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Abstract

For a graph G = (V (G), E(G)), a strong edge coloring of G is an edge coloring
in which every color class is an induced matching. The strong chromatic index of
G, χs(G), is the smallest number of colors in a strong edge coloring of G. The
strong chromatic index of the random graph G(n, p) was considered in [2], [3], [11],
and [14]. In this paper, we consider χs(G) for a related class of graphs G known
as uniform or ε-regular graphs. In particular, we prove that for 0 < ε � d < 1,
all (d, ε)-regular bipartite graphs G = (U ∪ V,E) with |U | = |V | ≥ n0(d, ε) satisfy
χs(G) ≤ ζ(ε)∆(G)2, where ζ(ε) → 0 as ε → 0 (this order of magnitude is easily seen
to be best possible). Our main tool in proving this statement is a powerful packing
result of Pippenger and Spencer [10].

Key words: Strong chromatic index, the regularity lemma

1 Introduction

For a finite simple graph G = (V (G), E(G)), a strong edge coloring of G
is an edge coloring in which every color class is an induced matching. The
strong chromatic index of G, χs(G), is the minimum number of colors k in a
strong edge coloring of G. Strong edge colorings are special types of proper

edge colorings. A proper edge coloring of G is an edge coloring in which every
color class is a (not necessarily induced) matching. As with the proper edge
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coloring problem, it is natural to investigate a connection between χs(G) and
∆(G). However, unlike the proper edge coloring problem (cf. Vizing [13]), no
tight bounds for χs(G) have been established in terms of ∆(G).

The following conjecture of Erdős and Nešetřil stands widely open today.

Conjecture 1.1 Erdős and Nešetřil, (1984). For all graphs G,

χs(G) ≤















5
4
∆(G)2 if ∆(G) is even,

5
4
∆(G)2 − 1

2
∆(G) + 1

4
if ∆(G) is odd.

The “blown-up” pentagon C5(m) (i.e. each vertex of C5 is replaced by m
independent vertices and each edge of C5 is replaced by Km,m) easily shows
Conjecture 1.1 would be best possible.

Although Conjecture 1.1 is not the focus of this paper, we do mention that, as
noted by other authors, Conjecture 1.1 seems substantially difficult. While it is
not difficult to see that every graph G satisfies χs(G) ≤ 2∆(G)2 − 2∆(G) + 1,
it took sophisticated probabilistic methods to beat the trivial upper bound
2∆(G)2. Indeed, affirmatively answering a question of Erdős and Nešetřil (cf
[4]), Molloy and Reed [9] showed that for ε = 0.002, all graphs G of sufficiently
large maximum degree satisfy χs(G) ≤ (2 − ε)∆(G)2.

In [2], [3], [11], and [14], the strong chromatic index of the random graph
G(n, p) was studied (cf. [6]). In particular, Z. Palka [11] showed that if p =
Θ(n−1), then asymptotically almost surely (cf. [6]), χs(G(n, p)) = Θ(∆(G(n, p)).
V. Vu [14] more recently showed that for positive δ, ε < 1, if n−1 log1+δ n ≤

p ≤ n−ε, then asymptotically almost surely, χs(G(n, p)) = Θ
(

∆(G(n,p))2

ln∆(G(n,p))

)

. In

[2], the current authors recently extended Vu’s result to the range p ≥ nε0 for
a suitable ε0 > 0.

In this paper, we consider an analogous problem of estimating χs(G) for so-
called pseudo-random or uniform graphs G. As we define them below, these are
graphs obtained from and identified with the well-known Szemerédi Regularity
Lemma (cf [8], [12]). Uniform graphs were studied by Alon, Rödl, and Rucinski
[1] who estimated the number of perfect matchings of a super-regular pair
(see below for definitions) and by Frieze [5] who estimated the number of
hamiltonian cycles and perfect matchings in uniform graphs.

For a bipartite graph G = (U ∪ V, E), let U ′ ⊆ U and V ′ ⊆ V be two
nonempty sets, and let EG(U ′, V ′) = {{u, v} ∈ E(G) : u ∈ U ′, v ∈ V ′} and
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eG(U ′, V ′) = |EG(U ′, V ′)|. Define the density of the graph (U ′ ∪ V ′, EG) by

dG(U ′, V ′) =
eG(U ′, V ′)

|U ′||V ′|
.

For constant d and ε > 0 , we say that a bipartite graph G = (U ∪ V, E) is
(d, ε)-regular if for all U ′ ⊆ U , |U ′| > ε|U |, and all V ′ ⊆ V , |V ′| > ε|V |, the
following holds,

|d − dG(U ′, V ′)| < ε. (1)

If G = (U ∪ V, E) is (d, ε)-regular for some 0 ≤ d ≤ 1, then G is called ε-
regular. Bipartite graphs which are (d, ε)-regular, 0 < ε � d, have uniform
edge distributions and therefore behave, in some senses, in a “random-like”
manner.

Our theorem is stated as follows.

Theorem 1.2 (Main Theorem) For every 0 < d < 1 and µ > 0, there exist

ε > 0 and integer n0 such that if G = (U ∪ V, E) is a (d, ε)-regular bipartite

graph with |U | = |V | ≥ n0, then

χs(G) ≤ µ∆(G)2.

As any (d, ε)-regular bipartite graph G = (U ∪ V, E), |U | = |V | = n, satisfies
∆(G) ≥ (d − ε)n, it suffices to prove Theorem 1.2 in the following form.

Theorem 1.3 For every 0 < d < 1 and µ > 0, there exist ε > 0 and integer

n0 such that if G = (U ∪ V, E) is a (d, ε)-regular bipartite graph with |U | =
|V | = n ≥ n0, then

χs(G) ≤ µn2.

The following observation shows that the order of magnitude for the upper
bound in Theorem 1.2 is best possible.

Fact 1 Let 0 < d < 1 be fixed. For all ε > 0 and integers n, there exists a

(d, ε)-regular bipartite graph G0 = (U ∪ V, E), |U | = |V | = N ≥ n, satisfying

χs(G0) ≥
ε2

2
∆(G0)

2.
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The observation in Fact 1, in various forms, has been noted by various re-
searchers (e.g. Prof. T.  Luczak [7] and also an anonymous referee). The proof
of Fact 1 is easy and we will present it at the end of Section 3.

The rest of the paper is organized as follows. In Section 2, we state some
necessary terminology and auxiliary facts. In Section 3, we prove Theorem 1.3
and verify Fact 1.

1.1 Acknowledgement

We wish to thank the referees for suggestions which lead to simplified details
in this paper.

2 Definitions and Facts

In this section, we give some background material we use to prove Theorem
1.2. We begin our discussion with basic notation and considerations. For a
graph G = (V (G), E(G)) and a vertex v ∈ V (G), let N(v) = {x ∈ V (G) :
{v, x} ∈ G} and set deg(v) = |N(v)|. In all that follows, graphs G = (V, E)
are identified with their edge sets. We use the following graph notation.

Notation 2.1 For a graph G and an edge e = {u, v} ∈ G, set

Ge = G [V (G) \ (N(u) ∪ N(v))]

to be the subgraph of G induced on the set V (G) \ (N(u) ∪ N(v)).

For convenience of calculations, we use the convention s = (a ± b)t to mean
t(a − b) ≤ s ≤ t(a + b).

2.1 (d, ε)-regular bipartite graphs

In our proof of Theorem 1.3, we use two standard facts concerning graph
regularity.

Fact 2 (cf. Fact 1.3, [8]) Let G = (U ∪ V, E) be a (d, ε)-regular bipartite

graph. Then, all but 2ε|U | vertices u ∈ U satisfy

deg(u) = (d ± ε)|V |. (2)
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Note that, by symmetry, we may conclude from Fact 2 that all but 2ε|V |
vertices v ∈ V satisfy

deg(v) = (d ± ε)|U |. (3)

Fact 3 (Slicing Lemma (cf. Fact 1.5, [8])) Let G = (U∪V, E) be a (d, ε)-
regular bipartite graph. For α > ε, let U ′ ⊆ U and V ′ ⊆ V be given where

|U ′| ≥ α|U | and |V ′| ≥ α|V |. Then, the subgraph G[U ′, V ′] of G induced on

U ′ ∪ V ′ is (d, ε′)-regular where ε′ = ε/α.

We now discuss some easy corollaries whose presentations are well-suited for
our argument of Theorem 1.3.

2.1.1 Easy corollaries of Facts 2 and 3

For our first corollary, we use the following definition and notation.

Definition 4 Let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph. For a
fixed edge e = {u, v}, u ∈ U , v ∈ V , we say e is a good edge if u satisfies (2)
and v satisfies (3). Otherwise, we say e is a bad edge.

Set

Ggood = {e ∈ G : e is a good edge} , Gbad = G \ Ggood. (4)

From Fact 2, we have the following immediate corollary.

Corollary 5 (few edges are bad) Let G = (U ∪ V, E) be a (d, ε)-regular
bipartite graph. Then,

|Gbad| < 4ε|U ||V |.

In particular, as |G| = (d ± ε)|U ||V |, we see

|Ggood| = (d ± 5ε)|U ||V |.

We also have the following trivial corollary of the slicing lemma.

Corollary 6 Let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph and let

e ∈ Ggood. Then, the graph Ge is (d, ε′)-regular, ε′ = ε/(d − ε). Moreover, the

bipartition of Ge given by (U \ N(v)) ∪ (V \ N(u)) satisfies

|U \ N(v)| = (1 − d ± ε)|U | = (1 − d)|U |
(

1 ±
ε

1 − d

)

, (5)
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and

|V \ N(u)| = (1 − d ± ε)|V | = (1 − d)|V |
(

1 ±
ε

1 − d

)

. (6)

For our final corollary, we use the following definition (cf. Definition 1.6 of
[8]).

Definition 7 ((d, ε)-super regularity) Let G = (U∪V, E) be a (d, ε)-regular
bipartite graph. We say that G is (d, ε)-super-regular if all vertices u ∈ U sat-
isfy (2) and all vertices v ∈ V satisfy (3).

Observe that if G = (U ∪ V, E) is a (d, ε)-super regular bipartite graph, then

Ggood = G. (7)

Facts 2 and 3 quickly imply the following corollary.

Corollary 8 Let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph where,
say, 3ε < 1−d, and |U | = |V | = n. Then G has a (d, ε′)-super-regular induced
bipartite subgraph G0 = G0[U0∪V0], where ε′ = 6ε

d
and |U0| = |V0| > (1−2ε)n.

The idea behind proving Corollary 8 is to delete the vertices u ∈ U not
satisfying (2) and the vertices v ∈ V not satisfying (3). The precise details of
this proof are very standard and we omit them.

2.2 Hypergraph Packings

At the heart of our argument for Theorem 1.2 lies an application of the follow-
ing strong theorem of Pippenger and Spencer (cf. [10]). Let H = (V (H), E(H))
be an l-uniform hypergraph. For a vertex u ∈ V (H), define the degree of
the vertex u, deg(u), as deg(u) = |{h ∈ E(H) : u ∈ h}|. Set δ(H) to
be the minimum degree of any vertex in H and set ∆(H) to the maximum
degree of any vertex in H. For a pair of distinct vertices u, v ∈ V (H), set
codeg({u, v}) = |{h ∈ E(H) : u, v ∈ h}| and let

codeg(H) = max
u,v∈V (H),u6=v

codeg({u, v}).

Then the theorem of [10] is stated as follows.

Theorem 2.2 (Pippenger, Spencer, [10]) For all positive integers l and

positive constants γ, there exists ε = ε(l, γ) so that if H = (V (H), E(H)) is
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an l-uniform hypergraph with minimum degree δ(H) satisfying

δ(H) > (1 − ε)∆(H)

and

codeg(H) ≤ ε∆(H),

then there exists a set M ⊆ E(H), h ∩ h′ = ∅ for every h 6= h′ in M , which

covers all but γ|V (H)| vertices of H.

3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. The following theorem, combined with
Corollary 8, almost immediately implies Theorem 1.3.

Theorem 3.1 For every 0 < d < 1 and every ζ > 0, there exist ε > 0 and

integer n0 such that if G = (U ∪ V, E) is a (d, ε)-super-regular bipartite graph

with |U | = |V | = n ≥ n0, then

χs(G) ≤ ζn2. (8)

In view of Theorem 3.1 and Corollary 8, we may prove Theorem 1.3 by pro-
ducing a promised strong edge coloring in “two rounds”. Indeed, Corollary 8
guarantees a large (d, ε′)-super-regular induced subgraph G0 of G. Theorem
3.1 guarantees G0 admits strong edge colorings using few colors. Fix one such
coloring. As G\G0 is small, we may greedily color the remaining edges. As the
subgraph G0 of G is induced, the greedy coloring of G \ G0 does not disturb
the strong edge coloring of G0 guaranteed by Theorem 3.1.

It remains to prove Theorem 3.1. We make preparations to that end in what
follows.

3.1 Setting up the argument of Theorem 3.1

For an integer k ≥ 1 and graph G, define Mk(G) to be the set of all induced
matchings of size k in G. Set mk(G) = |Mk(G)|. For a fixed edge e ∈ G, denote
by Mk(e, G) the set of all induced matchings of size k containing edge e. Set
mk(e, G) = |Mk(e, G)|.

We use the following easy identities concerning the parameters mk(G), mk(e, G),
e ∈ G, and mk(Ge) (cf. Notation 2.1):
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mk(e, G) = mk−1(Ge), (9)

kmk(G) =
∑

e∈G

mk(e, G) =
∑

e∈G

mk−1(Ge). (10)

We proceed to the following lemma.

Lemma 3.2 Let 0 < d < 1 be given. For every integer k ≥ 1, for every θ > 0,
there exists ε > 0 so that if G = (U ∪ V, E) is a (d, ε)-regular bipartite graph,

|U |, |V | ≥ n0(d, k, θ, ε), then

mk(G) = dk(1 − d)k2−k |U |k|V |k

k!
(1 ± θ). (11)

To prove Theorem 3.1, we use the following corollary of Lemma 3.2.

Corollary 9 Let 0 < d < 1 be given. For every integer k ≥ 1, for every ρ > 0,
there exists ε > 0 so that if G = (U ∪ V, E) is a (d, ε)-super regular bipartite

graph, |U | = |V | = n ≥ n0(d, k, ρ, ε), then for all e ∈ G,

mk(e, G) = dk−1(1 − d)(k−1)2−(k−1) n2(k−1)

(k − 1)!
(1 ± ρ). (12)

The proof of Corollary 9 follows immediately from Lemma 3.2 and the identity
in (9). As these details are more or less a subset of the details of proving Lemma
3.2, we omit the easy verification of Corollary 9.

3.2 Proof of Theorem 3.1

Let 0 < d < 1 and ζ > 0 be given. Set γ = ζ/2 and l = d 1
γ
e. Let ε2.2 = ε2.2(l, γ)

be that constant guaranteed by Theorem 2.2 for the parameters l and γ.
For k = l and ρ = ε2.2

2
, let ε = ε9(d, l, ε2.2

2
) be that constant guaranteed by

Corollary 9. Let G = (U∪V, E) be a (d, ε)-super-regular bipartite graph where
|U | = |V | = n. We show that χs(G) ≤ ζn2.

To that end, with l = d 1
γ
e, define auxiliary l-uniform hypergraph H = (V (H), E(H))

to have vertex set V (H) = G, the edge set of G, and E(H) = Ml(G),
the set of all induced matchings in G of size l. For e ∈ V (H), note that
degH(e) = ml(e, G). With ε = ε9(d, l, ε2.2

2
), we infer from Corollary 9 that for

every e ∈ V (H),

degH(e) = dl−1(1 − d)(l−1)2−(l−1)

(

n2(l−1)

(l − 1)!

)

(1 ±
ε2.2

2
).
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In particular, we see

dl−1(1 − d)(l−1)2−(l−1)

(

n2(l−1)

(l − 1)!

)

(1 −
ε2.2

2
) ≤ δ(H),

∆(H) ≤ dl−1(1 − d)(l−1)2−(l−1)

(

n2(l−1)

(l − 1)!

)

(1 +
ε2.2

2
),

and consequently,

δ(H) ≥
1 − ε2.2

2

1 + ε2.2

2

∆(H) > (1 − ε2.2)∆(H).

Clearly,

codeg(H) ≤ n2(l−2),

which with n sufficiently large satisfies

codeg(H) < ε2.2∆(H).

With ε2.2 = ε2.2(l, γ), we apply Theorem 2.2 to H to conclude that there exists
a set {h1, . . . , ht} ⊂ E(H), hi ∩ hj = ∅ for all 1 ≤ i < j ≤ t, which covers
all but γ|V (H)| vertices e ∈ V (H). Note that tl ≤ |V (H)| = |E(G)| trivially
follows.

We now give the strong edge coloring of G using no more than the maximum
number of colors required by Lemma 3.1. The edge classes {h1, . . . , ht} con-
stitue t color classes in our coloring. Let X =

⋃

1≤i≤t{e|e ∈ hi}. Then the
singelton classes {{e}|e ∈ E(G) \ X} constitue the remaining coloring classes
in our coloring. Since there are at most γ|V (H)| = γ|E(G)| edges in E(G)\X
the number of colors used in the above colorings is at most

t + γ|E(G)| ≤
|E(G)|

l
+ γ|E(G)| ≤ 2γn2,

where the last inequality follows from the fact that l = d 1
γ
e. With γ = ζ/2, we

see that at most ζn2 colors have been used. It is easy to see that the obtained
coloring is a strong edge coloring of E(G). 2

3.3 Proof of Lemma 3.2

Our proof of Lemma 3.2 follows by inducting on the variable k. The base case
k = 1 is trivial as m1(G) = |G| = (d ± ε)|U ||V |.

Induction Hypothesis.
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Assume Lemma 3.2 is true for k = k0−1 ≥ 1. That is to say, for k = k0−1, for
all 0 < d < 1 and θk0−1 > 0, there exists ε

(3.2)
k0−1 = ε

(3.2)
k0−1(k0 − 1, d, θ) confirming

the conclusion of Lemma 3.2.

Inductive Step.

Let k = k0 and let 0 < d < 1 and θ > 0 be given. Establishing the inductive
step is easy and we therefore wish not to complicate our presentation with a
tedious determination of constants. To that end, with k = k0, d and θ given, we
take positive auxiliary constant θk0−1 = θk0−1(k0, d, θ) sufficiently small with

respect to k0, d and θ. With the constant θk0−1, let εk0−1 = ε
(3.2)
k0−1(k0−1, d, θk0−1)

be the constant guaranteed by the Induction Hypothesis. We take 0 < ε =
ε(k0, d, θ, θk0−1) < (1− d)εk0−1 sufficiently small with respect to all preceeding
parameters.

Now, let G = (U ∪ V, E) be a (d, ε)-regular bipartite graph. Recall from (10)
that

k0mk0
(G) =

∑

e∈G

mk0−1(Ge).

Recalling G = Ggood ∪ Gbad from (4), we further conclude

∑

e∈Ggood

mk0−1(Ge) ≤ k0mk0
(G) =

∑

e∈Gbad

mk0−1(Ge) +
∑

e∈Ggood

mk0−1(Ge).

We therefore conclude from Corollary 5 that

∑

e∈Ggood

mk0−1(Ge) ≤ k0mk0
(G) = 4ε|U |k0 |V |k0 +

∑

e∈Ggood

mk0−1(Ge)

which implies

k0mk0
(G) =

(

1 ±
4ε|U |k0 |V |k0

∑

e∈Ggood mk0−1(Ge)

)

∑

e∈Ggood

mk0−1(Ge). (13)

We estimate
∑

e∈Ggood mk0−1(Ge). To that end, fix e = {u, v} ∈ Ggood. By
Corollary 6, we see that Ge is (d, ε′)-regular where ε′ = ε/(1 − d) < εk0−1. We
may therefore apply the Induction Hypothesis to Ge to conclude

mk0−1(Ge) = dk0−1(1−d)(k0−1)2−(k0−1) |U \ N(v)|k0−1 |V \ N(u)|k0−1

(k0 − 1)!
(1 ± θk0−1) .

Using Corollary 6, we may bound the sizes |U \ N(v)| and |V \ N(u)| to fur-
ther conclude

mk0−1(Ge) = dk0−1(1 − d)k2
0−k0

|U |k0−1|V |k0−1

(k0 − 1)!

(

1 ±
ε

1 − d

)2k0−2

(1 ± θk0−1) .
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With sufficiently small choices of θk0−1 = θk0−1(k0, d, θ) and ε = ε(k0, d, θ, θk0−1),
we may further conlude

mk0−1(Ge) = dk0−1(1 − d)k2
0−k0

|U |k0−1|V |k0−1

(k0 − 1)!
(1 ± θ)1/2.

Consequently,

∑

e∈Ggood

mk0−1(Ge) = |Ggood|dk0−1(1 − d)k2
0−k0

|U |k0−1|V |k0−1

(k0 − 1)!
(1 ± θ)1/2. (14)

Applying (14) to (13), we obtain that k0mk0
(G) is equal to

(

1 ±
4ε|U |k0 |V |k0

∑

e∈Ggood mk0−1(Ge)

)

∣

∣

∣Ggood
∣

∣

∣ dk0−1(1 − d)k2
0−k0

|U |k0−1|V |k0−1

(k0 − 1)!
(1 ± θ)1/2.

Since |Ggood| = (d ± 5ε)|U ||V | from Corollary 5 and since ε = ε(k, d, θ, θk0−1)
is sufficiently small, we finally conclude

k0mk0
(G) = dk0(1 − d)k2

0−k0
|U |k0 |V |k0

(k0 − 1)!
(1 ± θ).

This concludes our proof of the Inductive Step, and hence, our proof of Lemma
3.2. 2

3.4 Proof of Fact 1

Let 0 < d < 1 be given along with ε and integer n. We produce a graph
G0 satisfying the conclusion of Fact 1. Indeed, fix disjoint sets U and V with
|U | = |V | = N where N ≥ n is a sufficiently large integer. Take any (d, ε/2)-
regular bipartite graph G on U ∪ V . (the existence of such a graph is easily
established by the probabilistic method provided N is sufficiently large) Now,
fix any U0 ⊂ U where |U0| = ε2

2
|U |. Define the graph G0 on U ∪ V by

G0 = G ∪ K [U0, V ] .

In other words, G0 is obtained from G by replacing the edges G [U0, V ] with
the complete bipartite graph K [U0, V ]. Clearly, ∆(G0) = |V | = N and

χs(G0) ≥
ε2

2
N2 =

ε2

2
∆(G0)

2.
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What remains to be shown is that G0 is (d, ε)-regular. Indeed, let U ′ ⊆ U and
V ′ ⊆ V be given, |U ′| > ε|U | and |V ′| > ε|V |. Set U ′

0 = U ′ ∩ U0. Then

dG(U ′, V ′) ≤ dG0
(U ′, V ′) ≤ dG(U ′, V ′) +

|U ′
0|

|U ′|
.

Since |U ′
0| ≤ (ε2/2)|U |,

dG(U ′, V ′) ≤ dG0
(U ′, V ′) ≤ dG(U ′

1, V
′) +

ε

2
. (15)

As |U ′| > ε
2
|U | and |V ′| > ε

2
|V |, we see from the (d, ε/2)-regularity of G that

|dG(U ′, V ′) − d| < ε
2
. Consequently, in (15), we see |dG0

(U ′, V ′) − d| < ε. This
proves Fact 1. 2
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