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EXTENSIONS OF BOOLEAN ISOMETRIES

ANTONIO AVILÉS

Abstract. We study when a map between two subsets of a Boolean domain
W can be extended to an automorphism of W . Under many hypotheses, if
the underlying Boolean algebra is complete or if the sets are finite or Boolean
domains, the necessary and sufficient condition is that it preserves the Boolean
distance between every couple of points.

1. Introduction

Boolean domains and Boolean transformations are the Boolean analogues of
algebraic varieties and morphisms of algebraic varieties. We fix once and for all a
Boolean algebra B. A Boolean function f : Bn −→ B is a function which admits
a polynomial expression in terms of the operations and elements of B, such as for
instance f(x1, x2) = (x1 ∨ x2) △ a, where a is a fixed element of B. A Boolean
domain (over B) is a subset V ⊂ Bn which is the set of solutions to a Boolean
equation, namely

V = {(x1, . . . , xn) ∈ Bn : f(x1, . . . , xn) = 0},

for some Boolean function f : Bn −→ B. If U ⊂ Bn and V ⊂ Bm are Boolean
domains, a map F : U −→ V is a Boolean transformation if there are Boolean
functions F1, . . . , Fm : Bn −→ B such that

F (x) = (F1(x), . . . , Fm(x))

for all x ∈ U . A Boolean isomorphism is a bijective Boolean transformation (its
inverse map is, in fact, a Boolean transformation too). Two Boolean domains are
isomorphic if there exists a Boolean isomorphism between them. We must mention
the books [8] and [9] as reference treaties about Boolean functions and equations.

In this paper, we consider the problem of when a given bijection between two
subsets of a Boolean domain W can be extended to a Boolean isomorphism from
the whole W onto itself. One main result is the following:

Theorem 1. Let U, V,W ⊂ Bn be Boolean domains with U ∪ V ⊂ W and let

F : U −→ V be a Boolean isomorphism. Then, F is the restriction of some Boolean

isomorphism F ′ : W −→ W .

A Boolean domain U ⊂ Bn can always be considered as a Boolean metric space
with the metric d(x, y) =

∨n
i=1(xi △ yi). A Boolean metric space (over B) is a

set X together with a symmetric map d : X × X −→ B satisfying the following
two properties: d(x, y) = 0 if and only if x = y, and d(x, z) ≤ d(x, y) ∨ d(y, z)
for all x, y, z ∈ X . This constitutes a category with maps f : X −→ Y which are
contractive, that is, d(f(x), f(y)) ≤ d(x, y) for all x, y ∈ X . When this inequality
is an equality and f is bijective, then f is called an isometry. This concept was
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early studied in a series of works like [2], [3], [4], [5] and [6]. In [1] the close
relation between the metric and the algebraic structure of Boolean domains, in
a more general context, is investigated. The Boolean transformations between
Boolean domains coincide with the contractive maps and the Boolean isomorphisms
with the isometries. Also, the category of Boolean domains and transformations
is equivalent to the category of CFG-spaces (a subclass of Boolean metric spaces,
whose definition is recalled below) and contractive maps and therefore Theorem 1
is equivalent to the following:

Theorem 2. Let U, V,W be CFG-spaces with U ∪ V ⊂ W and let F : U −→ V be

an isometry. Then, F is the restriction of some isometry F ′ : W −→ W .

A direct consequence of this theorem, together with [1, Theorem 1.15] is that the
necessary and sufficient condition for a bijection between finite subsets of a Boolean
domain W to be extended to a Boolean isomorphism of W is to be an isometry
between these two finite sets.

It turns out in fact, that when B is a complete Boolean algebra, then U and V

need not be assumed CFG-spaces:

Theorem 3. Suppose that B is complete. Let W be a CFG-space, U, V subsets

of W and F : U −→ V an isometry. Then, F is the restriction of some isometry

F ′ : W −→ W .

If A is a p-ring for some prime number p (that is, a ring in which xp = x and
px = 0 for all x) then A happens to be a Boolean metric space over its ring of idem-
potents with distance d(x, y) = (x − y)p−1. These spaces were investigated in the
papers [10] and [7] which study, among others, problems of extension of isometries.
Namely, [10, theorem 5] is the same statement as our Theorem 3 but only for the
particular case in which W is a p-ring.

The statement of Theorem 3 also holds for contractive maps instead of isometries:

Theorem 4. Suppose that B is complete. Let W be a CFG-space, U, V subsets

of W and F : U −→ V a contractive map. Then, F is the restriction of some

contractive map F ′ : W −→ W .

We give examples that the hypothesis of completeness cannot be weakened in
Theorems 3 and 4.

2. Notations

The operations in Boolean algebras will be denoted as a ∨ b and a ∧ b for the
supremum and infimum and a \ b for the difference, 0 and 1 denote the lowest and
greatest element, a = 1 \ a is the complement and a △ b = (a \ b) ∨ (b \ a) is the
symmetric difference which allows to consider B as a ring with sum △ and product
∧. Elements a0, . . . , an of B are disjoint if ai ∧ aj = 0 whenever i 6= j and they are
a partition if moreover a0∨· · ·∨an = 1. The lattice order of B is denoted as a ≤ b.

With respect to Boolean metric spaces, the distance will be always denoted by
d. The product space of the Boolean metric spaces X and Y is X × Y with the
metric

d((x, y), (x′, y′)) = d(x, x′) ∨ d(y, y′).

We will work in pointed Boolean metric spaces, that is, metric spaces X in which
a point 0 ∈ X has been fixed. Formally,
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Definition 5. A pointed Boolean metric space is a couple (X, 0) where X is a

Boolean metric space with metric d and 0 is an element of X. A contractive map

between two pointed spaces f : (X, 0) −→ (X ′, 0′) is a contractive map f : X −→ X ′

such that f(0) = 0′.

In such spaces we will also use the notation |x| = d(x, 0). There is no deep differ-
ence in dealing with pointed spaces but it will be convenient for technical reasons.
We shall make use of several tools in this context, as convexity and orthogonality,
developed in [1], that are explained below.

Let a0, . . . , an be a partition of B and x0, . . . , xn be elements of the metric
space X . An element x ∈ X is said to be a convex combination of x0, . . . , xn

with coefficients a0, . . . , an if ai ∧ d(x, xi) = 0 for all i. In this case we write
a0x0 + · · ·+ anxn = x.

It turns out that X can be always embedded into a module over B considered
as a ring (sending the fixed element 0 to the zero of the module) in such a way that
these convex combinations correspond exactly with the usual linear combinations,
cf. [1, Theorem 1.6] and [1, Proposition 1.11]. This means that the notation is
coherent and all the usual properties of sum and multiplication by scalars apply.
When (X, 0) is a pointed metric space then we may suppress the term correspond-
ing to 0 in notation a00 + a1x1 + · · ·+ anxn = a1x1 + · · ·+ anxn, where a1, . . . , an
are just disjoint. We also recall that, in product spaces, convex combinations can
be calculated coordinatewise.

A set S ⊂ X is a system of generators of X , shortly X = conv(S), if any
element of X can be expressed as a convex combination of elements of S with some
coefficients. We mention the fact that if two contractive maps coincide on a system
of generators, then they are equal.

A metric space X is a CFG-space if it verifies the following two properties:

(1) It is convex, that is, for any x0, . . . , xn ∈ X and any partition a0, . . . , an of
B, the convex combination x = a0x0 + · · ·+ anxn is an element of X .

(2) It is finitely generated, that is, there is a finite system of generators of X .

We also mention the fact that X is a CFG-space if and only if it is isometric to
a Boolean domain, as it follows from [1, Theorem 3.8].

The elements x and y of the pointed space (X, 0) are orthogonal (x ⊥ y) if
d(x, y) = |x| ∨ |y|. For a subset U ⊂ (X, 0) with 0 ∈ U we set

U⊥ = {y ∈ X : x ⊥ y ∀x ∈ U}.

It turns out that U⊥ is a CGF-space provided U is [1, Proposition 2.11]. The
relation of this concept of orthogonality with the extension of isometries is the
following statement:

Proposition 6. Let U,X, Y be CFG-spaces with 0 ∈ U ⊂ X and f : (U, 0) −→
(Y, 0′) and g : (U⊥, 0) −→ (Y, 0′) be isometries. Then, there is a unique isometry

f ⊥ g : (X, 0) −→ (Y, 0′) which extends both f and g.

This is the content of Proposition 2.12 in [1] except that there it is written
contractive map instead of isometry. However, it is straightforward to check in that
proof, that if f and g are assumed to be isometries, then f ⊥ g that is obtained is
again an isometry.
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3. The first extension theorem

In this section we will prove Theorem 2. What we will really prove instead of it
will be the following statement about orthogonal spaces:

Theorem 7. Let (X, 0) be a pointed CFG-space and U1, U2 CFG-subspaces of X

with 0 ∈ U1 ∩ U2. If U1 is isometric to U2, then U⊥
1 is isometric to U⊥

2 .

Let us see, first, that Theorem 2 follows from Theorem 7. For this, apart
from Proposition 6, we need another result [1, Theorem 4.6], that CFG-spaces
are homogeneous, that is, if X is a CFG-space and x, y ∈ X , there is an isometry
φ : X −→ X such that φ(x) = y. Let U , V , W and F be as in the hypotheses of
Theorem 2 and, by homogeneity, fix 0 ∈ U and an isometry φ : W −→ W such that
φ(F (0)) = 0. We apply Theorem 7 to X = W , U1 = U , U2 = φ(V ) and we obtain
that U⊥ and φ(V )⊥ are isometric. Again, by homogeneity, we find an isometry
g : (U⊥, 0) −→ (φ(V )⊥, 0). Finally, the map F ′ = φ−1 ◦ ((φ ◦F ) ⊥ g) is the desired
isometry.

Before passing to the proof of Theorem 7, we must recall the criteria of isometry
and the concept of base developed in [1].

For a space X and an integer k > 0, we define an element

αk(X) = sup{
∧

0≤i<j≤k

d(ui, uj) : u0, . . . , uk ∈ X}

This supremum exists and is indeed attained whenever X is either finite or a CFG-
space. In the latter case in addition, there exists k0 with αk(X) = 0 for all k > k0
and αk(X) ≥ αk+1(X) for all k. Another property is that if A is a system of
generators of X , X = conv(A), then αk(A) = αk(X) for all k. The importance
of these functions is that they determine the isometry classes of CFG-spaces: two
CFG-spaces X and Y are isometric if and only if αk(X) = αk(Y ) for all k, cf. [1,
§4].

Another result that we need is the existence of bases : Any pointed CFG-space
(X, 0) has a base, that is, a set {x1, . . . , xn} such that

(1) X = conv(0, x1, . . . , xn),
(2) xi ⊥ xj for any i 6= j,
(3) αi(X) = |xi| > 0 for i = 1, . . . , n.

We point out that condition (1) above implies that αi(X) = 0 for i > n. The
following lemma investigates the relation between the functions αk(U), αk(U

⊥)
and αk(X) when U is a CFG-subspace of X . It will be useful now to convene that
α0(Y ) = 1 for any space Y .

Lemma 8. Let (X, 0) be a CFG-space and U a CFG-subspace with 0 ∈ U . Then,

for all n ∈ N,

αn(X) =

n
∨

i=0

αi(U) ∧ αn−i(U
⊥).

PROOF: Take bases B1 = {x1, . . . , xr} and B2 = {y1, . . . , ys} of (U, 0) and
(U⊥, 0), respectively and define B = B1 ∪B2 ∪ {0}. From [1, Proposition 2.11] we
have X = conv(U ∪ U⊥) and hence X = conv(B) and αn(X) = αn(B). Now the
result follows by applying the definition of the function αn to that set, having in
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mind the relations

|x1| ≥ |x2| ≥ · · · ,(1)

|y1| ≥ |y2| ≥ · · · ,(2)

d(xi, xj) = |xi| ∨ |xj | = |xmin(i,j)|,(3)

d(yi, yj) = |yi| ∨ |yj| = |ymin(i,j)|.(4)

Namely, for a subset A of B we define

φ(A) =
∧

u,v∈A,u6=v

d(u, v),

so that αn(B) is the supremum of all φ(A) when A runs over all subsets of B of
cardinality n+ 1. Whenever n− s ≤ i ≤ r, we can consider the set

Ai = {0, x1, . . . , xi, y1, . . . , yn−i}

of cardinality n+1, so that αn(X) ≥ φ(Ai) and by the relations mentioned above,
it is easily calculated that φ(Ai) = |xi| ∧ |yn−i| = αi(U) ∧ αn−i(U

⊥). When
n−s ≤ i ≤ r does not hold, then αi(U)∧αn−i(U

⊥) = 0. This proves that αn(X) ≥
∨n

i=0 αi(U) ∧ αn−i(U
⊥). For the other inequality, we take an arbitrary subset A of

B of cardinality n+1 and we shall prove that φ(A) ≤
∨n

i=0 αi(U)∧αn−i(U
⊥). For

such an A, we find i1 < · · · < it and j1 < · · · < ju such that

A ∩B1 = {xi1 , . . . , xit},

A ∩B2 = {yj1 , . . . , yju}.

Now, if 0 ∈ A then t+ u = n and using relations (1)− (4) above

φ(A) ≤ d(0, xit) ∧ d(0, yju) = |xit | ∧ |yju | ≤ |xt| ∧ |yu| = αt(U) ∧ αu(U
⊥).

On the other hand, if 0 6∈ A, then u+ t = n+ 1 and calculating again,

if t, u ≥ 2, φ(A) ≤ d(xit , yju) ∧ d(xit , xit−1
) ∧ d(yju , yju−1

)

= (|xit | ∨ |yju |) ∧ |xit−1
| ∧ |yju−1

|

= (|xit | ∧ |yju−1
|) ∨ (|xit−1

| ∧ |yju |)

≤ (|xt| ∧ |yu−1|) ∨ (|xt−1| ∧ |yu|),

if t = 1, u > 1, φ(A) ≤ d(xi1 , yju) ∧ d(yju , yju−1
)

= (|xi1 | ∨ |yju |) ∧ |yju−1
|

= (|xi1 | ∧ |yju−1
|) ∨ |yju |)

≤ (|x1| ∧ |yu−1|) ∨ |yu|

= (α1(U) ∧ αu−1(U
⊥)) ∨ (α0(U) ∧ αu(U

⊥)),

and the other cases are checked similarly. �

PROOF OF THEOREM 7: For every i ∈ N, we set

ai = αi(U1) = αi(U2), bi = αi(X), ri = αi(U
⊥
1 ), si = αi(U

⊥
2 ).

What we must prove is that ri = si for every i. Let d be the greatest integer with
αd(X) > 0. Clearly, ri = si = 0 for all i > d and by Lemma 8 both (ri)

d
i=1 and
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(si)
d
i=1 are solutions to the following system of equations in the variables x1, . . . , xd:

x1 ≥ · · · ≥ xd,(5)
n
∨

i=0

(an−i ∧ xi) = bn n = 1, . . . , d+ 1,(6)

where x0 = a0 = 1 and xd+1 = 0 are constants.
Hence, we must see that this system of equations has a unique solution, under

the hypotheses that b1 ≥ · · · ≥ bd+1 = 0, a1 ≥ · · · ≥ ad+1 = 0 and ai ≤ bi for all
i. We need, therefore, a criterion to ensure the uniqueness of solutions of a certain
system of Boolean equations, which is provided by the following lemma:

Lemma 9. Let Y be a CFG-space and {y0, . . . , yn} a system of generators of Y

such that d(yi, yj) = 1 for all i 6= j. Let f : Y −→ B be a contractive function such

that f(yi) ∨ f(yj) = 1 for all i 6= j. If the equation f(x) = 0 has a solution for

x ∈ Y , then this solution is unique.

PROOF: Notice that, even if i = j we always have d(yi, yj) ≤ f(yi) ∨ f(yj) for
all i, j = 0, . . . , n. The set of all couples (yi, yj) is a system of generators of the
product space Y × Y . We consider the function h(x, y) = d(x, y) \ (f(x) ∨ f(y))
on Y × Y . First, we notice that h is contractive. The map (x, y) 7→ f(x) ∨ f(y)
is contractive since it is the composition of contractive maps (x, y) 7→ (f(x), f(y))
and (a, b) 7→ a ∨ b. The map (x, y) 7→ d(x, y) is also contractive, cf. property (3’)
after [1, Definition 1.1]. Hence h is contractive since it is a Boolean operation of
two contractive maps. On the other hand, h is equal to zero on the system of
generators {(yi, yj)} and therefore, it is constant equal to zero on all Y ×Y . Hence,
if f(x) = f(y) = 0, then d(x, y) = 0 and x = y. �

Back to the proof of Theorem 7, we shall apply Lemma 9 to

Y = {(x1, . . . , xd) ∈ Bd : x1 ≥ · · · ≥ xd},

which is a metric space with the usual metric d(x, x′) =
∨d

i=1(xi △ x′
i). It is

checked in [1] that in these metric spaces, convex combinations are calculated simply
coordinatewise in the natural way. It is straightforward to check that in fact, Y is
a CFG-space with the set of generators

y0 = (0, 0, . . . , 0, 0),
y1 = (1, 0, . . . , 0, 0),

· · ·
yd−1 = (1, 1, . . . , 1, 0),

yd = (1, 1, . . . , 1, 1).
Namely, if c = (c1, · · · , cd) then c = (c1\c2)y1+(c2\c3)y2+· · ·+cdyd+(1\

∨

ci)y0.
After [1, Theorem 3.8], the contractive functions from Y to B are exactly the
Boolean functions. We will finish the proof provided we can apply Lemma 9 to the

Boolean function f(x) =
∨d+1

n=1 fn(x), where

fn(x1, . . . , xd) = bn △

(

n
∨

i=0

an−i ∧ xi

)

.

It remains to check that f(yj)∨f(yk) = 1 whenever j, k = 0, . . . , d, j 6= k. First,
we calculate the value of the fn(yj)’s. For notational simplicity we convene that
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(yj)0 = 1.

fn(yj) = bn △

n
∨

i=0

an−i ∧ (yj)i = bn △ (an−0 ∨ an−1 ∨ · · · ∨ an−j)

= an−j △ bn if j < n;

fn(yj) = bn △

n
∨

i=0

an−i ∧ (yj)i = bn △ a0 = bn △ 1

= bn if j ≥ n.

The value of the f(yj)’s is then

f(y0) = (a1 △ b1) ∨ (a2 △ b2) ∨ · · · ∨ (ad △ bd) ∨ 0;

f(y1) = b1 ∨ (a1 △ b2) ∨ · · · ∨ (ad−1 △ bd) ∨ ad;

f(y2) = b1 ∨ b2 ∨ (a1 △ b3) ∨ · · · ∨ (ad−2 △ bd) ∨ ad−1;

· · ·

f(yj) = b1 ∨ · · · bj ∨ (a1 △ bj+1) ∨ · · · ∨ (ad−j △ bd) ∨ ad−j+1;

· · ·

f(yd−1) = b1 ∨ · · · ∨ bd−1 ∨ (a1 △ bd) ∨ a2;

f(yd) = b1 ∨ · · · ∨ bd ∨ a1.

We can simplify since b1 ≥ b2 ≥ · · · ≥ bd:

f(y0) = (a1 △ b1) ∨ (a2 △ b2) ∨ · · · ∨ (ad △ bd);

f(y1) = b1 ∨ (a1 △ b2) ∨ · · · ∨ (ad−1 △ bd) ∨ ad;

f(y2) = b2 ∨ (a1 △ b3) ∨ · · · ∨ (ad−2 △ bd) ∨ ad−1;

· · ·

f(yj) = bj ∨ (a1 △ bj+1) ∨ · · · ∨ (ad−j △ bd) ∨ ad−j+1;

· · ·

f(yd−1) = bd−1 ∨ (a1 △ bd) ∨ a2;

f(yd) = bd ∨ a1.

Now, we fix i, j and a1 ≥ · · · ≥ ad. We must see that for any (b1 . . . , bd) ∈
Y , f(yi) ∨ f(yj) = 1. Again, the function φ(b) which associates to each b =
(b1, . . . , bd) ∈ Y the corresponding value of φ(b) = f(yi) ∨ f(yj) is a Boolean
function, and in order to see that φ is constant equal to one on Y it is enough to
check that φ(yk) = 1 for k = 0, . . . , d. For (b1, . . . , bd) = yk we obtain:
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f(y0) = (a1 △ 1) ∨ · · · ∨ (ak △ 1) ∨ ak+1 ∨ · · · ∨ ad;

f(y1) = (a1 △ 1) ∨ · · · ∨ (ak−1 △ 1) ∨ ak ∨ · · · ∨ ad;

· · ·

f(yj) = (a1 △ 1) ∨ · · · ∨ (ak−j △ 1) ∨ ak−j+1 ∨ · · · ∨ ad−j+1;

· · ·

f(yk−1) = (a1 △ 1) ∨ a2 ∨ · · · ∨ ad−k+2;

f(yk) = a1 ∨ a2 ∨ · · · ∨ ad−k+1;

f(yk+1) = f(yk+2) = · · · = f(yd) = 1.

Now, it is clear that f(yi) ∨ f(yj) = 1 for i 6= j because if i < j then ak−j+1 ≤
f(yj) and ak−j+1△1 ≤ f(yi). This finishes the proof of Theorem 7 and hence, also
the proofs of Theorems 2 and 1. �

4. The second extension theorem

In this section we prove Theorems 3 and 4. Hence, we assume from now on that
our fixed Boolean algebra B is complete, that is, that whenever S is a subset of B
there exists s =

∨

S ∈ B the supremum of S. We recall that the distributivity law
still holds in the infinite case: x∧

∨

{yi : i ∈ I} =
∨

{x∧ yi : i ∈ I} whenever x ∈ B

and yi ∈ B for all i ∈ I.

Lemma 10. Let X be a metric space over B and {fi : X −→ B}i∈I a family of

contractive maps. Then, the pointwise supremum
∨

fi is again a contractive map.

PROOF: Recall that the metric on B is given by d(x, y) = x △ y and hence
f : X −→ B is contractive if and only if f(x) △ f(y) ≤ d(x, y) for all x, y ∈ X .
Moreover, this can be rewritten as

d(x, y) ∧ f(y) ≤ f(x) ≤ f(y) ∨ d(x, y)

for all x, y ∈ X . With this characterization and using the infinite distributivity
law, the proof of the lemma becomes apparent. �

Lemma 11. Let X be a CFG space over the complete Boolean algebra B and let

{Ki}i∈I be a family of CFG-subspaces of X. Then
⋂

I Ki is a CFG-space.

PROOF: By [1, Lemma 3.5] a subspace K ⊂ X is a CFG-space if and only
if there exists f : X −→ B contractive with K = f−1({0}). This together with
Lemma 10 proves the Lemma. �

By Lemma 11, given a subset U of a CFG-space X , we can consider Conv(U)
the least CFG-space that contains U , obtained as the intersection of all CFG-
subspaces that contain U . Any nonprincipal I ideal of B is an example in which
I = conv(I) 6= Conv(I) since I is convex but not a CFG-space.

Theorem 12. Let X and Y be CFG-spaces over the complete Boolean algebra B

and let f : U −→ V be a contractive map between two arbitrary subsets U ⊂ X and

V ⊂ Y . Then there is a unique contractive map Conv(f) : Conv(U) −→ Conv(V )
that extends f . In addition, if f is an isometry, so is Conv(f).
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Notice that Theorem 3 is a direct consequence of Theorem 12 above together with
Theorem 2, while Theorem 4 follows from Theorem 12 and [1, Proposition 2.12].

PROOF OF THEOREM 12: First, we check that Conv(f), provided it exists, is
uniquely determined. Suppose that g, h : Conv(U) −→ Conv(V ) are two contrac-
tive extensions of f . Then the set

K = {x ∈ Conv(U) : d(g(x), h(x)) = 0}

is, by [1, Lemma 3.5] a CFG-space which contains U , hence Conv(U) ⊂ K and
g = h.

For the existence of Conv(f), we prove first a particular case, namely, that any
contractive function f : U −→ B extends to a contractive map G : Conv(U) −→ B.
For every u ∈ U we consider the contractive map gu : Conv(U) −→ B given by

gu(x) = f(u) \ d(u, x)

and we set G =
∨

{gu : u ∈ U}. On the one hand, for any u ∈ U , f(u) = gu(u) ≤
G(u). On the other hand for any u, v ∈ U , f(u) △ f(v) ≤ d(u, v) and hence
f(v) ≥ f(u)\d(u, v) = gu(v), so taking suprema over U , also f(v) ≥ G(v). Now we
pass to the general case and we use the fact that Y can be viewed as a subspace of
Bn for some natural number n. Extending coordinate by coordinate, we know that
there is a contractive map h : Conv(U) −→ Bn which extends f . It remains to show
that the range of h verifies h(Conv(U)) ⊂ Conv(V ) ⊂ Y . Again, by [1, Lemma 3.5]
there is a contractive map s : Bn −→ B such that Conv(V ) = s−1({0}). Notice
that for every u ∈ U , h(u) ∈ V ⊂ Conv(V ) = s−1({0}) so s(h(u)) = 0. Therefore
the composed map s ◦ h : Conv(U) −→ B is a contractive map which extends the
constant map c : U −→ B, c(u) = 0. By the uniqueness of extensions to Conv(U)
that we have already proved, we obtain that s◦h = 0, so h(Conv(U)) ⊂ s−1({0}) =
Conv(V ).

With respect to the last assertion of the theorem, if f is an isometry then f−1 :
V −→ U is a contractive map and Conv(f−1) must be a contractive inverse map
for Conv(f) (since the compositions in both senses are contractive extensions of
the identity maps in Conv(U) and Conv(V )). This implies that Conv(f) is an
isometry. �

We finish by presenting an example which shows that the hypotheses of Theo-
rems 2 and 3 cannot be essentially weakened.

Assuming that B is not complete we construct a CFG space X and an isometry
f : U −→ V between subsets of X which cannot be extended to any contractive
map F : X −→ X . Take S a subset of B which does not have a supremum and set

I = {a ∈ B : ∃a1, . . . , an ∈ S : a ≤ a1 ∨ · · · ∨ an};

the ideal generated by S which neither has a supremum. Namely, if x were the
supremum of I, then it would be also the supremum of S because S and I have the
same upper bounds: if y is an upper bound of S and a ∈ I, then a ≤ a1 ∨ · · · ∨ an
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for some elements ai ∈ S, so that ai ≤ y for all i and finally a ≤ y. Set

J = {a ∈ B : a ∧ x = 0 ∀x ∈ I},

I + J = {a△ b : a ∈ I, b ∈ J},

X = {(x, y) ∈ B2 : x ∧ y = 0},

V = {(x, y) ∈ X : x ∈ I, y ∈ J},

U = {(z, 0) ∈ X : z ∈ I + J}.

Observe thatX is a CFG-space since it is a Boolean domain, in factX = conv{(0, 0), (0, 1), (1, 0)}.
The isometry is f = g−1, the inverse map of g : V −→ U given by g(x, y) =
(x△ y, 0). Namely g is an isometry because it is clearly onto and for any x, x′ ∈ I

and y, y′ ∈ J ,

d(g(x, y), g(x′, y′)) = x△ y △ x′ △ y′ = (x△ x′)△ (y △ y′);

d((x, y), (x′, y′)) = (x△ x′) ∨ (y △ y′)

and the two expressions are equal because x△ x′ ∈ I and y △ y′ ∈ J , so they are
disjoint.

Suppose that we could extend f to some contractive map F : X −→ X . We
claim that if F (1, 0) = (a, b) then a is the supremum of I, which is a contradiction.
Namely, for every x ∈ I,

(x△ a) ∨ b = d((x, 0), (a, b)) = d(F (x, 0), F (1, 0)) ≤ d((x, 0), (1, 0)) = x

so that x ≤ a and analogously for every y ∈ J ,

(y △ b) ∨ a = d((0, y), (a, b)) = d(F (y, 0), F (1, 0)) ≤ d((y, 0), (1, 0)) = y

and y ≤ b. This means that a is an upper bound of I and b an upper bound of J .
If c is now an arbitrary upper bound of I then c ∈ J , so c ≤ b, so a ∧ c ≤ a ∧ b = 0
and a ≤ c.

Observe that the space X in the example is “two-dimensional”. In fact the
case X = B is special and even if B is not complete, arbitrary isometries between
subsets can be always extended. This is because if f : U −→ V is an isometry
between U, V ⊂ B then f(x)△ f(y) = x△ y for all x, y ∈ U and this implies that
the function x△ f(x) is constant equal to some a ∈ B, and then F (x) = a△ x is
an isometry of B that extends F . However, this particularity does not apply when
we consider extensions of contractive maps instead of isometries. Take for instance
two infinite sets M ⊂ Ω and B the Boolean algebra of the finite or cofinite subsets
of Ω and U ⊂ B the family of the finite subsets of Ω. Then the contractive map
f : U −→ U given by f(x) = M ∩ x cannot be contractively extended to B.
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