ELSEVIER

Note
 Covering radii are not matroid invariants

Thomas Britz ${ }^{\text {a }}$, Carrie G. Rutherford ${ }^{\text {b }}$
${ }^{\text {a Department of Mathematics, Building 303, Technical University of Denmark, }}$ 2800 Lyngby, Denmark
${ }^{\mathrm{b}}$ Department of Mathematics, Statistics and Foundation Studies, Faculty of Business, Computing and Information Management, London South Bank University, SE1 OAA, UK

Received 25 September 2003; accepted 1 March 2005
Available online 12 May 2005

Abstract

We show by example that the covering radius of a binary linear code is not generally determined by the Tutte polynomial of the matroid. This answers Problem 361 (P.J. Cameron (Ed.), Research problems, Discrete Math. 231 (2001) 469-478). © 2005 Elsevier B.V. All rights reserved.

Keywords: Linear code; Vector matroid; Tutte polynomial; Covering radius

The celebrated "Critical Theorem" by Crapo and Rota [2] shows that many detailed properties of a linear code $C \subseteq \mathbb{F}^{E}$ (over a field \mathbb{F}, with coordinates labeled by the elements of a set E) are determined by the associated vector matroid M_{C}. Greene [3] further demonstrated that the Tutte polynomial

$$
T\left(M_{C} ; x, y\right)=\sum_{A \subseteq E}(x-1)^{\rho_{M_{C}}(E)-\rho_{M_{C}}(A)}(y-1)^{|A|-\rho_{M_{C}}(A)}
$$

often suffices to determine properties of C. Examples of such properties include the code length, dimension, minimum distance, and the weight enumerator. The purpose of this note is to present general code properties that are not determined by the Tutte polynomial of the associated matroid.

[^0]The covering radius $r(C)$ of a code $C \subseteq \mathbb{F}^{E}$ is the maximal distance from C to any vector of \mathbb{F}^{E}. Equivalently, it is one less than the cardinality of the weight distribution, $a_{0}, a_{1}, \ldots, a_{r}$, of coset leaders v in the cosets $v+C$. The matrices

$$
\left(\begin{array}{lllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

and
over $\mathrm{GF}(2)$ represent matroids with a common Tutte polynomial given by

$$
\begin{aligned}
y^{5} & +(x+5) y^{4}+\left(x^{2}+7 x+12\right) y^{3}+\left(x^{3}+8 x^{2}+22 x+15\right) y^{2} \\
& +\left(2 x^{4}+11 x^{3}+27 x^{2}+27 x+7\right) y+\left(x^{6}+5 x^{5}+13 x^{4}+21 x^{3}+19 x^{2}+7 x\right)
\end{aligned}
$$

but generate a pair of codes with covering radii 2 and 3 , respectively. Thus,
Theorem 1. The covering radius $r(C)$ of a binary linear code C is not generally determined by the Tutte polynomial $T\left(M_{C} ; x, y\right)$.

Theorem 1 answers in the negative the question posed in [1, Problem 361].
Gray (see [6]) observed that the pair of graphs presented below share a common Tutte polynomial, even though they are not 2 -isomorphic.

Let $C(G)$ and $C(H)$ be the bond codes of G and H, i.e. the binary linear codes spanned by the characteristic vectors of the bonds of G and H, respectively. The non-isomorphic matroids $M_{C(G)}=M(G)$ and $M_{C(H)}=M(H)$ have in common their Tutte polynomial. Furthermore, the codes $C(G)$ and $C(H)$ both have covering radius 3 . However, the weight distributions of their coset leaders are $1,9,20,2$ and $1,9,18,4$, respectively. Therefore,

Theorem 2. The weight distribution of coset leaders of a bond code C is not, in general, determined by the Tutte polynomial $T\left(M_{C} ; x, y\right)$ together with the covering radius $r(C)$.

Consider the following graphs:

H
The bond codes $C(G)$ and $C(H)$ both have weight enumerator

$$
x^{6}+3 x^{4} y^{2}+3 x^{2} y^{4}+y^{6}
$$

but they have covering radii 3 and 2 , respectively. It follows that
Theorem 3. The covering radius $r(C)$ of a bond code C is not, in general, determined by the weight enumerator of C.

To conclude, consider the general case in which $C \subseteq \mathbb{F}^{E}$ is a linear code and M_{C} is not necessarily uniquely representable. For instance, the matrices

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 4 & 2
\end{array}\right) \text { and }\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 1 & 6 & 5
\end{array}\right)
$$

are (inequivalent) representations of the uniform matroid $U_{3,6}$ over GF (7). The codes generated (over GF(7)) by each matrix have covering radii 2 and 3 , respectively. This illustrates the following result of A.N. Skorobogatov [7].

Theorem 4. The covering radius $r(C)$ of a linear code $C \subseteq \mathbb{F}^{E}$ is not generally determined by the associated matroid M_{C}.

Acknowledgements

All computations were conducted with the aid of GAP [4] and MAGMA [5].

References

[1] P.J. Cameron (Ed.), Research problems, Discrete Math. 231 (2001) 469-478.
[2] H. Crapo, G.-C. Rota, On the Foundations of Combinatorial Theory: Combinatorial Geometries, The M.I.T. Press, Cambridge, MA, 1970.
[3] C. Greene, Weight enumeration and the geometry of linear codes, Studies Appl. Math. 55 (1976) 119-128.
[4] M. Schönert, et al., GAP-Groups, Algorithms, and Programming, fifth ed., Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1995.
[5] The Magma Computational Algebra System for Algebra, Number Theory and Geometry, http://magma.maths.usyd.edu.au/magma/
[6] W.T. Tutte, Codichromatic graphs, J. Combin. Theory, Ser. B 16 (1974) 168-174.
[7] A.N. Skorobogatov, Linear codes, strata of Grassmannians, and the problems of Segre, in: Coding theory and algebraic geometry, Proc. Int. Workshop, Luminy/France 1991, Lect. Notes Math. Vol. 1518, 1992, pp. 210-223.

[^0]: E-mail address: C.G.Rutherford@1sbu.ac.uk (C.G. Rutherford).

 0012-365X/\$ - see front matter © 2005 Elsevier B.V. All rights reserved.
 doi:10.1016/j.disc.2005.03.002

