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Abstract

In this paper we formulate four families of problems with which we aim at distinguishing different
levels of randomness.

The first one is completely non-random, being the ordinary Ramsey–Turán problem and in the
subsequent three problems we formulate some randomized variations of it. As we will show, these
four levels form a hierarchy. In a continuation of this paper we shall prove some further theorems and
discuss some further, related problems.
© 2005 Elsevier B.V. All rights reserved.

1. Introduction

This paper is an introduction to a field on the hierarchy of randomness with some new
problems and results.

1.1. The original questions

Below graphs of order n will be considered and “almost surely” or “almost every” means
that the probability of some event—in a class of n-vertex graphs—tends to 1 as n → ∞.
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To start in the middle, we formulate very briefly (and informally) four questions. The
paper is centered around them. The questions are as follows:

Fix a graph property, i.e. a class P of graphs (closed under isomorphism) and an integer
r �2.

(DD) How many edges guarantee for a graph Gn that if we r-color its edges arbitrarily,
we always find a monochromatic subgraph G∗

n ⊆ Gn, with G∗
n ∈ P?

(DR) How many edges guarantee for a graph Gn that in almost all r-edge-colorings,
we find a monochromatic subgraph G∗

n ⊆ Gn, with G∗
n ∈ P?

(RD) How many edges guarantee for a random graph Gn almost surely, that r-coloring
its edges arbitrarily, we always find a monochromatic subgraph of Gn, G∗

n ∈ P?

(RR) How many edges guarantee for a random graph Gn almost surely, that r-coloring
its edges at random, almost all the r-colorings contain a monochromatic G∗

n ∈ P?

Notation
We shall restrict our considerations mostly to ordinary graphs without loops and multiple

edges. Gn, Hn, . . . , will denote graphs with n vertices, e(G), v(G) and �(G) will denote
the number of edges, vertices in the graph G, and the chromatic number, respectively.

A graph property P is a set of graphs and “G has property P” means that G ∈ P.
A graph property P is assumed to be closed under isomorphism, i.e. invariant under the
permutation of vertices. P is called monotone (upward) if adding an edge to an Hn ∈ P,
we get an H ∗

n ∈ P.

Examples.

(1) For a fixed family L of sample graphs, PL denotes the family of graphs containing
some L ∈ L.

(2) PH denotes that G has a Hamiltonian cycle.
(3) P��k denotes that �(G)�k.
(4) PD denotes the property that G has diameter �D.
(5) For a given function d = d(n)�0, Pdmax denotes the property that the maximum

degree is �d(n).
(6) For a given function d=d(n)�0, Pdmin denotes the property that the minimum degree

is �d(n).
(7) For a fixed constant � ∈ (0, 1], Pd(�) is the property that G has a subgraph of size at

least �n with minimal degree �d(n).
(8) Pd-reg: G has a d-regular subgraph.
(9) P∗

d-reg: G has a d-regular spanning subgraph.
(10) PNonPlanar: family of non-planar graphs.

Below we use a(n) ∼ b(n) if both a(n)
b(n)

and b(n)
a(n)

are bounded, a(n) ≈ b(n) if a(n)
b(n)

→ 1.

a(n) � b(n) means that a(n)
b(n)

→ ∞. We shall use the notation a(n) 	 b(n) if for some
constant c > 0, a(n)�(1 + c)b(n).
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Our investigation is strongly related to three basic topics in graph theory: Extremal Graph
Theory, Ramsey Theory, and Random Graphs. Here we list some of the basic definitions
and notations:

1. For a monotone graph property P, ext(n, P) is the maximum number of edges a graph
Gn /∈ P can have. We call a graph Sn /∈ P extremal for P, if it has ext(n, P) edges.

2. Gn ∈ Gn,p means that Gn is a random graph with binomial distribution, where the
edge-probability is p = p(n).

3. ER(n, P) is the Erdős–Rényi weak threshold for property P, in the uniform model (see
Theorem 4.4).

4. The Ramsey number R(L1, . . . ,Lr ) is the maximum integer q for which Kq can be
r-colored without any monochromatic L ∈ Li of color i (for any i ∈ [1, r]).

For related literature see [2,5,8,25,34,50,59].

2. Four levels of deterministic and random Ramsey problems

We could consider two types of problems: the vertex-problems, where we increase the
number of vertices and the edge-problems, where for a given n we consider graphs on n
vertices and increase the number of edges and suddenly some “phase-transition” occurs.
Ramsey theorem is the typical case of the vertex-phase-transition: if we increase the number
of vertices of the graph Gn, then—after a while—either Gn or the complementary graph
Gn has the regarded property. For vertex-problems (and also for hypergraph problems) our
knowledge is very poor in the fields discussed here.

In this paper we are interested primarily in the edge-phase-transitions connected to Ram-
sey properties: for fixed n we consider graphs Gn on n vertices and gradually increase
e(Gn) from 0 to

(
n
2

)
. Concerning a fixed property P—which now will be some “Ramsey

Property”—for some number of edges, f (n), we have a radical change in the structure of
the graph, and we are interested in finding this f (n). This f (n) will be called the threshold
function.

All the vertex problems will be discussed in a continuation of this paper. The sharp
difference between the edge-problems and the vertex problems is that for the edge-problems
it turned out that most of the problems reduce to already known problems, while for vertex
problems we have many deep and interesting questions but very few answers.

In this paper all colorings are edge-colorings.

2.1. Random edge-colorings

There are several ways to define random colorings. To make the picture simpler and
clearer, we agree to use the “uniform edge-coloring”.

Definition 2.1 (Random edge-coloring). A random r-edge-coloring of a graph Gn is a
coloring when the edges are colored by 1, . . . , r and for each edge we choose each color
uniformly and independently. The subgraph of Gn defined by the edges of color i will be
denoted by G

[i]
n .
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2.1.1. Threshold functions
We shall always assume that a monotone property P is fixed: for non-monotone properties

most questions we regard here do not make sense. In some other non-monotone cases
the phenomena completely change. Two typical non-monotone properties showing many
difficulties are:

(i) e(G) is even and
(ii) G contains an L 
= Kp as an induced subgraph.

The four general problems we discuss here can be formulated as follows:
Beside fixing a monotone property P we also fix a color-number r. To avoid trivialities

or degenerate cases, we shall always assume that

(∗) In any considered r-coloring of Kn some K
[i]
n ∈ P for n large, i.e. P is Ramsey.

Definition 2.2 (Deterministic–Deterministic). f r
DD(n, P) is the minimum � for which for

every r-coloring of every Gn of � := f r
DD(n, P) edges, at least one of the “color graphs”

G
[i]
n has property P.2

Observe that there is no randomness in this definition and f r
DD(n, P) is uniquely defined

for any fixed n. (The family of considered graphs is non-empty, by (∗).)3

Clearly, f 1
DD(n, P) = ext(n, P).

The next definition is related to the usual uniform threshold function (the binomial version
is analogous). Here we use the uniform model, and we do not ask about random graphs but
about random colorings of deterministic graphs.

Definition 2.3 (Deterministic–Random). We call f r
DR(n, P) a weak DR-threshold function

if
(a) for

f (n)

f r
DR(n, P)

→ ∞ as n → ∞

for every graph Gn with f (n) edges in almost every r-coloring at least one of the color-
graphs G

[i]
n has property P;

(b) on the other hand, if

f (n)

f r
DR(n, P)

→ 0,

2 Here we often think of small subgraphs: G
[i]
n ∈ P may mean that G

[i]
n contains a triangle, or any other

(small) subgraph. On the other hand, it may also mean that G
[i]
n is hamiltonian: sometimes we think about

spanning subgraphs.
3 We cannot forget (∗): for the property that “G is hamiltonian”, for two or more colors this does not hold and

therefore our functions are not defined. See e.g. Section 5.3.
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then for every Gn of f (n) edges for almost every r-coloring of Gn we have G
[i]
n /∈ P, for

i = 1, . . . , r .4

This threshold function is often a sharp threshold function (see below); moreover, it is
often uniquely determined, or determined up to a very small additive error term.

A weak threshold function is determined only up to a multiplicative constant: if f (n) is a
threshold function, then c(n) ·f (n) is as well, for any bounded function c(n) > 0 for which
1/c(n) is also bounded.

Definition 2.4 (Random–Deterministic). f r
RD(n, P) is a weak RD-threshold function

assuming that
(a) if

f (n)

f r
RD(n, P)

→ ∞ as n → ∞

then in almost every Gn of f (n) edges, in every r-coloring at least one of the color graphs
G

[i]
n (i = 1, . . . , r) has property P; while
(b) if

f (n)

f r
RD(n, P)

→ 0 as n → ∞

then almost every Gn of f (n) edges has an r-coloring where the color graphs G
[i]
n /∈ P for

i = 1, . . . , r .

This area became a widely investigated research field. Among the first related results we
should mention the paper of Łuczak. Ruciński and Voigt [39] on monochromatic triangles
and Füredi’s paper [32] on graphs in which every 2-coloring contains a monochromatic
C4. Many papers of Rödl, Ruciński [44,45], and others should also be mentioned here. For
some more details see Section 4.4.

Definition 2.5 (Random–Random). We call f r
RR(n, P) a weak RR-threshold function if

(a)

f (n)

f r
RR(n, P)

→ ∞

implies that for almost all graphs Gn with f (n) edges, for almost all r-colorings of (at least)
one of the color-graphs G

[i]
n is in P;

(b) on the other hand,

f (n)

f r
RR(n, P)

→ 0

implies that for almost all Gn of f (n) edges, for almost all r-colorings, we have G
[i]
n /∈ P,

for i = 1, . . . , r .

4 In the uniform model, when we speak of a graph of f edges, we assume that f is integer-valued.
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Sharp thresholds: The sharp threshold functions were defined already by Erdős and
Rényi [22]. We shall define gr

RD, gr
DR, gr

RR similarly to the threshold functions f r
RD, f r

DR,
f r

RR above:

Definition 2.6 (Sharp threshold, uniform). Let U, V ∈ {D, R}. We call gr
UV(n, P) a sharp

threshold function for “UV” if there exist two functions g−
UV and g+

UV such that

g−
UV(n, P) = (1 − o(1))gr

UV(n, P)

and

g+
UV(n, P) = (1 + o(1))gr

UV(n, P)

and e(Gn) = g+
UV implies “YES” while e(Gn) = g−

UV implies “NO” in the corresponding
question in Section 1.1 for r colors and P.

We discuss here questions related to the existence of “sharp threshold” only in particular
cases. There are many very interesting results on the existence of sharp thresholds, see, e.g.,
many results of Friedgut and others. Here we refer the reader only to some papers related to
our approach, like Friedgut and Krivelevich [30], Friedgut, Rödl, Ruciński and Tetali [31],
and also, for graph properties (more precisely, in a more general setting) to Friedgut and
Kalai [29], and Friedgut [27].

For a very recent survey, see Friedgut [28].
All the definitions for ordinary graphs can be extended to hypergraphs and digraphs.
Basic questions: Having these definitions, we are interested in the following problems:

1. When do these threshold functions exist? The weak threshold exists in all the four cases.
This will shortly be discussed in Section 2.1.2.

2. Which are the basic relations (inequalities) among our threshold functions when the
property P and r are fixed? (Mostly we fix r, but occasionally r → ∞ slowly. See, e.g.,
the next section, Claim 3.1, Theorems 4.1, 4.2, etc.)

3. How are the threshold functions related to other, more well known graph theoretical
functions? (e.g., connections to Ramsey or Turán numbers, see Theorems 4.1, 4.11, etc.)

4. Which graph-theoretical properties of P influence the threshold functions, and how?
See, e.g. Theorem 4.11.

Altogether we are interested here in at least 10 functions: the gr
DD(n, P), the binomial

and uniform versions of the other three thresholds, the extremal function ext(n, P), (which
coincides with g1

DD(n, P)) the binomial and uniform versions of the Erdős–Rényi threshold
(which coincides with f 1

RR(n, P) and also with f 1
RD(n, P), etc.).

The structure of this paper is as follows. In the next section we discuss the existence
of threshold functions, then we state some basic inequalities relating the above threshold
functions to each other. The results formulated there will be proved in the subsequent
sections. In Section 4 we shall turn to the Local Properties P and show that gDD is the
Turán–Ramsey function, fDR is almost the Turán-extremal function, fRD is described by
Rödl and Ruciński, and fRR is essentially the same as the Erdős–Rényi threshold. The
non-trivial separation results will follow from these characterizations.
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2.1.2. Existence of weak threshold functions
The function gDD(n, P) is deterministic: there nothing is needed to be proved.
It is easy to prove the existence of fDR(n, P):

(a) if e(Gn)� ext(n, P), then Gn /∈ P may occur and this Gn, when r-colored, has neither
a monochromatic G

[i]
n ∈ P.

(b) If e(Gn) > r · ext(n, P) then at least one G
[i]
n will have more than ext(n, P) edges

and therefore will be in P.

A general result of Bollobás and Thomason [12] (see the Appendix, p. 29) implies the
existence of threshold functions for monotone graph properties as well. So it also implies
the existence of the threshold functions f r

RD(n, P) and f r
RR(n, P). Indeed,

(c) for any P we may define P∗
r as the set of those graphs Gn for which in any r-coloring

Gn there is a monochromatic G
[i]
n ∈ P. P∗

r is a monotone graph property and therefore it
has a threshold function f ∗

r . This is just what we needed.
(d) The existence of the threshold function for fRR is also very simple: If we fix a threshold

function ER(n, P) for P and take a graph Gn with o(ER(n, P)) edges, then even without
coloring it, almost surely Gn /∈ P, and of course, coloring Gn in r colors, we get subgraphs
that will be neither in P. The other side of our assertion is trivial in the binomial model.
There we can refer to the fact that if Gn is a random graph with binomial edge distribution,
with edge probability p(n) and we randomly and independently r-color its edges, then each
G

[i]
n is a random graph with binomial distribution and edge probability p(n)/r . Now the

standard technique used to prove the equivalence of the two models for monotone properties
also shows that if �(n) → ∞ and we take a random graph Gn with ��(n)ER(n, P) edges,
and randomly r-color its edges, then each G

[i]
n ∈ P, almost surely.

We know much less about the existence of sharp thresholds.

3. Basic inequalities

Now we know that the weak thresholds exist in all the four cases. Below, having inequal-
ities for weak thresholds, (since these functions are determined only up to constants) we
mean that one can normalize the function so that the corresponding inequalities hold.5 To
emphasize that we speak of sharp threshold (or in case of gDD about a uniquely defined
number), we shall often write g instead of f.

Claim 3.1. For every monotone graph property P, for every n if the corresponding functions
are defined and r �2

ext(n, P)�f r
DR(n, P)�gr

DD(n, P)�r · ext(n, P) (1)

5 Inequalities where one can normalize the sides may often be problematic. Actually, one standard way to
normalize is to take that very number of edges for which the corresponding probability is as close from below
to 1

2 as possible, see, e.g., Bollobás and Thomason [12]. Then our inequalities hold. In many cases one can also
overcome the problem of normalization by forgetting about the functions and speak about the corresponding
families of graphs.
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and

ER(n, P)�f r
RR(n, P)�f r

RD(n, P)�r · ext(n, P). (2)

If ext(n, P) ≺ (
n
2

)
,6 then

ext(n, P) ≺ gr
DD(n, P). (3)

The proof of the claim is trivial from the definitions.
It also immediately follows from (1) and (2) that fDR = o(fRD) is impossible. More

precisely, there is a constant c = c(r, P) for which

fDR �c · fRD.

Perhaps the most interesting question we could not settle is whether there is a real hi-
erarchy, i.e. a given order-relation among the above functions. Here this boils down to the
following:

What can be said about the relation between f r
DR(n, P) and f r

RD(n, P), resp. gDR(n, P)

and gRD(n, P)?
In the last part of this paper we shall see that in some degenerate cases gr

DR(n, P) <

gr
RD(n, P), say if r = 2 and the property P is that “the graph is connected”. However, we

do not know if

Problem 3.2. Is gr
DR(n, P) ≺ gr

RD(n, P) possible

(a) for gr
DR(n, P)�cn2?

(b) for gr
DR(n, P) = o(n2)?

Problem 3.3. What do we know about the orders of magnitude of these functions for
general P?

We can answer this question only for some special classes of properties.

4. Local properties

To simplify our notation, if PL is the graph property that

L ⊆ G for some L ∈ L

then fUV(n, PL) will be abbreviated to fUV(n,L), and if L = {L}, then we write
fUV(n, L). If L is finite, then we speak of “local” properties. All other properties will
be called “global”.

First we restrict ourselves to “local” properties.
We should remark here that the extremal graph problems behave completely differently if

L contains bipartite graphs from the cases whenL contains no bipartite L’s. This difference
will be inherited by our problems related to fDR, as well.

6 That is, ext(n, P) <
( n

2
) − cn2 for some constant c > 0.
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To formulate our results, put

t = t (L) = min
L∈L

�(L), (4)

d1 := d1(L) := min
L∈L

max
F⊆L

e(F )

v(F )
(5)

and

d := d(L) := min
L∈L

max
F⊆L

e(F ) − 1

v(F ) − 2
. (6)

Let q = q(r,L) be the minimum integer for which there exists an m=m(r,L) such that if
Kq(m, . . . , m) is r-colored then it must contain a monochromatic L ∈ L. By Kővári, Sós
and Turán [40], if L contains a bipartite graph, then q = 2. On the other hand, if t > 2 then
q > t .

For general L we have

Theorem 4.1 (Non-degenerate case). Let L be a finite family of graphs and r �2. Then,

(a) for t = minL∈L �(L)�3 we have the following relations:

r · ext(n,L) 	 gr
DD(n,L), (7)

gr
DD(n,L) ≈ ext(n, Kq) =

(
1 − 1

q − 1

) (n

2

)
+ O(1), (8)

gr
DR(n,L) ≈ ext(n,L) =

(
1 − 1

t − 1

) (n

2

)
+ o(n2), (9)

f r
RD(n,L) ∼ n2−(1/d), (10)

f r
RR(n,L) ∼ ER(n,L) ∼ n2−(1/d1) (11)

(b) for t := minL∈L�(L)�3 the above relations imply that

f r
RR(n,L) � f r

RD(n,L) � gr
DR(n,L) ≺ gr

DD(n,L). (12)

Theorem 4.2 (Degenerate case). Let L be a finite family of graphs and r �2. For the sake
of simplicity, in (15) below we exclude the forests from L. Then,

(c) for t = minL∈L �(L) = 2 we have the following relations:

gr
DD(n,L) ≈ r · ext(n,L) = o(n2), (13)

gr
DR(n,L) ≈ ext(n,L), (14)

f r
RD(n,L) ∼ n2−(1/d), (15)

f r
RR(n,L) ∼ ER(n,L) ∼ n2−(1/d1) (16)
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(d) Further, the above relations imply that

f r
RR(n,L) � f r

RD(n,L) < gr
DR(n,L) ≺ gr

DD(n,L). (17)

To prove this, we shall need the following two theorems.

Theorem 4.3 (Erdős, Stone and Simonovits [24], [17], [48]). Given a (finite or infinite)
family L of forbidden graphs, with

t = t (L) = min
L∈L

�(L). (18)

Then

ext(n,L) = ext(n, Kt ) + o(n2) =
(

1 − 1

t − 1

) (n

2

)
+ o(n2).7 (19)

Theorem 4.4 (Erdős and Rényi [22]). Let L be a finite family of graphs and

d1(L) = min
L∈L

max
F⊆L

e(F )

v(F )
. (20)

(i) The binomial threshold function is 1
n1/d1(L) : for p = �(n) · 1

n1/d1(L) , if Gn ∈ Gn,p,
then

lim
n→∞ Prob(L ⊆ Gn for some L ∈ L) =

{
1 if �(n) → ∞;
0 if �(n) → 0;

(ii) In the uniform model the threshold function is

ER(n,L) := n2−1/d1(L). (21)

For infinite families we have to be careful: we cannot simply take the infimum of the ex-
ponents. If, e.g.,L is the family of all graphs with minimum degree 4, then the Erdős–Rényi
threshold will be at least n3/2 for each L ∈ L, while any random or non-random graph
with � := 4n will contain at least one of them: the threshold for L will be linear.

4.1. The Deterministic–Deterministic case

Though this section is related to the local properties, yet in many cases the proofs work
for more general classes of P.

To describe gr
DD we distinguish two cases:

(a) ext(n, P) = o(n2),

7 Mostly this is used for one graph L but we need it for finite graph families L.
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(b) Properties where P = PL with t �3, where L may be infinite as well.

One could think that if ext(n, P)�cn2, then

gr
DD(n, P) ≺ r · ext(n, P). (22)

A counterexample to this is given in Claim 5.6.

Problem 4.5. Are there natural conditions ensuring (22)?

For the important particular case P = PL (see Example (1) in Section 1.1)
Theorems 4.6 and 4.1 completely answer this question.

We start with (a).

Theorem 4.6. If ext(n, P) = o(n2), then, for every fixed r

gr
DD(n, P) ≈ r · ext(n, P). (23)

Obviously, on the one hand, (23) cannot hold if ext(n, P) > c
(

n
2

)
and r > 1/c. On the

other hand, there are also many examples where for any fixed r, we have the even stronger

gr
DD(n, P) = r · ext(n, P) for infinitely many n. (24)

(Observe that here we have “=”, not only “≈”.)
First we prove Theorem 4.6. We shall need the following assertion.8

Lemma 4.7. If Gn is an arbitrary graph with e(Gn)=o(n2) and � is a random permutation
of the vertices, then, almost surely,

|E(Gn) ∩ E(�(Gn))| = o(e(Gn)), (25)

where �(Gn) is the image of Gn under the vertex permutation.9

We leave the proof of the lemma to the reader.

Proof of Theorem 4.6 (Outline). Fix an extremal graph Sn (for P). By the assumption,
e(Sn) = o(n2). By Lemma 4.7 we can put on n vertices r copies of Sn (permuting their
vertices in an appropriate way) so that any two of them intersect in at most o(e(Sn)) edges.
Deleting the edges in the

(
r
2

)
intersections, we get an r-colored Gn with (r−o(1)) ext(n,L)

edges, where the color-graphs G
[i]
n /∈ P. This proves gDD(n, P)�(r − o(1)) ext(n, P). The

upper bound (contained in (1)) is trivial. �

This implies (13) in Theorem 4.2.

8 Based on a paper of Chung and Graham it seems to us that much earlier Joel Spencer arrived to exactly this
result, see [55].

9 If Gn ∩ �(Gn) is the graph on the common vertex set having the common edges, then we could also write
that e(Gn ∩ �(Gn)) = o(e(Gn)).
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The case when P = PL.
The answer to the DD-problem in the case P = PL (r �2) is a special case of the

Ramsey–Turán problem to determine RT∗(n,L, . . . ,L, |m), where this function is de-
fined below and its asymptotic value is given by Theorem 4.8. For a more detailed description
of the situation, see [51].

Below we reduce the DD-problem for this case (apart from some error-term) to
Theorem 4.8.

Ramsey–Turán problems: Given r families of sample graphs L1, . . . ,Lr and an integer
m. Find the maximum number of edges a graph Gn on n vertices can have under the condition
that it can be r-colored so that the ith color contains no L ∈ Li for i = 1, . . . , r and the
independence number �(Gn)�m. Denote by RT∗(n,L1, . . . ,Lr |m) this maximum. Put
RT(n,L1, . . . ,Lr ) := RT∗(n,L1, . . . ,Lr , n).

Generally we do not know if such graphs exist at all. The special case RT(n,L1 . . . ,Lr )

means that we have no restriction on the independence number.10

Obviously gr
DD(n,L) = RT(n,

r︷ ︸︸ ︷
L, . . . ,L): they are identical, just the notation is dif-

ferent.
This Ramsey–Turán problem (and therefore the problem of determining gr

DD(n, P)) can
be solved as follows.

Theorem 4.8 (Sós [52], Burr et al. [14]). Let q := q(L1, . . . ,Lr ) be the smallest in-
teger such that if m is sufficiently large and we r-edge-color the complete q-partite graph
Kq(m, . . . , m), then there will be an i�r for which we shall have a monochromatic L ∈ Li

in the ith color. Then11

RT(n,L1, . . . ,Lr ) = ext(n, Kq) + o(n2). (26)

Thus gr
DD(n,L) = ext(n, Kq) + o(n2), which proves (8) of Theorem 4.1. Theorem 4.8

is an almost immediate consequence of the Erdős–Stone theorem [26]. For the details see
[19] or [51]. Also, it can easily be obtained from the equivalence principle described in the
next section.

One could ask: what if we have an arbitrary P? (Not only a PL!) Can we reduce the prob-
lem of gDD(n, P) to some kind of a Ramsey–Turán problem? Define RT(n, P1, . . . , Pr )

as the maximum number of edges a graph Gn can have under the condition that it can be r-
colored so that the color-graphs G

[i]
n /∈ Pi (i=1, . . . , r).Again, gDD(n, P)=RT(P, . . . , P).

However, often these quantities do not exist: Condition (∗) in Section 2.1.1 is just to
exclude the trivial exceptions in such cases.

4.2. Detour: an equivalence principle

Each Ramsey–Turán problem of the simpler type (i.e. when we do not have
any upper bound on the independence number �(Gn)) is equivalent to an ordinary

10 Typically we are interested in estimating RT∗(n, L1, . . . , Lr , | o(n)) see [51], but here we may restrict our
attention to RT(n, L1, . . . , Lr ). (See also Section 4.2.)

11 We formulate the result of [14] slightly more generally.
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Turán problem:

Given the color-number r and the (finite or infinite) families L1, . . . ,Lr of forbidden
graphs, define M as the family of vertex-minimal12 graphs M such that in any r-
coloring of M, there is a monochromatic L ∈ Li , of the ith color, for some i ∈ [1, n].
Then

RT(n,L1, . . . ,Lr ) = ext(n,M). (27)

This trivial observation implies that many of the results (error terms, structural stability of
the extremal graphs, etc.) that we know for ordinary extremal graph problems, automatically
generalize to this simpler type of Ramsey–Turán problems.

Remark 4.9. Unfortunately, no such theorem exists for the general Ramsey–Turán prob-
lems, where we consider a sequence (Gn) of graphs and beside the coloring condition also
assume that �(Gn) = o(n). To see this we quote the surprising Szemerédi–Bollobás–Erdős
theorem [58,10] according to which

RT∗(n, K4 | o(n)) = 1
8n2 + o(n2).

Since

ext(n,L) =
(

1 − 1

p

) (n

2

)
+ o(n2)

for any L, for some integer p, therefore the positive extremal densities are at least 1
4 , while

the density in the above-mentioned Ramsey–Turán problem (with the “extra condition”
�(Gn) = o(n)) is 1

8 . So it cannot be equivalent to any ordinary extremal graph problem.

See also Erdős, Hajnal, Sós and Szemerédi [20] and Bollobás [9] for related topics, or
[51] for a survey on Ramsey–Turán type problems, Sudakov [57] for some newer results in
the field.

4.3. The Deterministic–Random case

Almost local properties, DR: For Local Properties, for DR, we always have a sharp thresh-
old. The existence of the sharp threshold was stated in Theorem 4.1, by stating f r

DR(n,L) ≈
ext(n,L), and will be generalized in the next theorem. We shall go slightly beyond prop-
erties PL.

Definition 4.10. Fix r. Let us call P log-concentrated if (a) any edge-minimal G� ∈ P has
at most 1

2 logr ext(�, P) edges, and (b) ext(�, P) → ∞.

Here (b) is to exclude a few trivial cases. (a) says that any G� ∈ P contains a small
Gh ∈ P. 1

2 could be replaced by any � < 1.

12 This minimality can be omitted, but then we may get infinite familiesM in cases where otherwise we would
get a finite M.
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Theorem 4.11. If P is log-concentrated then the sharp threshold gr
DR(n, P) exists and

gr
DR(n, P) ≈ ext(n, P).

Proof. We know that f r
DR(n, P)� ext(n, P). We need only that, for every � > 0,

f r
DR(n, P) < (1 + �) ext(n, P). (28)

Fix an � > 0 and take a Gn with E := (1+�) ext(n, P) edges. It contains a subgraph H1 ∈ P

with at most

	 = 	(n) = 1
2 logr ext(n, P)

edges. Delete its edges from Gn and take in the remaining G′ an H2 of at most 	(n) edges.
Iterate this in 
 := �� ext(n, P)/	(n)� steps. This way we get 
 edge-disjoint P-graphs.
The probability that for a random r-coloring none of them will be monochromatic is

�(1 − r−	)
 ≈ exp

(
− 


r	

)
≈ exp

(
− �E

	
√

E

)
→ 0 if n → ∞.

This proves (28). �

If L is finite and P := PL, then P is trivially log-concentrated. This proves (9) of
Theorem 4.1 and (14) of Theorem 4.2. In this case we have an even sharper estimate.

Theorem 4.12. Let L be finite, r be fixed, and let �(n) → ∞ be arbitrary. If

e(Gn) > ext(n,L) + �(n),

then with probability tending to 1, a random r-coloring of Gn contains a monochromatic
copy of some L ∈ L.

Loosely we could say that for any �(n) → ∞
0�gr

DR(n,L) − ext(n,L)��(n) if n > n0(L, �).

However, this is not quite correct, since g was defined only up to an (1 + o(1)) factor. The
proof is easy and roughly the same as the proof of Theorem 4.11.

The finiteness of L cannot be dropped, see Claim 5.1.
There are cases when this is sharp: we need �(n) → ∞. In some other cases �(n) can

be dropped, see Theorem 4.15.

Remark 4.13. The phenomenon described in the above theorem is actually the following:
if L is finite, then determining f r

DR(n,L) or gr
DR(n,L) is the same as determining, when

will Gn have �(n) edge-disjoint copies of subgraphs from L with �(n) → ∞.

Remark 4.14. Theorem 4.12 can easily be extended to digraphs, multigraphs or hyper-
graphs. Observe the very weak dependence on r.



M. Simonovits, V.T. Sós / Discrete Mathematics 303 (2005) 209–234 223

4.3.1. Weak dependence on the number of colors
One could ask,

When do the threshold functions depend on the number of colors and when are they
(almost) independent?

Speaking of the DD case, we restrict ourselves to the simplest case of gDD(n, L, . . . , L)

and assume that �(L)�3. This function “strongly” depends on the number of colors,
since the corresponding Ramsey numbers strictly increase when we increase the number
of colors and gDD is around the corresponding extremal function ext(n, KR(...)), which
increases as R increases. (For the bipartite case this dependence is even stronger, by
Theorem 4.6.)

Contrary to this, the dependence on r is “negligible” in the DR case.

4.3.2. Eliminating the error term?
One could ask if �(n) is really needed in Theorem 4.12. There are cases where it is needed,

in some others gDR(n,L) = ext(n,L) for n > n0(L). One of the simplest cases when we
need �(n) → ∞ is if P = {Gn : P3 ⊆ Gn}, and more generally, P = {Gn : Pk ⊆ Gn}.

Below we shall show that for L := {Kp} the additive error term �(n) can be discarded.
More generally, let us call an edge e ∈ E(L) “critical” if �(L − e) < �(L). One general
phenomenon in extremal graph theory is that for sample graphs L with critical edges the
things are simpler: almost everything is the same as for the complete graphs, at least if n is
sufficiently large. Among others, for t = �(L),

ext(n, L) = ext(n, Kt ) if n > n0(L).

We shall prove the following, general result.

Theorem 4.15 (Critical edge). Let L be a fixed t-chromatic graph (t �3) with an edge e
for which �(L − e) < t . Then, for any fixed r and n > n0(L, r), we have

gr
DR(n, L) = ext(n, Kt ) = ext(n, L).

Proof of Theorem 4.15. It is enough to ensure � copies of L having a common edge e and
otherwise being edge-disjoint. If � → ∞, then these copies will ensure (almost surely) a
monochromatic L.

Let us consider T (tm, t, 1): the graph obtained from Kt−1(m, . . . , m) by adding an edge
to it. A theorem of Simonovits [48] (generalizing some results of Erdős) asserts that

ext(n, T (tm, t, 1)) = ext(n, Kt ) if n > n0(L).

So for e(Gn) > ext(n, Kt ) we shall have a T (tm, t, 1) for m > � · v(L), which contains �

copies of L having one common edge e0 but otherwise being edge-disjoint. Any r-coloring
of this T (tm, t, 1) contains a monochromatic L (namely, of the color of e0) with probability
tending to 1, as n → ∞ (and therefore m → ∞). �

We close this part with the following

Problem 4.16. Does there exist the sharp threshold function f r
DR(n, P) for every

monotone P?
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4.4. Random–Deterministic case

Here we are interested in the problem: when, at which edge level will a random graph
(almost surely) imply some Ramsey property, say have—for all r-edge-colorings—a mono-
chromatic subgraph L?

We have to emphasize that there are very many related, deep results in this field. It would
go far beyond the scope of this paper even to attempt to describe them. Also, there are very
many related open problems. One of the places to look for such results is the book of Janson,
Łuczak and Ruciński [35]. Here we mention a few related papers: [39,44,45].

We formulate here just one important result:

Theorem 4.17 (Rödl and Ruciński [44]). Fix a color-number r > 2. Assume that L is not
a star-forest, or if r = 2, then L is not the union of a star-forest and paths P3.Define13

d := d(L) := max
M⊆L

e(M) − 1

v(M) − 2
. (29)

Then there exist two constants, c > 0 and C > 0 such that if p > C/ d
√

n, then for almost
all Gn,p every r-coloring of Gn,p contains a monochromatic L. If, on the other hand,
p�c/ d

√
n then for almost all Gn,p there exists an r-coloring14 of Gn,p not containing

monochromatic L’s.

This means that if L contains no star-forests or path, then f r
RD(n,L) ∼ n2−(1/d), which

gives (10) of Theorem 4.1 and (15) of Theorem 4.2.
It is worth noticing that here we have something between the weak and sharp thresholds:

multiplying f by a large but fixed constant we get probability 1, by a small constant, we get
probability 0: (not � and 1 − �).

We formulated this result for the binomial model since the original version was also
formulated for that one. Here we shall prove a much weaker, almost trivial assertion.

Claim 4.18. For every L with minL∈L �(L)�3 there is a cL such that

f r
RD(n,L) < n2−cL .

This proves ext(n,L) � f r
RD(n,L) implicitly stated in Theorem 4.1.15

Proof of Claim 4.18. By Ramsey theorem, we know that there exists an integer R = R(r)

such that if we edge-color KR in r colors, it always contains a monochromatic copy of this

13 As in (6).
14 Observe that the “threshold” does not really depend on r. The larger is r, the stronger the upper and the

weaker the lower bounds are. Therefore, the strongest form of the lower bound is that there is a c > 0 for which,
if p < c/ d

√
n then even in the two-colorings the probability of monochromatic L’s tends to 0.

15 Actually, here the difference between a single L and a family L disappears. Fix any L ∈ L. If we know
Claim 4.18 for an L ∈ L then we know it for the whole L. To get the inequality ext(n,L) � f r

RD(n,L),
we may pick an L ∈ L of minimum chromatic number. Then by Theorem 4.3, we know that if �(L)�3, then
ext(n,L) ≈ ext(n, L). This implies that if we know this inequality for one L, then we know it for graph families
as well.
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L. By the Erdős–Rényi Theorem (see Theorem 4.4) if Gn is a random graph (either with
uniform or with binomial distribution), and if

e(Gn)

n2−2/(R−1)
→ ∞,

then the probability Prob(KR ⊆ Gn) → 1. This proves the claim. �

The meaning of the Rödl–Ruciński theorem is that if M ⊆ L is the “densest” subgraph
of L,16 then the threshold f r

RD(n, L) is the same as the “moment function” in Proposition
6.14 (in the Appendix): that edge-number � where the expected number of copies of M in
Gn, N(M ⊆ Gn) = c · �, for some constant c ∈ (0, 1), as n → ∞. 17,18

Problem 4.19. Can one prove a more general theorem on the order of magnitude of
f r

RD(n, P), for general P?19

4.5. The Random–Random case

The problem of f r
RR reduces to the famous Erdős–Rényi threshold result20 (both for the

binomial and the uniform models).
Since a random r coloring of a random graph Gn ∈ Gn,p is a collection of r graphs

G
[i]
n ∈ Gn,p/r , one easily sees the following.

Theorem 4.20. For any fixed r > 0, using d1 defined in (5)

f r
RR(n,L) ∼ n2−(1/d1(L)) as n → ∞.

Since d1(L) < d(L), this implies that f r
RD(n,L) � f r

RR(n,L), proving the corre-
sponding statements of Theorems 4.1 and 4.2.

Claim 4.21. If P is monotone and there is a sharp threshold ER(n, P), then gr
RR(n, P)

also exists (the threshold is sharp) and

gr
RR(n, P) ≈ r · ER(n, P).

4.6. Remarks on bipartite graphs

Our problems for some cases are more difficult for bipartite graphs because we do not
know enough about the corresponding extremal problems. The bipartite extremal problems

16 Here the “densest” is the one where e(M)−1
v(M)−2 attains its maximum for M ⊆ L.

17 While p or � are small, N(M ⊆ G)�� but as � increases, N(M ⊆ G) becomes much larger, and as soon
as we have many M ⊆ Gn, each of them can easily be extended into many L ⊆ Gn.

18 We would like to thank Ruciński for turning our attention to [31] and for his valuable remarks on these
topics.

19 Observe that this is a special case of the earlier Problem 3.3.
20 Originally formulated only for balanced graphs, where “balanced” means that if F ⊆ L, then e(F )

v(F )
� e(L)

v(L)
.

The general case can be found, e.g., in Bollobás [6].
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are difficult (a) partly because we do not have good enough upper bounds, (b) partly because
in most cases where we have promising upper bounds, the lower bounds are missing and
seem to be hopeless to get them.

Direct constructions: As to the function gr
DD(n,L), we used random methods to prove

the related results, e.g., Lemma 4.7. The surprising part is that in some cases Theorem 4.6
immediately follows from some old results connected to the so-called polarized partition
relations, see e.g., Chvátal [15], Berge and Simonovits [3], Sterboul [56].

This is described in the Claim and Remark below.

Claim 4.22. It is possible to color the edges of a Kn by ≈ √
n colors so that each color

class has approximately the same number of edges, ≈ 1
2n

√
n, and no monochromatic C4

occurs (except in one color class).

Sketch of the Proof. It is enough to consider the case n = p2 where p is a prime. The
vertices of Kn are the pairs (a, b) taken mod p and the color of the edge joining (a, b) to
(a′, b′) is i = aa′ + bb′ (mod p). Then one can check that e(G

[i]
n ) ≈ 1

2n
√

n and C4�G
[i]
n ,

for each i 
= 0. �

Remark 4.23. This idea extends to several sporadic cases, e.g., combining a new result
of Füredi [33] with a generalization of the Brown construction [13] we can prove by an
explicit construction that for every r �( 1

2 − �) 3
√

n, the upper bound in Theorem 4.6 is
(asymptotically) sharp for L = K(3, 3) as well.

For �(L)�3 we know that f r
DR(n,L)�

⌊
n2

4

⌋
, while f r

RD(n,L) = O(n2−c). This sep-

arates the order of magnitude of f r
DR(n,L) and f 2

RD(n,L). For �(L) = 2 we do not know
the order of magnitude of ext(n,L), we have only that f r

RD(n,L)=o(f r
DR(n,L)) cannot

happen.
However, we have the following.

Conjecture 4.24. For the bipartite case, if L is not a forest, then

f r
DR(n, L) � f r

RD(n, L). (30)

In several “sporadic” cases, we know (30), e.g., we know it for the following cases:
Case 1: For L=C2k , we can separate ext(n, L) and the moment function �(n, L, c), using

results of Margulis [42], Lubotzky, Phillips and Sarnak [38] or of Lazebnik, Ustimenko and
Woldar [37].21

Case 2: In all the cases when L is finite and the extremal number is obtained by some
algebraic construction: for Ka,b and if a = 2, 3, for Ka,b and if b > (a − 1)!.

21 In several places the first author mistated the corresponding result, due to a misprint, writing C2k instead
of Ck .
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Case 3: For the cube graph Q8, where the conjectured lower, i.e. cn8/5, bound is still
missing but we know at least, that

ext(n, Q8)� ext(n, C4) ≈ cn3/2 � fRD(n, Q8) ∼ n2−(6/11)

proving (30). (At the end we used Theorem 4.17.)
We know (30) for many further particular cases as well.
We do not know (30) in those cases, when the best known lower bound for ext(n,L)

is obtained by random methods, (mostly from the “first moment method” of Erdős, see
[16], etc. or Simonovits [49]). Just the contrary. The first moment method gives a lower
bound on ext(n, L) ≈ fDR(n, L). By Theorem 4.17, this quantity is an upper bound on
fRD(n, L), up to a multiplicative constant. Since we conjecture that this bound of the first
moment method is always much smaller than the truth, ext(n, L), we are confident that
(30) holds.

However, we have no way to approach the general case.

5. Global properties

Below we turn our attention to “global” properties. Many of the thresholds below will
be “sharp” thresholds.

5.1. Separating ext(n, P) and f r
DR(n, P)

(a) Let us consider the case when P means that G contains a cycle. Clearly, ext(n,C) =
n − 1, where C is the set of all cycles. Thus, gr

DD(n,C) = r(n − 1).
(b) Until now we had examples showing that ext(n, P) ≈ gDR(n, P). Below we give

two examples where they are relatively far.

Theorem 5.1 (All cycles). Let C be the family of all cycles. Then, for r �2,

f r
DR(n,C)�

( 6
5 − o(1)

)
ext(n,C)�1.2(n − 1) − o(n). (31)

The more colors we use the easier the proof is. So we shall give two proofs: in the second
one we shall assume that r �3, but the first one works for r = 2 as well.

Actually, we can prove the following sharper theorem. Denote by g(G) the girth of G.

Theorem 5.2 (High girth). Fix an integer d �3 and c > 0. Let Gm be an arbitrary graph
with maximum degree at most d and g(Gm) > c logd−1 m. Let

� >
(1/c) + 1

logd−1 r
. (32)

If we replace each edge of Gm by a path P�+1 (i.e. by a path of � edges), then we get a
graph Gn with n=m+ (�− 1)e(Gm) vertices such that if we r-color its edges, then almost
surely, as m → ∞ the resulting graph will have no monochromatic cycles.
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Proof of Theorem 5.1 from Theorem 5.2. We choose r = 2, and d = 3 and we consider
graphs Gm in which almost all vertices are of degree 3, with girth � log3 m= log2 m/log2 3.
(c > 0.63) By Theorem 5.2, � = 2 works. So we get a Gn with n = 5/2m and e(Gn) ≈
3m = 6m/5, proving Theorem 5.1.

To get the appropriate graphs, we use that the construction of Biggs and Hoare [4],
as shown by Weiss [60], yields 3-regular graphs Gm with g(Gm)� 4

3 log2 m, proving
Theorem 5.1. If we do not wish to use algebraic constructions, the Erdős–Rényi theory
can be used: for d = 3, using the edge-deletion method for random graphs, we get a Gm

with e(Gm) ≈ 3
2m, and g(Gn)� log3 m. The above argument, used with � = 2, also proves

Theorem 5.1. �

(The second proof is postponed after the proof of Theorem 5.2.)

Proof of Theorem 5.2. Consider a Gm satisfying the conditions of the theorem. Construct
Gn from it, as described above. Then, r-coloring the edges of Gn, each hanging path remains
monochromatic with probability �1/r(�−1). What is more important, each fixed path Pg of
Gm corresponds to a path P�g ⊆ Gn and will be monochromatic with probability r−�g+1.
(Here we also took into account that we have r possible colors for the monochromatic path.)

Let g = g(Gm). Since Gm contains at most 1
2md(d − 1)g paths Pg+1, the probability that

in the colored Gn we have a monochromatic path of length g · � can be estimated by

md

2
· (d − 1)g−1

rg�−1 < mr

(
d − 1

r�

)g

= o(1), as m → ∞. (33)

Indeed, we know that (d − 1)g > mc. Put � = � · logd−1 r . By r� = (d − 1)�, we have

mr

(
d − 1

r�

)g

= mr

(
1

(d − 1)�−1

)g

= mr

((d − 1)c logd−1 m)�−1 = mr

(mc)�−1 = o(1)

if c(� − 1) > 1, i.e. � > 1 + 1
c
. Since � = � logd−1 r , we get that if (32) holds, then (33) also

holds. This completes our proof. �

For the next proof we shall need

Theorem 5.3 (Erdős–Rényi [22, Theorem 4c]). If

lim
n→∞

e(Gn)

n
= c <

1

2

then for any function �n → ∞ the (induced) tree-components of Gn cover almost surely
at least n − �n vertices.

This theorem can be extended to the binomial model as well.

2nd Proof of Theorem 5.1, Using Random Graphs. One could produce graphs satisfy-
ing the conditions of Theorem 5.2, using the Erdős–Rényi uniform graph model or using
the binomial model. One technical problem to fight would be that vertices of degrees larger
than 3 could occur. So we shall use the binomial model and some of their results proved
originally for the uniform model.
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Consider a binomially distributed random graph Gn with edge probability p = �
n

, for
any fixed � ∈ (2, 3). The expected number of cycles of length � is 1

�
(pn)�. So the expected

number of cycles of length smaller than h is

∑
�<h

1

�
(pn)� <

2

h
(pn)h.

So we may color o(n) edges Gray and the remaining edges Black and then the girth of
the Black graph will be at least h = log� n. Now we denote the Black part of Gn by GB

n

and color the edges of Gn in Red–Blue–Green uniformly, (thus also 3-coloring the edges
of GB

n uniformly). The 6 graphs defined by the three colors will be binomially distributed
random graphs with edge-probability �

3n
. If they were from the uniform distribution, we

could directly apply Theorem 5.3 with �n = log log n. The 3-coloring ruins all the cycles
longer than log log n and the deletion of Gray edges ruins all the cycles shorter than log3 n:
GB

n shows that

f 3
DR(n,C)�( 3

2 − o(n))n. �

For C we know that ext(n,C) = n − 1 and gr
DD(n,C) = r · (n − 1) for any fixed r. We

do not know the value of fDR.

Problem 5.4. Is it true that f 2
DR(n,C) ≈ 3

2n? If not, can one prove at least, that

f 2
DR(n,C) < (2 − c)n? (34)

Problem 5.5. Take any of the constructions on regular graphs with bounded degree and
high girth, say, the 4-regular Margulis graph described in [41], or some Ramanujan graphs
with bounded degrees, see, e.g. [38] or [42]. Can one prove that a random edge-coloring
with 2 colors (or with r colors for some larger but fixed r) almost surely will have no
monochromatic cycles?

Next we consider the max-degree problem, but only for the case when dmax(n)/

log n → ∞. For gDD the problem is trivial.

Claim 5.6 (The max-degree case). Fix an integer r and a function, d = d(n) for which
d(n)/ log n → ∞ d(n)� n−1

r
. Let Gn ∈ Pdmax mean that the maximum degree in Gn is at

least d(n). Then

lim
n→∞

f r
DR(n, Pdmax)

ext(n, Pdmax)
= lim

n→∞
gr

DD(n, Pdmax)

ext(n, Pdmax)
= r .

Proof. Clearly, ext(n, Pdmax) = 1
2nd(n) + O(1) and, by (1), it is enough to prove

f r
DR(n, Pdmax)�(r − o(1)) · ext(n, Pdmax). Take an arbitrary -regular graph Gn for



230 M. Simonovits, V.T. Sós / Discrete Mathematics 303 (2005) 209–234

 = �(1 − �)rd(n)�.22 There exists a c = c(�) > 0 for which, if we color the edges of a Gn

in r colors, randomly, uniformly, then the probability that for a fixed vertex x of original
degree  � log n in the ith color has degree �i (x)�(1 + �)

r
is smaller than 2−c = o( 1

n
).

So the maximum degree in each color will be, almost surely, smaller than d(n). Therefore

fDR(n, Pdmax)� 1
2 n� 1

2 (1 − �)rd(n)n�(1 − �)r · ext(n, Pdmax) − O(1). �

5.2. Connectedness

Let PConn be the graph property that G is connected.

Claim 5.7. g2
DD(n, PConn) = (

n
2

) = g2
RD(n, PConn).

g2
DR(n, PConn) = (

n
2

) − (n − 2).

gr
RR(n, PConn) = 1

2 rn log n + O(n log log n).

We mention that the sharp threshold is a corollary of the corresponding Erdős–Rényi
theorem.

Remark 5.8. Observe that until now we saw only properties P where we had g2
DR(n, P)

> g2
RD(n, P) but now, for P = PConn we have the opposite inequality.

One can go somewhat further in analyzing this situation: if (Gn) is a sequence of con-
nected graphs and Gn has a vertex x for which the edge-connectivity �(Gn − x) → ∞,
then almost all 2-colorings of Gn contain a connected, monochromatic spanning subgraph.

5.3. Hamiltonicity and 1-factor

Let P be any one of the following properties:

(a) Gn has a Hamilton cycle,
(b) Gn has a Hamilton path,
(c) Gn contains a 1-factor. In the last case we shall restrict ourselves to even values of n.

Trivially, for these properties Condition (∗) in Section 2.1.1 does not hold.
However, the corresponding functions gr

DR(n, P) exist.

Claim 5.9. If �(n) → ∞ and e(Gn)=
(

n−1
2

)
+�(n), then almost all random r-colorings

of Gn contain a monochromatic Hamilton cycle. Hence g2
DR(n, PH) =

(
n−1

2

)
.23

22 If n is odd, we allow one vertex of degree  − 1.
23 Here one has to be slightly careful: as we have defined the sharp threshold, any function n2

2 + o(n2)

would do.
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Claim 5.10. If e(Gn) =
(

n−1
2

)
+ 1, then almost all random r-colorings of Gn contain a

monochromatic Hamilton path and (for n even) a 1-factor.

Claim 5.11. gr
RR(n, PH) = 1

2 rn log n and the same holds for the 1-factor.

Claim 5.12 (Stopping Rule). Fix a function �(n) → ∞ and use the stopping rule model,
stopping when degmin(Gn)��(n). Then almost all the r-colorings of Gn contain monochro-
matic Hamiltonian cycles, for fixed number r of colors.

To prove the Claim, one can reduce it to the uncolored case: to results proved by Ajtai,
Komlós and Szemerédi [36,1], and Bollobás [7]. (The first breakthrough on the Hamiltonic-
ity of random graphs is due to Pósa [43].)

One would get very similar results for the Hamiltonian path.

Problem 5.13. Can we prove some reasonable inequality, comparing f r
RD(n, P) and

f r
RR(n, P) for general (monotone) P?
For further literature also see [11,18,21,23,46,47,53,54].

Appendix

We often need/use the “moment” function: given an L and a constant c ∈ (0, 1), p =
pM =pM(n, L, c) will be that very probability for which the expected number of copies of
L ⊆ Gn ∈ Gn,p is cp

(
n
2

)
. One can easily see that

Proposition 6.1. For every graph L

p(n, L, c) = c′

n(v(L)−2)/(e(L)−1)
. (35)

and the corresponding uniform edge-number is

�(n, L, c) = c′′ · n2−(v(L)−2)/(e(L)−1), (36)

where c′ > 0, c′′ > 0 depend only on L and c.

The existence of a threshold function for some random event A(�)—depending on some
parameter �—means (at least in our cases) that for any � > 0, if for some �0 and �1 the
probability

Prob(A(�0))�� and Prob(A(�1)) > 1 − �

then

�1

�0
= O�(1).

Bollobás and Thomason [12] proved a general theorem on the existence of threshold
functions, for monotone properties.
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Theorem 6.2 (Bollobás and Thomason). Every non-trivial monotone increasing property
of subsets of sets has a threshold function.
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[20] P. Erdős, A. Hajnal, V.T. Sós, E. Szemerédi, More results on Ramsey–Turán type problems, Combinatorica

3 (1) (1983) 69–81.
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