Aalborg Universitet

AALBORG UNIVERSITY

Girth 5 graphs from relative difference sets

Jørgensen, Leif Kjær

Publication date:
2005

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Jørgensen, L. K. (2005). Girth 5 graphs from relative difference sets. Aalborg Universitetsforlag. Research Report Series No. R-2005-05

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

AALBORG UNIVERSITY

Girth 5 graphs from relative difference sets

by
Leif Kjær Jørgensen

Girth 5 graphs from relative difference sets.

Leif K. Jørgensen
Department of Mathematical Sciences, Aalborg University
F. Bajers Vej 7, DK-9220 Aalborg Ø,Denmark

Abstract

We consider the problem of construction of graphs with given degree k and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G. Royle, four of the known cages including the Hoffman-Singleton graph, some graphs constructed by G. Exoo and some new smallest known graphs.

Keywords: Cage, girth, Cayley graph, relative difference set.
A (k, g) graph is a k regular graph with girth g. Sachs [13] proved that for every $k \geq 3$ and $g \geq 5$ there exists a (k, g) graph. The number of vertices in the smallest (k, g) graph is denoted by $f(k, g)$. A (k, g) graph with $f(k, g)$ vertices is called a (k, g) cage. It is well-known that $f(k, g) \geq n(k, g)$ where $n(k, g)$ is the Moore bound

$$
n(k, g)= \begin{cases}\frac{k(k-1)^{\frac{g-1}{2}}-2}{k-2} & \text { if } g \text { is odd } \\ \frac{2(k-1)^{\frac{g}{2}}-2}{k-2} & \text { if } g \text { is even }\end{cases}
$$

In this paper we consider the case $g=5$. Then the Moore bound is $n(k, 5)=$ $k^{2}+1$. For $k \leq 7$, the exact value of $f(k, 5)$ is known, but for $k \geq 8$ the difference between the upper and lower bound on $f(k, 5)$ is large. In particular, for $k=8$ the Moore bound is $n(8,5)=65$ but the smallest known $(8,5)$ graph is a Cayley graph of order 80 constructed by Royle [12].

For a table of smallest known (k, g) graphs we refer to Royle [12].
The unique cage of degree 7 is the graph constructed by Hoffman and Singleton [7]. It was observed by de Resmini and Jungnickel [6, Ex. 4.5]
(see Example 7 below) that the Hoffman-Singleton graph can be constructed from a relative difference set in a group of order 25 acting semiregularly on the graph.

Exoo [5] gave a construction of some new smallest $(k, 5)$ graphs for $k=$ $8,10,11,12,13,14$. This construction was also based on relative difference sets (or sets which are nearly relative difference sets) in a cyclic group acting semiregularly on the graph with two orbits of equal size.

Royle's Cayley graph on 80 vertices can be constructed in a similar way from a non-abelian group.

In this paper we give a general construction of graphs with girth 5 from relative difference sets and from subgraphs of Cayley graphs.

We will first give a short introduction to the concepts used in the construction.

Let G be any finite group and let $S \subset G$ be a subset not containing the group identity and with the property that $g \in S \Rightarrow g^{-1} \in S$. Then the Cayley graph of G with connection set S is the graph $\operatorname{Cay}(G, S)$ with vertex set G and edge set $\left\{\{x, y\} \mid x, y \in G, x y^{-1} \in S\right\}$, where $\{x, y\}$ denotes an edge joining the vertices x and y.

A (v, κ, λ) difference set in a group G of order v is a set $S \subseteq G$ with $|S|=\kappa$ such that for every non-identity element $g \in G$ there exists exactly λ pairs $(s, t) \in S \times S$ so that $g=s t^{-1}$.

The following well known theorem of Singer [14] gives an important class of difference sets.

Theorem 1 Let q be a prime power. Then there exists a $\left(\frac{q^{d+1}-1}{q-1}, \frac{q^{d}-1}{q-1}, \frac{q^{d-1}-1}{q-1}\right)$ difference set in the cyclic group. In particular $(d=2)$, there exists a $\left(q^{2}+q+1, q+1,1\right)$ difference set in the cyclic group.

It is also well known that for a prime power q and a $\left(q^{2}+q+1, q+1,1\right)$ difference set $S \subset \mathbb{Z}_{q^{2}+q+1}$, the graph with vertex set $\mathbb{Z}_{q^{2}+q+1} \times\{1,2\}$ and edge set $\left\{\{(a, 1),(a+s, 2)\} \mid a \in \mathbb{Z}_{q^{2}+q+1}, s \in S\right\}$ is a $(q+1,6)$ cage.

Definition 2 Let G be a group of order nm and let $N \triangleleft G$ be a normal subgroup of order n. A subset $S \subseteq G$ is said to be a relative (m, n, κ, λ) difference set with forbidden subgroup N if $|S|=\kappa$ and for every non-identity element $g \in G$ the number of pairs $(t, s) \in S \times S$, where $g=t s^{-1}$ is exactly λ if $g \notin N$ and 0 if $g \in N$.

We refer to Pott [10] for basic theory of relative difference sets.
We can now state our main theorem. We note that in the application of relative difference sets in the construction of $(k, 5)$ graphs we could replace exactly λ by at most λ in the above definition.

Theorem 3 Let G be a group of order nm and let $N \triangleleft G$ be a normal subgroup of order n. Let $N a_{1}, \ldots, N a_{m}$ be the cosets of N. Suppose that S is a relative $(m, n, \kappa, 1)$ difference set in G with forbidden subgroup N. Let Δ be a Cayley graph of N and let H_{1} and H_{2} be ℓ-regular graphs with vertex set N and with girth at least 5, such that H_{1} is a subgraph of Δ and H_{2} is a subgraph of the complement of Δ.

Let Γ denote the graph with vertex set $G \times\{1,2\}$ and edges of the following types
Type I $\{(g, 1),(g s, 2)\}$ for $g \in G$ and $s \in S$,
Type II. $\left.1\left\{g a_{i}, 1\right),\left(h a_{i}, 1\right)\right\}$ for $\{g, h\} \in H_{1}$ and $i \in\{1, \ldots, m\}$,
Type II. $\left.2\left\{g a_{i}, 2\right),\left(h a_{i}, 2\right)\right\}$ for $\{g, h\} \in H_{2}$ and $i \in\{1, \ldots, m\}$.
Then Γ has girth at least 5 and is regular of degree $\kappa+\ell$.
Proof Since each vertex is incident with κ edges of type I and ℓ edges of type II, Γ is $\kappa+\ell$ regular.

Suppose that C is a cycle in Γ of length at most 4.
Since the subgraphs spanned by $G \times\{1\}$ and $G \times\{2\}$ consist of disjoint copies of H_{1} and H_{2}, respectively, and both H_{1} and H_{2} have girth at least 5, C contains at least two edges of type I.

Suppose that $\{(g, 1),(x, 2)\}$ and $\{(h, 1),(x, 2)\}, h \neq g$, are edges in Γ. Then g and h are in different cosets of N. This follows from the fact that there exists $s, t \in S$ so that $x=g s=h t$ and so $h^{-1} g=t s^{-1} \notin N$.

If $(y, 2) \neq(x, 2)$ was another vertex adjacent to both $(g, 1)$ and $(h, 1)$ then $y=g s_{1}=h t_{1}$ for some $s_{1}, t_{1} \in S$ and $h^{-1} g=t s^{-1}=t_{1} s_{1}^{-1}$. Since this contradicts $\lambda=1$ for the relative difference set S, C contains at least one edge of type II.

If $\{(g, 1),(g s, 2)\}$ and $\{(g, 1),(g t, 2)\}, s \neq t$, are edges in Γ, i.e. $s, t \in S$ then, since $t s^{-1} \notin N$ and N is normal, $(g t)(g s)^{-1}=g t s^{-1} g^{-1} \notin N$ and so $g t$ and $g s$ are in different cosets of N.

It follows that if (g, i) and (h, i) have a common neighbour in $G \times\{3-$ $i\}$ then (g, i) and (h, i) are in different connected component of the graph spanned by $G \times\{i\}$.

Thus the only possible cycles of length at most 4 have vertices in the following cyclic order

$$
\left(g_{1}, 1\right),\left(g_{2}, 1\right),\left(g_{2} s, 2\right),\left(g_{1} t, 2\right)
$$

where $s, t \in S$. Since $\left(g_{1}, 1\right)$ and $\left(g_{2}, 1\right)$ are adjacent, g_{1} and g_{2} are in the same coset, say $N a_{i}$, and we can write $g_{1}=h_{1} a_{i}, g_{2}=h_{2} a_{i}$ for some $h_{1}, h_{2} \in N$.

Since $\left(g_{1} t, 2\right)$ and $\left(g_{2} s, 2\right)$ are adjacent, $g_{1} t=h_{1} a_{i} t$ and $g_{2} s=h_{2} a_{i} s$ are in the same coset of N. Thus

$$
\left(h_{1} a_{i} t\right)\left(h_{2} a_{i} s\right)^{-1}=h_{1} a_{i} t s^{-1} a_{i}^{-1} h_{2}^{-1} \in N
$$

and so $a_{i} t s^{-1} a_{i}^{-1} \in N$ and since $N \triangleleft G, t s^{-1} \in N$. Since N is the forbidden subgroup, it follows that $s=t$.

By the construction of type II edges, $\left\{h_{1}, h_{2}\right\}$ is an edge in H_{1}, and if we write $a_{i} s=h a_{j}$ where $h \in N$ then $g_{1} t=h_{1} a_{i} s=h_{1} h a_{j}$ and $g_{2} s=h_{2} h a_{j}$ and so $\left\{h_{1} h, h_{2} h\right\}$ is an edge in H_{2}. Since $H_{1} \subseteq \Delta,\left\{h_{1}, h_{2}\right\}$ is an edge in Δ and so $h_{1} h_{2}^{-1}$ is in the connection set of Δ. Similarly, $\left\{h_{1} h, h_{2} h\right\}$ is not an edge in Δ and so the connection set of Δ does not contain $\left(h_{1} h\right)\left(h_{2} h\right)^{-1}=$ $h_{1} h h^{-1} h_{2}^{-1}=h_{1} h_{2}^{-1}$.

This contradiction proves that Γ does not contain any cycle of length at most 4 .

The smallest value of ℓ for which the construction in this theorem is interesting is $\ell=2$. In this case we need the following lemma. In the applications of the lemma, the group N is either cyclic or isomorphic to S_{3}.

Lemma 4 Let N be a group of order $n \geq 5$. Then there exists graphs Δ, H_{1}, H_{2} as in Theorem 3 with $\ell=2$, except if N is the quaternion group of order 8 .

Proof We want to find Δ so that the complement of Δ has degree at least $\frac{n}{2}$. Then, by a theorem of Dirac [4], we can take H_{2} to be a Hamiltonian cycle in the complement of Δ.

Suppose that N has an element g of order at least 5 . Then we can take $H_{1}=\Delta=\operatorname{Cay}\left(N,\left\{g, g^{-1}\right\}\right)$. Thus we may assume that N does not have any element of order at least 5 and so, by Sylow's theorems, $n=2^{i} 3^{j}$, for some i, j.

Suppose that $j \geq 2$. Then N has a subgroup H of order 9 . Since N does not have any element of order at least $5, H$ is the non-cyclic group of order $9, H \simeq \mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

Since $S=\{(1,0),(2,0),(0,1),(0,2)\} \subset H$ has the property that Cay (H, S) is a self-complementary 4 regular Hamiltonian graph, we choose $\Delta=\operatorname{Cay}(N, S)$. So we assume that $j \in\{0,1\}$.

Suppose first that $i \leq 2$. Then $n=6$ or $n=12$. If $n=6$ and every element has order at most 4 then $N=S_{3}$. In this case we take $H_{1}=\Delta=$ $\operatorname{Cay}\left(S_{3},\{(12),(13)\}\right)$. For $n=12$ the lemma is true if N has a subgroup of order 6 . If N does not have a subgroup of order 6 then $N=A_{4}$. In this case we choose $\Delta=\operatorname{Cay}\left(A_{4},\left\{\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 3 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\right\}\right)$ and H_{1} is a Hamilton cycle in Δ.

Suppose now that $i \geq 3$. Then N has a (non-cyclic) subgroup H of order 8. If H is not the quaternion group then there exists $S \subset H$ so that Cay (H, S) is the cube graph and then we can take $\Delta=\operatorname{Cay}(N, S)$. Thus we may assume that every subgroup of order 8 is isomorphic to the quarternion group.

Since every group of order 16 has a subgroup of order 8 not isomorphic to the quaternion group, the lemma is true if 16 divides n.

Since every group of order 24 has a subgroup of order 6, the lemma is true for $n=24$.

We can now start constructing graphs with girth 5 .
Example $5\{0\} \subset \mathbb{Z}_{5}$ is trivially a relative $(1,5,1,1)$ difference set. The construction in Theorem 3 combined with Lemma 4 gives the Petersen graph.

One general construction of relative difference sets was found by Dembowski and Ostrom [2].

Theorem 6 Let q be an odd prime power and let G be the additive group of $G F(q)$. Then $\left\{\left(x, x^{2}\right) \mid x \in G F(q)\right\} \subseteq G \times G$ is a relative $(q, q, q, 1)$ difference set with forbidden subgroup $\{0\} \times G$.

Example 7 For $q=5$, we find that $\{(0,0),(1,1),(2,4),(3,4),(4,1)\} \subset \mathbb{Z}_{5} \times$ \mathbb{Z}_{5} is a relative difference set. The construction in Theorem 3 combined with Lemma 4 gives a 7 regular graph with girth 5 and 50 vertices, i.e. the Hoffman Singleton graph.

For other values of q we get smaller graphs from the following construction of relative difference sets. This construction was found by Bose [1] and Elliot and Butson [3].

Theorem 8 For every prime power q and every positive integer d there exists a relative

$$
\left(\frac{q^{d}-1}{q-1}, q-1, q^{d-1}, q^{d-2}\right)
$$

difference set in the cyclic group of order $q^{d}-1$. In particular, $($ for $d=2)$ there exists a cyclic relative $(q+1, q-1, q, 1)$ difference set.

Combining Theorem 3, Theorem 8 and Lemma 4 we get the following result which is essentially one of two constructions in Exoo [5]

Corollary 9 For every prime power $q \geq 7$, there exists a $q+2$ regular graph of girth 5 with $2\left(q^{2}-1\right)$ vertices.

In order to get other values of the degree, we may consider subgraphs of the graph constructed in Theorem 3.

Theorem 10 Let $q \geq 7$ be a prime power and let $k \leq q+2$. Then there exists a k regular graph with girth 5 and with $2(k-1)(q-1)$ vertices.

Proof Let G be the cyclic group of order $(q+1)(q-1)$ and let N be the subgroup of order $q-1$. Let $S \subset G$ be a relative $(q+1, q-1, q, 1)$ difference set with forbidden subgroup N. Let Γ be the graph constructed in Theorem 3 with $\ell=2$.

Since elements in N do not occur as the difference of two elements in S, S contains at most one element from each coset of N.

Since the parameters of the relative difference set satisfy $m-\kappa=1$ there is a unique coset of N containing no elements of S. Thus, for each coset $N a_{i}$ there is a unique coset $N a_{i^{\prime}}$ so that Γ has no edges from $N a_{i} \times\{1\}$ to $N a_{i^{\prime}} \times\{2\}$.

Then the subgraph of Γ spanned by

$$
\cup_{i=1}^{k-1} N a_{i} \times\{1\} \quad \cup \quad \cup_{i=1}^{k-1} N a_{i^{\prime}} \times\{2\}
$$

has the required properties.
Similarly, we obtain the following result from Theorem 6.
Theorem 11 Let $q \geq 5$ be a prime power and let $k \leq q+2$. Then there exists a k regular graph with girth 5 and with $2 q(k-2)$ vertices.

With $k=6$ and $q=5$ we get a graph with 40 vertices. O'Keefe and Wong [9] and Wong [16] proved that this is the unique (6,5)-cage. With $k=q=5$ we get a graph with 30 vertices. This is one of four $(5,5)$-cages, see Wegner [15], Yang and Zhang [17] and Meringer [8]. The Petersen graph can also be obtained from Theorem 11 with $k=3$ and $q=5$. The unique $(4,5)$ cage has 19 vertices and was constructed by Robertson [11].

The smallest number of vertices in a k regular graph of girth 5 is not known for any $k \geq 8$. For $8 \leq k \leq 16$, the following table lists the smallest number n of vertices in a k regular graph with girth 5 constructed in this paper. For $k=10$ and $k=13$ these graphs are exactly the graphs constructed by Exoo [5] and for $k=8$ the graph was constructed by Royle [12].

k	n	Construction	First constructed by
8	80	Ex. 13	Royle
9	96	Cor. 9	
10	126	Cor. 9	Exoo
11	156	Ex. 12	
12	216	Ex. 14	
13	240	Cor. 9	Exoo
14	288	Thm. $17, q=13$	
15	312	Thm. 17, $q=13$	
16	336	Thm. $17, q=13$	

Example 12 In the group $\mathbb{Z}_{13} \times S_{3}$ of order 78 the set
$\{(1, I),(10, I),(11, I),(0,(12)),(5,(12)),(2,(23)),(8,(23)),(7,(13)),(9,(13))\}$
where I is the identity permutation, is a $(13,6,9,1)$ relative difference set with forbidden subgroup $\{0\} \times S_{3}$, see Pott [10]. The construction in Theorem 3 gives an 11 regular graph with girth 5 and 156 vertices.

Example 13 In the group $G=\left\langle x, y \mid x^{8}=y^{5}=1, y x=x y^{2}\right\rangle$ of order 40 with normal subgroup $N=\langle y\rangle$ the set $S=\left\{1, x, x^{3}, x^{5} y^{4}, x^{6} y, x^{7} y^{3}\right\}$ has the property that no non-identity element in N can be written as st ${ }^{-1}$ where $s, t \in S$ and all other elements in G can be written as $s t^{-1}$ for at most one pair $s, t \in S$. Using the construction in Theorem 3 we get an 8 regular graph with 80 vertices and girth 5. This graph was first constructed by Royle [12].The graph is vertex transitive with automorphism group of order 160. It is a Cayley graph of two groups of order 80.

Figure 1: Two cubic graphs with girth 5 and order 12.

Example 14 In the group $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3}$ of order 108 with normal subgroup $N=\langle(2,1,0,0)\rangle$ the set $S=\{(0,0,0,0),(0,0,0,2),(0,0,1,0)$, $(0,1,1,1),(1,0,1,2),(1,1,0,2),(1,1,2,1),(1,2,2,0),(2,1,2,2),(3,1,2,2)\}$ has the property that no non-identity element in N can be written as $s-t$ where $s, t \in S$ and all other elements in G can be written as $s-t$ for at most one pair $s, t \in S$. Using the construction in Theorem 3 we get a 12 regular graph with 216 vertices and girth 5 .

We next consider the case $\ell=3$ in Theorem 3. In this case n must be even and $n \geq f(3,5)=10$. It can be shown that $n=10$ is not possible. Thus $n=12$ is the first case where it is possible to have $\ell=3$ in Theorem 3 . In the next example we show that it is possible to have $\ell=3$ if $n=12$, except maybe if $N=A_{4}$.

Example 15 Let $\Delta=\operatorname{Cay}\left(\mathbb{Z}_{12},\{ \pm 2, \pm 3,6\}\right)$. There are two cubic graphs with girth 5 and 12 vertices. In Figure 1, one these is shown as a subgraph of Δ and the other is shown as a subgraph of the complement of Δ. Thus we can take the graphs in Figure 1 to be H_{1} and H_{2} in Theorem 3.
Δ is a Cayley of every group of order 12, except A_{4}.

Theorem 16 Let N be a cyclic or dihedral group of order $n \geq 12$, n even. Then there exists graphs Δ, H_{1}, H_{2} as in Theorem 3 with $\ell=3$.

Proof The case $n=12$ was considered in Example 15. Thus we may assume that $n \geq 14$. Let $m=\frac{n}{2} \geq 7$. Then all differences of distinct elements in $\{0,1,3\}$ are different in \mathbb{Z}_{m}. Thus the graph H_{1} with vertex set $\mathbb{Z}_{m} \times\{1,2\}$ and edges $\{(i, 1),(i+s, 2)\}$ where $i \in \mathbb{Z}_{m}$ and $s \in\{0,1,3\}$ has girth 6 . The similar graph H_{2} with $s \in\{2,4,5\}$ also has girth 6 .
H_{1} and H_{2} are edge-disjoint Cayley graphs of the dihedral group.
Now denote the vertex (i, j) by $x_{2 i-j+1}$. Then H_{1} is a subgraph of $\Delta=$ $\operatorname{Cay}\left(\mathbb{Z}_{n},\{ \pm 1, \pm 5\}\right)$ and H_{2} is a subgraph of $\operatorname{Cay}\left(\mathbb{Z}_{n},\{ \pm 3, \pm 7, \pm 9\}\right)$. If $n \geq 16$ these graphs are disjoint.

If $n=14$ then let $p=(1,3,4,2)(5,12,11,13,8,10,9,6)$ and redefine H_{2} to be the graph with vertex set $\left\{x_{i} \mid i \in \mathbb{Z}_{14}\right\}$ and edge set $\left\{\left\{x_{p(i)}, x_{p(j)}\right\} \mid\right.$ $\left.\left\{x_{i}, x_{j}\right\} \in H_{1}\right\}$.

As in Theorem 10 we get the following.
Theorem 17 Let $q \geq 13$ be an odd prime power and let $k \leq q+3$. Then there exists a k regular graph with girth 5 and with $2(k-2)(q-1)$ vertices.

For large values of k we can get better results with $\ell>3$.
Theorem 18 Let $\ell \geq 4$ and let $n \geq 16 \ell^{2}$ be even. Let N be a cyclic group of order n. Then there exists graphs Δ, H_{1}, H_{2} as in Theorem 3.

Proof By Chebyshev's Theorem, there exists a prime p, so that $\ell-1 \leq p<$ $2(\ell-1)$. By Singer's theorem there exists numbers t_{1}, \ldots, t_{p+1} that form a difference set with $\lambda=1$ modulo $p^{2}+p+1$. We may assume $-2 \ell^{2}<t_{1}<$ $\ldots<t_{\ell}<2 \ell^{2}$. Let $r=\frac{n}{2}$. Then the differences $t_{i}-t_{j}, 1 \leq i, j \leq \ell, i \neq j$ are all different modulo r. Thus the graph H_{1} with vertex set $\mathbb{Z}_{r} \times\{1,2\}$ and edges $\left\{(a, 1),\left(a+t_{i}, 2\right)\right\}$, for $a \in \mathbb{Z}_{r}, 1 \leq i \leq \ell$ has girth at least 6 .

Now denote the vertex (i, j) in H_{1} by $x_{2 i-j+1}$. Then $x_{2 a}$ is adjacent to $x_{2\left(a+t_{i}\right)-1}$, for $a \in \mathbb{Z}_{n}, 1 \leq i \leq \ell$. Thus H_{1} is a subgraph of $\Delta=$ $\operatorname{Cay}\left(\mathbb{Z}_{n},\left\{ \pm\left(2 t_{i}-1\right) \mid 1 \leq i \leq \ell\right\}\right) \subseteq \operatorname{Cay}\left(\mathbb{Z}_{n},\left\{i \mid-4 \ell^{2}<i \leq 4 \ell^{2}\right\}\right)$.

Similarly, the graph H_{2} with vertex set $\mathbb{Z}_{r} \times\{1,2\}$ and edges $\{(a, 1),(a+$ $\left.\left.t_{i}+4 \ell^{2}, 2\right)\right\}$, for $a \in \mathbb{Z}_{r}, 1 \leq i \leq \ell$ has girth at least 6 and is a subgraph of the complement of Δ.

Combining the Theorems 3, 8 and 18, we get the following.
Corollary 19 Let q be an odd prime power. Then there exists a $q+\left\lfloor\frac{\sqrt{q-1}}{4}\right\rfloor$ regular graph of girth 5 and with $2\left(q^{2}-1\right)$ vertices.

References

[1] R. C. Bose, An affine analogue of Singer's theorem, J. Indian Math. Soc., 6 (1942) 1-15.
[2] P.Dembowski and T. G. Ostrom, Planes of order n with collineation groups of order n^{2}, Math. Zeitschrift 103 (1968) 239-258.
[3] J. E. H. Elliot and A. T. Butson, Relative difference sets, Illinois J. Math. 10 (1966) 517-531.
[4] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952), 69-81.
[5] G. Exoo, Small regular graphs of girth five, Preprint 1998 http://isu.indstate.edu/ge/CAGES/
[6] M. J. de Resmini and D. Jungnickel, Strongly regular semi-Cayley graphs, J. Algebraic Combin. 1 (1992), 171-195.
[7] A.J. Hoffman and R.R. Singleton, On the Moore graphs of diameters 2 and 3, IBM J. Res. Develop. 4 (1960), 497-504.
[8] M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (1999) 137-146.
[9] M. O'Keefe and P. K. Wong, A smallest graph of girth 5 and valency 6, J. Combin. Theory Ser. B 26 (1979) 145-149.
[10] A. Pott, Finite Geometry and Character Theory, Lecture Notes in Mathematics 1601, Springer-Verlag 1995.
[11] N. Robertson, The smallest graph of girth 5 and valency 4, Bull. Amer. Math. Soc. 70 (1964) 824-825.
[12] G. Royle, Cages of higher valency http://www.cs.uwa.edu.au/~gordon/cages/allcages.html
[13] H. Sachs, Regular graphs with given girth and restricted circuits, J. London Math. Soc. 38 (1963) 423-429.
[14] J. Singer, A theorem in projective geometry and some applications to number theory, Trans. Amer. Math. Soc. 43 (1938) 377-385.
[15] G. Wegner, A smallest graph of girth 5 and valency 5, J. Combin. Theory Ser. B 14 (1973) 203-208.
[16] Pak-Ken Wong,On the uniqueness of the smallest graph of girth 5 and valency 6, J. Graph. Theory 3 (1979) 407-409.
[17] Y. S. Yang and C. X. Zhang, A new $(5,5)$ cage and the number of $(5,5)$ cages (chinese), J. Math. Res. Exposition 9 (1989) 628-632.

