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Abstract

We consider toughness conditions that guarantee the existence of a hamiltonian cycle in k-trees, a subclass of the class of chordal
graphs. By a result of Chen et al. 18-tough chordal graphs are hamiltonian, and by a result of Bauer et al. there exist nontraceable
chordal graphs with toughness arbitrarily close to 7

4 . It is believed that the best possible value of the toughness guaranteeing
hamiltonicity of chordal graphs is less than 18, but the proof of Chen et al. indicates that proving a better result could be very
complicated. We show that every 1-tough 2-tree on at least three vertices is hamiltonian, a best possible result since 1-toughness is
a necessary condition for hamiltonicity. We generalize the result to k-trees for k�2: Let G be a k-tree. If G has toughness at least
(k + 1)/3, then G is hamiltonian. Moreover, we present infinite classes of nonhamiltonian 1-tough k-trees for each k�3.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We begin with a brief section on terminology and notation and then motivate our results by a number of papers.
A good reference for any undefined terms in graph theory is [7] and in complexity theory is [12]. We consider only
undirected graphs with no loops and no multiple edges.

1.1. Basic terminology and notation

Let �(G) denote the number of components of a graph G. A graph G is t-tough if |S|� t�(G − S) for every subset
S of the vertex set V (G) with �(G − S) > 1. The toughness of G, denoted �(G), is the maximum value of t for which

E-mail addresses: hajo.broersma@durham.ac.uk (H. Broersma), lmxiong@bit.edu.cn (L. Xiong), yosimoto@math.cst.nihon-u.ac.jp
(K. Yoshimoto).

1 This research has been supported by the Natural Science Fund of Jiangxi Province, and was performed while the author visited HB at the
University of Twente.

2 This research was performed while the author visited HB at the University of Twente.

0012-365X/$ - see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2005.11.051

http://www.elsevier.com/locate/disc
mailto:hajo.broersma@durham.ac.uk
mailto:lmxiong@bit.edu.cn
mailto:yosimoto@math.cst.nihon-u.ac.jp


H. Broersma et al. / Discrete Mathematics 307 (2007) 832–838 833

G is t-tough (taking �(Kn) = ∞ for all n�1). Hence if G is not complete, �(G) = min{|S|/�(G − S)}, where the
minimum is taken over all cutsets S of vertices in G. In [17], Plummer defined a cutset S ⊆ V (G) to be a tough set if
�(G) = |S|/�(G − S). A graph G is hamiltonian if G contains a hamiltonian cycle (a cycle containing every vertex of
G); G is traceable if it admits a path containing every vertex. A k-factor of a graph is a k-regular spanning subgraph.
Of course, a hamiltonian cycle is a (connected) 2-factor. Let S be a nonempty subset of V (G). The subgraph of G with
vertex set S and edge set consisting of all edges in G with both ends in S is called the subgraph of G induced by S

and is denoted by G[S]. For a proper subset S�V (G), we let G − S denote the subgraph of G induced by V (G)\S. If
S = {x}, then we use G − x instead of G − {x}. We say a graph G is chordal if G contains no chordless cycle of length
at least four. It is well-known that chordal graphs have a nice elimination property: a chordal graph G on at least two
vertices contains a simplicial vertex v, i.e. all neighbors of v are mutually adjacent, such that G − v is again a chordal
graph. A subclass of chordal graphs that plays a central role in this paper is the class of k-trees. We define it according
to the elimination property. The only difference with chordal graphs is that at each step in the elimination, the simplicial
vertex has the same degree in the present graph. Let k be a positive integer. Then we define a k-tree as follows: Kk is
the smallest k-tree, and a graph G on at least k + 1 vertices is a k-tree if and only if it contains a simplicial vertex v

with degree k such that G − v is a k-tree; for convenience, we say that v is k-simplicial in this case. Clearly, 1-trees
are just trees.

1.2. Motivation

We begin our motivation with the 1973 paper in which Chvátal [9] introduced the definition of toughness. From
the definition it is clear that being 1-tough is a necessary condition for a graph to be hamiltonian. In [9] Chvátal
conjectured that there exists a finite constant t0 such that every t0-tough graph is hamiltonian. For many years, however,
the focus was on determining whether all 2-tough graphs are hamiltonian. We now know that not all 2-tough graphs
are hamiltonian, as indicated by the result below.

Theorem 1 (Bauer et al. [2]). For every � > 0, there exists a ( 9
4 − �)-tough nontraceable graph.

1.2.1. Special graph classes
Chvátal [9] obtained ( 3

2 − �)-tough graphs without a 2-factor for arbitrary � > 0. These examples are all chordal.
Recently it was shown in [4] that every 3

2 -tough chordal graph has a 2-factor. Based on this, Kratsch [14] raised the
question whether every 3

2 -tough chordal graph is hamiltonian. In [2] it has been shown there exists an infinite class
of chordal graphs with toughness close to 7

4 having no hamiltonian path. Hence 3
2 -tough chordal graphs need not be

hamiltonian. However for other classes of perfect graphs (for definitions, see [6]), being 1-tough is already sufficient
to ensure hamiltonicity. For example, in [13] it was shown (implicitly) that 1-tough interval graphs are hamiltonian,
and in [10] it was shown that 1-tough cocomparability graphs are hamiltonian. However in [5] it was proven that for
chordal planar graphs, 1-toughness does not ensure hamiltonicity. The following result was established, however.

Theorem 2 (Böhme et al. [5]). Let G be a chordal, planar graph with �(G) > 1. Then G is hamiltonian.

Furthermore, all 1-tough K1,3-free chordal graphs are hamiltonian. This follows from the well-known result of
Matthews and Sumner [16] relating toughness and vertex connectivity in K1,3-free graphs, and a result of Balakrishnan
and Paulraja [1] showing that 2-connected K1,3-free chordal graphs are hamiltonian.

Let us now consider 3
2 -tough chordal graphs. We have already seen that such graphs need not be hamiltonian.

However for a certain subclass of chordal graphs, namely split graphs, we have a different result. A graph G is called
a split graph if V (G) can be partitioned into an independent set and a set inducing a clique. We have the following.

Theorem 3 (Kratsch et al. [15]). Every 3
2 -tough split graph is hamiltonian.

Theorem 4 (Kratsch et al. [15]). There is a sequence {Gn}∞n=1 of non-2-factorable split graphs with �(Gn) → 3
2 .

Even though 3
2 -tough chordal graphs need not be hamiltonian, it was shown in [4] that they have a 2-factor.
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The previous results on tough chordal graphs lead to a very natural question. This question was answered by Chen
et al. in the title of their paper “Tough enough chordal graphs are hamiltonian” [8]. Using an algorithmic proof they
were able to prove the result below.

Theorem 5. Every 18-tough chordal graph is hamiltonian.

The authors did not claim that 18 is best possible. The natural question, in light of the disproof of the 2-tough conjecture
for general graphs, is what level of toughness will ensure that a chordal graph is hamiltonian. More specifically, are
2-tough chordal graphs hamiltonian?

Here we study the related problem for the subclass of chordal graphs the members of which are k-trees.

1.2.2. Some basic properties of k-trees
We present some basic facts on k-trees that will be used throughout the paper without references. We introduce the

following notation: S1(Kk) = ∅ and for a k-tree G �= Kk , let S1(G) denote the set of k-simplicial vertices of G if
G �= Kk+1 and a set of one arbitrary vertex of G if G = Kk+1.

Lemma 6. Let G �= Kk be a k-tree (k�2). Then

(i) G is k-connected;
(ii) S1(G) �= ∅;

(iii) S1(G) is an independent set;
(iv) Every k-simplicial vertex (if any) of G − S1(G) is adjacent in G to at least one vertex of S1(G);
(v) �(G − v)��(G) for a k-simplicial vertex v ∈ S1(G);

(vi) �(G − S1(G))��(G).

Proof.

(i) This follows immediately from the definition;
(ii) This follows immediately from the definition;

(iii) If not, then for some adjacent vertices u, v ∈ S1(G), u is a k-simplicial vertex of G − v with degree d(u) < k,
a contradiction;

(iv) If u is a k-simplicial vertex of G − S1(G), i.e. with dG−S1(G)(u) = k, then d(u) > k, since u /∈ S1(G). Hence the
claim follows;

(v) Suppose, to the contrary, that S is a tough set of G − v such that �(G − v) = |S|/�((G − v) − S) < �(G). Then
v is adjacent to vertices in at least two components of (G − v) − S, contradicting the fact that all neighbors of v

are mutually adjacent (in G and hence in G − v). This completes the proof;
(vi) This is a consequence of (v). �

2. Main results

Our first result gives a useful characterization of hamiltonian k-trees.

Theorem 7. Let G �= K2 be a k-tree. Then G is hamiltonian if and only if G contains a 1-tough spanning 2-tree.

Proof. We first assume that G contains a 1-tough spanning 2-tree G′. We prove that G′ is hamiltonian. In fact, we will
prove that G′ has a hamiltonian cycle containing all edges xy of G′ with �(G′ − {x, y}) = 1. We proceed by induction
on n = |V (G′)|.

If G′ = K3, then the conclusion clearly holds. Suppose n�4 and suppose the claim holds for all 1-tough 2-trees
on fewer than n vertices. Then G′ has a 2-simplicial vertex v such that the neighbors p and q of v are adjacent.
G′ − v is also a 1-tough 2-tree such that �((G′ − v) − {p, q}) = 1 and �(G′ − {p, q}) = 2 (Since {p, q} is a cutset
of G′).
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By the induction hypothesis, G′ − v has a hamiltonian cycle C containing pq and all other edges xy of G′ with
�((G′ − v) − {x, y}) = 1. Now replace pq in G′ by the path pvq of G′. The new cycle is a hamiltonian cycle in G′
containing all edges xy of G′ with �(G′ − {x, y}) = 1.

We now prove the converse, also by induction on n = |V (G)|. Let C be a hamiltonian cycle of G and let v be a
k-simplicial vertex of G. In fact, we will prove by induction on n that G has a 1-tough spanning 2-tree containing every
edge of C. Since NG(v) is a clique, the two neighbors x and y of v in C are adjacent in G. Replacing xvy by xy, the
resulting cycle C′ is a hamiltonian cycle of G− v. By the induction hypothesis, G− v has a 1-tough spanning 2-tree F

containing every edge of C′. It is easily seen that �(F − {x, y}) = 1. Thus F + {xv, yv} is a 1-tough spanning 2-tree
of G containing every edge of C. �

Theorem 7 has the nice consequence for 2-trees that every 2-tree (except K2) is hamiltonian if and only if it is
1-tough. We use a number of easy lemmas and auxiliary results to prove our main result, Theorem 12. For a k-tree
G �= Kk , let Si(G) and Gi be defined as follows: G1 = G, S1(G) is defined before Lemma 6, Gi = Gi−1 − S1(Gi−1)

and Si(G) = S1(Gi) for i = 2, 3, . . . as long as Si(G) �= ∅ (i.e. Gi−1 �= Kk). We denote by Ni(v) the set of neighbors
of v in Gi .

Lemma 8. For any vertexu ∈ S2(G) (if any), there exists a vertexv ∈ S1(G) such thatuv ∈ E(G), andN1(u)\N2(u) ⊆
S1(G).

Proof. The proof is similar to the proof of Lemma 6(iv). Since u ∈ S2(G), dG2(u) = k. But u /∈ S1(G). This implies
that dG1(u) > k. Thus, N1(u)\N2(u) �= ∅ and N1(u)\N2(u) ⊆ S1(G). �

Lemma 9. If u ∈ S2(G), then N1(w) ⊆ N2(u) ∪ {u} for any w ∈ N1(u)\N2(u).

Proof. If there exists a vertex x ∈ N1(w)\(N2(u) ∪ {u}), then ux ∈ E(G) since N1(w) is a clique. Thus x ∈ N1(u),

but x /∈ N2(u)∪ {u}, i.e. x ∈ N1(u)\N2(u), so x ∈ S1(G) by Lemma 8. Hence {x, w} ⊆ S1(G), contradicting Lemma
6(iii). �

Lemma 10. Let G �= K1, K2 be a 1-tough k-tree. If S2(G) = ∅, then G is hamiltonian.

Proof. Let G �= K1, K2 be a 1-tough k-tree with S2(G) = ∅. By the definition of k-trees, G − S1(G) is a Kk , and
1-toughness implies |S1(G)|�k. We can find a hamiltonian cycle C of G − S1(G). Now we replace |S1(G)| edges in
C one by one by disjoint paths of length 2 containing the end vertices of these edges and exactly one vertex of S1(G).

The resulting cycle is a hamiltonian cycle of G. �

For the smallest cases in our proof of Theorem 12 below, we will use a well-known result of Dirac.

Theorem 11 (Dirac [11]). If G is a graph on n�3 vertices with �(G)�n/2, then G is hamiltonian.

We now have all the ingredients to prove the following generalization of the consequence of Theorem 7 for 2-trees.

Theorem 12. If G �= K2 is a (k + 1)/3- tough k-tree (k�2), then G is hamiltonian.

Proof. By Theorem 7 or its consequence for 2-trees, we only need to consider the case that k�3. We proceed by
induction on n = |V (G)|.

Obviously, �(G) = k. Hence using Theorem 11, we obtain that if either 4�k�n�k + 4 or 3 = k�n�k + 3 = 6,

then G is hamiltonian.
Suppose next that either n�k + 5 or n = k + 4 = 7, and that H is hamiltonian for any (k + 1)/3-tough k-tree H

with fewer than n vertices.
By Lemma 10, it suffices to consider the case that S2(G) �= ∅. For any u ∈ S2(G), by Lemma 8, there exists a vertex

v ∈ S1(G) such that uv ∈ E(G).



836 H. Broersma et al. / Discrete Mathematics 307 (2007) 832–838

Since u ∈ S2(G) and the clique N1(v) contains u,

|N2(u) ∩ N1(v)| = k − 1.

Hence

|N2(u)\N1(v)| = 1. (1)

Let v′ be the vertex in N2(u)\N1(v).

We distinguish the following cases.
Case 1: u has no neighbor in S1(G)\{v}.
By the induction hypothesis, there is a hamiltonian cycle C in G − v. By (1), there exists at least one edge ux ∈

E(C) ∩ E(G[N1(v)]). Now replacing ux in C by the path uvx, the resulting cycle is a hamiltonian cycle of G.

Case 2: u has a neighbor in S1(G)\{v}.
By Lemma 9, N1(w) ⊆ N2(u)∪{u} for every w ∈ (S1(G)\{v})∩N1(u). If u has at least two neighbors in S1(G)\{v},

then when we delete all k + 1 vertices of N2(u) ∪ {u}, we will obtain four components except for the unique case that
n = k + 4 = 7. In the former case we obtain a contradiction, since �(G)�(k + 1)/3. Hence u has exactly one neighbor
in S1(G)\{v} except for the unique case that n = k + 4 = 7 and u has exactly two neighbors in S1(G)\{v}. In the latter
exceptional case, G is a K4 with three 3-simplicial vertices attached to at least two different 3-cliques, and one can
easily find a hamiltonian cycle of G. Hence we now suppose n�k + 5, and we let N1(u)\N2(u) = {v, w}.

Using that G is a (k + 1)/3-tough graph, by Lemma 9, v′w ∈ E(G); otherwise N1(w) = N1(v), and if we delete all
k vertices of N1(w), we obtain at least three components, contradicting that G is (k + 1)/3-tough.

By the induction hypothesis, G − {v, w} has a hamiltonian cycle C, implying that u has two neighbors x, y in C.

If v′ ∈ {x, y}, then v′′ ∈ ({x, y}\{v′}) is a vertex contained in C with v′′v ∈ E(G), and we replace the path v′uv′′ by
v′wuvv′′; if v′ /∈ {x, y}, then there exists at most one vertex in {x, y}\N1(w), say y ∈ N1(w), and we replace the path
xuy by xvuwy. In both cases the resulting cycle is a hamiltonian cycle of G. �

3. Nonhamiltonian k-trees with toughness one

We will present infinite classes of nonhamiltonian k-trees with toughness 1 for all k�3. To check the toughness we
make a number of observations collected in the following lemmas.

Recall the definition of a tough set: let G be a k-tree. If S ⊆ V (G) is a cutset such that �(G) = |S|/�(G − S), then
we call S a tough set.

Lemma 13. If v is a k-simplicial vertex of a k-tree G, then v is not contained in a tough set of G.

Proof. Suppose S is a tough set and v ∈ S is a k-simplicial vertex of G. Then it is clear that N(v)�S, for otherwise
|S\{v}|/�(G − (S\{v})) = (|S| − 1)/(�(G − S) + 1) < |S|/�(G − S) = �(G), which is impossible. �

Lemma 14. Let G′ be obtained from a k-tree G by adding a new vertex w and joining it to a k-clique containing
exactly one k-simplicial vertex of G. If �(G)�1, then �(G′)�1.

Proof. Consider a tough set S of G′. By Lemma 13, w /∈ S. If some vertex u ∈ N(w) is not contained in S, then
�(G′ −S)=�(G−S)� |S|. If N(w) ⊆ S, then S is not a tough set of G because of Lemma 13, so �(G−S)� |S|−1,

and �(G′ − S)� |S|. Thus in both cases �(G′) = |S|/�(G′ − S)�1. �

Lemma 15. Let G be a k-tree such that Sk−1(G) �= ∅, and suppose K is a k-clique of G such that for i = 1, . . . , k − 1
there is a k-simplicial vertex xi ∈ K∩Si(G). Let G′ be obtained from G by adding k−1 new vertices w1, w2, . . . , wk−1
and joining them to all vertices of K . If �(G)�1, then �(G′)�1.

Proof. Consider a tough set S of G′. By Lemma 13, wi /∈ S. If some vertex u ∈ N(w1) is not contained in S, then
�(G′ − S) = �(G − S)� |S|. If N(w1) ⊆ S, then let S∗ = S\{x1, x2, . . . , xk−2}. Clearly, S∗ is not a tough set of
G∗ = G − {x1, x2, . . . , xk−2} because of Lemma 13. Since �(G∗)��(G), we obtain �(G∗ − S∗)� |S∗| − 1. Thus
�(G′ − S)��(G∗ − S∗) + k − 1� |S∗| + k − 2 = |S|. In both cases we obtain that �(G′)�1. �
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For k�4 we construct the following k-trees which are sketched in Fig. 1.
Let K be a complete graph with k + 1 vertices labeled x0, x1, . . . , xk . Let Q1, Q2 and Q3 denote three pairwise

disjoint complete graphs with k−1 vertices (also disjoint from K) which are labeled ui
1, u

i
2, . . . , u

i
k−1 for i=1, 2, 3. We

add edges between ui
j and xl for all ui

j ∈ V (Qi) and l�j . Let Wi ={wi
1, w

i
2, . . . , w

i
k−1} be a set of additional vertices

for i = 1, 2, 3, and let ui
0 = xk . For each wi

j ∈ Wi , we add edges joining wi
j and ui

l for all l�k − 1. Using Lemmas 14
and 15 it is not difficult to check that these graphs have toughness 1. Moreover, these graphs are not hamiltonian, since
to include vertices of all sets Wi in a possible hamiltonian cycle, we would have to pass xk at least three times. We can
extend each of the obtained graphs to an infinite family with the same properties by attaching a path v0v1 . . . vr with
v0 = x0 and new vertices v1, . . . , vr for any integer r , and joining all vi (i = 1, . . . , r) to x1, . . . , xk−1.

The above construction does not work for k = 3, since the set {x1, x2, x3} would disconnect the graph into four
components. The example in Fig. 2 is a 3-tree with toughness 1, as can be checked using Lemmas 14 and 15. And
it is nonhamiltonian, since to include vertices wi

1, w
i
2, for each i, in a possible hamiltonian cycle, we would have to

pass at least one edge of xwi
1, xwi

2 (otherwise, since wi
1 and wi

2 have only three common neighbors including x, we
would close a 4-cycle, a contradiction) and thus we would have to pass x at least three times. As in the case k�4, we
can extend the example to an infinite class by attaching a path v0v1 . . . vr with v0 = c and joining the new vertices
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v1, . . . , vr to a and b. It is easy to see that the ‘first extension’ of the graph of Fig. 2, where only the vertex v1 is added,
has the property that it is a nonhamiltonian 3-tree with toughness 1. For the further extensions, where r �2, by Lemma
14 one can easily obtain that the resulting graph has the same property.

References

[1] R. Balakrishnan, P. Paulraja, Chordal graphs and some of their derived graphs, Congr. Numer. 53 (1986) 71–74.
[2] D. Bauer, H.J. Broersma, H.J. Veldman, Not every 2-tough graph is hamiltonian, Discrete Appl. Math. 99 (2000) 317–321.
[4] D. Bauer, G.Y. Katona, D. Kratsch, H.J. Veldman, Chordality and 2-factors in tough graphs, Discrete Appl. Math. 99 (2000) 323–329.
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