) Testing: Has the scientific procedure been independently 

tested? (2) Peer Review: Has the scientific procedure been published and subjected to peer 

review? (3). Error rate: Is there a known error rate, or potential to know the error rate, associated 

with the use of the scientific procedure? (4) Standards: Are there standards and protocols for the 

execution of the methodology of the scientific procedure (5) Acceptance: Is the scientific procedure 

generally accepted by the relevant scientific community?” It basically requires that a method of 

investigation be scientific and be generally accepted by the scientific community with a known 

error rate. Further clarification is presented by the metrics for evidence admissibility, in 8, and a 

recent report on the requirement for ensuring the scientific validity of a forensic method9. These 

metrics necessitates that scientific validity is contingent on the repeatability, reproducibility, 

accuracy, and reliability of the method employed. One key component of these metrics, 

particularly repeatability, is that it requires a model that can establish unambiguous accuracy and 

a reliable behavioral marker. Therefore, repeatability in this sense would require much more than 

a generic semantic relationship model which attempts to generate behavioral marker based on a 

high-level relationship among observable vectors. It will require a granular microscopic 

magnification of each behavioral feature for the possibility of the relatively consistent behavioral 

marker. A process that can generate a reliable threshold for the extraction of the behavioral 

marker(s) from mouse dynamics within the local optimum threshold, is thus asserted to present a 

probable method for digital forensics. The underlying composition of mouse dynamics is presented 

in the next section. 
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Mouse-Dynamics 

Mouse dynamics is the process of extracting meaningful behavioral information from human-

mouse (or any other form of computer-based pointing device) navigation 4, which is then used to 

generate a behavioral pattern of the movement pattern of the user. Behavioral attributes considered 

in mouse dynamics include base (or primary) and secondary features. Furthermore, it is safe to 

assert that mouse dynamics is a widely accepted measure of behavioral biometrics in the 

information security community which is gradually attaining the 0.001% FAR, and 1.00% FRR, 

of the European Standard for Commercial Biometric Technology 5.  A descriptive composition of 

these attributes used in mouse dynamics study is shown in Table 1. 

Table 1: Summary of mouse characteristic features 

Mouse 

feature 

Description Unit of 

measurement 

Button-

down & up 

The time stamp when a button is pressed and when the is released Milliseconds 

(ms) 

Single & 

double click 

The time between the mouse click-up and mouse click-down. This can be 

represented by either dwell time for single click or flight time for double click 

ms 

Raw mouse 

movement 

Aggregated over a predefined delimiter such as session, clicks, or path. It forms 

the base on which other features are extracted. 

Click, path or 

session in pixels 

and ms 

Direction of 
movement 

Depending on the sector size chosen, the direction is a vector quantity which 
shows the path of the mouse movement, from the beginning to the end. Few 

studies used 8-sectors (each at 450) to define the probable direction of mouse 

movement 

categorical 
(Sector number) 

Movement 

distance 

The total number of pixels covered by the mouse movement between 

consecutive clicks or between the fundamental units of mouse movement. 

Pixel/ms 

Velocity of 

movement 

The ratio of the movement speed between consecutive intervals and the 

duration of the interval measured in milliseconds 

Pixel/ms 

Duration The time between the start of a movement and the end. Also, it could be time 

between subsequent clicks after the initial click. 

ms 

Number of 

silent 

This refers to the number of times a silent action is recorded in a given mouse 

data. It can be aggregated over a predefined session or any other unit of mouse 
data. Furthermore, other statistical properties can be generated. 

number 

Scroll 

duration 

The time between the first observation of scroll to the time of the last 

observation 

ms 

Scroll 

direction 

This depicts an upward direction or a downward direction of the scroll categorical 

Scroll speed The rate of the scroll in either an upward or downward direction ms 

Each feature characterized in Table 1 represents the base feature through which further statistical 

features, aggregated features, and the transformed feature can be generated. Generally, studies 

either utilized ordered moments of statistical analysis or arithmetic aggregates of behavioral data 

over a given segment/session. Aggregation of behavioral data provides a level of abstraction which 

could be further applied for forensic purposes. However, the probability of extrapolating 

behavioral signature explored in existing studies is based on the interaction of multiple features is 

primarily reliant on pattern-based multiple feature aggregation. While such multi-feature-based 

approach provides a substantial feature-vector for data mining process, it does not present a 

measure of reliable forensic identification. One major assumption in existing studies, particularly 

on user identification, is that behavioral attributes collected during the verification phase are 

sufficient for authentication/authorization. For instance, findings by Gamboa and Colleague10 was 



4 

based on 10-strokes (where each stroke is a movement between two consecutive clicks) within an 

approximation of 10-seconds. Similarly,  the study by Bours 11 detected imposter in an average of 

182-strokes, while findings by Bailey and colleagues12 was based on 987-strokes per 10-minutes 

sliding window. In reality, the feasibility of user attribution from the dataset available for 

authentication and authorization of an imposter in these studies may not be realistic, as asserted in 
1,4. This is because most malicious actions are carried out within brief action and under short 

duration, thus, user attribution based on mouse dynamics would require a process that is based on 

lesser data input (lesser number of strokes). One area of probable logic is the description of mouse 

dynamics as hand-gesture-based behavioral biometrics. Intuitively, hand-gesture-based biometrics 

could be synonymous with gait trajectory as both would comprise angle of inclination with 

reference to a starting coordinate, distance traveled, direction and duration of travel which can be 

parametrically represented by the expression ( ) ( ) ( ), ,
T

t t txX za aa a =   where ( ) ( ),t tx zaa describes the 

ankle position and ( )ta depicts the angle between the foot and the horizontal plane. A human gait, 

,k is defined when the heels of any foot leave the ground and finished when the same heel touches 

the ground again. Following the intuition of gait trajectory, a mouse movement from one point in 

Cartesian space to another point in the Cartesian space can be parametrically described by the 

mathematical expression ( ) ( ) ( ), ,
T

M x t y t ta a aa
 =     where ( ) ( ),x t y t

a a
 depicts the position of the 

cursor at coordinates x , and y  at mouse location a  and ( )ta  represents the angle of inclination 

of the mouse. A generic description of a mouse action is further presented in (1)  while (2) depicts 

the mathematical expression of a mouse movement path. Furthermore, a mouse path can be 

described by a boundary condition which satisfied either a double click or time-lapsed criteria. 

This expression mimics a typical human behavioral movement/trajectory on a computer-based 

pointing device. 
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  (2) 

The path expression shown in Equation 2 is a depiction of mouse dynamics as a hand-gesture 

process, which is dependent on human disposition, amongst other factors. This study is anchored 

on the supposition of an inherent behavioral composition of human hand-gesture. This logic has 

been asserted in existing mouse dynamics studies 4,5,13. However, these studies failed to identify 

behavioral markers suitable for ‘forensic print’ which can be applied for a digital forensic analysis 

process. A forensic print, in this instance, can be described as a behavioral marker that is extracted 

from a mouse dynamics data, which can then be compared against other mouse dynamics data for 

similarity. However, such a marker should be extracted from data within a given short interval. In 

addition, a marker is required to be consistent for a given user, and relatively distinct among other 

users. This aligns with the logic of maximized local minimum, and minimized global maximum 

in classical machine learning problems.  

Research Methodology 

The architectural depiction of the overall process employed in this study is shown in Figure 1. A 

generic model of human dynamics based on mouse action is first derived based on a non-

deterministic finite state machine. The state machine model provides a generic sequence model 

suitable for the representation of a typical human action 14. Such representation provides a higher 

order of behavioral abstraction. To further extract a lower abstraction, the next phase of the 

methodology considered the study of the development of individual behavioral marker extraction 

Fig. 1. Architectural layout of the Mouse Dynamics fingerprinting process  
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process. The behavioral-marker process is based on a two-stage hash function process. This is then 

followed by the validation of the reliability (on a hypothetical hypothesis) of the observed 

behavioral markers using Bayesian inference process.  

Mouse Navigation Feature 

As highlighted in Table 1, features of mouse dynamics encompass primary and secondary 

characteristics. The process of extracting behavioral signature based on these features require 

aggregation at different granular levels. For instance, in mouse pattern analysis, the use of the 

mouse path among a series of path curvature presents a feasible human pattern visualization which 

can be used in aggregation mechanisms. In this study, mouse-path is considered a fundamental 

component of mouse navigation. A mouse path is defined by the expression in (2) which include 

mouse movement, click, scroll and silent events which can be characterized by weight, speed 

and/or duration of the path.  

Mouse Path Model based on Finite state machine 

Mouse path formalization process is an abstraction process. The traversing from reality into digital 

representation is generally referred to as the abstraction approach. Models based on finite state 

machine have been widely applied to digital forensic language formalization. More specifically, 

models based on the finite state machine (FSM) have been used to create abstraction targeted at 

improving the efficiency of data representation and forensics process. A study conducted by James 

and colleagues 15, assert that a given system can be directly mapped to a model of FSM, which can 

be adapted for evidence reconstruction. Whilst it is asserted that a deterministic-based FSM (DFA) 

is capable of modeling a system, the current study posits that human behavior in mouse dynamics 

comprises sequences of states which satisfies the non-deterministic approach of FSM (NFA).  FSM 

is deterministic if the probability that an input to a state will produce singular output, is 1(absolute). 

However, if the probability is less than 1, then such FSM can be defined as non-deterministic. 

Table 2 presents a more detailed comparison between DFA and NFA. 

Table 2: DFA and NFA comparison 

No. Deterministic Finite Automata Non-Deterministic Finite Automata 

i If the current state is known, and the input to the 

current state is known, the next state can be 

determined with absolute certainty 

If the current state is known, and the input to the current 

is known, the next state cannot be determined with 

absolute certainty 

ii  It cannot accept an empty state It can accept an empty input to a state which leads to 

an empty state 

iii Based on i  the above, the system can only have 

one unique next state 

The system can accept multiple next states, and it can 

be complex. 

iv  Based on iii  the above, the system is not 

stochastic, non-random, non-chaotic and its 

degree of freedom is equivalent to 0

Random next state, which could have a variable degree 

of freedom, chaotic. It could also assume a parallel 

process next state. 

Human dynamics usually convey a certain degree of freedom, which can be characterized by 

stochastic properties 16,17. This property satisfies the interest-driven model of the form 

( ) ( )
0.372

25591 
−

= 
a t

t dt t xat
18 which also obeys the Power of the form ( ) −

P t T . Properties 
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of mouse-dynamics, therefore, satisfy the non-deterministic characteristics, which can be modeled 

using an NFA. Formally, this study defines NFA for mouse dynamics, by extending the definition 

in 15 as follow: 

Assume a given mouse path ( )Pm  has a path sequence ( )Ps  denoted by M . For a given mouse action 

from one state to another, it can be encoded as a triple ( ), ,1 2P e P such that a sequence of mouse 

action can be computed. The model for path start and path end is denoted by the conventional FSM 

notation defined by ( ), , , ,0  = P M Q q F
m

  where; 

0

; { , , , }

variables; , ,

, ;

2 ;Q

Q Finite set of all possible states event type click movement silent scroll

Finite set of all possibleinput direction speed

q Initial state Q pathbeginning

F Set of final states

Q transition functi

=

=

= 

=

= → onthat returns the next state

The number of possible states of a mouse action is defined in this study by four primary actions 

(click, move, silent, scroll). These four actions depict a summary of probable action that can be 

performed with a mouse. Other actions such as double-click, drag-and-drop, as well as highlight 

(drag only) are defined as integrative action. An integrative action is an action that combines two 

or more primary actions. The input variable of a mouse action comprises action attributes such as 

the direction of mouse movement and speed of the mouse. As defined in the existing studies on 

mouse dynamics 5,19, mouse direction can comprise 8-sectors{0,1,2,3,4,5,6,7}, 45 = . A mouse 

direction can also be defined as complex attributes which combine the angle of inclination, and 

movement location as a vector quantity. For the sake of simplicity, this study adopted the sectorial 

classes of direction during modeling and further categorized mouse speed into three classes

{ ,mod , }fast erate slow . The silent state { }  is denoted as the initial state of the NFA, while the other 

states form the set of the final states{ ( ), ( ), ( )}click c scroll s movement m of the NFA. A mouse-path can 

also be defined as a restriction (path expression over a sequence of transition triple) on the probable 

computation over the encoded NFA triple  ( ), ,P Qm =  . Therefore, the transition function which

generates the restriction for the next state of a mouse-action is defined as; 

 

( ) ( )

,

, , ; , , ,

Q Q Q Qi
next state q e q q Q e q q ei n n

 




 =   
=
 =   =

(3) 

This proposed mouse path differs from the existing model in two forms. Firstly, the definition of 

the mode as an NFA, as opposed to DFA. Secondly, the initial state in the present study is defined 

as a subset of the finite set of all probable states (as shown in (3)) which contrast existing work 15 

that defines the initial state as a disjoint set of the finite set of all probable states. These two 

distinctions differentiate the present study. The next subsection discussed the actual process of 

generating behavioral fingerprints from mouse-path model. 

Hash-based Behavioral Identity 

The developed model in the previous section provides a higher abstraction which covers the 

general process of modeling human navigation. This section builds on the model to extrapolate 

behavioral identifiers which can be used in the user attribution process. To achieve this, a two-

stage hash function process is defined as shown in Table 3. A hash function is a method of 
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producing a fixed-length representation of the variable-length message. The two-stage hash 

process adapted in this study comprises a locality-sensitive hashing algorithm (modular hash 

function), and a bijection injective hash function. The modular hashing algorithm intuition posits 

the logic that an integer/float from an arbitrary source have the probability (albeit, higher) of 

exhibiting self-similarity. For instance, the expression in (4) shows a congruence relationship 

between 200,  20,  10  0and . This congruence relationship provides a level of abstraction through 

which self-similarity can be observed among the variables of interest. Modular hashing function 

thus magnifies self-similarity in patterns, consequently, help to optimize probable behavioral 

signatures that would otherwise be ignored. 

200 10 20 10 10 10 0 10Mod Mod Mod Mod    (4) 

This contrasts with the general string hashing process where self-similarity is not considered. Thus, 

modular hashing suggests a higher probability of capturing the rhythmic pattern in the mouse data 

of a user. A modular hash function is generally defined by ( )h k kModm=  where k is an integer/float 

and m  is the list size. If m  is a power of 2; 2 ,pm = then ( )h k  is the lowest-order bits of .k The 

second stage hash function (based on a fuzzy hash function) computes the hash of each n-bits (in 

this case, 8-bits) block of the output of the binary32 IEEE-754-standard sequence as illustrated in 

(5).  

 10111000101010101100111110111000

10111000

10101010
8

11001111

10111000

a

b

d

c

block

block

block

block

- bit blocks














(5) 

The hash ( ) , , ,h a b c d  of a block , , ,a b c d  is the expression: 

0 1 1... ,1 2

0 1 1... ,1 2

0 1 1... ,1 2

0 1 1... ,1 2

na a a a blockn a

nb b b b blockn b

nc c c c blockn c

nd d d d blockn d

where hashkey

  

  

  

  



−  +  + +  


−  +  + +  


−  +  + +  


−  +  + +  

=

(6) 

This approach mitigates the effect of   signed and unsigned  float input to the IEEE-754-standard 

output. However, hashing a 32-bits strings presents a potential towards the global optimum. To 

address this, block-wise (piecewise) hash computation is performed on the 32-bit stream as shown 

in (6). Such a process further allows for a block-wise comparison (fuzzy hashing) of behavioral 

features. 

Table 3: TSHF Algorithm for Behavioral signature extraction 

Algorithm-1: Two-Stage Hash Function (TSHF) 
Input: multiple Mouse data for a single user, Mouse-path model, and preprocessed mouse-path features. 
Output:  sets of behavioral signatures and its respective weight 

Step-1. fi = extract individual feature from the mouse-path from each mouse data 

Stage-1: modular hash function; to maximize local optimum within individual pattern 
Step 2. m(fi) = compute the modular hash; 
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M= k mod m, where m = 2p 

P =8, signifies an 8-bit process 

Stage-2: injective hash function; to eliminate the effect of float point data 
Step 3. Compute M'= 32-bit IEEE 754 standard of M 

M' = IEEE 754 equivalent of M 
Split M' into octets M8’; to prevent having a global optimum problem, as shown in (5) 

Step 4. Compute a new hash for each octet, hM8' 
hM8'= binary hash with key size, α, α=3 in current study 
Concatenate HM8’; generate string of octet 

Step 5. Compute identity function 

modal frequency computation ≥3 octets 
Step 6. Compute similarity(fingerprint) across different mouse data from the same user 
Step 7. Create a matrix of a fingerprint, which also includes the minimum and maximum weight. 

Return matches and weight of each match 

The hash function ensures that for each block of 8-bit sequence, a computation which satisfies the 

expression defined in (7) is obtained. Using the block size illustrated in (5), the second stage hash 

will generate an identical hash digest for block-a and block-d, which satisfies the positive property 

for the piecewise hash digest. Conversely, the digest of block-b and block-c will satisfy the 

contrapositive property. Consequently, the hash digest of an individual block is then concatenated 

to generate a new hash digest as a representation of the original integer/float value. 

( ) ( )

( ) ( )

, , ,

, , ,

p q S f p f q iff p q positive

p q S f p f q iff p q contrapositive

  = =

   

(7) 

This process provides a measure to prevent a problem of global optimum in behavioral signature 

observation. Global optimum occurs when all the respective hash digest is approximated to the 

nearest value such that every behavioral pattern appears to be the same. This is further illustrated 

in Table 4.  

 Table 4: Comparison of Forward Hash Function Process 

Float/Integer Value IEEE 754 Binary equivalent Forward-count 

hash function 

(α=3) 

Proposed approach 

(α=3) 

892.6504954065829 01000100010111110010100110100010 208813466278209 246-3270-2277-739 
807.8637642163036 01000100010010011111011101001000 238618024054770 246-2271-3199-84 
698.8538674657473 01000100001011101011011010100110 277389245933859 246-1062-1009-982 

1 1 1

01000100 / 01011111/ 00101001/10100010 246 / 3270 / 2277 / 739

2 2 2 2

01000100/01001001/11110111/01001000 246/2271/3199/ 84

a b c d

value P User
i

a b c d

value Q Useri

−  = 

−  = 

(8) 

The behavioral similarity is calculated based on the location alignment fuzzy hashing process. 

Location alignment of hash digest implies the pairwise comparison of the similar hash block. This 

process is illustrated in (8). As illustrated in(8), there is only one similarity match between the 

observed attributes  ,1 2a a . This study considered the threshold of 3identical blocks  as the 

baseline similarity index between two attributes, while the | | 4blocks = . Therefore, given a set of 

behavioral attributes from a single user, the expression described in (9) can be used to define the 

similarity of behavioral features. 
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( ) ( )

  ( )

 

, : , , , : Pr | : 4 ,
, , , , , ,

P Q User a b c d P Qi i i iia b c d a b c d

where X Seqenceof behavioral markersof themousedynamics of User
ik i

   =

=

  (9) 

The output of (9) forms the basis for the process of user identification. This process is covered in 

the next subsection. 

User Identification Process 

For each user, a sequence of behavioral signature  ( )Xk i from features ( )f j  is observed based on 

the probability of extracting two identical hash digest that satisfies the expression in (9), in a given 

mouse-path data. This identical hash digest is then observed for all session of each user. The 

process of user identification defined in this study is intuitively based on the Bayesian theorem, 

with a general rule as depicted in (10).  

 

( )
( ) ( )

( )

( )

( )

( )

( )

, )

( )

|
| ,

|

|

what is known about A,before any observation

(the observed factor B for all values of A

what is known about A, after observing B

P B A P A
P A B where

P B

P A prior probability

P B A likelihood

P A B Posterior probability


=







  (10) 

Bayesian statements are probabilistic statements which attempt to quantify and analyze the 

subjective degree of belief. It follows directly from the rule of conditional probability;

( ) ( ) ( ) ( ) ( ) P P | P P | P .A B A B B B A A =  =   Bayes rule can be centrally stated as a proportional 

expression of the form; posterior probability prior probability likelihood  . Given that Bayes 

theorem assumes uniform weight for all variables, the study further defined a weighting factor for 

each feature based on inverse document frequency ( )idf  technique, and weight factor for the given 

user based on term frequency technique. The idf of a feature ( )f  is parametrically defined by the 

expression in (11). 

 

( )101 log ,

,

f

f

f

N
dfidf where

df count of signatureof feature f

N Total count of signaturein the dataset

= +





  (11) 

The idf technique− essentially provide a scaling factor for feature ranking, where features with the 

highest number of the signature count are appended with a low scaling factor, in relation to the 

converse. This logic posits that signature collision among user is proportional to the signature 

count in any feature. In other words, the higher the observed signature in a given feature, the more 

its probability of belonging to multiple users. Given the probability of signature collision, the 

likelihood of the Bayesian theorem defined in (10) is further modified as follow; 

Suppose that the likelihood of an unknown behavioral fingerprint with weight, belonging to a 

known user with weight, iw  (also referred to as term frequency), is given by the expression 
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( )

( )

( )
i j

i

i j

w idf w
P

w idf w

 +
=

 
, and if the probability of an instance weight of user, ( )iu , be denoted by ( )iu

p

, then the likelihood that an unknown user instance weight ( )w
i

 to belong exclusively to iu  among 

all user, n iu − , can be denoted by (12). 

 ( )
( ) ( )

 
, ,

n

P Pn i i
P u u where i and n UserIdentifiersi n i P

− −
= − 

  (12) 

Substituting (12) into (10), a new expression for the computation of the Bayesian statement is 

generated as shown in (13). 

 
( )

( ) ( )

 

( )

( )

 

( )
( ) ( ) ( ) ( )

,

n i i

n i

n

n

i

in i i n i

P P
P

P
P n i i for simplicity, P

P

P
P n i i

P P P







−

−

− −

−


− = =

 − =
 − 
 








  (13) 

In summary, in order to achieve the user inference process, the behavioral marker will be generated 

using the expression in (9). Subsequently, each feature of the behavioral marker will be ranked 

using the expression in (11). Consequently, a ranked count vector of features in the 
v

 in the 

natural vector space will be generated. Inference will then be generated for every unknown input 

using the output of the expression in (13). Inference in this sense implies the summation of all the 

observed ranked factor weights for each user. In order to attribute a given signature to an individual 

among a pool of known user, the expression (14) takes the sum of the overall likelihood of a 

signature. The given pattern is attributed to the user with the highest overall likelihood as 

highlighted in Algorithm-1 in Table 3. A summary of the attribution process is further described 

in Algorithm-2 in Table 5. 

Table 5: syntactic pattern User Attribution Process 

Algorithm-2: Inference based user Attribution mechanism 

Input:  Matrix of the behavioral signature weight of known users   1 2 3 n

k k k kI ,I ,I ,...,I size n×4 for min and max 

weight  

and Matrix of the unknown user  m

kI ,size m×4   

Output:  Attribute range inference scale (most probable) 
 

 ( )( )
r

A P n i i= −   (14) 

( )

1;

1

0;

r

individual with the highest range most probable

;other ranked order of individual likely probable

individual with the lowest range least probable

Output A










= 



 

Step-1: i. Create a new matrix of known users based on the common behavioral signature of the unknown user 
1' 2' 3' ' 1' 1,n m

k k k k k k kI ,I ,I ,...,I size n×4 where I I I=   

ii. generate a normalized fingerprint for each user data 
a. Compute the count of signature of each feature  
b. Compute the bias based on the highest count: 
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_ _
_ _

highest count value
individual count value

 =   

c. Compute a localized threshold for  using: 

i i
m(x ) (x ) = +  : the sum of the mean and the standard deviation 

d.  Compute a new fingerprint bias, ' , using: 

,
'

,

if bias

else bias

  




=
=

=





  

e.  Generate a new fingerprint by scaling each instance of a feature by '   

' instance_weight = +    

Step-2: Compute the scaling factor for each feature using (11), and generate the inference weight using (13) 

1

11 1

1

 

u un

n

m mn

Inference weight

w w

w w

=

 
 
 
 
 
 

for min and max weight. 

Step-3: Compute the attribute range from the inference weight: 

a. Compute a range scale using 3-sigmal-rule on the inference weight of each user 
b. Compute the overall inference weight using the expression: 

(min) min

(max) max

r

r

r

A inference weight percentile
A

A inference weight percentile





=
=

=





 

Step-4. Compute standardize ranking; : 0 1range →  

Return inference scale of the most probable, likely probable and least probable match to the unknown user. 

 

 

The structural depiction of the overall process for user attribution through mouse event action is 

further illustrated in Figure 1. Given that the defined attribution process defined in Table 2 lacks 

the semantic relationship among features of mouse action, a further attribution mechanism is 

defined in Table 3. Arguably, the introduction of the semantic properties of a component can 

provide a more reliable platform for forensic integration. Therefore, the expression in (1), and (2)

are used to extract mouse dynamic semantic components for user attribution, as presented in Table 

3. Summary of the features is shown in Table 4. The semantic attribution process is illustrated in 

Figure 2. This process comprises two core functional compositions: behavioral model 

development process and the behavioral pattern validation process. The composition of each 

process is further discussed in the discussion section of this manuscript. In order to achieve higher 

accuracy and a reliable attribution process, a baseline accuracy threshold was defined as rule-

inclusion property. The inclusion property, based on the Biometric standard5, is further expressed 

in (15). These criteria select rules within a given rule-based classification process which satisfies 

the false acceptance rate of 0.001, 0.01 and 0.1 respectively. However, a minimal rule weight is 

further defined. This approach addresses cases when the rule satisfies the criteria, but the weight 

of the rule is below a given threshold. In this study, a minimal threshold of 5-rule-weight is 

considered.    

 

0.001,

0.01,

0.1,

1

criteria 2

3

c Rule FAR Rules

Inclusion c Rule FAR Rules

c Rule FAR Rules







   


=    
    

  (15) 
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The overall semantic-process, as shown in Table 6, is based on the integration of off-the-shelf 

supervised human-readable machine learning algorithm. To select the off-the-shelf machine 

learning algorithms, a 10-fold cross validation 10-iteration experimental process was carried out 

using the Waikato environment for knowledge analysis (WEKA) tool. The best performing human 

readable (rule or tree-based algorithms) were then considered. Mouse dynamics data is used as 

input, and the process generates a matrix of the degree of user-certainty of a given instance. The 

semantic algorithm comprises four phases, as shown in Table 6.  

Table 6: Semantic Rule-based Attribution process 
Algorithm-3: Attribution based on Semantic properties of Mouse dynamics 

Input:  Y : Mouse dynamics feature dataset 

Output:  Matrix of the degree of certainty of attribution 3sizen×  

Step-I: Split dataset into development ( P ), and validation ( Q ) dataset 

i. P  9( 0% of )Sampli g Yn Y :  ordered sampling without replacement 

ii. Q  1( 0% of )Sampli g Yn Y  

Step-II: Explore applicable rule-based classifier 

i. Dataset P   

ii. Acceptance criteria
def

 { 0.8; 80%}AUC Accuracy   

Step-III: Extract Rule-set to build a forensic readiness database 

i. Forensic inclusion criteria ( ) 
def

accuracy ⊢ 0.01& 0.1FAR FRR    

t  total Rule 

ii. Sort classifier into the hierarchical order of accuracy 

iii. Extracted Rule  ,Rule t Rule        

forensic Rule ( )f   ( ),c Rule Rule      c classifier  

Step-IV: attribution process:  

i. Dataset Q   

ii. Extract instances that match f   

k  count of the classifier, 

x instance of Q  

while 1k   do: 

a. Check for matches such that; 

, !

, ,

,

label

x

x

x

Correct x Q x f

output Incorrect x Q x f class

Unknown x Q x f







     

=       


     

 

b. Define the conflict resolution process for different classifier 

for { }ik jkx x   of CorrectOutput , do; 

prior probability ( )ic   accuracy weight of rule match for ix from 

prior probability ( )jc   accuracy weight for rule-match for 
jx   

if P( ) P( )i j j ic c c c  

ic conflict , else, 
jc conflict  

end for 

1k k= − ; 

end while 

c. Perform simple majority vote: 
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. . .

. . .

i i i

i

i

i

n n n

q f l
q validationinstance

f forensic Rule

l matching label
q f l

 
 

   
 

 
 

  

return  

 

The first phase, the data splitting phase, splits the input data into model development (training and testing) 

dataset and the validation dataset in the proportion of 90%:10% respectively. 10-fold cross validation is 

considered for the development process. Rule-based classifier exploration process and forensic-rule 

extraction process are carried out in the second and third phases respectively. The classifier exploration 

process employs standard machine learning metrics for classifier performance. These metrics include the 

area under the receiver operating characteristic curve (AUC), accuracy, kappa statistics, and sensitivity. 

Based on the output of the classifier exploration and forensic criteria phases, the fourth phase enumerate 

the process of attributing a given unknown instance to a known user. The attribution comprises the pattern 

matching, conflict resolution, and voting processes. The conflict resolution process is based on Bayesian 

inference process which considers the posterior probability of a given instance based on the corresponding 

weight of the matching rule (as the prior probability). The sequence representation of these phases is further 

shown in Figure 2. Instances from the validation process that does not match any are categorized as 

unknown. These unknowns can be defined as noise after the last stage of the rule conflict handling process. 

The unknown instance, therefore, depicts a statistically random behavioral (noise) that is usually associated 

with most forms of the behavior-based identification process.  In other words, an unknown instance could 

be a new pattern, or a completely random pattern of a User; albeit unknown.  

 
Figure 2: Process of semantic behavioral pattern attribution 
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Evaluation Metrics: 

The measure of evaluating human forensic-attribution mechanism is like the traditional security measure 

of identification and authentication. The general measures used in the mouse-dynamics study is also 

considered in this study. These include the false acceptance rate (FAR), and false rejection rate (FRR) 4,5,20. 

The FAR for each user is defined as the ratio of the falsely accepted inference by the attribution to the total 

number instances of all another user excluding the user under investigation, as parametrically depicted in 

the expression in (16). 

 i

Falselyaccepted instance
FAR =

Falselyaccepted Instance+Truelyrejected instance
  (16) 

If an instance ,xX session is known to belong toUser X− , and instance ,yY session is known to belong to

,User Y− then the FAR, therefore, depicts the probability of attributing an instance of a known user to a 

wrong user or unknown user (example, instance Y to xsession ). Conversely, the FRR is defined as the ratio 

of the falsely rejected inference by the attribution, to the total number instances of the genuine user. A 

parametric expression of the FRR is presented in (17). 

 i

Falsely Rejected instance
FRR

Truelyaccepted Instance+Falselyrejected instance
=   (17) 

These FAR and FRR expressions provide a clearer granularity for evaluating performance efficiency. 

Whilst classical forensic statistics, In order to evaluate the attribution processes defined in Table 2, Table 

3 and Figure 2, using the expression in (16) and (17), one Baseline and two off-the-shelf datasets are 

considered. Detail of these datasets is presented in the next section. 

Dataset 

A. Baseline Data 

The Mouse dynamics data used in Ernsberger et al.7 was adopted as a baseline for this study. This is based 

on the ease of access to both the tool and the data. The study developed is a Java-based mouse navigation 

and visualization tool that captures each mouse path of a user-action while surfing the Internet. Specifically, 

the tool was designed to capture mouse navigation in an HTTP-based website. The data was collected over 

a period of two weeks from 10-volunteers. One major limitation in mouse data collection process is the 

impact of hardware. To overcome this limitation, the tool was developed such that “the coordinates, 

resolution and scrolled pixels are captured with clientX, clientY, clientWidth, clientHeight, and pageYOffset 

methods. These methods return the value in Cascading Style Sheets (CSS) pixels. A CSS pixel is a software 

pixel which forms the unit of measurement, whereas a hardware pixel is an individual dot of light on the 

screen. A CSS pixel can contain a few hardware pixels and is designed to be the same size across different 

devices. The CSS pixels defines uniform size irrespective of the hardware pixel resolution. A CSS pixel is a 

software pixel which forms the unit of measurement, whereas a hardware pixel is an individual dot of light 

on the screen”7.  

B. Benchmark Mouse Data 

Two existing benchmark mouse datasets are considered in this section. The benchmark data include the 

Ahmed and Traore13,19 (hereinafter referred to as Benchmark-1), and the Balabit mouse dynamics challenge 

dataset21 (hereinafter referred to as Benchmark-2).  The Benchmark-1 dataset comprises class-imbalance 

data collected from 48-respondents in two tranches (2004 and 2008). The highest, lowest and average class 

instance of the Benchmark-1 are 75895, 895 and 15931-instances respectively. Given that the Benchmark-
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1 comprises the class-wide margin of class-imbalance structure, further selection and instance-resampling 

were carried out on the data. For the class selection process, the expression 

10%( ), classclass highest classinstance   is utilized. It states that for all classes in the dataset, select the class 

whose instance is greater than or equal to 10% of the highest-class instance in the dataset. Percentage split 

of 90:10 was implemented on the selected class of Benchmark-1 for training and testing dataset 

respectively. The Benchmark-2 comprises mouse action data collection from 10-respondents during a 

mouse challenge competition. It contains multiple mouse action session, and each session contains a short 

duration of user action. Instances from two users in the experimental data were significantly lower than 

other users in the dataset. Summary of the datasets used in this section is presented in Table 7.  

Table 7: Description of the dataset used in the study 

 
Dataset Source 

Statistics 

Number 

of users 

Highest class 

instance 

Lowest class 

instance 

Total 

instance 

Benchmark-1 25 68339 6438 625257 

Benchmark-2 10 14047 4864 80700 

Baseline dataset 9 948 148 3156 

 

Experimental Results and Analysis 

To evaluate the effectiveness of the developed mouse path modeling and the method of user attribution, 

logical relation and experimental process was carried out. This section discusses the outcome of the result. 

First, the logical sequence of the mouse path model is presented. This is then followed by the experimental 

process of validating the attribution model. Furthermore, the attribute model is applied to datasets from two 

existing studies. The result of the probability of extracting unique individual behavioral signature (as 

observed on both the existing and experimental dataset) is presented and discussed. 

Mouse path model: Based on the notation of the NFA, a representative navigation model of mouse-path is 

presented in Figure 3. The composition of the NFA comprises all likely primary mouse actions. Primary 

mouse action is defined in this sense to refer to a mouse event, which occurs as an output to direct human 

action during mouse navigation.  
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Fig.3: Non-Finite Automata model for Mouse-path 

These actions include mouse movement-event, click-event, and scroll-event. Each event is considered as 

both a likely start state and an end-state of mouse action, as depicted with a double circle in Figure 3. A 

mouse-path sequence can start and end with each primary event. A mouse-path trigger from silent to any 

mouse action is observed when there is an input of mouse path direction and/or mouse-path speed.  

 

Table 8: Example of Mouse-path from the initial state through a transition model. 

Initial State Transition function Probable Next state Mouse-path 

c →  

c c→  
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It was observed that the first path of a mouse action begins with silent, and the last path of mouse action 

ends with a silent. This is logical, as human mouse action typically starts after a period of long inaction.  

The transition function  [0,1,2,3,4,5,6,7], [ , , ]D S s m f  simply implies for a given mouse action, a user must 

navigate through any of the 8-sectors of the direction, and through any of the speed classes. The speed 

classes cover both scroll speed and mouse navigation speed. This could be in the slow, moderate or fast 

class. The input of this tuple in the sequence of the input generates a probable next state as parameterized 

in (3).  This outcome is presented in the third column of Table 5. It can be explained thus; for any state 

which belongs to the set of all probable states { , , , } Q c s m , there exists a unique next state which 

belongs to any of the probable states ! , , , : (c,s,m, )    c s m P . Consequentially, the effect of the transition 

function applied to the initial state which resulted in a next state resulted in the mouse-path, defined in the 

fourth column of Table 8. The mouse-path can be explained as follows; consider an initial state from c →

, for example, there exists a unique mouse-path whose initial state, transition function, and next state is a 

sequence of →silent click , which resulted in either a , , ,click scroll movement or silent .  

A. Syntactic Attribution:  

Algorithm 1 is applied to the Benchmark-2 to explore the probability of unique fingerprint among the 

classes. The benchmark-2 dataset was considered based on the smaller sample size and the relatively larger 

instance size of the dataset. The result, as shown in Table 9, suggests that the proposed hash-based signature 

is not capable of extracting discriminative properties for each user. Suggestively, the observed FRR for 

User-35, which are lesser than 0.05 in all the evaluation metrics, could be attributed to chance. This 

supposition is further supported by the FAR of all observed users.  

 

Table 9: Result of the evaluation of Algorithm 1 on Benchmark-2 

User Evaluation 

Duration Movement Flight Path length Path weight 

 FAR FRR FAR FRR FAR FRR FAR FRR FAR FRR 

User-7 0.031 0.354 0.500 0.500 0.725 0.000 0.363 0.031 0.359 0.031 

User-9 0.479 1.000 0.500 0.333 0.718 0.059 0.460 0.659 0.449 0.659 

User-12 0.435 0.684 0.458 0.000 0.723 0.051 0.441 0.684 0.438 0.684 

User-15 0.458 0.810 - - 0.717 0.008 0.475 0.810 0.466 0.810 

User16 0.369 0.115 0.458 0.667 0.726 0.000 0.395 0.115 0.382 0.115 

User-20 0.494 0.991 0.458 0.000 0.833 0.880 0.503 0.991 0.494 0.991 

User-23 0.487 0.928 0.564 1.000 0.754 0.206 0.499 0.928 0.487 0.928 

User-29 0.457 0.667 0.563 1.000 0.721 0.014 0.467 0.667 0.457 0.667 

User-35 0.379 0.044 0.440 0.000 0.722 0.044 0.389 0.029 0.379 0.029 

   

The result shown in Table 9 reveals that the syntactic composition of mouse dynamics has a very low 

probability of discriminating individuals. In essence, the logic of defining hash-based properties for a given 

user should integrate semantic characteristics of the mouse action. A semantic characteristic attempt to 

extract behavior based on the interactive properties of the mouse action. The result of the semantic process 

is presented in the next section. 

 

B. Semantic Attribution:  

To evaluate the semantic-based mouse dynamics algorithm defined in Table 6, the Benchmark-1, 

Benchmark-2, and the experimental dataset are utilized. Sequel to the exploration of applicable classifiers, 

three rule-based classifiers: C4.5 decision tree, Random Forest, Random Tree, and partial decision tree 

(PART) algorithms were adopted in this section. The three algorithms were applied to each of the datasets 

using a seed-size of 10, and 10-fold-cross-validation. The seed-size is the random number used to select the 

attribute for each run. For the C4.5 algorithm, a confidence interval of 0.95 was used for decision tree 

pruning to prevent model-overfitting. Following Steps, I and II of the semantic rule-based attribution 
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processes presented in Table 6, the characteristics of the AUC for each data is shown in Figure 4, 5, and 6. 

From the exploratory result of the AUC, only result from the Benchmark-2 data partially met the inclusion 

criteria for the application of the proposed attribution process. Statistically, the Benchmark-2 comprises 

average instance size, class size, and minimum class size of 4866, 4839 and 4867 respectively. This process 

also corresponds to the developmental phase of Figure 2. The Stage-III of the developed algorithm was 

then carried out on the rules generated by the Random Forest classifier. This corresponds to the validation 

process of Figure 2. The overall outcome of the result is presented in Table 10. A major challenge 

encountered during the application of the semantic algorithm was the extraction of a reliable signal to noise 

ratio accuracy. An iterative process was employed to measure the appropriate threshold for noise filtration, 

such that common rules among multiple users are minimized, while unique rules in individual output, are 

maximized. It was observed that the combination minimum of 10 rule weight, which has >99% uniqueness 

and the minimum number of attributes >4, achieved an optimal signal to noise ratio. 

 

Table 10: Result of the proposed Attribution Process on Benchmark-2 

 

Users 

 

Dataset Instance 

Output of development data 

on Random Forest algorithm 

Validation data Output 

Random Forest Proposed Attribution 

Development Validation AUC Accuracy FAR FRR FRR FAR 

User-7 4867 261 0.968 0.782 1 1 0.998 0.981 

User-29 4865 261 0.869 0.524 0.948 0.916 0.989 0.941 

User-35 4866 263 0.903 0.652 0.912 0.723 0.952 0.919 

User-23 4866 261 0.780 0.293 0.800 0.854 0.980 0.834 

User-21 4839 264 0.829 0.396 0.895 0.864 0.992 0.940 

User-15 4866 263 0.842 0.435 0.852 0.825 0.967 0.893 

User-16 4866 267 0.873 0.496 0.968 0.996 0.999 0.878 

User-20 4864 264 0.885 0.481 0.944 0.981 0.994 0.926 

User-9 4866 261 0.966 0.748 0.893 0.942 0.998 0.700 

User-12 4867 262 0.817 0.381 0.925 0.943 0.997 0.874 

  

Fig.4: Area under the ROC Curve for Baseline Data 
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Fig.5: Area under the ROC Curve for Benchmark-1 

Fig.6: Area under the ROC Curve for Benchmark-2 

The result from Table 10 clearly shows the partial fulfillment of the Benchmark-2 to the forensic 

inclusion rule defined in Table 3. All classes satisfied the 0.8 AUC  criterion. However, no class 

satisfied the 80%Accuracy  criterion. An exhaustive exploration of the classification of other 

classifiers also shows similar accuracy result as none satisfied the accuracy threshold of the 

forensic inclusion criteria. Hence, the obtained result from the proposed approach, as shown in 

Table 10, exhibit poor performance on the validation instance in similitude with the performance 

of existing approach (Random Forest algorithm in this instance). To ascertain the effectiveness of 

the proposed attribution process, behavioral data from an existing study was considered18. The 

data comprises web request characteristics of 11-users. Accordingly, a total of fifteen features were 

defined and extracted in the study. Summary of the distribution of the training/development and 

testing/validation data is shown in Table 11. Whilst the Random Forest algorithm produced higher 

accuracy among the explored classifiers in the result presented in Table 10, the C4,5 decision tree 

algorithm was observed to generate higher accuracy. This result is also in tandem with the obtained 

result in Adeyemi et. al.18. Only the C4.5 algorithm is leveraged in the proposed approach, as 

illustrated in Figure 2. The result exhibits a relatively better FAR and FRR result than the base 

algorithm. However, upon further computation, the proposed approach demonstrated a promising 

mechanism for classification accuracy. Relative to the result obtained in Table 10, the result shown 

in Table 11 shows that the proposed mechanism is capable of improving the efficiency of the 

classification process.  

Table 11: Comparative analysis of the proposed attribution mechanism 

 

Users 

 

Dataset Instance 

Output of development data on C4.5 

algorithm 

Validation data Output 

C4.5 Algorithm Proposed 

Attribution 

Development Validation AUC Accuracy FAR FRR FAR FRR FAR FAR 

User-1 466 211 0.992 0.979 0.044 0.021 0.0377 0.033 0.043 0.043 

User-2 365 129 0.883 0.556 0.450 0.444 0.589 0.480 0.581 0.760 

User-3 614 293 0.989 0.974 0.015 0.026 0.007 0.003 0.007 0.031 

User-4 263 111 0.973 0.897 0.092 0.103 0.117 0.117 0.111 0.207 

User-5 363 163 0.895 0.625 0.407 0.375 0.465 0.528 0.363 0.641 

User-6 313 154 0.932 0.764 0.201 0.236 0.204 0.240 0.162 0.396 

User-7 437 193 0.953 0.863 0.180 0.137 0.222 0.166 0.188 0.285 

User-8 652 220 0.988 0.965 0.026 0.035 0.031 0.009 0.014 0.032 

User-9 312 124 0.954 0.869 0.117 0.131 0.150 0.129 0.111 0.220 
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User-10 403 177 0.966 0.928 0.048 0.072 0.025 0.119 0.019 0.136 

User-11 224 112 0.882 0.683 0.275 0.317 0.227 0.330 0.075 0.262 

 

Discussion 

Attribution concept (and context) is a major source of concern among security and forensic stakeholders22. 

Conceptually, attribution relates to the technical expertise and mechanism to append causation (event or 

action) to a known effect (actor, recipient, or source). Two fundamental assertions on attribution context 

are found in the literature. Whilst one logic posit that attribution can be limited to the system (system 

attribution)23, others assert that attribution should be delimited to the actual individual behind a given 

system (human attribution)24. Both assertions, however, conveys the logic that attribution is a technical 

process that should eventually lead to the apprehension of a target. Human identification through biometric 

modality has been defined as one primary source that can be used to identify the actual human behind the 

system22,25. Such biometrics include physiological and behavioral. A physiological biometric modality, 

such as facial, iris, vein, fingerprint, palm print, and DNA, requires additional physical constraints. This 

limits the applicability of physiological biometric modalities in user attribution in digital forensics.  

Behavioral biometrics-based attribution technique presents a potential mechanism for identifying the actual 

individual behind a given digital system. Example of such behavioral modality includes keystroke26, web-

click patter27, web-browsing pattern, and mouse dynamics. Research on mouse dynamics owes its inception 

to the research conducted by Everitt and colleague28. This has generated studies, majorly, on active 

authentication5,12,29 and continuous authentication30,31. More recently, it has been extended to digital 

forensic readiness processes7. A synopsis of studies on mouse dynamics is presented in Table 12.  

Table 12: Summary of existing studies in Behavioral Biometrics 
Study Dataset 

composition 

Classification 

technique 

Metric of evaluation 

Accuracy EER FRR FAR AUC 

Shen et al.5 37-users,  

5550-instances 

One-class SVM, Kernel 

PCA 

- HTER: 

8.35 

7.96% 8.74% - 

Ahmed & 

Traore13 

22-Users,  

998-sessions 

Neural Network - - 2.461% 2.465% - 

Traore et 

al.19 

12-Users, 

447625-instances 

Bayesian Network and 

fusion 

- 22.41% - - - 

Jorgensen 
& Yu 4 

17-Users, 30-
minutes session 

Neural network, and 
Logistic regression 

96.7% & 
97.8% 

- - - - 

Gamboa et 

al32 

50-Users, 10-

minutes per user 

Sequential Forward 

Selection algorithm 

- - 6.2% - - 

Feher et 

al.33 

25-users, 100-

actions, and 30-

actions 

A hierarchical feature of 

mouse action 

verification method 

 7.5%, 

8.53% 

   

Mondal & 

Bours34 

25-users SVM, DT, ANN, 

Counter-propagation 

ANN, pairwise user 

coupling 

61.3%     

Ernsberger 

et al.7 

3-Users LibSVM, ANN, C4.5 

DT, Random Forest 

78.1%   0.21  

Current 

Study 

10-Users C4.5 DT, Random 

Forest, and Heuristic 

algorithm 

<80%  >0.01 >0.001 >0.8 
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As asserted34, behavioral data is characterized by high intra-class variation, a stochastic property which 

defines most behavioral biometric modalities. Mondal and Bours34 observed a very poor performance of 

statistical analysis, support vector machine (SVM), artificial neural network (ANN), and counter-

propagation ANN on such type of data.  

Human attribution based on behavioral biometrics is relatively a new scope of research in digital forensics. 

Behavioral biometrics such as keystroke dynamics, mouse dynamics, gait biometrics, stylometrics, and 

surfing navigation style, are common biometrics used in existing studies in information security. Research 

outcome in 35 attempted to define a forensic readiness modality for the implementation of behavioral 

biometrics. However, the outcome of the study is limited to the framework and recommendation without a 

quantitative outcome to support assertions. The proposition from the current research posits that there is a 

high likelihood of attributing behavioral biometrics data to an individual. One major limitation observed in 

this study is the collection and identification of informative dataset capable of inter-person discrimination. 

Furthermore, the noise constraint in the data remains a major source of research challenges. One 

consideration for this challenge is the development of significant instance identification mechanism, as an 

alternative to the generic significant feature identification. Approaches such as the component analysis, 

SVM attribute evaluation, information gain, gain ratio, and significant attribute evaluation are limited to a 

higher abstraction of instance identification. The exploratory process carried out in this study support the 

assertion that these attribute selection approaches are vulnerable to noise. A noise in this instance refers to 

mouse behavioral actions which are random and does not constitute any consistent pattern. Such actions 

are carried out by users during normal mouse action and do not require any specific operational innuendo. 

This is typical of behavioral data, as some human actions are a result of random reflects and context specific. 

Therefore, considering the high signal to noise ratio in a typical mouse behavioral biometric dataset, 

approaches which leverage signal to noise ratio filtration could provide a better technique for significant 

instance identification.  

Another probable consideration for this limitation is the implementation of a digital forensic readiness 

process in an organization over a given duration. Such a longitudinal study can be used to generate 

informative data with minimized noise. Noise reduction was not considered in the developed heuristics 

algorithm. A mechanism to address inaccuracy due to noise in data remains an open research challenge in 

most behavioral biometric data. The underlying question attempted by this study is contingent on the 

readiness of the usage of digital behavioral biometrics. Whilst the obtained results can be used to 

complement security apparatus and mechanisms, it, however, falls short of the forensic requirement for 

litigation. This, therefore, implies that the integration of behavioral biometrics in digital forensics is 

currently limited to the strengthening of security. Furthermore, a visualization of the mouse path using the 

non-finite automata model expressed in Table 8 presents a logical examination of path characteristics. Such 

characteristic behavior can be used to aid behavioral evaluation; a security mechanism that can be leveraged 

during incident analysis. This can be achieved through the use of a digital forensic readiness approach. A 

digital forensic readiness approach is a proactive mechanism implemented to collect, preserve, preprocess 

and store potential information which could provide corroborative insight during incident analysis. In 

addition, a digital forensic readiness mechanism is also suitable for 1:N identity matching process. This 

contrast the typical 1:1 identity matching approach such as the use of psychological profiling approach. 

However, given that the psychological approach of human behavioral components is baselined to a specific 

locus, a digital forensic readiness approach could therefore, provides a comprehensive and robust locus of 

mouse dynamics. In addition, the psychological approach is limited to deviation from a context-based locus 

of observation which therefore limits its application to areas such as lie detection where expected and 

unexpected behavioral sequence can be analyzed. Such an approach does not present the loci for the analysis 

of human behavioral navigation, particularly, in a free-browsing setting that is synonymous to real human 

navigation behavior. 
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Future works 

As part of ongoing research work, the digital forensic readiness approach will be considered as metrics for 

data collection and data preprocessing for data de-noising. Furthermore, an extensive study will be carried 

out on other behavioral biometrics. This will include the development of attribution process for keystroke 

dynamics, hand gesture, and the integration of these behavioral modalities to a more adaptive multimodal 

attribution process for digital forensic processes. The integration of physiological demographics such as 

handedness and gender will constitute other aspects of future works. A further area of improvement would 

involve the exploration of other reliable fingerprinting techniques, such as the short tandem repeat (STR) 

sequencing technique, motifs and common subsequence analysis from behavioral features, and other similar 

fingerprinting process for user attribution. Such techniques, if successful, could present a potent scientific 

and statistical premise for a reliable result that can provide a consistent behavioral fingerprint measure of a 

known user. Furthermore, studies on the probability of integrating behavioral fingerprint into digital 

forensic readiness models could be considered. Models on how to effectively and proactively harness the 

potential of the behavioral fingerprint could be developed and implemented. Such model would conform to 

the standard forensic procedure for evidence acquisition, collection, preservation, and analysis, with the 

hope of generating a result that has statistically acceptable, and technically sufficient evidential value in a 

legal proceeding. One area that was not considered in this study is the potential impact of the sample size 

of the data, and the effect of the number of instances required for attribution. This could be part of future 

study. A study that will attempt to understand the impact, if any, of the sample size of the data on the 

attribution process. 

Conclusion 

User attribution process through behavioral fingerprinting is a promising methodology for digital forensics, 

which requires intense scrutiny of technical protocol, result analysis, and factual interpretation. However, 

human behavior is a stochastic characteristic behavior with a low probability of a unique pattern. Though 

a classical machine learning approach of model development and validation have shown significant 

improvement over the years, the approach used in this study has not provided a substantially reliable 

accuracy applicable for forensic purpose. This is in part, due to the inherent noise of a stochastic process. 

Therefore, to address such stochastic behavior with classical machine learning process without recourse to 

the inherent noise could generate higher false results. This study developed an attribution model based on 

heuristics built on classical machine learning algorithms, with emphasis on the probability of extracting 

behavioral consistency from the stochastic data of human behavior.  Digital investigation, specifically in 

computer and network forensic stand to gain much support from such behavioral attribution process. The 

result presented in this study leverages human kinematics in the form of mouse behavior, to evaluate the 

preponderance of mouse dynamics for user attribution. Behavioral fingerprinting in this regard shows a 

promising mechanism for the identification of a human, which is beyond the classical username and 

password-based timeline profile. Therefore, this study has successfully demonstrated, in tandem with 

existing studies, the viability of the integration of mouse dynamics for a reliable user identification process. 

Consequently, mouse-based behavioral fingerprint can provide a strong scientific value to mouse dynamics 

evidence which can be used to further strengthens the evidential weight in a digital investigation  
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