

Available at www.**Elsevier**Mathematics.com

Discrete Mathematics 281 (2004) 43-66

DISCRETE MATHEMATICS

www.elsevier.com/locate/disc

New bounds for $n_4(k, d)$ and classification of some optimal codes over GF(4)

Iliya Bouyukliev^{a,1}, Markus Grassl^b, Zlatko Varbanov^{c,1}

^aInstitute of Mathematics, Bulgarian Academy of Sciences, PO Box 323, 5000 V. Tarnovo, Bulgaria ^bInstitut für Algorithmen und Kognitive Systeme, Universität Karlsruhe, Am Fasanengarten 5, 76128 Karlsruhe, Germany

^cFaculty of Mathematics and Informatics, Veliko Tarnovo University, 5000 V. Tarnovo, Bulgaria

Received 10 December 2002; received in revised form 5 November 2003; accepted 11 November 2003

Abstract

Let $n_4(k, d)$ be the minimum length of a linear [n, k, d] code over GF(4) for given values of k and d. For codes of dimension five, we compute the exact values of $n_4(5, d)$ for 75 previously open cases. Additionally, we show that $n_4(6, 14)=24$, $n_4(7, 9)=18$, and $n_4(7, 10)=20$. Moreover, we classify optimal quaternary codes for some values of n and k. (© 2003 Elsevier B.V. All rights reserved.

Keywords: Quaternary linear codes; Bounds on codes; Optimal codes

1. Introduction

A central problem in coding theory is to optimize the parameters of error-correcting codes, in particular, linear codes. A *q*-ary linear [n,k,d;q] code is a *k*-dimensional linear subspace of \mathbb{F}_q^n with minimum distance *d*. Here by \mathbb{F}_q^n we denote the vector space of dimension *n* over the Galois field $\mathbb{F}_q = GF(q)$. The minimum distance of a code is the minimum Hamming distance between two vectors, i.e., the number of coordinates in

0012-365X/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2003.11.003

E-mail addresses: iliya@moi.math.bas.bg (I. Bouyukliev), grassl@ira.uka.de (M. Grassl), vtgold@yahoo.com (Z. Varbanov).

¹ The work of I. Bouyukliev and Z. Varbanov was partially supported by the Bulgarian National Science Fund under Contract No. MM-1304/2003.

which they differ. For linear codes, we consider the problem of optimizing one of the parameters n, k, d for given values of the other two. Two versions are:

Problem 1. Find $d_q(n,k)$, the largest value of d for which there exists an [n,k,d;q] code.

Problem 2. Find $n_q(k,d)$, the smallest value of *n* for which there exists an [n,k,d;q] code.

A code which achieves one of these two values is called *optimal*. Note that a code can be optimal in the sense that its minimum distance is maximal for the given length and dimension, or that its length is minimal for the given dimension and minimum distance.

Bounds for $d_q(n,k)$ have been published in Brouwer's tables [7]. In this paper, we concentrate on the second problem. A lower bound on $n_q(k,d)$ is the Griesmer bound [18,32] given by

$$n_q(k,d) \ge \sum_{i=0}^{k-1} \left\lceil d/q^i \right\rceil = : g_q(k,d).$$

$$\tag{1}$$

For fixed k and sufficiently large d, the lower bound is achieved, i.e., there is a constant $D_0(k)$ such that $n_q(k,d) = g_q(k,d)$ for $d \ge D_0(k)$ [1].

Until now, the following exact values for the function $n_q(k,d)$ have been known: Bouyukliev, et al. completed the problem for $n_2(k,d)$ when $k \le 8$ [5]. Landjev solved the last unknown cases for q = 3 and k = 5 [24]. The quaternary case was considered, e.g., in [2,9,14,15,17,21,23,25,26]. Recent results on $n_4(5,d)$ can be found in [25,28].

In this paper, we investigate quaternary linear codes. We found 25 new codes and proved the non-existence of four codes, using different approaches. Our main tools are an algorithm for the construction of codes using their residual codes, the dual transform of linear codes, and a heuristic algorithm. Our results give 75 new exact values for $n_4(5,d)$. Additionally, we present some new results on the classification of optimal linear codes over GF(4) (see also the results related to geometrical constructions [21], near-MDS-codes [11], and the results of [22,29]).

2. Our tools

2.1. Q-EXTENSION

The program *Q*-EXTENSION contains two main approaches to construct new codes from a given code. The first one is based on puncturing, the second one on shortening. While in general the dimension of a code is unchanged by puncturing, this is not true if all non-zero positions of a codeword are deleted. Let *G* be a generator matrix of a linear [n,k,d;q] code *C*. Then the *residual code* Res(C,c) of *C* with respect to a codeword *c* is the code generated by the restriction of *G* to the columns where *c* has a zero entry. A lower bound on the minimum distance of the residual code is given by

Lemma 1 (Dodunekov [13]). Suppose C is an [n,k,d]-code over GF(q) and suppose $c \in C$ has weight w, where d > w(q-1)/q. Then $\operatorname{Res}(C,c)$ is an [n-w,k-1,d']-code with $d' \ge d - w + \lceil w/q \rceil$.

Inverting this operation, we search for an [n, k, d] code on the basis of an [n-w, k-1, d'] code (its residual code) or an [n-i, k, d'] code (punctured code). Starting from the code [3, 2, 2], we obtain for example the codes [8, 3, 5] and then [28, 4, 20].

The second approach increases both the length and the dimension of the code, i.e., we construct an [n+i,k+i,d] or an [n+i+1,k+i,d] code starting from an [n,k,d'] code. If G is a generator matrix for an [n,k,d'] code, the generator matrix of the new code is of the form

$$\left(\frac{* |I_i|}{G |0}\right) \quad \text{or} \quad \left(\frac{* |I_i|I_i|}{G |0|}\right),$$

where I_i denotes an $i \times i$ identity matrix and by 1_i we denote a column vector with i ones. We take the matrix G in systematic form, thus we can fix k additional columns. More information on this topic can be found in [6].

2.2. Heuristic search for good linear codes

Let $\mathscr{S}_{k,q}$ be the set of all column vectors $a = (a_1, a_2, \ldots, a_k)^t \in \mathbb{F}_q^k$ such that either $a_1 = 1$ or $a_1 = a_2 = \cdots = a_{i-1} = 0$, $a_i = 1$ for some integer i in $\{2, 3, \ldots, k\}$, where $k \ge 3$ and \mathbb{F}_q^k is the vector space of dimension k over \mathbb{F}_q . Then $\mathscr{S}_{k,q}$ consists of all $(q^k - 1)/(q - 1)$ normalized non-zero vectors in \mathbb{F}_q^k and the vectors in $\mathscr{S}_{k,q}$ can be regarded as $(q^k - 1)/(q - 1)$ points in a finite projective geometry PG(k - 1, q).

A linear code is called *projective* if no two columns of a generator matrix are linearly dependent. We consider the columns of the generator matrix of a projective code as a subset of $\mathscr{G}_{k,q}$. For any *n*-element subset of $\mathscr{G}_{k,q}$ there is a projective $[n, k_0, d; q]$ code $(k_0 \leq k)$ with a generator matrix containing these elements as columns. On the other hand, for a code *C* we denote by T(C) the set of the columns of the generator matrix of *C*, considered as elements of $\mathscr{G}_{k,q}$. Then the problem to construct a projective linear [n,k,d;q] code (if such a code exists) can be stated in the following way:

Find *n* elements of $\mathscr{S}_{k,q}$ such that the corresponding $k \times n$ matrix generates an [n,k,d;q] code.

We use the following notations:

- (1) Each *n*-element subset S of $\mathscr{S}_{k,q}$ is called a solution.
- (2) The substitution of a given element of a solution S by another element of $\mathscr{S}_{k,q} \setminus S$ is called *an elementary transformation*.

- (3) The neighborhood N(S) of a solution S is the set of all solutions S' that can be obtained from S by an elementary transformation.
- (4) We define the evaluation function by

 $f(S) = d_{\min}(S)q^k - A_{d_{\min}}(S),$

where $d_{\min}(S)$ is the minimum distance of the corresponding code and $A_{d_{\min}}(S)$ is the number of codewords of minimum weight in the corresponding code.

The problem to construct an [n, k, d; q] code (if such a code exists) can be reformulated as the following combinatorial optimization problem:

 $\max\{f(S), S \subset \mathcal{G}_{k,q}, |S| = n\}.$

To find a solution of this problem, we use the following heuristic algorithm (similar local optimization algorithms have been used e.g. in [19,20,30,31]):

```
variables
  S, S': solution;
  Number_of_Descents: integer;
begin
  Get_Initial_Solution(S):
  for Number_of_Descents:= 1 to CONST1 do
    while exists S' in N(S) such that f(S') > f(S) do
      S := S':
    end while;
    if d_{\min}(S) \ge d_{\text{target}} then
      Output_Solution(S)
    else
      S := Add_Noise(S);
    end if;
  end for;
end.
```

The initial solution S can be chosen in several ways

- (1) By using a code C' with parameters $[n l, k, d \delta; q]$ where $\delta \leq l$. In this case l elements from $\mathscr{G}_{k,q}$, not belonging to T(C') are randomly added to T(C').
- (2) By using a code C' with parameters [n+l,k,d+l-1;q]. In this case l elements of T(C') are randomly deleted.

The function Add_Noise(S) replaces m ($1 \le m \le \text{CONST}$) random elements of S by m other, randomly chosen elements of $\mathscr{G}_{k,q} \setminus S$.

This algorithm can not only be used to construct optimal projective codes. If $n > q^{k-1}$, we just take several copies of the set $\mathscr{G}_{k,q}$. For all codes in this paper constructed by this method, the set $\mathscr{G}_{k,q}$ is taken twice.

Some other codes were found by random search using the computer algebra system MAGMA [3].

2.3. Dual transform

Below we describe a construction by Brouwer and van Eupen [8], which in some cases produces optimal codes. Let \mathscr{C} be a projective [n, k, d; q] code with non-zero weights w_1, w_2, \ldots, w_s and let \mathscr{D} be a subcode of dimension k - 1. By $B_i(\mathscr{D})$, we denote the number of codewords in \mathscr{D} of weight *i* divided by q - 1. Let further $n_{\mathscr{D}}$ be the number of coordinate positions where not all codewords of \mathscr{D} are zero. One has

$$\sum_{i=1}^{s} B_i(\mathscr{D}) = \frac{q^{k-1}-1}{q-1}$$

and

$$\sum_{i=1}^{s} (n_{\mathscr{D}} - w_i) B_i(\mathscr{D}) = n_{\mathscr{D}} \frac{q^{k-2} - 1}{q-1}.$$

Since \mathscr{C} is projective, we have $n_{\mathscr{D}} = n - 1$ for *n* subcodes of \mathscr{C} and $n_{\mathscr{D}} = n$ for the remaining $(q^{k-1}-1)/(q-1) - n$ subcodes of dimension k-1. It follows that for an arbitrary choice of α and β the sum

$$\sum_{i=1}^{s} (\alpha w_i + \beta) B_i(\mathscr{D}) = \alpha q^{k-2} n_{\mathscr{D}} + \beta \, \frac{q^{k-1} - 1}{q-1}$$

does not depend on \mathscr{D} , but only on $n_{\mathscr{D}}$ and hence it takes only two values. We fix α and β in such a way that $\alpha w_i + \beta$ are all non-negative integers. Then consider the multiset \mathscr{X} of *n*-tuples defined in the following way: for each one-dimensional space $\langle \mathbf{c} \rangle \in \mathscr{C}$ with wt(\mathbf{c}) = w take $\alpha w + \beta$ copies of the vector \mathbf{c} . Fixing a generator matrix of C, every such vector can be considered as a point in the projective space PG(k-1,q). Each hyperplane in PG(k-1,q) corresponds to a k-1 dimensional subspace \mathscr{D} of \mathscr{C} and contains $\sum_{i=1}^{s} (\alpha w_i + \beta)B_i(\mathscr{D})$ points of \mathscr{X} .

Let $G_{\mathscr{X}}$ be a $k \times |\mathscr{X}|$ matrix having the vectors of \mathscr{X} as its columns and consider the code $\mathscr{C}_{\mathscr{X}}$ generated by the rows of $G_{\mathscr{X}}$. Obviously, its length is

$$N = |\mathcal{X}| = \sum_{i=1}^{s} (\alpha w_i + \beta) \frac{A_i}{q-1} = \beta \frac{q^{k-1}-1}{q-1} + q^{k-1} \alpha n,$$

where (A_0, A_1, \ldots, A_n) is the weight distribution of \mathscr{C} . Its dimension is $K \leq k$. It follows that $\mathscr{C}_{\mathscr{X}}$ is a two-weight code of minimum distance

$$D = |\mathscr{X}| - \beta \frac{q^{k-1}-1}{q-1} - q^{k-2} \max(\alpha n, \alpha(n-1)),$$

with non-zero weights

$$v = |\mathscr{X}| - \frac{|\mathscr{X}| - \beta}{q}$$
 and $u = v + \alpha q^{k-2}$.

Generalizations of this construction can be found in [12].

3. New bounds for $n_4(k, d)$

Using the program Q-EXTENSION, we have proved the non-existence of several codes with given parameters and in this way we have found new lower bounds for the function $n_4(k, d)$. Most of the lower bounds in this section are known from [7,28].

Theorem 2. $n_4(5, 17) = 27$ and $n_4(5, 21) = 32$.

Proof. The Griesmer bound yields $n_4(5, 17) \ge g_4(5, 17) = 26$. There exist exactly four non-equivalent [9,4,5] codes over GF(4). Using Q-EXTENSION we prove that none of those codes can be extended to a [26,5,17;4] code, but a code [27,5,17;4] exists. Hence $n_4(5,17) = 27$.

The Griesmer bound yields $n_4(5,21) \ge g_4(5,21) = 31$. There exist exactly two inequivalent [10,4,6;4] codes. Using Q-EXTENSION we see that neither of them can be extended to a [31,5,21;4] code, but a code [32,5,21;4] exists. Hence $n_4(5,21) = 32$. \Box

Theorem 3. $n_4(6, 14) = 24$.

Proof. The Griesmer bound yields $n_4(6, 14) \ge g_4(6, 14) = 22$. The residue code of a code [22, 6, 14; 4] would be a code [8, 5, 4; 4] which does not exist. Hence $n_4(6, 14) \ge 23$. There exist exactly 19 optimal [9, 5, 4] codes over GF(4). Using Q-EXTENSION we obtain that none of these codes can be extended to a [23, 6, 14; 4] code, and hence $n_4(6, 14) = 24$, as a code [24, 6, 14; 4] exists. \Box

Theorem 4. $n_4(7,9) = 18$ and $n_4(7,10) = 20$.

Proof. The Griesmer bound yields $n_4(7,9) \ge g_4(7,9) = 17$. The residue code of a code [17,7,9;4] would be an MDS code [8,6,3;4]. Its dual would be an MDS code [8,2,7;4] which does not exist as $g_4(2,7) = 9$. Hence $n_4(7,9) \ge 18$. The dual distance (the minimum distance of the dual code) of an [18,7,9;4] code must be at least 4 because a code with parameters [15,5,9;4] does not exist. There exist exactly 4 optimal [9,6,3;4] codes with dual distance 4 and 13 optimal [9,6,3;4] codes with dual distance 4 can be extended to an [18,7,9;4] code, but the extension of a code with dual distance 5 yields an [18,7,9;4] code with generator matrix

(Here and throughout the paper we use $\{0, 1, 2, 3\}$ to denote the elements of $\mathbb{F}_{4.}$) Its weight enumerator is $1 + 393z^9 + 666z^{10} + 1245z^{11} + 2193z^{12} + 3315z^{13} + 3597z^{14} + 2799z^{15} + 1554z^{16} + 504z^{17} + 117z^{18}$.

For $n_4(7,10)$, the Griesmer bound yields $n_4(7,10) \ge g_4(7,10) = 18$, but via the residue code, we get $n_4(7,10) \ge 19$. Using Q-EXTENSION we obtain exactly three non-equivalent [18,6,10;4] codes, but none of these codes can be extended to a [19,7,10;4] code, therefore $n_4(7,10) = 20$, as a [20,7,10;4] code exists. \Box

The results in Theorem 5 are obtained by the heuristic search described in Section 2.2, in combination with previously known lower bounds.

Theorem 5. $n_4(5,24) = 35$, $n_4(5,50) = 70$, $n_4(5,74) = 102$, $n_4(5,156) = 210$, $n_4(5,164) = 221$, $n_4(5,168) = 226$, $n_4(5,172) = 231$, $n_4(5,260) = 349$, $n_4(5,264) = 354$, $n_4(5,268) = 359$, $n_4(5,300) = 402$, $n_4(5,316) = 423$, $n_4(5,356) = 477$, $n_4(5,360) = 482$, and $n_4(5,364) = 487$.

Proof. There exist codes with parameters: [35, 5, 24], [70, 5, 50], [102, 5, 74], [210, 5, 156], [221, 5, 164], [226, 5, 168], [231, 5, 172], [349, 5, 260], [354, 5, 264], [359, 5, 268], [402, 5, 300], [423, 5, 316], [477, 5, 356], [482, 5, 360], [487, 5, 364].

The weight enumerators of the codes are shown in Table 1, and generator matrices are given in Appendix A. \Box

The following results are obtained by the dual transform described in Section 2.3, again in combination with previously known lower bounds.

Theorem 6. $n_4(5, 144) = 194$, $n_4(5, 160) = 215$, $n_4(5, 176) = 236$, $n_4(5, 272) = 364$, $n_4(5, 288) \le 386$, $n_4(5, 304) = 407$, and $n_4(5, 320) = 428$.

Table 1		
Weight enumerators	of the codes in The	orem 5

Code	Weight enumerator
[35, 5, 24]	$1 + 504z^{24} + 456z^{28} + 63z^{32}$
[70, 5, 50]	$1 + 462z^{50} + 315z^{52} + 15z^{56} + 210z^{58} + 21z^{60}$
[102, 5, 74]	$1 + 489z^{74} + 306z^{76} + 15z^{80} + 162z^{82} + 30z^{84} + 21z^{90}$
[210, 5, 156]	$1 + 870z^{156} + 63z^{160} + 90z^{172},$
[221, 5, 164]	$1 + 768z^{164} + 171z^{168} + 9z^{172} + 75z^{180}$
[226, 5, 168]	$1 + 825z^{168} + 120z^{172} + 3z^{176} + 75z^{184}$
[231, 5, 172]	$1 + 885z^{172} + 63z^{176} + 75z^{188}$
[349, 5, 260]	$1 + 765z^{260} + 168z^{264} + 9z^{268} + 78z^{276} + 3z^{280}$
[354, 5, 264]	$1 + 819z^{264} + 120z^{268} + 3z^{272} + 81z^{280}$
[359, 5, 268]	$1 + 879z^{268} + 63z^{272} + 81z^{284}$
[402, 5, 300]	$1 + 867z^{300} + 57z^{304} + 93z^{316} + 6z^{320}$
[423, 5, 316]	$1 + 879z^{316} + 63z^{320} + 78z^{332} + 3z^{348}$
[477, 5, 356]	$1 + 774z^{356} + 153z^{360} + 9z^{364} + 69z^{372} + 18z^{376}$
[482, 5, 360]	$1 + 825z^{360} + 108z^{364} + 3z^{368} + 75z^{376} + 12z^{380}$
[487, 5, 364]	$1 + 879z^{364} + 57z^{368} + 81z^{380} + 6z^{384}$

Proof. There exist projective [35, 5, 24; 4] and [38, 5, 24; 4] codes with weights 24, 28, 32 and generator matrices

(0233221133220011330011221131300000 12332200223333220022330023112200000 32202101131321021103301011022031000 02110033110022331122330011313000220 32323021202332213113233001133030201) (2022000011011331111133222331100000000 202222111003220033333111000113320000000 20313133101003211122320032233221210000 20102011210110322200032012030310103330 00033223023320332123303032011133101302

Their weight enumerators are:

 $1 + 504z^{24} + 456z^{28} + 63z^{32}$ $1 + 144z^{24} + 600z^{28} + 279z^{32}$

Let $\alpha = \frac{1}{4}$ and $\beta = -6$. Using dual transform, we obtain a two-weight codes with parameters [194, 5, 144; 4] and [386, 5, 288; 4], respectively.

There exist projective [30, 5, 20; 4] and [33, 5, 20; 4] codes with weights 20, 24, 28 and generator matrices

 102101123100133302021122330000000

 122110030233311120203300112000000

 003101033001103213002103123221000

 202132120130220302303131202110330

 203101212220003013303003011010102

Their weight enumerators are:

$$1 + 423z^{20} + 555z^{24} + 45z^{28}$$
$$1 + 99z^{20} + 627z^{24} + 297z^{28}$$

Let $\alpha = \frac{1}{4}$ and $\beta = -5$. Using dual transform, we obtain a two-weight codes with parameters [215, 5, 160; 4] and [407, 5, 304; 4], respectively.

There exist projective [25, 5, 16; 4], [27, 5, 16; 4], and [28, 5, 16; 4] codes with weights 16, 20, 24 and generator matrices

(2101232330203322022200000)
3131012123222110201000000
0301322313001300231131000
2301010112021100022220220
1101320020023130332100102)
(3310312310000031131231000000))
(120130120233111130013000000)
(12013012023111130013000000)
(120130033131011031002111000
022300030133301033032200130
00233331001301030001130203)

```
      3310312310000031131231000000

      0032320311122100332031000000

      1320301231201300011000321000

      1200012132302100000132030310

      3320111102012220120303310201
```

Their weight enumerators are:

 $\begin{aligned} 1 &+ 345z^{16} + 648z^{20} + 30z^{24} \\ 1 &+ 117z^{16} + 720z^{20} + 186z^{24} \\ 1 &+ 57z^{16} + 648z^{20} + 318z^{24} \end{aligned}$

Let $\alpha = \frac{1}{4}$ and $\beta = -4$. Using dual transform, we obtain two-weight codes with parameters [236, 5, 172; 4], [364, 5, 272; 4], [428, 5, 320; 4], respectively. \Box

Remark 7. There exist codes with parameters [210, 5, 156; 4], [215, 5, 160; 4], and [256, 5, 192; 4]. Pasting these codes together, we obtain codes with parameters [466, 5, 348; 4] and [471, 5, 352; 4].

Remark 8. Obviously, if a code with parameters [n, k, d] does not exist, then there are no codes with parameters [n + 1, k, d + 1] and [n + 1, k + 1, d]. Using Theorems 2 and 3 we obtain

 $n_4(5,18) = 28, n_4(6,15) = 25, n_4(6,17) = 28, n_4(6,18) \ge 29, n_4(7,14) \ge 25, n_4(7,17)$ $\ge 29, n_4(8,14) \ge 26, n_4(8,15) \ge 27, n_4(9,14) \ge 27, n_4(9,15) \ge 28, n_4(10,14) \ge 28,$ and $n_4(10,15) \ge 29.$ All the bounds derived from Theorem 5 and Theorem 6 are summarized in Table 2. Furthermore, the following results have been included:

Remark 9. In [10], Dissett has shown that there exists a two-weight projective code with parameters [99, 5, 72] and weights $w_1 = 72$ and $w_2 = 80$.

Remark 10. Recently in [26,16] some new bounds for $n_4(5,d)$ have been found.

Table 2

Values and bounds comparing the Griesmer bound $g_4(5,d)$ and $n_4(5,d)$. Entries in boldface are given in this paper. For missing entries, $n_4(5,d) = g_4(5,d)$

d	$g_4(5,d)$	$,d)$ $n_4(5,d)$		$g_4(5,d)$	$n_4(5,d)$	d	$g_4(5,d)$	$n_4(5,d)$	
1	5	5	57	78	79-81	113	153	154-155	
2	6	6	58	79	80-82	114	154	155-156	
3	7	8	59	80	81-83	115	155	156-157	
4	8	9	60	81	82-84	116	156	157-158	
5	10	10	61	83	84-85	117	158	159-160	
6	11	11	62	84	85-86	118	159	160-161	
7	12	13	63	85	87	119	160	161-162	
8	13	14	64	86	88	120	161	162-163	
9	15	16	65	90	90-91	121	163	164	
10	16	17	66	91	91-92	122	164	165	
11	17	19	67	92	92-93	123	165	166-167	
12	18	20	68	93	93–94	124	166	167-168	
13	20	21	69	95	95-96	125	168	169	
14	21	22	70	96	96-97	126	169	170	
15	22	23	71	97	98	127	170	171	
16	23	24	72	98	99	128	171	172	
17	26	27	73	100	101	129	175	175 - 176	
18	27	28	74	101	102	130	176	176-177	
19	28	29	75	102	103-104	131	177	177 - 178	
20	29	30	76	103	104 - 105	132	178	178–179	
21	31	32	77	105	106	133	180	180 - 181	
22	32	33	78	106	107	134	181	181 - 182	
23	33	34	79	107	108	135	182	182-183	
24	34	35	80	108	109	136	183	183–184	
25	36	37	81	111	111-112	137	185	185 - 186	
26	37	38	82	112	112-113	138	186	186 - 187	
27	38	39	83	113	113-114	139	187	188	
28	39	40	84	114	114 - 115	140	188	189	
29	41	42	85	116	117	141	190	191	
30	42	43	86	117	118	142	191	192	
31	43	44-45	87	118	119	143	192	193	
32	44	46	88	119	120	144	193	194	
33	47	48	89	121	122-123	145	196	197	
34	48	49	90	122	123-124	146	197	198	
35	49	50	91	123	124 - 125	147	198	199	
36	50	51	92	124	125-126	148	199	200	
37	52	53-54	93	126	127-128	149	201	202	
38	53	54-55	94	127	128-129	150	202	203	
39	54	55-56	95	128	129-130	151	203	204	

	d	$g_4(5,d)$	$n_4(5,d)$	d	$g_4(5,d)$	$n_4(5,d)$	d	$g_4(5,d)$	$n_4(5,d)$
415758-5997132133-13415320620742585960-6199133134-135154207208446061-62100135136-137156209210456263-64101137138157211212466364-65102138139-140158212213476465-66-7104140141-142160214215496869105142143-144161217218506970106143144-145162218219517071-72107144145-146163219220527172-73108145146-14716422022153737475110148149-15016622322455757677112150151-152168225226169227228229258347347314420421171229230259348348315421422173234235263353353319426427174235236264354354320427428175234235263356351317	40	55	56-57	96	129	130-131	152	204	205
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	57	58-59	97	132	133-134	153	206	207
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	58	59-60	98	133	134-135	154	207	208
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	59	60-61	99	134	135-136	155	208	209
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	60	61-62	100	135	136-137	156	209	210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	62	63-64	101	137	138	157	211	212
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	63	64-65	102	138	139-140	158	212	213
48656667104140141-142160214215496869105142143-144161217218506970106143144-145162218219517071-72107144145-146163219220527172-73108145146-147164220221537374109147148-149165222223547475110148149-150166223224557576111149150-151167224225169227228229258347347314420421171229230259348348315421422172230231260349349316421422173232233261351351317424425174233234262352352318426427176235236264354354320427428177238239265356356321431431-432178239240266357358358323433433-444180241242268359359324434434-	47	64	65-66	103	139	140-141	159	213	214
1010105142143-144161217218506970106143144-145162218219517071-72107144145-146163219220527172-73108145146-147164220221537374109147148-149165222223547475110148149-150166223224557576111149150-151167224225567677112150151-152168225226169227228229258347347314420421171229230259348348315421422172230231260349349316422423173232233261351351317424425174233234262352353319426427176235236263353353319426427176235236264354354320427428177238239265356357357322433433-434180241242268359359324434434-435181 </td <td>48</td> <td>65</td> <td>66-67</td> <td>104</td> <td>140</td> <td>141–142</td> <td>160</td> <td>214</td> <td>215</td>	48	65	66-67	104	140	141–142	160	214	215
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	49	68	69	105	142	143–144	161	217	218
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50	69	70	106	143	144 - 145	162	218	219
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	51	70	71-72	107	144	145 - 146	163	219	220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	71	72-73	108	145	146 - 147	164	220	221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	73	72 73	100	147	148_149	165	220	221
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	74	75	110	1/18	140 150	166	222	223
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	75	75	111	140	150 151	167	223	224
30 70 71 112 130 $131-132$ 108 223 220 169 227 228 229 258 347 347 314 420 421 170 228 229 258 347 347 314 420 421 171 229 230 259 348 348 315 421 422 172 230 231 260 349 349 316 422 423 173 232 233 261 351 351 317 424 425 176 235 236 263 353 353 319 426 427 176 235 236 264 354 354 320 427 428 177 238 239 265 356 356 321 431 $431-432$ 178 239 240 266 357 357 322 432 $432-433$ 179 240 241 267 358 358 323 433 $433-434$ 180 241 242 268 359 324 434 $434-435$ 181 243 244 269 361 361 325 436 $436-437$ 182 244 245 270 362 362 326 437 $437-438$ 183 245 246 271 363 363 327 438 4	55	75	70	111	149	151 152	169	224	223
169227228257346346313419420170228229258347347314420421171229230259348348315421422172230231260349349316422423173232233261351351317424425174233234262352352318426427176235236264354354320427428177238239265356356321431431-432178239240266357357322432432-433179240241267358358323433433-434180241242268359359324434434-435181243244269361361325436436-437182244245270362362326437437-438183245246271363363327438438-439184246247272364364328439439-440186249250274368368-369330442442-443187250251275369369-370331443444-445	50	70	//	112	150	151-152	108	223	220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	169	227	228	257	346	346	313	419	420
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	170	228	229	258	347	347	314	420	421
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	171	229	230	259	348	348	315	421	422
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	230	231	260	349	349	316	422	423
174 233 234 262 352 352 318 425 426 175 234 235 263 353 353 319 426 427 176 235 236 264 354 354 320 427 428 177 238 239 265 356 356 321 431 $431-432$ 178 239 240 266 357 357 322 432 $432-433$ 179 240 241 267 358 358 323 433 $433-434$ 180 241 242 268 359 359 324 434 $443-435$ 181 243 244 269 361 361 325 436 $436-437$ 182 244 245 270 362 362 326 437 $437-438$ 183 245 246 271 363 363 327 438 $438-439$ 184 246 247 272 364 364 328 439 $439-440$ 185 248 249 273 367 $367-368$ 329 441 $441-442$ 186 249 250 274 368 $368-369$ 330 442 $442-443$ 187 250 251 275 369 $370-371$ 332 444 $444-445$ 189 253 253 277 372 $372-373$ <td>173</td> <td>232</td> <td>233</td> <td>261</td> <td>351</td> <td>351</td> <td>317</td> <td>424</td> <td>425</td>	173	232	233	261	351	351	317	424	425
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174	233	234	262	352	352	318	425	426
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175	234	235	263	353	353	319	426	427
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	235	236	264	354	354	320	427	428
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177	238	239	265	356	356	321	431	431-432
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178	239	240	266	357	357	322	432	432-433
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	179	240	241	267	358	358	323	433	433-434
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	180	241	242	268	359	359	324	434	434-435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	181	243	244	269	361	361	325	436	436-437
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	182	244	245	270	362	362	326	437	437-438
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	183	245	246	271	363	363	327	438	438-439
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	184	246	247	272	364	364	328	439	439-440
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	185	248	249	273	367	367-368	329	441	441-442
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	186	249	250	274	368	368-369	330	442	442-443
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	187	250	251	275	369	369-370	331	443	443-444
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	188	251	252	276	370	370-371	332	444	444-445
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	189	253	253	277	372	372-373	333	446	446-447
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	190	254	254	278	373	373-374	334	447	447-448
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	191	255	255	279	374	374-375	335	448	448-449
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	192	256	256	280	375	375-376	336	449	449-450
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	193	260	260	281	377	377-378	337	452	452-453
195 262 262 283 379 379-380 339 454 454-455 196 263 263 284 380 380-381 340 455 455-456 197 265 265 285 382 382-383 341 457 457-458 198 266 266 286 383 383-384 342 458 458-459 199 267 267 287 384 384-385 343 459 459-460	194	261	261	282	378	378-379	338	453	453-454
196 263 263 284 380 380-381 340 455 455-456 197 265 265 285 382 382-383 341 457 457-458 198 266 266 286 383 383-384 342 458 458-459 199 267 267 287 384 384-385 343 459 459-460	195	262	262	283	379	379-380	339	454	454-455
197 265 265 285 382 382–383 341 457 457–458 198 266 266 286 383 383–384 342 458 458–459 199 267 267 287 384 384–385 343 459 459–460	196	263	263	284	380	380-381	340	455	455-456
198 266 267 287 383 383–384 342 457 457–456 198 266 266 286 383 383–384 342 458 458–459 199 267 267 287 384 384–385 343 459 459–460	197	265	265	285	382	382-383	341	457	457-458
199 267 267 287 384 384-385 343 459 459-460	198	266	266	286	383	383-384	342	458	458-459
132 267 267 267 267 507 507 507 777 777 777	199	267	267	287	384	384-385	343	459	459_460
200 268 268 288 385 385 385 344 460 460 460 461	200	268	268	288	385	385- 386	344	460	460 - 461
201 270 270 289 388 388-389 345 462 462- 463	201	270	270	289	388	388-389	345	462	462-463

Table 2 (continued)

d	$g_4(5,d)$	$n_4(5,d)$	d	$g_4(5,d)$	$n_4(5,d)$	d	$g_4(5,d)$	$n_4(5,d)$
202	271	271	290	389	389-390	346	463	463– 464
203	272	272	291	390	390-391	347	464	465
204	273	273	292	391	391-392	348	465	466
205	275	276	293	393	393-394	349	467	468
206	276	277	294	394	394-395	350	468	469
207	277	278	295	395	395-396	351	469	470
208	278	279	296	396	396-397	352	470	471
209	281	281	297	398	398– 399	353	473	473– 474
210	282	282	298	399	399- 400	354	474	474– 475
211	283	283	299	400	401	355	475	476
212	284	284	300	401	402	356	476	477
213	286	286	301	403	403– 404	357	478	479
214	287	287	302	404	404- 405	358	479	480
215	288	289	303	405	406	359	480	481
216	289	290	304	406	407	360	481	482
217	291	292	305	409	410	361	483	484
218	292	293	306	410	411	362	484	485
219	293	294	307	411	412	363	485	486
220	294	295	308	412	413	364	486	487
221	296	297	309	414	415	365	488	489
222	297	298	310	415	416	366	489	490
223	298	299	311	416	417	367	490	491
224	299	300	312	417	418	368	491	492

Table 2 (continued)

Remark 11. Ward has shown in [33] that there are no codes [98, 5, 72; 4] and [119, 5, 88; 4]. Hence $n_4(72, 5) = 99$ and $n_4(88, 5) = 120$.

Remark 12. Maruta has shown in [27] that there are no codes [116, 5, 85; 4] and [187, 5, 139; 4]. Hence $n_4(85, 5) = 117$ and $n_4(139, 5) = 188$.

Remark 13. It turned out that there is an error in the table of [4] which gives $d_4(190,5) = 141$. Landjev and Maruta have shown in [25] that there is no code [190, 5, 141; 4]. Hence $n_4(141,5) = 191$.

Remark 14. All new codes from Theorems 5 and 6 are Hermitian self-orthogonal.

4. Classification results

Finally, we present some classification results for codes [n, k, d; 4] with $n \le 35$ and $k \le 6$. First we note that codes with parameters [16, 3, 12; 4], [20, 3, 15; 4], and [21, 3, 16; 4] are McDonald codes, so each of them is unique. Our new classification results have been obtained by Q-EXTENSION. We summarize them together with known results, including references, in Table 3. Note that we only count codes with dual distance greater than one, i.e., there is no position in the code that is constantly zero.

q = 4	<i>k</i> = 3		<i>k</i> = 4		<i>k</i> = 5		<i>k</i> = 6	
n	d	Number	d	Number	d	Number	d	Number
3	1							
4	2	1	1					
5	3	1	2	1	1			
6	4	1	2	8	2	1	1	
7	4	7	3	10	2	11	2	1
8	5	3	4	16	3	13	2	16
9	6	3 [11]	5	4	4	19	3	17
10	6	45	6	2 [11]	5	4	4	23
11	7	25	6	841	6	1 [11]	5	1 [11]
12	8	16	7	275	6	19181	6	1 [11]
13	9	4	8	30	7	452	6	
14	10	2	9	1	8	6	7	14
15	11	1	10	1	8		8	3
16	12	1 MD	11	1	9		8	
17	12	12	12	1 BCH	10		9	
18	13	2	12	20	10		10	
19	14	1	12		11		10	
20	15	1 MD	13		12		11	
21	16	1 MD	14		13		12	
22	16	6	15	15	14		12-13	
23	16	498	16	3	15	2	13	
24	17	102	16		16	1 [22]	14	
25	18	27	17		16		15	
26	19	5	18	48	16		16	
27	20	2	19	2	17		16	
28	20	217	20	1	18		17	
29	21	38	20		19		17 - 18	
30	22	13	21	6	20		18–19	
31	23	3	22	1	20		19-20	
32	24	2	22		21		20	
33	24	79	23		22		20-21	
34	25	11	24		23		21-22	
35	26	5	24		24		22–23	

Bounds for $d_4(n,k)$ for k = 3,4,5,6 and the number of inequivalent codes for some optimal codes. Note that we only count codes with dual distance greater than one

Table 3

Additionally, in Appendix A.2 we list all weight enumerators for the cases when there are no more than 12 different enumerators. If inequivalent codes have the same weight enumerator, we also list the number of such codes.

For the new code [236, 5, 176; 4] obtained by dual transform, we have obtained the following partial classification results:

Remark 15. There exist exactly 31 inequivalent codes [25, 5, 16; 4] and weights 16, 20, and 24. Their weight enumerators are $1 + 345y^{16} + 648y^{20} + 30y^{24}$ for 29 codes and

 $1 + 357y^{16} + 624y^{20} + 42y^{24}$ for the two remaining codes. Using the dual transform, one obtains codes [236, 5, 176; 4] with weight enumerators $1 + 948y^{176} + 75y^{192}$ and $1 + 951y^{176} + 69y^{192} + 3y^{208}$, respectively.

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments, in particular for providing the entries for the codes with parameters [11,4,6;4] and [12,5,6;4] in Table 3. M. Grassl acknowledges the hospitality of the Mathematical Sciences Research Institute, Berkeley, USA, where part of this work has been performed.

Appendix A

A.1. Generator matrices for some codes

Let $\mathscr{S}_{k,q}$ be the set of all column vectors $a = (a_1, a_2, \ldots, a_k)^t \in \mathbb{F}_q^k$ such that either $a_1 = 1$ or $a_1 = a_2 = \cdots = a_{i-1} = 0$, $a_i = 1$ for some integer *i* in $\{2, 3, \ldots, k\}$, where $k \ge 3$. Let the vectors from $\mathscr{S}_{k,q}$ be arranged in lexicographic order. A generator matrix of a projective code can be represented by a binary vector of length $(q^k - 1)/(q - 1)$ with 1 indicating the presence, and 0 the absence, of a vector of $\mathscr{S}_{k,q}$. This binary vector is then broken into blocks of length 4, each of which is represented by a hexadecimal symbol from $\{0, 1, \ldots, 9, a, b, c, d, e, f\}$. If it is necessary the last block is beforehand completed by zeroes.

Example. If q = 4 and k = 3 the set $\mathcal{S}_{k,q}$ looks like this

Then the code [15,3,10;4] with generator matrix

```
000011111111111
```

011100111222333

101223012123013

is represented in the following way:

 $1111|0001|1111|0011|1110|1_{(2)} = f1f3e8_{(16)}.$

If the code is not projective, e.g., when $n > (q^k - 1)/(q - 1)$, we take several copies of $\mathscr{G}_{k,q}$ and encode the set of columns by the corresponding number of such strings.

[35, 5, 24]

[70, 5, 50]

[102, 5, 74]

[194, 5, 144]

[210, 5, 156]

[211, 5, 154]

[215, 5, 160]

[216, 5, 158]

cd6c977d979fe5bfd2fe6d983e293d3560ecc3e3dd9f77e9bb4ebff9b747bbed8d36bc6bfbf76f5d9a4a58

[221, 5, 162]

d56c977db79fe5bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983e293d3562ecc3e3dd9f77e9bb4efff9b747bbed8d3ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d986d9ff76ebfd2fe6d983ebc6bfbf76f5d9a51e8bfd2fe6d986d9ff76ebfd2fe6d986d9bfd2fe6d986d9bfd2fe6d986d9ff76ebfd2fe6d986d9ff76fbfd9a51e8bfd2fe6d986d9ff76ebfd2fe6d986d9bfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d986d9ff76ebfd2fe6d9ff76ebfd2

[236, 5, 176]

[349, 5, 260]

[354, 5, 264]

 $ef7dbeffffffefffbfbffede8ffdffb7efbb1bebffabbfdbfff5ffdefffffebffffbfb6effffffef7ff8\\02200000080302e0009a02020085002e0ab00008200001820001000130804b908001022013116004188$

[359, 5, 268]

[364, 5, 272]

dff effffd ffe feffdff df fcff 8 f7 ff fb ff fb f7 fb df ff bb aff 7 ff ff f7 f3 ff ff 7 d6 df ff ff e 673 fe ff ff ff 8 1206800030094000051808401401004 c 251804 d1000020092208 d 28002004 0 c 210120810 c 000604800828

[386, 5, 288]

[402, 5, 300]

[407, 5, 304]

[423, 5, 316]

[428, 5, 320]

[472, 5, 351]

[477, 5, 355]

[482, 5, 359]

Let

	$\int 0$)	1	1	1	1			$\left(\begin{array}{c} 0 \end{array} \right)$	1	1	1	1	1	1	1	1	1
$G_1 =$	1	1 1		1	2	3			1	1	1	1	2	2	2	2	3	3
	2		1	3	1	2	$, G_2$	$G_2 = $	3	0	1	3	1	2	2	3	0	2
	2		3	1	1	2			0	0	2	2	0	1	2	1	1	2
	2		1	1	1	2)			3	1	0	0	0	0	0	1	1	3)
				(0	0	0	0	1 \	1									
				1	1	1	1	3										
and	l	G_3	=	1	1	1	3	3										
				2	2	3	1	3										
				1	3	0	1	3 /										

Then we obtain generator matrices of non-projective codes with parameters [221, 5, 164], [226, 5, 168], [231, 5, 172], [477, 5, 356], [482, 5, 360], [487, 5, 364] concatenating the

generator matrices of the codes [211, 5, 154], [216, 5, 158], [221, 5, 162], [472, 5, 351], [477, 5, 355], [482, 5, 359] given above and the matrices G_2 , G_2 , G_2 , G_1 , G_1 , G_3 , respectively.

A.2. Weight enumerators for the classification results

In the following, we list all weight enumerators for codes [n, k, d; 4] with $n \le 34$ and $k \le 6$ for the cases when there are no more than 12 different enumerators. If inequivalent codes have the same weight enumerator, we also list the number of such codes.

```
[7, 3, 4]
   1+9z^4+36z^5+6z^6+12z^7
   1 + 12z^4 + 27z^5 + 15z^6 + 9z^7
   1 + 15z^4 + 18z^5 + 24z^6 + 6z^7 (two codes)
   1 + 15z^4 + 30z^5 + 18z^7
   1 + 21z^4 + 12z^5 + 18z^6 + 12z^7
   1 + 21z^4 + 42z^6
[8, 3, 5]
   1 + 18z^5 + 30z^6 + 6z^7 + 9z^8
   1 + 21z^5 + 21z^6 + 15z^7 + 6z^8
   1 + 24z^5 + 12z^6 + 24z^7 + 3z^8
[13, 3, 9]
   1 + 27z^9 + 21z^{10} + 9z^{11} + 6z^{12}
   1 + 21z^9 + 36z^{10} + 3z^{12} + 3z^{13}
   1 + 24z^9 + 27z^{10} + 9z^{11} + 3z^{13}
   1 + 30z^9 + 12z^{10} + 18z^{11} + 3z^{12}
[14, 3, 10]
   1 + 33z^{10} + 24z^{11} + 3z^{12} + 3z^{14}
   1 + 42z^{10} + 21z^{12}
[15, 3, 11]
   1 + 45z^{11} + 15z^{12} + 3z^{15}
[17, 3, 12]
   1 + 48z^{12} + 15z^{16}
   1 + 33z^{12} + 30z^{14}
   1 + 15z^{12} + 45z^{13} + 3z^{17}
   1 + 36z^{12} + 24z^{14} + 3z^{16}
   1 + 12z^{12} + 48z^{13} + 3z^{16}
   1 + 39z^{12} + 18z^{14} + 6z^{16}
```

 $1 + 21z^{12} + 24z^{13} + 18z^{14}$ $1 + 27z^{12} + 18z^{13} + 12z^{14} + 6z^{15}$ $1 + 33z^{12} + 12z^{13} + 6z^{14} + 12z^{15}$ $1 + 27z^{12} + 21z^{13} + 12z^{14} + 3z^{17}$ $1 + 18z^{12} + 33z^{13} + 9z^{14} + 3z^{15}$ $1 + 24z^{12} + 24z^{13} + 12z^{14} + 3z^{16}$ [18.3.13] $1 + 24z^{13} + 36z^{14} + 3z^{16}$ $1 + 27z^{13} + 27z^{14} + 9z^{15}$ [19, 3, 14] $1 + 36z^{14} + 24z^{15} + 3z^{16}$ [22, 3, 16] $1 + 51z^{16} + 12z^{20}$ $1 + 39z^{16} + 24z^{18}$ $1 + 15z^{16} + 48z^{17}$ $1 + 42z^{16} + 18z^{18} + 3z^{20}$ $1 + 45z^{16} + 15z^{18} + 3z^{22}$ $1 + 27z^{16} + 24z^{17} + 12z^{18}$ [26, 3, 19] $1 + 42z^{19} + 12z^{20} + 6z^{23} + 3z^{24}$ $1 + 33z^{19} + 18z^{20} + 3z^{21} + 9z^{22}$ $1 + 36z^{19} + 9z^{20} + 12z^{21} + 6z^{22}$ $1 + 39z^{19} + 15z^{20} + 9z^{23}$ $1 + 30z^{19} + 15z^{20} + 18z^{21}$ [27, 3, 20] $1 + 54z^{20} + 9z^{24}$ $1 + 45z^{20} + 18z^{22}$ [30, 3, 22] $1 + 36z^{22} + 18z^{23} + 3z^{24} + 6z^{27}$ $1 + 33z^{22} + 21z^{23} + 3z^{24} + 3z^{26} + 3z^{27}$ $1 + 33z^{22} + 24z^{23} + 3z^{24} + 3z^{30}$ $1 + 30z^{22} + 24z^{23} + 3z^{24} + 6z^{26}$ (two codes) $1 + 33z^{22} + 24z^{23} + 3z^{26} + 3z^{28}$ $1 + 45z^{22} + 15z^{24} + 3z^{30}$ $1 + 42z^{22} + 15z^{24} + 6z^{26}$ $1 + 42z^{22} + 18z^{24} + 3z^{28}$ $1 + 39z^{22} + 21z^{24} + 3z^{26}$ $1 + 30z^{22} + 18z^{23} + 9z^{24} + 6z^{25}$ $1 + 27z^{22} + 27z^{23} + 9z^{25}$ $1 + 36z^{22} + 27z^{24}$

```
[31, 3, 23]
   1 + 45z^{23} + 12z^{24} + 3z^{27} + 3z^{28}
   1 + 45z^{23} + 15z^{24} + 3z^{31}
   1 + 42z^{23} + 15z^{24} + 6z^{27}
[32, 3, 24]
   1 + 57z^{24} + 6z^{28}
   1 + 60z^{24} + 3z^{32}
[34.3.25]
   1 + 30z^{25} + 12z^{26} + 18z^{27} + 3z^{28}
   1 + 27z^{25} + 21z^{26} + 9z^{27} + 6z^{28}
   1 + 21z^{25} + 36z^{26} + 3z^{28} + 3z^{29}
   1 + 24z^{25} + 27z^{26} + 9z^{27} + 3z^{29}
   1 + 36z^{25} + 6z^{26} + 12z^{27} + 9z^{28}
   1 + 24z^{25} + 33z^{26} + 3z^{28} + 3z^{30}
   1 + 33z^{25} + 12z^{26} + 12z^{27} + 3z^{28} + 3z^{29}
   1 + 27z^{25} + 24z^{26} + 9z^{27} + 3z^{30}
   1 + 36z^{25} + 9z^{26} + 12z^{27} + 3z^{28} + 3z^{30}
   1 + 27z^{25} + 27z^{26} + 6z^{27} + 3z^{31}
   1 + 24z^{25} + 36z^{26} + 3z^{32}
[35, 3, 26]
   1 + 36z^{26} + 21z^{27} + 3z^{28} + 3z^{31}
   1 + 33z^{26} + 24z^{27} + 3z^{28} + 3z^{30}
   1 + 36z^{26} + 24z^{27} + 3z^{32}
   1 + 45z^{26} + 15z^{28} + 3z^{30}
   1 + 42z^{26} + 21z^{28}
[7, 4, 3]
   1 + 9z^3 + 69z^4 + 54z^5 + 90z^6 + 33z^7
   1 + 12z^3 + 57z^4 + 72z^5 + 78z^6 + 36z^7
   1 + 15z^3 + 45z^4 + 90z^5 + 66z^6 + 39z^7 (two codes)
   1 + 15z^3 + 57z^4 + 54z^5 + 102z^6 + 27z^7
   1 + 18z^{3} + 45z^{4} + 72z^{5} + 90z^{6} + 30z^{7}
   1 + 21z^{3} + 21z^{4} + 126z^{5} + 42z^{6} + 45z^{7}
   1 + 21z^3 + 33z^4 + 90z^5 + 78z^6 + 33z^7
   1 + 24z^{3} + 33z^{4} + 72z^{5} + 102z^{6} + 24z^{7}
   1 + 33z^3 + 33z^4 + 66z^5 + 78z^6 + 45z^7
[8, 4, 4]
   1 + 18z^4 + 96z^5 + 24z^6 + 96z^7 + 21z^8
   1 + 24z^4 + 72z^5 + 60z^6 + 72z^7 + 27z^8 (three codes)
   1 + 27z^4 + 60z^5 + 78z^6 + 60z^7 + 30z^8 (three codes)
   1 + 30z^4 + 48z^5 + 96z^6 + 48z^7 + 33z^8 (three codes)
```

 $\begin{array}{r} 1+30z^4+60z^5+60z^6+84z^7+21z^8\\ 1+33z^4+48z^5+78z^6+72z^7+24z^8\\ 1+36z^4+36z^5+96z^6+60z^7+27z^8\\ 1+39z^4+36z^5+78z^6+84z^7+18z^8\\ 1+42z^4+168z^6+45z^8\\ 1+54z^4+24z^5+72z^6+72z^7+33z^8\end{array}$

 $\begin{array}{l} [9,4,5] \\ 1+42z^5+84z^6+36z^7+75z^8+18z^9 \\ 1+45z^5+72z^6+54z^7+63z^8+21z^9 \\ 1+48z^5+60z^6+72z^7+51z^8+24z^9 \ (\text{two codes}) \end{array}$

$$[14,4,9] 1+66z^9+99z^{10}+36z^{11}+3z^{12}+42z^{13}+9z^{14}$$

- $\begin{matrix} [15,4,10] \\ 1+99z^{10}+90z^{11}+15z^{12}+45z^{14}+6z^{15} \end{matrix}$
- [16, 4, 11]
 - $1 + 144z^{11} + 60z^{12} + 48z^{15} + 3z^{16}$

$$\begin{split} & [22,4,15] \\ & 1+102z^{15}+51z^{16}+54z^{17}+18z^{19}+12z^{20}+18z^{21} \\ & 1+111z^{15}+42z^{16}+36z^{17}+18z^{18}+27z^{19}+3z^{20}+18z^{21} \\ & 1+108z^{15}+45z^{16}+39z^{17}+15z^{18}+30z^{19}+15z^{21}+3z^{22} \ (\text{two codes}) \\ & 1+120z^{15}+51z^{16}+72z^{19}+12z^{20} \ (\text{two codes}) \\ & 1+96z^{15}+51z^{16}+60z^{17}+24z^{19}+12z^{20}+12z^{21} \ (\text{two codes}) \\ & 1+105z^{15}+42z^{16}+42z^{17}+18z^{18}+33z^{19}+3z^{20}+12z^{21} \ (\text{two codes}) \\ & 1+102z^{15}+45z^{16}+45z^{17}+15z^{18}+36z^{19}+9z^{21}+3z^{22} \\ & 1+108z^{15}+63z^{16}+84z^{19} \\ & 1+105z^{15}+57z^{16}+9z^{17}+36z^{18}+27z^{19}+18z^{20}+3z^{21} \\ & 1+108z^{15}+39z^{16}+36z^{17}+24z^{18}+36z^{19}+12z^{21} \\ & 1+90z^{15}+63z^{16}+54z^{17}+30z^{19}+18z^{21} \end{split}$$

$$\begin{array}{l} [23,4,16] \\ 1+153z^{16}+54z^{18}+30z^{20}+18z^{22} \\ 1+171z^{16}+84z^{20} \\ 1+147z^{16}+60z^{18}+36z^{20}+12z^{22} \end{array}$$

[26, 4, 18]

$$1 + 96z^{18} + 69z^{19} + 24z^{20} + 24z^{21} + 12z^{22} + 21z^{23} + 3z^{24} + 6z^{25}$$

$$1 + 93z^{18} + 72z^{19} + 27z^{20} + 21z^{21} + 15z^{22} + 18z^{23} + 9z^{25}$$

$$1 + 90z^{18} + 72z^{19} + 27z^{20} + 42z^{21} + 18z^{24} + 6z^{25}$$

$$1 + 90z^{18} + 81z^{19} + 18z^{20} + 24z^{21} + 18z^{22} + 9z^{23} + 9z^{24} + 6z^{25}$$
 (two codes)

 $1 + 93z^{18} + 75z^{19} + 21z^{20} + 24z^{21} + 15z^{22} + 15z^{23} + 6z^{24} + 6z^{25}$ $1 + 93z^{18} + 84z^{19} + 12z^{20} + 48z^{22} + 12z^{23} + 3z^{24} + 3z^{26}$ (ten codes) $1 + 96z^{18} + 78z^{19} + 15z^{20} + 45z^{22} + 18z^{23} + 3z^{26}$ (eighteen codes) $1 + 120z^{18} + 87z^{20} + 33z^{22} + 12z^{24} + 3z^{26}$ (five codes) $1 + 117z^{18} + 96z^{20} + 24z^{22} + 15z^{24} + 3z^{26}$ (two codes) $1 + 123z^{18} + 81z^{20} + 33z^{22} + 18z^{24}$ (three codes) $1 + 120z^{18} + 90z^{20} + 24z^{22} + 21z^{24}$ (four codes) [27, 4, 19] $1 + 135z^{19} + 54z^{20} + 54z^{23} + 9z^{24} + 3z^{27}$ (two codes) [28, 4, 20] $1 + 189z^{20} + 63z^{24} + 3z^{28}$ [30, 4, 21] $1 + 93z^{21} + 66z^{22} + 36z^{23} + 33z^{24} + 6z^{26} + 12z^{27} + 6z^{28} + 3z^{29}$ $1 + 84z^{21} + 84z^{22} + 36z^{23} + 15z^{24} + 12z^{25} + 12z^{27} + 12z^{28}$ $1 + 99z^{21} + 42z^{22} + 69z^{23} + 18z^{24} + 21z^{27} + 3z^{28} + 3z^{29}$ $1 + 87z^{21} + 78z^{22} + 36z^{23} + 21z^{24} + 6z^{25} + 6z^{26} + 12z^{27} + 6z^{28} + 3z^{29}$ $1 + 105z^{21} + 36z^{22} + 60z^{23} + 27z^{24} + 24z^{27} + 3z^{29}$ $1 + 96z^{21} + 45z^{22} + 72z^{23} + 15z^{24} + 24z^{27} + 3z^{30}$ [31, 4, 22] $1 + 141z^{22} + 87z^{24} + 24z^{28} + 3z^{30}$ [7, 5, 2] $1 + 33z^{2} + 60z^{3} + 195z^{4} + 240z^{5} + 315z^{6} + 180z^{7}$ $1 + 30z^{2} + 75z^{3} + 165z^{4} + 270z^{5} + 300z^{6} + 183z^{7}$ $1 + 21z^{2} + 48z^{3} + 171z^{4} + 312z^{5} + 351z^{6} + 120z^{7}$ $1 + 18z^{2} + 63z^{3} + 141z^{4} + 342z^{5} + 336z^{6} + 123z^{7}$ $1 + 27z^{2} + 30z^{3} + 183z^{4} + 324z^{5} + 333z^{6} + 126z^{7}$ $1 + 6z^2 + 75z^3 + 165z^4 + 318z^5 + 324z^6 + 135z^7$ $1 + 9z^{2} + 60z^{3} + 195z^{4} + 288z^{5} + 339z^{6} + 132z^{7}$ $1 + 12z^2 + 57z^3 + 177z^4 + 330z^5 + 306z^6 + 141z^7$ $1 + 15z^{2} + 42z^{3} + 207z^{4} + 300z^{5} + 321z^{6} + 138z^{7}$ $1 + 9z^2 + 72z^3 + 147z^4 + 360z^5 + 291z^6 + 144z^7$ $1 + 18z^{2} + 39z^{3} + 189z^{4} + 342z^{5} + 288z^{6} + 147z^{7}$ [8, 5, 3] $1 + 24z^{3} + 102z^{4} + 192z^{5} + 336z^{6} + 264z^{7} + 105z^{8}$ (three codes) $1 + 27z^{3} + 87z^{4} + 222z^{5} + 306z^{6} + 279z^{7} + 102z^{8}$ $1 + 21z^{3} + 105z^{4} + 210z^{5} + 294z^{6} + 297z^{7} + 96z^{8}$ $1 + 18z^{3} + 120z^{4} + 180z^{5} + 324z^{6} + 282z^{7} + 99z^{8}$

 $1 + 24z^3 + 90z^4 + 240z^5 + 264z^6 + 312z^7 + 93z^8$

 $\begin{array}{l} 1+30z^3+72z^4+252z^5+276z^6+294z^7+99z^8\\ 1+30z^3+84z^4+204z^5+348z^6+246z^7+111z^8\\ 1+39z^3+75z^4+198z^5+330z^6+291z^7+90z^8\\ 1+33z^3+69z^4+234z^5+318z^6+261z^7+108z^8\\ 1+42z^3+72z^4+180z^5+372z^6+258z^7+99z^8\\ 1+24z^3+114z^4+144z^5+408z^6+216z^7+117z^8\\ \end{array}$

[9, 5, 4]

```
\begin{array}{l} 1+48z^4+138z^5+228z^6+276z^7+267z^8+66z^9 \ (\text{two codes})\\ 1+54z^4+120z^5+240z^6+288z^7+249z^8+72z^9 \ (\text{four codes})\\ 1+51z^4+135z^5+210z^6+318z^7+234z^8+75z^9 \ (\text{three codes})\\ 1+57z^4+117z^5+222z^6+330z^7+216z^8+81z^9 \ (\text{two codes})\\ 1+45z^4+153z^5+198z^6+306z^7+252z^8+69z^9\\ 1+60z^4+102z^5+252z^6+324z^7+243z^8+66z^9\\ 1+63z^4+99z^5+228z^6+324z^7+198z^8+87z^9\\ 1+63z^4+99z^5+234z^6+342z^7+198z^8+87z^9\\ 1+54z^4+168z^5+168z^6+336z^7+237z^8+72z^9\\ 1+54z^4+132z^5+192z^6+360z^7+225z^8+72z^9\\ 1+78z^4+72z^5+240z^6+336z^7+225z^8+72z^9\\ 1+66z^4+72z^5+312z^6+240z^7+261z^8+72z^9\\ \end{array}
```

 $\begin{bmatrix} 10, 5, 5 \end{bmatrix} \\ 1 + 96z^5 + 150z^6 + 240z^7 + 255z^8 + 240z^9 + 42z^{10} \\ 1 + 93z^5 + 165z^6 + 210z^7 + 285z^8 + 225z^9 + 45z^{10} \\ 1 + 90z^5 + 180z^6 + 180z^7 + 315z^8 + 210z^9 + 48z^{10}$ (two codes)

[14, 5, 8]

$$\frac{1+153z^8+144z^9+192z^{10}+192z^{11}+270z^{12}+48z^{13}+24z^{14}}{1+147z^8+156z^9+198z^{10}+168z^{11}+276z^{12}+60z^{13}+18z^{14}}$$

1+189z^8+420z^{10}+378z^{12}+36z^{14} (four codes)

[23, 5, 15] $1 + 342z^{15} + 171z^{16} + 420z^{19} + 84z^{20} + 6z^{23}$ (two codes)

 $\begin{array}{l}1+168z^7+387z^8+516z^9+750z^{10}+1152z^{11}+756z^{12}+276z^{13}+90z^{14}\\1+177z^7+360z^8+525z^9+795z^{10}+1107z^{11}+747z^{12}+303z^{13}+81z^{14}\\1+180z^7+354z^8+510z^9+855z^{10}+1032z^{11}+789z^{12}+294z^{13}+81z^{14}\\1+192z^7+303z^8+588z^9+810z^{10}+1032z^{11}+792z^{12}+300z^{13}+78z^{14}\\1+198z^7+297z^8+546z^9+900z^{10}+1002z^{11}+726z^{12}+366z^{13}+60z^{14}\\1+204z^7+249z^8+684z^9+720z^{10}+1092z^{11}+750z^{12}+324z^{13}+72z^{14}\\(\text{two codes})\\1+210z^7+252z^8+588z^9+945z^{10}+882z^{11}+819z^{12}+336z^{13}+63z^{14}\\1+216z^7+189z^8+840z^9+420z^{10}+1512z^{11}+378z^{12}+504z^{13}+36z^{14}\\(\text{six codes})\end{array}$

[15, 6, 8] $1 + 405z^8 + 1260z^{10} + 1890z^{12} + 540z^{14}$ (three codes)

References

- L.D. Baumert, R.J. McEliece, A note on the Griesmer bound, IEEE Trans. Inform. Theory 19 (1) (1973) 134–135.
- [2] M.C. Bhandari, M.S. Garg, Optimum codes of dimension 3 and 4 over GF(4), IEEE Trans. Inform. Theory 38 (5) (1992) 1564–1567.
- [3] W. Bosma, J.J. Cannon, C. Playoust, The Magma algebra system I: the user language, J. Symbolic Comput. 24 (3-4) (1997) 235–266.
- [4] I. Boukliev, R. Daskalov, S. Kapralov, Optimal quaternary codes of dimension five, IEEE Trans. Inform. Theory 42 (4) (1996) 1228–1235.
- [5] I. Bouyukliev, D.B. Jaffe, V. Vavrek, The smallest length of eight-dimensional binary linear codes with prescribed minimum distance, IEEE Trans. Inform. Theory 46 (4) (2000) 1539–1544.
- [6] I. Bouyukliev, J. Simonis, Some new results for optimal ternary linear codes, IEEE Trans. Inform. Theory 48 (4) (2002) 981–985.
- [7] A.E. Brouwer, Bounds on the size of linear codes, in: V. Pless, W.C. Huffman (Eds.), Handbook of Coding Theory, Vol.1, Elsevier, Amsterdam, 1998, pp. 295-461, (on-line version at http://www.win.tue.nl/~aeb/voorlincod.html).
- [8] A.E. Brouwer, M. van Eupen, The correspondence between projective codes and 2-weight codes, Designs, Codes and Cryptography 11 (3) (1997) 261–266.
- [9] R. Daskalov, E. Metodieva, The nonexistence of some five-dimensional quaternary linear codes, IEEE Trans. Inform. Theory 41 (2) (1995) 581–583.
- [10] L. Dissett, Combinatorial and computational aspects of finite geometries, Ph.D. Thesis, University of Toronto, November 1999.
- [11] S. Dodunekov, I.N. Landgev, On the quaternary [11,6,5] and [12,6,6] codes, in: D. Gollmann (Ed.), Applications of Finite Fields, IMA Conference Series, Vol. 59, Clarendon Press, Oxford, 1996, pp. 75–84.
- [12] S. Dodunekov, J. Simonis, Codes and projective multisets, Electron. J. Combin. 5 (1) (1998) R37.
- [13] S.M. Dodunekov, Minimal block length of a q-ary code with prescribed dimension and code distance, Probl. Inform. Transm. 20 (4) (1984) 239–249.
- [14] I.I. Dumer, V.A. Zinov'ev, Some new maximal codes over GF(4), Problems Inform. Transmission 14 (3) (1978) 174–181 (Russian version in [15]).
- [15] I.I. Dumer, V.A. Zinov'ev, Some new maximal codes over GF(4), Problem, Peredachi Informatic 14 (1978) 24–34.
- [16] Y. Edel, J. Bierbrauer, 41 is the largest size of cap in PG(4,4), Designs, Codes Cryptogr. 16 (2) (1999) 151–160.
- [17] P.P. Greenough, R. Hill, Optimal linear codes over GF(4), Discrete Math. 125 (1-3) (1994) 187-199.
- [18] J.H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop. 4 (1960) 532-540.
- [19] T.A. Gulliver, V.K. Bhargava, Some best rate 1/p and rate (p 1)/p systematic quasi-cyclic codes, IEEE Trans. Inform. Theory 37 (3) (1991) 552–555.
- [20] T.A. Gulliver, P.R.J. Östergård, Improved bounds for ternary linear codes of dimension 7, IEEE Trans. Inform. Theory 43 (4) (1997) 1377–1381.
- [21] N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. System Sci. 18 (3–4) (1993) 161–191.
- [22] R. Hill, P. Lizak, Some geometric constructions of optimal quaternary codes, in: Proceedings 1997 IEEE International Symposium Information Theory, Ulm, 1997, p. 144.
- [23] I.N. Landgev, T. Maruta, R. Hill, On the nonexistence of quaternary [51,4,37] codes, Finite Fields Their Appl. 2 (1) (1996) 96–110.
- [24] I.N. Landjev, The nonexistence of some optimal ternary codes of dimension five, Designs, Codes Cryptogr. 15 (3) (1998) 245–258.

- [25] I.N. Landjev, T. Maruta, On the minimum length of quaternary linear codes of dimension five, Discrete Math. 202 (1–3) (1999) 145–161.
- [26] I.N. Landjev, A. Rousseva, On the nonexistence of some optimal arcs in PG(4,4), in: Eighth International Workshop On Algebraic and Combinatorial Coding Theory (ACCT-VIII), Tsarskoe Selo, Russia, 2002, pp. 176–180.
- [27] T. Maruta, The nonexistence of [116,5,85]₄ codes and [187,5,139]₄ codes, in: Proceedings of the Second International Workshop on Optimal Codes and Related Topics, Sozopol, 1998, pp. 168–174.
- [28] T. Maruta, The nonexistence of some quaternary linear codes of dimension 5, Discrete Math. 238 (1–3) (2001) 99–113.
- [29] P.R.J. Östergård, Classifying subspaces of Hamming spaces, Designs, Codes Cryptogr. 27 (3) (2002) 297–305.
- [30] A. Said, R. Palazzo, Heuristic search: a new method to design good unit memory convolutional codes, in: Proceedings of the Fourth Swedish-Soviet International Workshop on Information Theory, Gotland, Sweden, 1989, pp. 325–331.
- [31] A. Said, R. Palazzo, Using combinatorial optimization to design good unit-memory convolutional codes, IEEE Trans. Inform. Theory 39 (3) (1993) 1100–1108.
- [32] G. Solomon, J.J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control 8 (1965) 170-179.
- [33] H.N. Ward, A sequence of unique quaternary Griesmer codes, manuscript, 2002.