On biclique coverings

Sergei Bezrukov
Department of Math and Computer Science
University of Wisconsin - Superior
Belknap \& Catlin, Superior, WI 54880-4500
sbezruko@uwsuper.edu
Dalibor Fronček *
Department of Mathematics and Statistics
University of Minnesota Duluth
1117 University Drive, Duluth, MN 55812-3000, U.S.A.
dfroncek@d.umn.edu
Steven J. Rosenberg
Department of Math and Computer Science
University of Wisconsin - Superior
Belknap \& Catlin, Superior, WI 54880-4500
srosenbe@uwsuper.edu
Petr Kovár
Department of Mathematics and Descriptive Geometry
Technical University of Ostrava
17. listopadu 15, 70833 Ostrava - Poruba, Czech Republic
petr.kovar@vsb.cz

Abstract

It was proved by Fronček, Jerebic, Klavžar, and Kovář that if a complete bipartite graph $K_{n, n}$ with a perfect matching removed can be covered by k bicliques, then $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$. We give a slightly simplified proof and we show that the result is tight. Moreover we use the result to prove analogous bounds for coverings of some other classes of graphs by bicliques.

1 Introduction

Let $G=(V, E)$ be a graph and $H_{i}=\left(V_{i}, E_{i}\right)$ for $i=1,2, \ldots, k$ be subgraphs of G. If $E=E_{1} \cup E_{2} \cup \ldots \cup E_{k}$, we say that G is covered by $H_{1}, H_{2}, \ldots, H_{k}$

[^0]or that the subgraphs $H_{1}, H_{2}, \ldots, H_{k}$ form a covering of G. By a biclique we mean a complete bipartite graph.

There are several ways to define a minimum covering problem. For instance, Füredi and Kündgen [3] give general bounds for the total number of edges used in the covering of any graph G by bicliques, as well as sharp bounds for certain classes of graphs such as 4-colorable graphs and random graphs.

Chung [1] proved a conjecture of Bermond that $\lim _{n \rightarrow \infty} \rho(n) / n=1$, where $\rho(n)$ denotes the smallest integer such that any graph with n vertices can be covered by $\rho(n)$ bicliques.

Froncek, Jerebic, Klavzar, and Kovar [2] proved that if $\tau(n)$ is the smallest number with the property that $K_{n, n}^{-}$(the complete bipartite graph with a perfect matching removed) has a covering by $\tau(n)$ bicliques then $\lim _{n \rightarrow \infty} \frac{\tau(n)}{n}=0$. They also proved that if there is a covering of $K_{n, n}^{-}$by k bicliques, then $n \leq$ $\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}$.

In this note we show that the result is tight and give a slightly simplified proof. We then use the result to prove analogous bounds for coverings of some other classes of graphs by bicliques.

2 Covering of $K_{n, n}^{-}$revisited

The main tool used in the proof of Theorem 2.2 is Sperner's Theorem. An antichain $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ on a set A is a family of nonempty subsets of A such that $A_{i} \subseteq A_{j}$ implies that $i=j$. In other words, none of the subsets is fully contained in another one.

Theorem 2.1 (Sperner) Let $A=\{1,2, \ldots, k\}$ and let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be an antichain on A. Then $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$. Moreover, for each $k \geq 1$, there exists an antichain on k elements that contains n sets for every $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$.

Let $K_{n, n}=(V \cup W, E)$ be the complete bipartite graph with the partite sets $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$ and the edge set $E=\left\{\left(v_{i}, w_{j}\right) \mid\right.$ $i, j=1,2, \ldots, n\}$. The graph $K_{n, n}$ with a perfect matching M removed will be denoted $K_{n, n}^{-}$. We assume without loss of generality that $M=\left\{\left(v_{i}, w_{i}\right) \mid i=\right.$ $1,2, \ldots, n\}$.

The following theorem was proved in [2]. We simplify the proof below.
Theorem 2.2 Let $H_{1}, H_{2}, \ldots, H_{k}$ be a covering of $K_{n, n}^{-}$by k bicliques. Then $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$.
Proof Suppose we have a covering of $K_{n, n}^{-}$by k bicliques $H_{1}, H_{2}, \ldots, H_{k}$. For $i=1,2, \ldots, n$ we define $A_{i}=\left\{j \mid v_{i} \in H_{j}\right\}$. Obviously, every A_{i} is a subset of $A=\{1,2, \ldots, k\}$. Because $H_{1}, H_{2}, \ldots, H_{k}$ form a covering, every edge is covered and every vertex v_{i} belongs to at least one biclique H_{j}. Hence, no A_{i} is empty. We only need to show that there is no pair of sets A_{i} and A_{m} such that $A_{i} \subseteq A_{m}$ while $i \neq m$.

We proceed by contradiction and suppose $A_{i} \subseteq A_{m}$ for some $i \neq m$. Let $j \in A_{i}$. Then also $j \in A_{m}$. This means that $v_{i} \in H_{j}$ implies $v_{m} \in H_{j}$. Because the edge $v_{m} w_{m}$ is not contained in $K_{n, n}^{-}, w_{m}$ does not belong to any biclique H_{p}, where $p \in A_{m}$. Therefore, no biclique that contains v_{i} (and consequently v_{m}) can contain w_{m} and the edge $v_{i} w_{m}$ is not covered. This is a contradiction, as we assumed that $i \neq m$. Therefore, no set A_{i} is contained in another set A_{m} and $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is an antichain on A.

By Sperner's Theorem an antichain on $A=\{1,2, \ldots, k\}$ contains at most $\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}$ sets. Thus $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$ and the proof is complete.

The result can be stated in terms of a lower bound for the number k of bicliques that are needed to cover $K_{n, n}^{-}$. If $H_{i}=\left(V_{i}, E_{i}\right)$ is a biclique in the cover and $X=V_{i} \cap V$, without loss of generality we can assume $V_{i} \cap W=\bar{X}$. Now, in order to cover an edge $\left(v_{i}, w_{j}\right) \in E$, there should be a biclique H_{t} in the cover such that $v_{i} \in V_{t}$ and $w_{j} \notin V_{t}$. Equivalently, we are looking for a collection of subsets $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ of V such that for any ordered pair $\left(v_{i}, v_{j}\right)$ with $i \neq j$ one has $v_{i} \in X_{t}$ and $v_{j} \notin X_{t}$ for some $t, t=1,2, \ldots, k$. Such a collection $\left\{X_{1}, X_{2}, \ldots, X_{k}\right\}$ is called a completely separating system of a set of n elements, and its minimum size is established in [5]. The result states that the minimum size is

$$
\min \left\{c \left\lvert\,\binom{ c}{\left\lfloor\frac{c}{2}\right\rfloor} \geq n\right.\right\}
$$

Corollary 2.3 Let c be the smallest integer such that $n \leq\binom{ c}{\left\lfloor\frac{c}{2}\right\rfloor}$. Let k be the number of bicliques covering $K_{n, n}^{-}$. Then $k \geq c$.

Now we show that the bound is sharp. The proof is in a sense a dual construction to that in Theorem 2.2.

Lemma 2.4 Let $A=\{1,2, \ldots, k\}$ and let $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ be an antichain on A. Then there exists a covering of $K_{n, n}^{-}$by k bicliques.

Proof We construct a biclique H_{j} for every $j=1,2, \ldots, k$. Each H_{j} will be uniquely determined by precisely the subsets of A that contain the element j.

Let $K_{n, n}^{-}$have partite sets $V=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ and $W=\left\{\bar{A}_{1}, \bar{A}_{2}, \ldots, \bar{A}_{n}\right\}$, where $A_{1}, A_{2}, \ldots, A_{n}$ are the sets of an antichain on k elements and \bar{A}_{i} is the complement of A_{i}. An edge $A_{i} \bar{A}_{j}$ belongs to the edge set of $K_{n, n}^{-}$if and only if $i \neq j$. That means that the "missing matching" consists of the edges $\left(A_{i}, \bar{A}_{i}\right)$ for $i=1,2, \ldots, n$.

We define the covering bicliques $H_{j}=\left(V_{j} \cup W_{j}, E_{j}\right)$ for $j=1,2, \ldots, k$ in such a way that V_{j} consists of all sets A_{i} containing j, that is,

$$
V_{j}=\left\{A_{i} \in V \mid j \in A_{i}\right\}
$$

and W_{j} consists of all complements \bar{A}_{t} containing j, that is,

$$
W_{j}=\left\{\bar{A}_{t} \in W \mid j \in \bar{A}_{t}\right\}=\left\{\bar{A}_{t} \in W \mid A_{t} \notin V_{j}\right\}
$$

We observe that each biclique H_{j} is the maximal biclique containing the set V_{j} and that $\left|V_{j} \cup W_{j}\right|=n$ for every j. The edge sets are

$$
E_{j}=\left\{\left(A_{i}, \bar{A}_{t}\right) \mid j \in A_{i} \text { and } j \in \bar{A}_{t}\right\}=\left\{\left(A_{i}, \bar{A}_{t}\right) \mid A_{i} \in V_{j} \text { and } \bar{A}_{t} \in W_{j}\right\}
$$

In other words, two sets A_{i} and \bar{A}_{t} are joined by an edge if they have an element in common. Obviously, no edge $\left(A_{i}, \bar{A}_{i}\right)$ is covered by any H_{j}, since the intersection $A_{i} \cap \bar{A}_{i}$ is empty.

It remains to show that the bicliques H_{j} cover the graph $K_{n, n}^{-}$. Suppose to the contrary that there is an edge $\left(\underline{A_{i}}, \bar{A}_{m}\right)$ for $i \neq m$, which is not covered by any biclique. Then the sets A_{i} and \bar{A}_{m} have an empty intersection. But then all elements of A_{i} are contained in A_{m} and $A_{i} \subseteq A_{m}$, which contradicts our assumption that the family $\left\{A_{1}, A_{2}, \ldots, A_{n}\right\}$ is an antichain.

Summarizing Theorem 2.1 and Lemma 2.4 we get
Corollary 2.5 Let k be the smallest integer such that $n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$. Then there exists a covering of $K_{n, n}^{-}$by k bicliques.
Proof Follows directly from Lemma 2.4 and the second part of Sperner's Theorem.

Hence, the bound $\binom{k}{\left\lfloor\frac{k}{2}\right\rfloor}$ is sharp.
The results above can be now summarized as follows.
Theorem 2.6 Let n and k be integers such that $\binom{k-1}{\left\lfloor\frac{k-1}{2}\right\rfloor}<n \leq\binom{ k}{\left\lfloor\frac{k}{2}\right\rfloor}$. Then k is the minimum number such that there exists a covering of $K_{n, n}^{-}$by k bicliques.

Proof According to Corollary 2.5 there exists a covering of $K_{n, n}^{-}$by k bicliques. On the other hand from Corollary 2.3 it follows that a covering by less than k bicliques is not possible.

3 Related results

Using Theorem 2.2, we get upper bounds on the minimum number of bicliques in a biclique covering for some other classes of graphs.

Let $f(n)$ be the smallest k such that K_{n} can be covered by k bicliques $H_{1}, H_{2}, \ldots, H_{k}$. Then $K_{n m}$ can be covered by $f(n m)$ bicliques. When we remove from $K_{n m}$ edges of n disjoint copies of K_{m} to obtain the graph $K_{m, m, \ldots, m}$, we cannot use the same covering as for $K_{n m}$, since this would also cover the removed edges. One could then expect that we will need more than $f(n m)$ bicliques. It was proved by Füredi and Kündgen [3] that the minimum number of bipartite subgraphs needed to cover the edges of a graph G with chromatic number $\chi(G)$ is $\lceil\lg \chi(G)\rceil$. Therefore, their upper bounds on the minimum number of bicliques in a covering of K_{n} and $K_{m, m, \ldots, m}$ by bicliques is the same, namely $\lceil\lg n\rceil$.

Inspired by this result, we prove a slightly more general result for the covering of $K_{m, m, \ldots, m}$. Using the covering $H_{1}, H_{2}, \ldots, H_{k}$ of K_{n} we produce a covering of the complete n-partite graph $K_{m, m, \ldots, m}$ also by k bicliques. The result is a special case of a more general result for lexicographic products of graphs.

The lexicographic product or composition $G[H]$ of graphs G and H is defined as follows: $V(G[H])=V(G) \times V(H)$ and $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \in E(G[H])$ if either $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$, or $x_{1} x_{2} \in E(G)$.
Theorem 3.1 If there exists a covering of G by k bicliques then there also exists a covering of the lexicographic product $G\left[\bar{K}_{m}\right]$ by k bicliques.
Proof Let $H_{1}, H_{2}, \ldots, H_{k}$ be a biclique covering of G with n vertices x_{1}, x_{2}, \ldots, x_{n}. We will construct for each H_{j} a biclique I_{j} such that $I_{1}, I_{2}, \ldots, I_{k}$ will be a covering of $G\left[\bar{K}_{m}\right]$. The vertex set of $G\left[\bar{K}_{m}\right]$ is the union of the partite sets $X_{1}, X_{2}, \ldots, X_{n}$, where $X_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{m}\right\}$. This means that every vertex of G is blown up into m independent vertices of $G\left[\bar{K}_{m}\right]$ and each edge of G is blown up into the complete bipartite subgraph $K_{m, m}$ of $G\left[\bar{K}_{m}\right]$. Using this observation, we can now construct the biclique I_{j} as the composition $H_{j}\left[\bar{K}_{m}\right]$. In other words, every vertex x_{p} in the original biclique H_{j} will be blown up into m independent vertices $x_{p}^{1}, x_{p}^{2}, \ldots, x_{p}^{m}$ and every edge $x_{p} x_{q}$ of H_{j} will be blown up into the complete bipartite graph with partite sets X_{p} and X_{q}. Obviously, the graph $G\left[\bar{K}_{m}\right]$ is now covered by the bicliques $I_{1}, I_{2}, \ldots, I_{k}$. For if $x_{p}^{r} x_{q}^{s}$ is an arbitrary edge in $G\left[\bar{K}_{m}\right]$, then it is covered by at least one biclique -in particular, by $I_{j}=H_{j}\left[\bar{K}_{m}\right]$, where H_{j} is one of the bicliques covering $x_{p} x_{q}$ in the original graph G. Since every $x_{p} x_{q}$ is covered in G, every $x_{p}^{r} x_{q}^{s}$ is covered in $G\left[\bar{K}_{m}\right]$. Obviously, no edge $x_{i}^{r} x_{i}^{s}$ is covered by any biclique I_{j} and the proof is complete.

By setting $G=K_{n}$ in the previous theorem, we get instantly the following.
Corollary 3.2 If there exists a covering of K_{n} by k bicliques then there also exists a covering of the complete n-partite graph $K_{m, m, \ldots, m}$ by k bicliques.

We will denote by $C P(n)$ the cocktail party graph, i.e., the complete graph $K_{2 n}=(V, E)$ with a perfect matching M removed. Since $C P(n)$ is isomorphic to the complete n-partite graph $K_{2,2, \ldots, 2}$, a result analogous to Theorem 2.2 now follows easily from Corollary 3.2 .
Corollary 3.3 If there exists a covering of K_{n} by k bicliques then there exists a covering of $C P(n)$ by k bicliques.

We can also use the technique described in the proof of Theorem 3.1 to prove the following.
Theorem 3.4 Let there exist a covering of a graph G by ℓ bicliques and a covering of K_{n} by k bicliques. Then the graph $K_{n}[G]$ can be covered by $k+\ell$ bicliques.

Proof Suppose that K_{n} has vertices $x^{1}, x^{2}, \ldots, x^{n}$ while G has m vertices $x_{1}, x_{2}, \ldots, x_{m}$. First we observe that $K_{n}[G]$ can be covered by $K_{n}\left[\bar{K}_{m}\right]=$ $K_{m, m, \ldots, m}$ and $G\left[\bar{K}_{n}\right]$ in the following manner. Each vertex x^{j} of K_{n} is in
$K_{n}[G]$ blown up into the set $X^{j}=\left\{x_{1}^{j}, x_{2}^{j}, \ldots, x_{m}^{j}\right\}$. These sets correspond to the partite sets of the graph $K_{n}\left[\bar{K}_{m}\right]=K_{m, m, \ldots, m}$. Therefore, every edge $x_{p}^{r} x_{q}^{s}$ of $K_{n}[G]$ for $r \neq s$ is covered by the graph $K_{n}\left[\bar{K}_{m}\right]=K_{m, m, \ldots, m}$. In every set X^{j} in $K_{n}[G]$ "resides" a copy of G whose edges are not yet covered. However, all of these copies are covered by the graph $G\left[\bar{K}_{n}\right]$ in which every vertex x_{i} of G is blown up into the set $X_{i}=\left\{x_{i}^{1}, x_{i}^{2}, \ldots, x_{i}^{n}\right\}$ and every edge $x_{i} x_{t}$ is blown up into the complete bipartite graph with partite sets X_{i} and X_{t}.

Because G can be covered by ℓ bicliques, by Theorem $3.1 G\left[\bar{K}_{n}\right]$ can be also covered by ℓ bicliques. Similarly, because K_{n} can be covered by k bicliques, by Corollary $3.2 K_{n}\left[\bar{K}_{m}\right]$ can be also covered by k bicliques. Since $K_{n}[G]$ is covered by $G\left[\bar{K}_{n}\right]$ and $K_{n}\left[\bar{K}_{m}\right]$, the conclusion follows.

References

[1] F.R.K. Chung, On the coverings of graphs, Discrete Mathematics, 30 (1980), 89-93.
[2] D. Fronček, J. Jerebic, S. Klavžar, P. Kovář, Strong isometric dimension, biclique coverings, and Sperner's Theorem, Combinatorics Probability and Computing, 16 (2007), 271-275.
[3] Z. Füredi, A. Kündgen, Covering a graph with cuts of minimal total size, Discrete Mathematics, 237 (2001), 129-148.
[4] J. Jerebic, S. Klavžar, On the strong isometric dimension of graphs and a covering problem, Discrete Mathematics, in press.
[5] J. Spencer, Minimal Completely Separating Systems, Journal of Comb. Theory, 8 (1970), 446-447.

[^0]: *Supported by the University of Minnesota Duluth Grant 177-1009.

