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Note

Covering radii are not matroid invariants
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Abstract

We show by example that the covering radius of a binary linear code is not generally determined
by the Tutte polynomial of the matroid. This answers Problem 361 (P.J. Cameron (Ed.), Research
problems, Discrete Math. 231 (2001) 469–478).
© 2005 Elsevier B.V. All rights reserved.
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The celebrated “Critical Theorem” by Crapo and Rota[2] shows that many detailed
properties of a linear codeC ⊆ FE (over a fieldF, with coordinates labeled by the ele-
ments of a setE) are determined by the associated vector matroidMC . Greene[3] further
demonstrated that the Tutte polynomial

T (MC; x, y) =
∑
A⊆E

(x − 1)�MC
(E)−�MC

(A)
(y − 1)|A|−�MC

(A)

often suffices to determine properties ofC. Examples of such properties include the code
length, dimension, minimum distance, and the weight enumerator. The purpose of this note
is to present general code properties that arenotdetermined by the Tutte polynomial of the
associated matroid.
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The covering radiusr(C) of a codeC ⊆ FE is the maximal distance fromC to any
vector ofFE . Equivalently, it is one less than the cardinality of the weight distribution,
a0, a1, . . . , ar , of coset leadersv in the cosetsv + C. The matrices




1 0 0 0 0 0 1 1 0 1 0
0 1 0 0 0 0 1 1 1 1 1
0 0 1 0 0 0 1 0 1 1 1
0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 1


 and




1 0 0 0 0 0 1 1 0 1 0
0 1 0 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 1 1 1
0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 1 0 0 0 0 1




over GF(2) represent matroids with a common Tutte polynomial given by

y5 + (x + 5)y4 + (x2 + 7x + 12)y3 + (x3 + 8x2 + 22x + 15)y2

+ (2x4 + 11x3 + 27x2 + 27x + 7)y + (x6 + 5x5 + 13x4 + 21x3 + 19x2 + 7x),

but generate a pair of codes with covering radii 2 and 3, respectively. Thus,

Theorem 1. The covering radiusr(C)of a binary linear codeC is not generally determined
by the Tutte polynomialT (MC; x, y).

Theorem 1 answers in the negative the question posed in[1, Problem 361].
Gray (see[6]) observed that the pair of graphs presented below share a common Tutte

polynomial, even though they are not 2-isomorphic.

Let C(G) andC(H) be the bond codes ofG andH, i.e. the binary linear codes spanned
by the characteristic vectors of the bonds ofG andH, respectively. The non-isomorphic
matroidsMC(G) = M(G) andMC(H) = M(H) have in common their Tutte polynomial.
Furthermore, the codesC(G) andC(H) both have covering radius 3. However, the weight
distributions of their coset leaders are 1,9,20,2 and 1,9,18,4, respectively. Therefore,
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Theorem 2. The weight distribution of coset leaders of a bond code C is not, in general,
determined by the Tutte polynomialT (MC; x, y) together with the covering radiusr(C).

Consider the following graphs:

The bond codesC(G) andC(H) both have weight enumerator

x6 + 3x4y2 + 3x2y4 + y6,

but they have covering radii 3 and 2, respectively. It follows that

Theorem 3. The covering radiusr(C) of a bond code C is not, in general, determined by
the weight enumerator of C.

To conclude, consider the general case in whichC ⊆ FE is a linear code andMC is not
necessarily uniquely representable. For instance, the matrices(1 0 0 1 1 1

0 1 0 1 2 3
0 0 1 1 4 2

)
and

(1 0 0 1 1 1
0 1 0 1 2 3
0 0 1 1 6 5

)

are (inequivalent) representations of the uniform matroidU3,6 over GF(7). The codes gen-
erated (over GF(7)) by eachmatrix have covering radii 2 and 3, respectively. This illustrates
the following result of A.N. Skorobogatov[7].

Theorem 4. The covering radiusr(C) of a linear codeC ⊆ FE is not generally determined
by the associated matroidMC .
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