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Abstract

It was proved by Fronček, Jerebic, Klavžar, and Kovář that if a com-
plete bipartite graph Kn,n with a perfect matching removed can be covered
by k bicliques, then n ≤ `

k
� k

2 �
´
. We give a slightly simplified proof and we

show that the result is tight. Moreover we use the result to prove analo-
gous bounds for coverings of some other classes of graphs by bicliques.

1 Introduction

Let G = (V, E) be a graph and Hi = (Vi, Ei) for i = 1, 2, . . . , k be subgraphs
of G. If E = E1 ∪ E2 ∪ . . . ∪ Ek, we say that G is covered by H1, H2, . . . , Hk
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or that the subgraphs H1, H2, . . . , Hk form a covering of G. By a biclique we
mean a complete bipartite graph.

There are several ways to define a minimum covering problem. For instance,
Füredi and Kündgen [3] give general bounds for the total number of edges used
in the covering of any graph G by bicliques, as well as sharp bounds for certain
classes of graphs such as 4-colorable graphs and random graphs.

Chung [1] proved a conjecture of Bermond that limn→∞ ρ(n)/n = 1, where
ρ(n) denotes the smallest integer such that any graph with n vertices can be
covered by ρ(n) bicliques.

Froncek, Jerebic, Klavzar, and Kovar [2] proved that if τ(n) is the smallest
number with the property that K−

n,n (the complete bipartite graph with a perfect
matching removed) has a covering by τ(n) bicliques then limn→∞

τ(n)
n = 0.

They also proved that if there is a covering of K−
n,n by k bicliques, then n ≤(

k
� k

2 �
)
.

In this note we show that the result is tight and give a slightly simplified
proof. We then use the result to prove analogous bounds for coverings of some
other classes of graphs by bicliques.

2 Covering of K−
n,n revisited

The main tool used in the proof of Theorem 2.2 is Sperner’s Theorem. An
antichain {A1, A2, . . . , An} on a set A is a family of nonempty subsets of A
such that Ai ⊆ Aj implies that i = j. In other words, none of the subsets is
fully contained in another one.

Theorem 2.1 (Sperner) Let A = {1, 2, . . . , k} and let {A1, A2, . . . , An} be
an antichain on A. Then n ≤ (

k
� k

2 �
)
. Moreover, for each k ≥ 1, there exists an

antichain on k elements that contains n sets for every n ≤ (
k

� k
2 �

)
.

Let Kn,n = (V ∪W, E) be the complete bipartite graph with the partite sets
V = {v1, v2, . . . , vn}, W = {w1, w2, . . . , wn} and the edge set E = {(vi, wj) |
i, j = 1, 2, . . . , n}. The graph Kn,n with a perfect matching M removed will be
denoted K−

n,n. We assume without loss of generality that M = {(vi, wi) | i =
1, 2, . . . , n}.

The following theorem was proved in [2]. We simplify the proof below.

Theorem 2.2 Let H1, H2, . . . , Hk be a covering of K−
n,n by k bicliques. Then

n ≤ (
k

� k
2 �

)
.

Proof Suppose we have a covering of K−
n,n by k bicliques H1, H2, . . . , Hk. For

i = 1, 2, . . . , n we define Ai = {j | vi ∈ Hj}. Obviously, every Ai is a subset
of A = {1, 2, . . . , k}. Because H1, H2, . . . , Hk form a covering, every edge is
covered and every vertex vi belongs to at least one biclique Hj . Hence, no Ai

is empty. We only need to show that there is no pair of sets Ai and Am such
that Ai ⊆ Am while i �= m.
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We proceed by contradiction and suppose Ai ⊆ Am for some i �= m. Let
j ∈ Ai. Then also j ∈ Am. This means that vi ∈ Hj implies vm ∈ Hj . Because
the edge vmwm is not contained in K−

n,n, wm does not belong to any biclique
Hp, where p ∈ Am. Therefore, no biclique that contains vi (and consequently
vm) can contain wm and the edge viwm is not covered. This is a contradiction,
as we assumed that i �= m. Therefore, no set Ai is contained in another set Am

and {A1, A2, . . . , An} is an antichain on A.
By Sperner’s Theorem an antichain on A = {1, 2, . . . , k} contains at most(

k
� k

2 �
)

sets. Thus n ≤ (
k

� k
2 �

)
and the proof is complete. �

The result can be stated in terms of a lower bound for the number k of
bicliques that are needed to cover K−

n,n. If Hi = (Vi, Ei) is a biclique in the
cover and X = Vi ∩ V , without loss of generality we can assume Vi ∩ W = X.
Now, in order to cover an edge (vi, wj) ∈ E, there should be a biclique Ht

in the cover such that vi ∈ Vt and wj �∈ Vt. Equivalently, we are looking for
a collection of subsets {X1, X2, . . . , Xk} of V such that for any ordered pair
(vi, vj) with i �= j one has vi ∈ Xt and vj �∈ Xt for some t, t = 1, 2, . . . , k. Such
a collection {X1, X2, . . . , Xk} is called a completely separating system of a set
of n elements, and its minimum size is established in [5]. The result states that
the minimum size is

min
{

c |
(

c

	 c
2


)
≥ n

}
.

Corollary 2.3 Let c be the smallest integer such that n ≤ (
c

� c
2 �

)
. Let k be the

number of bicliques covering K−
n,n. Then k ≥ c.

Now we show that the bound is sharp. The proof is in a sense a dual
construction to that in Theorem 2.2.

Lemma 2.4 Let A = {1, 2, . . . , k} and let {A1, A2, . . . , An} be an antichain
on A. Then there exists a covering of K−

n,n by k bicliques.

Proof We construct a biclique Hj for every j = 1, 2, . . . , k. Each Hj will be
uniquely determined by precisely the subsets of A that contain the element j.

Let K−
n,n have partite sets V = {A1, A2, . . . , An} and W = {A1, A2, . . . , An},

where A1, A2, . . . , An are the sets of an antichain on k elements and Ai is the
complement of Ai. An edge AiAj belongs to the edge set of K−

n,n if and only if
i �= j. That means that the “missing matching” consists of the edges (Ai, Ai)
for i = 1, 2, . . . , n.

We define the covering bicliques Hj = (Vj ∪ Wj , Ej) for j = 1, 2, . . . , k in
such a way that Vj consists of all sets Ai containing j, that is,

Vj = {Ai ∈ V | j ∈ Ai}

and Wj consists of all complements At containing j, that is,

Wj = {At ∈ W | j ∈ At} = {At ∈ W | At �∈ Vj}.
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We observe that each biclique Hj is the maximal biclique containing the set Vj

and that |Vj ∪ Wj | = n for every j. The edge sets are

Ej = {(Ai, At) | j ∈ Ai and j ∈ At} = {(Ai, At) | Ai ∈ Vj and At ∈ Wj}.

In other words, two sets Ai and At are joined by an edge if they have an
element in common. Obviously, no edge (Ai, Ai) is covered by any Hj , since the
intersection Ai ∩ Ai is empty.

It remains to show that the bicliques Hj cover the graph K−
n,n. Suppose to

the contrary that there is an edge (Ai, Am) for i �= m, which is not covered by
any biclique. Then the sets Ai and Am have an empty intersection. But then
all elements of Ai are contained in Am and Ai ⊆ Am, which contradicts our
assumption that the family {A1, A2, . . . , An} is an antichain. �

Summarizing Theorem 2.1 and Lemma 2.4 we get

Corollary 2.5 Let k be the smallest integer such that n ≤ (
k

� k
2 �

)
. Then there

exists a covering of K−
n,n by k bicliques.

Proof Follows directly from Lemma 2.4 and the second part of Sperner’s The-
orem. �

Hence, the bound
(

k
� k

2 �
)

is sharp.
The results above can be now summarized as follows.

Theorem 2.6 Let n and k be integers such that
( k−1
� k−1

2 �
)

< n ≤ (
k

� k
2 �

)
. Then k

is the minimum number such that there exists a covering of K−
n,n by k bicliques.

Proof According to Corollary 2.5 there exists a covering of K−
n,n by k bicliques.

On the other hand from Corollary 2.3 it follows that a covering by less than k
bicliques is not possible. �

3 Related results

Using Theorem 2.2, we get upper bounds on the minimum number of bicliques
in a biclique covering for some other classes of graphs.

Let f(n) be the smallest k such that Kn can be covered by k bicliques
H1, H2, . . . , Hk. Then Knm can be covered by f(nm) bicliques. When we re-
move from Knm edges of n disjoint copies of Km to obtain the graph Km,m,...,m,
we cannot use the same covering as for Knm, since this would also cover the
removed edges. One could then expect that we will need more than f(nm) bi-
cliques. It was proved by Füredi and Kündgen [3] that the minimum number of
bipartite subgraphs needed to cover the edges of a graph G with chromatic num-
ber χ(G) is �lg χ(G)�. Therefore, their upper bounds on the minimum number
of bicliques in a covering of Kn and Km,m,...,m by bicliques is the same, namely
�lg n�.
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Inspired by this result, we prove a slightly more general result for the covering
of Km,m,...,m. Using the covering H1, H2, . . . , Hk of Kn we produce a covering
of the complete n-partite graph Km,m,...,m also by k bicliques. The result is a
special case of a more general result for lexicographic products of graphs.

The lexicographic product or composition G[H ] of graphs G and H is defined
as follows: V (G[H ]) = V (G) × V (H) and (x1, y1)(x2, y2) ∈ E(G[H ]) if either
x1 = x2 and y1y2 ∈ E(H), or x1x2 ∈ E(G).

Theorem 3.1 If there exists a covering of G by k bicliques then there also
exists a covering of the lexicographic product G[Km] by k bicliques.

Proof Let H1, H2, . . . , Hk be a biclique covering of G with n vertices x1, x2,
. . . , xn. We will construct for each Hj a biclique Ij such that I1, I2, . . . , Ik will
be a covering of G[Km]. The vertex set of G[Km] is the union of the partite sets
X1, X2, . . . , Xn, where Xi = {x1

i , x
2
i , . . . , x

m
i }. This means that every vertex of

G is blown up into m independent vertices of G[Km] and each edge of G is
blown up into the complete bipartite subgraph Km,m of G[Km]. Using this
observation, we can now construct the biclique Ij as the composition Hj [Km].
In other words, every vertex xp in the original biclique Hj will be blown up into
m independent vertices x1

p, x
2
p, . . . , x

m
p and every edge xpxq of Hj will be blown

up into the complete bipartite graph with partite sets Xp and Xq. Obviously,
the graph G[Km] is now covered by the bicliques I1, I2, . . . , Ik. For if xr

px
s
q

is an arbitrary edge in G[Km], then it is covered by at least one biclique—in
particular, by Ij = Hj [Km], where Hj is one of the bicliques covering xpxq in
the original graph G. Since every xpxq is covered in G, every xr

px
s
q is covered in

G[Km]. Obviously, no edge xr
i x

s
i is covered by any biclique Ij and the proof is

complete. �
By setting G = Kn in the previous theorem, we get instantly the following.

Corollary 3.2 If there exists a covering of Kn by k bicliques then there also
exists a covering of the complete n-partite graph Km,m,...,m by k bicliques.

We will denote by CP (n) the cocktail party graph, i.e., the complete graph
K2n = (V, E) with a perfect matching M removed. Since CP (n) is isomorphic
to the complete n-partite graph K2,2,...,2, a result analogous to Theorem 2.2
now follows easily from Corollary 3.2.

Corollary 3.3 If there exists a covering of Kn by k bicliques then there exists
a covering of CP (n) by k bicliques.

We can also use the technique described in the proof of Theorem 3.1 to prove
the following.

Theorem 3.4 Let there exist a covering of a graph G by � bicliques and a
covering of Kn by k bicliques. Then the graph Kn[G] can be covered by k + �
bicliques.

Proof Suppose that Kn has vertices x1, x2, . . . , xn while G has m vertices
x1, x2, . . . , xm. First we observe that Kn[G] can be covered by Kn[Km] =
Km,m,...,m and G[Kn] in the following manner. Each vertex xj of Kn is in
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Kn[G] blown up into the set Xj = {xj
1, x

j
2, . . . , x

j
m}. These sets correspond to

the partite sets of the graph Kn[Km] = Km,m,...,m. Therefore, every edge xr
px

s
q

of Kn[G] for r �= s is covered by the graph Kn[Km] = Km,m,...,m. In every set
Xj in Kn[G] “resides” a copy of G whose edges are not yet covered. However,
all of these copies are covered by the graph G[Kn] in which every vertex xi of
G is blown up into the set Xi = {x1

i , x
2
i , . . . , x

n
i } and every edge xixt is blown

up into the complete bipartite graph with partite sets Xi and Xt.
Because G can be covered by � bicliques, by Theorem 3.1 G[Kn] can be also

covered by � bicliques. Similarly, because Kn can be covered by k bicliques,
by Corollary 3.2 Kn[Km] can be also covered by k bicliques. Since Kn[G] is
covered by G[Kn] and Kn[Km], the conclusion follows. �
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