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Abstract

For a graph G and integer r ≥ 1 we denote the collection of in-

dependent r-sets of G by I (r)(G). If v ∈ V (G) then I (r)
v (G) is the

collection of all independent r-sets containing v. A graph G, is said to
be r-EKR, for r ≥ 1, iff no intersecting family A ⊆ I (r)(G) is larger

than maxv∈V (G) |I(r)
v (G)|. There are various graphs which are known

to have his property: the empty graph of order n ≥ 2r (this is the
celebrated Erdős-Ko-Rado theorem), any disjoint union of at least r
copies of Kt for t ≥ 2, and any cycle. In this paper we show how these
results can be extended to other classes of graphs via a compression
proof technique.

In particular we extend a theorem of Berge [2], showing that any
disjoint union of at least r complete graphs, each of order at least two,
is r-EKR. We also show that paths are r-EKR for all r ≥ 1.
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1 Introduction

An independent set in a graph G = (V,E), is a subset of the vertices not
containing any edges. For an integer r ≥ 1 we denote the collection of
independent r-sets of G by

I(r)(G) = {A ⊂ V (G) : |A| = r and A is an independent set}.

If v ∈ V (G) then the collection of independent r-sets containing v is

I(r)
v (G) = {A ∈ I(r)(G) : v ∈ A}.

Such a family is called a star.

A graph G is r-EKR iff no intersecting family of independent r-sets is larger
than the largest star in I(r)(G). If G is r-EKR and any intersecting family
A ⊆ I(r)(G) of maximum size is a star then G is said to be strictly r-EKR.

If G is r-EKR and I(r)
v is a star of maximum size then we say that v is a star

centre for G.

In this setting the classical Erdős-Ko-Rado theorem can be stated as follows.

Theorem 1 (Erdős-Ko-Rado [8]) If En is the empty graph of order n
then En is r-EKR for n ≥ 2r and strictly so for n > 2r.

There exist many results giving Erdő-Ko-Rado theorems for integer sequences
(see for example [9] and [7]). Three such results are of direct relevance to the
current paper and we restate them below in the language of graphs.

Theorem 2 (Berge [2], Livingston [14] ) If r ≥ 1, t ≥ 2 and G is the
disjoint union of r copies of Kt then G is r-EKR and strictly so unless t = 2.

This result was originally proved by Berge, with Livingston providing a char-
acterization of the extremal case. Other proofs of this result were given by
Gronau [10] and Moon [16].

In fact Berge proved more than Theorem 2.

Theorem 3 (Berge [2]) If G is the disjoint union of r complete graphs
each of order at least two then G is r-EKR.
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A generalization of Theorem 2 was first stated by Meyer [15] and proved by
Deza and Frankl [5].

Theorem 4 (Meyer [15], Deza and Frankl [5]) If r ≥ 1, t ≥ 2 and G
is the disjoint union of n ≥ r copies of Kt then G is r-EKR and strictly so
unless t = 2 and r = n.

A new proof of this result using a variant of Katona’s circle method (see [13])
was given by Bollobás and Leader [3].

Another result determining the EKR properties of a graph is the following
theorem for cycles and their powers, which was previously a conjecture of
Holroyd and Johnson [11]. For 1 ≤ k ≤ n the kth power of the n-cycle, Ck

n,
is the graph with vertex set [n] = {1, 2, . . . , n} and edges between a, b ∈ [n]
iff 1 ≤ |a− b mod n| ≤ k.

Theorem 5 (Talbot[17]) If r, k, n ≥ 1 then Ck
n is r-EKR and strictly so

unless n = 2r + 2 and k = 1.

Erdős-Ko-Rado theorems for other structures have also been widely studied.
In particular there are analogues of the Erdős-Ko-Rado theorem for subcubes
of cubes [6], Hamming schemes [16], permutations [4] and vector spaces [12].

Many authors also consider generalizations of Erdős-Ko-Rado results to t-
intersecting families of sets (that is to families in which any two members
meet in at least t elements). With such generalizations it is often far more
difficult to prove exact (as opposed to asymptotic) results. Indeed the “sim-
plest” generalization of Theorem 1 to t-intersecting families was a long stand-
ing conjecture of Frankl before its proof by Ahlswede and Khachatrian [1].
We are interested in exact results and do not consider any such generaliza-
tions.

A useful starting point for the reader interested in the many other known
Erdős-Ko-Rado type results is the survey paper of Deza and Frankl [5].

2 Results

Although this is not made explicit in [17], the proof of Theorem 5 uses a
type of compression that is essentially equivalent to contracting an edge in
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the underlying graph. In the present paper we wish to show how this idea
can be used to prove that various other graphs are also r-EKR.

In particular we have the following common generalization of Theorems 3
and 4.

Theorem 6 If G is the disjoint union of n ≥ r complete graphs each of
order at least two then G is r-EKR.

Note that Theorem 3 is the case n = r of Theorem 6, while Theorem 4 is the
case of Theorem 6 given by taking all the complete graphs to have the same
order.

We remark that our proof of Theorem 6 uses Theorem 4 and so does not
yield a new proof of that result.

Our second result is an analogue of the Erdős-Ko-Rado theorem for paths
and their powers. For 1 ≤ k ≤ n the kth power of the n-path, P k

n , is the
graph with vertex set [n] = {1, 2, . . . , n} and edges between a, b ∈ [n] iff
1 ≤ |a− b| ≤ k.

Theorem 7 If r, k, n ≥ 1 then P k
n is r-EKR.

The compression proof technique also extends to other types of graph and
our final theorem gives a large class of graphs which are all r-EKR.

Theorem 8 If G is a disjoint union of n ≥ 2r complete graphs, cycles and
paths, including an isolated singleton, then G is r-EKR.

3 Proofs

In order to state the key lemmas we require some notation.

If e is an edge of the graph G = (V,E) we define G/e to be the graph
obtained from G by contracting the edge e. We also define G ↓ e to be
the graph obtained from G by removing the vertices in e as well as their
neighbours. As usual we denote the neighbours of a vertex v by Γ(v).

The following two technical lemmas relate intersecting families and stars
in I(r)(G) to intersecting families and stars in I (r)(G/e) and I(r−1)(G ↓ e).
These will enable us to prove our main results by induction.
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Lemma 9 Let G = (V,E) be a graph and A ⊆ I (r)(G) be an intersecting
family. If e = {v, w} ∈ E is an edge in G then there exist families B, C,D
and E satisfying:

(i) |A| = |B|+ |C|+ |D|+ |E|.

(ii) B ⊆ I(r)(G/e) is intersecting.

(iii) C ⊆ I(r−1)(G↓e) is intersecting.

(iv) D = {A ∈ A : v ∈ A and Γ(w) ∩ (A\{v}) 6= ∅}.

(v) E = {A ∈ A : w ∈ A and Γ(v) ∩ (A\{w}) 6= ∅}.
(vi) If C ∈ C and F ∈ D ∪ E then C ∩ F ∩ V (G↓e) 6= ∅.

(vii) If D ∈ D and E ∈ E then D ∩ E ∩ V (G↓e) 6= ∅.

Lemma 10 If e = {v, w} is an edge in the graph G = (V,E) and x ∈ V (G↓
e) then

|I(r)
x (G)| = |I(r)

x (G/e)|+ |I(r−1)
x (G↓e)|+ |Dx|+ |Ex|,

where

Dx = {A ∈ I(r)
x (G) : v ∈ A and Γ(w) ∩ (A\{v}) 6= ∅}

and

Ex = {A ∈ I(r)
x (G) : w ∈ A and Γ(v) ∩ (A\{w}) 6= ∅}.

Proof of Lemma 9: Let A ⊆ I(r)(G) be intersecting. We consider the effect
of contracting an edge e = {v, w} in G. We define a contraction function,
c : V (G)→ V (G/e) by

c(x) =

{
v, x = w,
x, x 6= w.

Let

B = {c(A) : A ∈ A and c(A) ∈ I(r)(G/e)},
C = {A\{v} : v ∈ A ∈ A and A\{v} ∪ {w} ∈ A},
D = {A ∈ A : v ∈ A and Γ(w) ∩ (A\{v}) 6= ∅},
E = {A ∈ A : w ∈ A and Γ(v) ∩ (A\{w}) 6= ∅}.
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If A,B ∈ A and A 6= B then c(A) = c(B) iff A∆B = {v, w}. Hence

|{A ∈ A : c(A) ∈ I(r)(G/e)}| = |B|+ |C|.

Also if A ∈ A then c(A) 6∈ I(r)(G/e) iff A ∈ D ∪ E . Hence |A| = |B| + |C|+
|D|+ |E|, which is (i).

The fact that B ⊆ I(r)(G/e) is an intersecting family follows simply because
A is intersecting, so (ii) holds.

If C ∈ C then C ∪ {v}, C ∪ {w} ∈ A hence C ∈ I (r−1)(G ↓ e). With a little
more thought it is also clear that C is an intersecting family. Let C,D ∈ C,
if C ∩ D = ∅ then A contains the two disjoint sets C ∪ {v} and D ∪ {w}.
This contradicts the fact that A is intersecting. Hence C is also intersecting,
and so (iii) holds.

The definitions of the families D and E give (iv) and (v).

To see that (vi) holds let C ∈ C, so C ∪{v}, C ∪{w} ∈ A. If F ∈ D∪E ⊆ A
then (C ∪ {w}) ∩ F 6= ∅ and (C ∪ {v}) ∩ F 6= ∅ but either v 6∈ F or w 6∈ F .
Hence C ∩ F ∩ V (G↓e) 6= ∅.
Finally, if D ∈ D and E ∈ E then v ∈ D and w ∈ E imply that

D ∩ E ∩ (Γ(v) ∪ Γ(w) ∪ {v, w}) = ∅.

So D ∩ E 6= ∅ implies that (vii) must hold. 2

Proof of Lemma 10: This follows similarly to the proof of Lemma 9, via
contracting the edge e = {v, w}. Let c : V (G) → V (G/e) be as defined in
the proof of Lemma 9.

Then c is a surjection between the families I (r)
x (G)\(Dx ∪ Ex) and I(r)

x (G/e).
Moreover if A 6= B then c(A) = c(B) iff A∆B = {v, w} and the number of

sets in I(r)
x (G/e) with two preimages under c is exactly |I (r−1)

x (G↓e)|. Hence

|I(r)
x (G)| = |I(r)

x (G/e)|+ |I(r−1)
x (G↓e)|+ |Dx|+ |Ex|.

2

Proof of Theorem 6: We prove this result by induction on r. It is clearly
true for r = 1 so we may suppose that r ≥ 2 and the result holds for smaller
values of r.
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We now use induction on the number of vertices in G. Theorem 4 implies
that the result holds when G consists of n ≥ r copies of Kt, for t ≥ 2. So let

G = Kt1 ∪ · · · ∪Ktn ,

with 2 ≤ t1 ≤ t2 ≤ · · · ≤ tn, not all equal. We may suppose that the result
holds for all graphs of the correct form with fewer vertices.

Suppose that A ⊆ I(r)(G) is intersecting. Let v, w ∈ Ktn , we will contract
the edge e = {v, w}. Then

G/e = Kt1 ∪ · · · ∪Ktn−1,

and

G↓e = Kt1 ∪ · · · ∪Ktn−1 .

Using the notation of Lemma 9 we have D = E = ∅. Hence by Lemma 9 (i)

|A| = |B|+ |C|. (1)

Then for any x ∈ Kt1 ⊆ G ↓ e we have, in notation of Lemma 10, that
Dx = Ex = ∅. So Lemma 10 implies that

|I(r)
x (G)| = |I(r)

x (G/e)|+ |I(r−1)
x (G↓e)|. (2)

The observation that t1 ≤ ti, for any 1 ≤ i ≤ n, implies that we also have

|I(r)
x (G/e)| = max

v∈V (G/e)
|I(r)
v (G/e)| (3)

and

|I(r−1)
x (G↓e)| = max

v∈V (G↓e)
|I(r−1)
v (G↓e)|. (4)

Now tn ≥ 3 so G/e is a smaller graph of the correct form and hence is r-EKR.
Then Lemma 9 (ii) and (3) imply that

|B| ≤ |I(r)
x (G/e)|. (5)

Also G ↓ e is (r − 1)-EKR, since the result holds for smaller values of r. So
Lemma 9 (iii) and (4) imply that

|C| ≤ |I(r−1)
x (G↓e)| (6)
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Hence, using equations (1), (2), (5) and (6), we obtain

|A| ≤ |I(r)
x (G)|.

2

We give two proofs of Theorem 7. The first is similar to the other proofs
in this paper, using compression. We include this since a similar argument
is required for part of the proof of Theorem 8. However we also give a far
simpler second proof.

First Proof of Theorem 7: We first note that for any n, r and k

max
x∈V (P kn )

|I(r)
x (P k

n )|

is achieved by taking x ∈ {1, n}.
Again we prove this result by induction on r. The result clearly holds for
r = 1 so we may assume r ≥ 2 and that the result is true for smaller values
of r.

We now prove the result for r by induction on n. For n < (r− 1)k+ r there
is nothing to prove since I(r)(P k

n ) is empty. For n = (r − 1)k + r the result
also holds (since there is only one set in I (r)(P k

n )). So we may assume that
n ≥ (r − 1)k + r + 1 and that the result holds for smaller values of n. In
particular n ≥ k + 3.

Let A ⊆ I(r)(P k
n ) be intersecting. Set w = n, v = n− 1 and e = {n− 1, n},

and apply Lemma 9. Let B, C,D and E be the families defined in Lemma 9.
In this case G/e is P k

n−1, while G↓e is P k
n−k−2. Note that n ≥ k + 3 implies

that G↓e is non-empty.

We see that in this case D is empty and

E = {A ∈ A : n, n− k − 1 ∈ A}.

Let

F = {A\{n} : A ∈ E}

and consider C ∪F . Note that this is a disjoint union since n−k− 1 belongs
to every set in F but to no set in C. Hence

|C ∪ F| = |C|+ |F| = |C|+ |E|. (7)
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Parts (iii) and (vi) of Lemma 9 imply that C ∪F is an intersecting family of
independent (r−1)-sets in the subgraph of P k

n induced by {1, 2, . . . , n−k−1},
which is P k

n−k−1. Our inductive hypothesis for r then implies that

|C ∪ F| ≤ |I(r−1)
1 (P k

n−k−1)|. (8)

Now G/e is P k
n−1, so part (ii) of Lemma 9 and our inductive hypothesis for

n imply that

|B| ≤ |I(r)
1 (P k

n−1)|. (9)

Lemma 9 (i), together with equations (7), (8) and (9) imply that

|A| = |B|+ |C|+ |D|+ |E| ≤ |I(r)
1 (P k

n−1)|+ |I(r−1)
1 (P k

n−k−1)|. (10)

Applying Lemma 10 we obtain

|I(r)
1 (P k

n )| = |I(r)
1 (P k

n−1)|+ |I(r−1)
1 (P k

n−k−2)|+ |E1|, (11)

where

E1 = {A ∈ I(r)
1 (P k

n ) : n− k − 1, n ∈ A}.

Then it is easy to check that

|I(r−1)
1 (P k

n−k−1)| = |I(r−1)
1 (P k

n−k−2)|+ |E1|,

and so equations (10) and (11) imply that

|A| ≤ |I(r)
1 (P k

n )|.

as required. 2

The second proof of Theorem 7 requires the following lemma.

Lemma 11 Let G be an r-EKR graph with star centre v. If S ⊂ Γ(v) then
G− S is also r-EKR with star centre v.
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Proof of Lemma 11: As S ⊂ Γ(v), all the independent r-sets in G that contain

the star centre v are independent r-sets in G− S. So I (r)
v (G) = I(r)

v (G− S).
Furthermore any independent r-set in G− S is also an independent r-set in
G. So if A ⊆ I(r)(G−S) is intersecting then A ⊆ I(r)(G) and as G is r-EKR
with star centre v so

|A| ≤ |I(r)
v (G)| = |I(r)

v (G− S)|.

Hence G− S is also r-EKR with star centre v. 2

Second Proof of Theorem 7: Using Lemma 11, Theorem 7 is now a simple
corollary of Theorem 5.

Theorem 5 implies that G = Ck
n+k is r-EKR and any vertex v is a star centre.

Taking k adjacent neighbours of v for S, Lemma 11 implies that P k
n = G−S

is also r-EKR. 2

We turn finally to a proof of Theorem 8. The key ideas have already been
presented in Lemmas 9 and 10 as well as in the proofs of Theorems 6 and 7.
For this reason our proof is essentially a sketch.

Proof of Theorem 8: We will say that a graph G is r-mixed, for an integer
r ≥ 1, if it satisfies the conditions of Theorem 8. So G is r-mixed iff it is the
disjoint union of at least 2r complete graphs, paths and cycles, including at
least one isolated singleton.

We prove the result by induction on r. It is clearly true for r = 1 so we may
suppose r ≥ 2 and that the result holds for smaller values of r.

We now prove the result for r by induction on |V (G)|. If G is r-mixed then
|V (G)| ≥ 2r with equality iff G = E2r. So if |V (G)| = 2r then Theorem 1
implies that G is r-EKR. Hence we may suppose that |V (G)| > 2r and that
any r-mixed graph with fewer vertices is also r-EKR.

Now either G is an empty graph of order at least 2r + 1, in which case the
result holds by Theorem 1, or G contains an edge. So we may suppose that
G contains an edge e = {v, w}. We also know that G contains an isolated
singleton x.

It is easy to check that if H is any graph with an isolated vertex and s ≥ 1
then

|I(s)
x (H)| = max

v∈V (H)
|I(s)
v (H)|. (12)
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Note also that G/e is r-mixed and G↓e is (r − 1)-mixed. Moreover, both of
these graphs have fewer vertices than G and so by our inductive hypothesis
G/e is r-EKR and G↓e is (r − 1)-EKR.

If the edge {v, w} belongs to a complete graph or a path then the proof
follows similarly to the proof of Theorem 6 or Theorem 7 respectively so
suppose {v, w} is an edge in a cycle Ck. Note that we may suppose k ≥ 4
since otherwise Ck is a complete graph.

Let A ⊆ I (r)(G) be intersecting. We need to show that |A| ≤ |I (r)
x (G)|.

We will need to apply compression twice. Let a, b be the other neighbours
of v, w respectively. So the vertices a, v, w, b occur in that order on Ck. Let
e = {v, w} and f = {v, b}. We first apply compression to e.

Using Lemma 9(i) together with our inductive hypothesis we have

|A| ≤ |I(r)
x (G/e)|+ |C|+ |D|+ |E|,

where C, D and E are as in the proof of Lemma 9. Now lettting

D′ = {D\{v} | D ∈ D}, E ′ = {E\{w} | E ∈ E},

it is easy to check that

F = C ∪ D′ ∪ E ′ ⊆ I (r−1)(G/e).

Moreover if F ∈ F then

F ∩ {a, v, b} =




∅, F ∈ C
{b}, F ∈ D′
{a}, E ∈ E ′.

(13)

One can also check that F is intersecting. (This follows from Lemma 9
(iii),(vi),(vii) and (13).)

We now apply compression to F , contracting the edge f = {v, b} (this
time we map v to b). By (13) this yields an intersecting family c(F) ⊆
I(r−1)(G/e/f). Note that this is an injective mapping of sets (this is implied
by (13)). Hence using our inductive hypothesis once more we obtain

|C|+ |D|+ |E| = |F| = |c(F)| ≤ |I(r−1)
x (G/e/f)|.
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Hence

|A| ≤ |I(r)
x (G/e)|+ |I(r−1)

x (G/e/f)|. (14)

So we need to check that the right hand side of (14) is at most |I (r)
x (G)|.

Lemma 10 gives

|I(r)
x (G)| = |I(r)

x (G/e)|+ |I (r−1)
x (G↓e)|+ |Dx|+ |Ex|. (15)

If A ∈ I(r−1)
x (G/e/f) then either A ∈ I(r−1)

x (G↓e) or a ∈ A or b ∈ A. But

D′x = {D\{v} | D ∈ Dx} = {A ∈ I(r−1)
x (G/e/f) | b ∈ A}

and

E ′x = {E\{w} | E ∈ Ex} = {A ∈ I(r−1)
x (G/e/f) | a ∈ A}.

So

|I(r−1)
x (G/e/f)| = |I(r−1)

x (G↓e)|+ |Dx|+ |Ex|.

Substituting this in (15) and using (14) gives the desired bound for |A|. 2
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