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Abstract

We develop an approach to jump codes concentrating on their combinatorial and symmetry prop-
erties. The main result is a generalization of a theorem previously proved in the context of isodual
codes. We show that several previously constructed jump codes ase instances of this theorem.
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1. Introduction

In this paper, we develop an approach to a recently introduced class of quantum error
correcting codes called jurmp codes which were previously studied in [1,2.4] and elsewhere.
We concentrate here on the combinatorial and symmetry aspects of these codes. Our main
result is Theorem 4 which is a generalization of a theorem previously proved in a restricted
setting in [4]. We demonstrate that a number of previously constructed jump codes are
instances of this theorem or its variant.

2. Jump operators

The physical intuition underlying quantum error correction where the error is caused by
the spontaneous jumps of energy levels was developed in [1,2], while the combinatorial
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approach to these codes was considered in [4]. We refer the reader to these sources for an
explanation of unfamiliar notions, as well as the book by Nielsen and Chuang [11].

The physical intuition behind jump codes is the following. As for classical codes, further
side information, for example, about the position of an error, might aid in the process of
error correction [1,2]. We consider the quantum error correction model in which the errors
are due to quantum jumps, i.e., the (excited) state |1) may spontaneously decay into the
(ground) state |0); (see [1,2]). Furthermore, we assume that the decay rate is equal for
all subsystems, i.e., independent of the position. Then the corresponding error operator is
given by

a =101} = (8 (1)) .

If the operator acts only on the ith subsystem, the following notation will be used:
Ji=a, =d® - ®id®[0}{l|®1d® - ®id. H

The operators J; are up to scalars just the Lindblad operators of quantum optics (see for
exarnple {1]). .

3. Symmetries

The combinatorial prototypes of 7-detecting jump codes 6 = (v, I, ), with [ states on v
qubits are known as SEED’S and were introduced in [3,4]. The connection between jump
codes and SEED’S is by means of the encoding—superposition of stares

— 3
|%‘m| Be\

where |B) = |yp(1), ..., xg(v)} (yp is the characteristic function of B). Most of the
known quantum error correcting codes and jump codes have been constructed using group
representations, for example [6], or group actions. We will describe one such construction
in some detail in this paper.

In what follows

|.93”)) —

|B), @

[cod, .-, ler—1)

denotes the orthogonal basis of a t-detecting € = (v, [, 1); jump code, where the parameter
k refers to size k subsets of [1...v]. We write |¢;) instead of the |B") above (cf. [4,
Theorem 157).

We will assume that some nontrivial subgroup of the symmetric group
G<S,

acts transitively on the position coordinates of a jump code ¥ = (v, /, #);. The transitivity
assumption reflects the physical requirement that a jump code must proteci against jump
errors in every coordinate position, i.e. all the position coordinates should be equivalent
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with respect to the action of G. We will frequently consider the induced action of G on the
(,‘\f) subsets of size k of the position coordinates.

Each code vector {co). . . ., lcy—1) of the Hilbert space (C€H® isa superposition of length
v binary vectors. The supports of these vectors are the k-subsets of the position coordinates
of %. If the k-subsets of the position coordinates corresponding to the |¢;) are distinct orbits
of the group G, then {lco}. ..., |c/—1)} is a set of mutually orthogonal vectors. So the first
requirement of a quantum code is met. (Knill and Lafiamme [9] determined the general
conditions which any quantum error-correcting code must satisfy.)

Lemma 1. Suppose that the group G < S, acts transitively on the position coordinates of a
Jjump code C = (v, 1, 1), and G acts transitively on the k-subsets of the position coordinates
encoding the |co), . .., \ci—1). Then the k-subsets corresponding to each logical state |c;)
are the blocks of a 1-design.

Proof. Let C = (v, !, t); be a jump code and By, B». ..., the blocks encoding a logical
state |¢;). G acts on these blocks in a single orbit and transitively on the v coordinates. So
for any two coordinates i; and i, there is some element g in G so that i¥ = ;. Moreover
the blocks B}, BS, ..., belong to the same block-orbit. This ensures that if and i; occur
with the same frequency #; in the blocks of the orbit; in other words the set of coordinate
positions and the blocks By, B3, ..., form a 1-design.

From Lemma 1, we obtain the condition
vr; = bik,
where the number of blocks of the 1-design corresponding to |¢;) 1s

bi =1G1/IStab(B)|. O

4. A group-theoretic construction

In this section, we prove a result, Theorem 4, which provides a group-theoretic setting
for the construction of jump codes. Unlike the setting for quantum codes which protect
against Pauli errors (e.g. [6,7]), our construction is based on non-abelian groups. Several of
the previously discovered jump codes can be recast in this setting or its variant which we
develop in Section 5.

By a block system C := (S, B) we mean a finite set § = {1, ..., n} and a collection of
subsets B ={B, ..., By} of § all having the same cardinality. The automorphism group of
C, G = Aut(C), consists of all the one-to-one mappings of § which preserve the blocks of
B;ie.foralli € Sand g € G.theni € By if and only if i¥ € Bf The dual block system
C+ has the same uﬁderlying set S, but the blocks of C* are the images under a one-to-one
mapping o of the blocks of B.

A familiar example of these notions is that of I-designs [5]. In these (regular) block
systems every element of § occurs in the same number 2 of blocks B;,, ..., B;,. The
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automorphism group which acts on the points and the blocks of $ preserves the incidence
of point-block pairs.

Lemma 2. Suppose that C and C+ are dual block systems with respect to the map
6 :C — Ct and that G = Aut(C) is the automorphism group of C. Then G = Aut(CL) if
and only if

6G = Go. 3)

Proof. Suppose that 6G = Go, then every element of the underlying peint set of C— can
be written as i” where i € C. Let g € Aut(C) then (i°)¢ = (i")7 for some i € Aut(C).
But i” € C hence (i")? € C1 and thus G <Aut(C). Since Aut(C) and Aut(CL) are
isomorphic and finite, we have that G = Aut{C*).

Assume now that G =Aut(C). Forany g € Aut(C) we have that 6~ L g~ o € Aut(C),
and by our hypothesis there is some k € G so that 6~ 'g~ o = h, giving g~ ¢ = oh. But
this implies that ¢G = Go. [l

Lemma 3. If C and C+ are dual block systems then the orbits of G on the blocks B+ are
the images under o of the orbits of G on the blocks B.

Proof. Let O = {B7, .. B“} be the image under o of some block-orbit of G acting on
C.Forany g € G, Og = {B:”’J ,,,,, J”} Since ¢ normalizes G, 0% = {Bh‘I ..... B}

for some # € G. Since {B,,. ..., B;,}is a G orbit, it follows that 0% = O and that O isa
Gorbit. OO

Theorem 4. Suppose C and C* are dual block systems of a set § = (1, ..., n} with
non-trivial automorphism group G = Aut(C). Let G act on C, and 0, and O be disjoint

orbits of blocks of cardinality i in C and C*, respectively. Suppose that t <i. For each

integer s 1< s <t decompose the s-subsets of {1, ... . n} into orbits @y = {6y, ..., B }
with respect to the induced action of G on the s-subsets of S. Suppose thar for each s the
constituent orbits of ©; are preserved by o, ie., @\“' = Oy, (as sets) for s\, ..., sy. Then

the i-blocks in Oi/. and OZ give a 1-SEED(n, i; 2).

Proof. The osbits O;; and Oi are disjoint, so we have only to establish the generalized
r-design property.
Let {py, ..., ps} be an s-subset of each of the blocks By, ..., By, of O, , where m 21

is maximal. Then {p{, ..., p7} is a subset of each of the blocks By, .. Bg, of O" Now

{pl.-.., ps} € By, for some index s; and by g-invariance {p7,..., pJ} € Oy, Since
O, is a G orbit there is an element & € G such that {p|, ..., p,} = {pfh,...,p‘ 1.
This implies that {p|, ..., ps} is a subset of each of the m blocks B°", ..., B of 0"

in
Now using ¢G = Go, we have that {B7"...., BZ"} = {B{’,..., BS’} for some g € G.

Since the blocks By, ..., B,, belongtoa G Ol‘blt so do the m blocks Bf, ..., B} Hence
{p1, ..., ps}is asubset of m blocks of the orbit 05
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The case where { py, . .., ps}isnotcovered by any blocks is handled by a similar argument
by noting that if {py,..., ps} & B, then{p{,..., p?} ¢ B/.In this way, we have shown
that the normalized multiplicity condition (Definition 12 of [4]) is satisfied. By Theorem 15
of [4], the orbits O;, and Ofi give a t-SEED(n, i; 2). O

Remark 5. It is clear that Lemmas 2 and 3 can be extended to block systems Cy, ..., Cp,
defined on a common set S for more than two logical states. In this situation the map o,

g g
C()—) C] — > Cy

satisfies the normalizing condition: ¢G = Go, where G = Aut(C;_;) = Aut(C;) for all i.
Under this hypothesis the argument in Theorem 4 can be modified and yields an m-state
t-SEED(n, i; m).

Examples of jump codes in this setting are given in Section 6.

5. A variant of the construction

A family of optimal even length jump codes protecting against single jumps was described
in [2,4]. We will show that a variant of Theorem 4 provides a setting for these jump codes.

Theorem 6 (Alber et al. [2] and Beth et al. [{4]). For even length n, the

. t " ,
(n‘ 5 ”/2 ' n{2

jump code with basis states 1/+/2(|x) 4+ |X)) (where X denotes the binary complement of
the bitstring x) is optimal.

To motivate the further development of Theorem 4, we consider the stabilizers of the
basis states of these jump codes. We call the basis state 1/ V2(x) + 7)) corresponding to
the pair ([1, 2, ..., n/2),[n/241.n/2+2,...,n}]), the standard basis state.

Theorem 7. The stabilizer G < S, of each basis state 1/4/2(1x) + %)) of the jump codes
described in Theorem 6 is isomorphic to (S,;2 % Su2)S2. The stabilizer of the standard
basis state is generated by the involutions: {(1,2), (2,3),...,(n/2 — 1,n/2)}, {(n/2 +
Ln/242),(n/24+2,n/2+3).....(n—1,n}},and (1, n/2+1)2,n/2+2)---(n/2,n).

G is a self-normalizing subgroup of ;. The stabilizers of each basis stafe form a single
conjugacy class of subgroups of S,,.

Proof. It is apparent that stabilizer G of any basis state 1/+/2(|x) 4 |%}) has a subgroup
which is isomorphic to (S, /2 x S,,2)52. This subgroup acts on any basis state as follows.
The first factor S, > permutes the ones coordinates of |x) and the zeroes of |x), the second
factor S, /> plays the same role with the zeroes instead of the ones. The §; factor swaps the
ones and zero coordinates, thus |x) is mapped to a |*) by the action of this Ss.
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Let 1/«/§(|x) + |x)) and l/ﬁ(]x’) + 1}7)) be two distinct basis states, and G and H,
respectively, their stabilizers in S,,. The symmetric group S, acts m-transitively on m-tuples
for all m < n. This action induces a mapping on the logical states, i.e. there is some g € S,
mapping 1/+/2(Jx) + |%)) to 1/3/2(]x’) + |x')). Hence g "' Hg = G, and the stabilizers
of the basis states form a single conjugacy class in S,,. The size of this conjugacy class is
the index |S, : Ng,(G)|, and this coincides with the number of basis states in the code.
Since S, permutes the basis states transitively, the number of basis states is |5, : G|. Hence
|G| = |N5,(G)| and thus G = N, (G). This establishes the last two assertions.

Next we show that the full stabilizer of every basis state is isomorphic to (5,2 % Sy/2)$2.
Let G be the stabilizer of a basis state. Then G contains a subgroup isomorphic to (S,/2 x
S172)S2, and hence

Lin o <ic . IRy
5 n/2 = |8, : GI K|S, ¢ (5;1/2 X Spp2) S| = E nj2 )

or
|Sn : (Sn/2 X S11/2)S2| =S : GI.

Thus |G| = [(Sn/2 X S,/2)S2| and we conclude that G = (8,2 X $,/2)52.

To prove the generational part, we note that with respect to a standard basis, the involutions
{(1,2),(2,3),...,(n/2—1,n/2)}, generate the first factor of (S,,/2 % S,/2)S>. The second
factor is generated by the involutions {(n/2+1, n/2+2), (n/24+2,n/243), ..., (n—1,n)}.
The generators in the first set commute with all the generators in the second set, and the
intersection of the groups generated by the two sets of generators is the identity. Thus
collectively the involutions generate a direct product H := S,/2 X S, /2> which has index two
in the full stabilizer. The swapping involution (1, n/2 4+ 1)(2,n/2+2) -+ - (n/2, n) belongs
to the full stabilizer but is not in H. Hence this involution and the previous generators must
generate the full stabilizer. [

Remark 8. In Theorem 7 we have listed the generators for the stabilizer of a basis state
which 1s in standard form. The generators of the stabilizers of the other states of the code
can be obtained from the standard basis by conjugation.

By Theorem 7 the normalizing condition (3) cannot be satisfied for more than one state.
So we must drop the assumption that G is the common automorphism group of the different
states. Instead a weaker condition holds, namely that the stabilizers of the different states
of the jump codes in Theorem 6 form a single conjugacy class, and the stabilizers act
equivalently on the blocks underlying the basis states.

Recall that, if the permutation groups G and H act on sets €| and 2>, then (G, )
and (H, ) are equivalent, if there exists a one-to-one mapping ¢ : €, — 7 and an
isomorphism ¢ : G — H so that

(i#)° = (i o))

holds foralli € Qy andall g € G.
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Lemma 9. Let G and H be the stabilizers of two basis states |c;) := l/ﬁ(lx) —+ X)) and
jej) = 1/v/2(x"y +1x"). Then G and H are equivalent permutation groups on the block
sets underlying |c;) and |c;).

Proof. The map ¢ between the block sets arises as follows. There is some g € S, which

maps the support set of |x) to the support set of |x"), and hence maps the support sets of |X)

and [x) to each other. Since G and H are conjugate subgroups of S, there is an isomorphism

@ from G to H. Condition (3) holds because conjugacy is a special case of equivalence.
We can state the variant of Theorem 4. L[]

Theorem 10. The basis states of the jump codes described in Theorem 6 can be partitioned
into orbits of lengths at least two with respect to a local frequency preserving permutation
o of the coordinate positions.

Proof. Let o be a permutation of the code coordinates o := (1)(2, ..., n); i.e. the first
coordinate is fixed and the remaining coordinates are permuted in a cycle of length n — 1.
For any basis state |¢;) = 1/«/§(|x) + |x)), o cannot swap |x) and |X) because it fixes
the first coordinate. Nor can ¢ fix |x) or |x); it does not belong to the S/, factors of the
stabilizer of a state. Hence ¢ acts fixed-point freely on the basis states, and splits them into
orbits of lengths at least two. We show that the local frequency condition is preserved by &.

Let [c;) := 1/4/2(Jx) + |X)) be a basis state and |¢;)? := 1/+/2(|x)7 + |X)9) its image
under . Then B, and By—the support sets of |x) and |X), partition the coordinate positions,
i.e. any coordinate i belongs to either B, or B+, but not to both sets. Since o is a permutation
of [1...n],|B| =|B.{and |BZ| = | Bs|. Moreover B{ is disjoint from BZ. For if there was
some i’ € B N BY, then i would belong to B, N B, a contradiction. Hence BY and BY
is another partition of [1 ...n]. We conclude that any coordinate i € [1...n] occurs with
frequency one in |¢;) and in |¢;)?. Thus at least two code states are accounted for by the
o-cycle |¢;) — |¢;)? ... . Starting from a code state |c;) not belonging to the previous
o-cycle, we can form another local frequency preserving a-cycle |¢;) — |c;}?... . This
process can be continued until all the states of the code appear in the o-cycles.

By the transitivity of S, on the coordinate positions, we are free to choose any other
coordinate and cyclicly permute the remaining coordinates. Applying this transformation
gives an equivalent decomposition of the basis states into g-cycles, i.e. the resulting cycles
will have the same lengths as those induced by (1)(2,...,n). O

We provided a detailed analysis of the optimal jump codes of Theorem 7. It is an open
question whether the same codes are optimal in the case of an odd number of coordinates.
In [8] Grassl conjectures that they are also optimal for an odd number of coordinates. Our
analysis could have some bearing on this question.

6. Further examples

Theorem 4 was originally formulated in the context of isodual codes [4], so the associated
jump codes had just two logical states |cp), |c1), which were encoded by the vectors of
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Hamming weight w in the code and by the corresponding vectors of its isodual partner. (An
1sodual code is a binary linear code which is equivalent to its dual code; see [10].) We now
consider more diverse examples of jump codes which illustrate the methods developed in
this paper.

Consider the six qubit code (6, 2, 2); which protects against two jump errors [4]. This
code can be realized in two distinct ways. The two logical states jco), |¢1) of this code can
be encoded by the orbits of two distinct groups of order 24 which act on the six coordinate
positions. We call the first group Gaq, the second 1s the familiar symmetric group Sy.

In the G4 representation the encoding of the logical states expressed as support sets is

lcoy = {{1, 2.3}, {1,2,4}, {1,5,6},{2,5,6}, (3.4, 5}, {3, 4,6}},
le1} — ({1, 2,5}, {1,2,6},{1,3,4},{2,3,4}.{3. 5,6}, {4, 5. 6}}.

The block sets in the G4 representation form a pair of disjoint 1 — (6, 3, 3} designs which
are unique up to equivalence. The group G»4 has a centre of order two generated by
(1,2)(3,4)(8, 6); the derived subgroup is the Klein 4-group. A permutation of the co-
ordinates o := (3, 5)(4, 6) maps |co) 10 |c1). The group generated by G124 and o has order
48, and the two orbits of G4 are fused into a single orbit.

The rerrahedral tepresentation provides a combinatorial description of this jump code.
We label the six edges of a tetrahedron. Then |cy) corresponds to the four faces, and jc;)
to the four claws which complete each face to a tetrahedron. The four faces and claws are
orbits of a symmetric group S; acting on the six edges of the tetrahedron. The generators
of this Sy correspond to the rotations and the reflections of the tetrahedron. The associ-
ated transformation o mapping |cp) to {c}) is induced by the geometric self-duality of the
tetrahedron.

Next we look at the two (8, 3, 3)4 jump codes of [1,8].

The first code is associated with the group G of order 48

G:=1{(1,2,3){(5,7,8),(1,2,3)(5,8,6),(1,2,4)6,7,8)
which has three orbits &y, {1, and (> of length 12
{1,2,5,6)%, {1,2,5,7)¢, {1,2,5,8)¢

on the 4-subsets of eight coordinate positions. The permutation ¢ = (2, 3, 4) acts on the
basis states as

(f()—‘—r)@"]—(r)(%_,

and satisfies the condition ¢G = (G¢. The orbits of G on the 3-subsets, 2-subsets, and 1-
subsets of the eight coordinates are preserved by ¢. Thus the conditions of Theorem 4 are
satisfied.

The three error correcting (8, 3, 3), jump code of [8] provides an hybrid setting for
Theorem 4. This time the group is G >~ PSL.(7), the simple group of order 168

G :=1((1,2,3,4)(5.6,7,8),(1,3)(2, 8)(4, 5)(6, T)}.
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G has three orbits (g, (', and O,
{1,2.5.6)%. {1.2.5.8)%, {1,4,5,6)°

of lengths 14, 14 and 42, respectively, on the 4-subsets of eight coordinate positions. The
permutation ¢ := (1, 2, 5, 6, 3, 8) acts on two orbits as

O > 0,

and fixes the third orbit (°9 = .

The normalizing condition (3) holds. The orbits of G on the 3-subsets, 2-subsets and
1-subsets of the eight coordinates are preserved by ¢. Thus Theorem 4 applies to orbits €
and 0.

To complete the argument. we note that G acts transitively on the 3-subsets, 2-subsets,
and 1-subsets of the eight coordinates. Thus the frequency of occurrence the s-subsets in the
blocks of (/3 depends only on the s-value. Now {(2| =3{( | = 3|Cy|, and we can check that
the frequency of occurrence of each s-subsetin (75 is three times that of ¢/; and . Thus the
normalized multiplicity condition is satisfied. The orthonormal basis vectors ico), lc1), |¢c2)
of this jump code are encoded by the blocks of the orbits (g, €. and ;.
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