
ar
X

iv
:m

at
h/

06
05

08
4v

1 
 [

m
at

h.
C

O
] 

 3
 M

ay
 2

00
6
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Abstract

We consider the problem of determining the maximum number of moves required

to sort a permutation of [n] using cut-and-paste operations, in which a segment is cut

out and then pasted into the remaining string, possibly reversed. We give short proofs

that every permutation of [n] can be transformed to the identity in at most ⌊2n/3⌋
such moves and that some permutations require at least ⌊n/2⌋ moves.

1 Introduction

The problem of sorting a list of numbers is so fundamental that it has been studied under

many computational models. Some of these models require sorting “in place”, where elements

are moved around within an array of fixed length using various allowed operations.

A well-studied example is that of sorting using reversals of substrings. This is motivated

by applications in measuring the evolutionary distance between genomes of different species

[7]. The restricted case in which the reversed substring must be an initial portion of the

permutation is the famous “pancake problem” [6, 10]. One can also give each integer a sign

to denote the orientation of the gene [11, 7, 8]; in the case of prefix reversal, this becomes

the “burnt pancake problem” [2].

Sorting by shifts has also been considered [5, 9]. Shifting one block past another is a

reasonable operation when the permutation is stored using a linked list. A restriction of this

operation is inserting the head element between two later elements [1]. Some work has also

been done in which both reversals and shifts are allowed [12].

In this note, we consider unsigned permutations and allow a more powerful operation that

incorporates both block reversal and block transposition. A (cut-and-paste) move consists

of cutting a substring out of the permutation, possibly reversing it, and then pasting it back
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into the permutation at any position. The storage model that supports this conveniently is

a doubly-linked list.

We study permutations of [n], where [n] = {1, . . . , n}. A natural measure of how close

a permutation is to the identity permutation is the number of pairs {i, i + 1} that occur

consecutively (in either order). Call such pairs adjacencies. At most three adjacencies are

created at each move (involving the two ends of the moved substring and the element(s) that

formerly were next to the substring. For n ≥ 4, there are permutations with no adjacencies,

but the identity permutation has n + 1 adjacencies (counting the front and back), so there

are permutations of [n] that require at least ⌈(n + 1)/3⌉ moves to sort.

By a simple insertion sort, every permutation can be sorted in at most n − 1 moves.

Indeed, since every list of n distinct numbers has a monotone sublist of length at least
√
n

[4], we can insert the remaining elements one at a time into a longest monotone sequence,

reversing the full list at the end if necessary, to sort in at most n−√
n+ 1 moves.

Thus trivially we have ⌈(n+ 1)/3⌉ ≤ f(n) ≤ n − √
n + 1, where f(n) is the worst-case

number of cut-and-paste moves needed to sort a permutation of [n]. In Section 2, we prove

that f(n) ≥ ⌊n/2⌋, obtaining many permutations of [n] that require at least ⌊n/2⌋ moves to

sort. In Section 3, we prove that f(n) ≤ ⌊2n/3⌋, by presenting an algorithm that sorts any

permutation of [n] using at most ⌊2n/3⌋ moves.

Our upper bound is weaker than that of Eriksson et. al [5]; they proved an upper bound

of ⌊(2n− 2)/3⌋ moves for the model that allows only the weaker block transposition moves.

However, their proof is fairly lengthy and involves considerable structural analysis. Thus

our contribution here is a significantly shorter argument by a different method of proof. We

use a “weight function” argument: the maximum weight of a permutation of [n] is 2n/3,

and our algorithm reduces the weight by (on average) 1 unit per move. Because our sorting

operation is more powerful than those studied earlier, our lower bound is a new result.

2 The Lower Bound

We write a permutation of [n] as a list of numbers within brackets, without commas; for

example, π = [π1 · · · πn]. For discussion of the lower bound, we prepend π0 = 0 and postpend

πn+1 = n+1 to a permutation π. A move is performed using three (not necessarily distinct)

cut point indices i such that πi and πi+1 become separated by the move. These cut points

partition π into four disjoint substrings and yield three possible moves: the string between

the first two or last two cut points is inserted at the third cut point, possibly reversed. Given

cut points i, j, k with 0 ≤ i ≤ j ≤ k ≤ n, the results of the three legal moves on π are

[π0 · · ·πi πj+1 · · ·πk πi+1 · · ·πj πk+1 · · ·πn+1] ,

[π0 · · ·πi πj+1 · · ·πk πj · · ·πi+1 πk+1 · · · πn+1] ,

[π0 · · ·πi πk · · ·πj+1 πi+1 · · ·πj πk+1 · · ·πn+1] .

To reverse a string in place, let j = k in the second form or i = j in the third form.
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The trivial lower bound of (n+1)/3 was obtained by considering adjacencies. To improve

this bound, define a parity adjacency to be a pair of consecutive values in π having opposite

parity. With 0 and n + 1 fixed at the ends, the identity permutation has n + 1 parity

adjacencies. The key is to show that each move increases the number of parity adjacencies

by at most 2.

Theorem 1. f(n) ≥ ⌊n/2⌋ for every positive integer n.

Proof. A permutation with all even values before all odd values has one parity adjacency

if n is even, two if n is odd. Since the identity permutation has n + 1 parity adjacencies

(counting the ends), it thus suffices to show that each move increases the number of parity

adjacencies by at most 2.

Consider a move that inserts πk · · ·πl between πm and πm+1, reversed or not. The three

newly consecutive pairs of values are {πk−1πl+1, πmπk, πlπm+1} if the block is not reversed

and {πk−1πl+1, πmπl, πkπm+1} if it is reversed. If the number of parity adjacencies increases

by 3, then each new pair is a new parity adjacency and no parity adjacencies were destroyed.

The six values in the new pairs and broken pairs form a cycle of pairs that must alternate

between opposite parity ( 6≡) and equal parity (≡). We show these requirements below,

depending on whether the moving block is reversed.

πk−1 6≡ πl+1 ≡ πl 6≡ πm+1 ≡ πm 6≡ πk ≡ πk−1,

or πk−1 6≡ πl+1 ≡ πl 6≡ πm ≡ πm+1 6≡ πk ≡ πk−1.

In each case, the six elements appear on a cycle whose steps alternate between preserving

parity and switching parity. However, parity cannot change an odd number of times along

a cycle. This contradiction prevents the number of parity adjacencies from increasing by

3.

The proof in fact shows that every input permutation with one parity adjacency (when

n is even) or two parity adjacencies (when n is odd) requires ⌊n/2⌋ moves to sort.

3 Upper Bound

For the upper bound, we no longer append 0 and n + 1 at the ends of the permutation.

Instead, we adopt the convention that the values n and 1 are consecutive. That is, adding

1 to the value n produces the value 1; all computations with values are modulo n.

A block in a permutation is a maximal substring of (at least two) consecutive values in

consecutive positions. A block is increasing if its second value is one more than its first. An

increasing block can reach n and continue with 1. A permutation that consists of a single

increasing block can be sorted in one move, shifting the initial part ending at n to the end.
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An element in no block is a singleton. When singletons i and i+1 are made consecutive,

they automatically form an adjacency. When blocks ending at i and i + 1 are made con-

secutive, they produce a larger block only if oriented properly. Hence somehow moves that

reduce the number of blocks are more valuable than moves that combine singletons.

We capture this phenomenon by giving higher weight to blocks than to singletons in mea-

suring the “non-sortedness” of a permutation. The proof of the upper bound is constructive,

providing an algorithm to sort permutations of [n] with at most ⌊2n/3⌋ moves. We note that

the algorithm for the pancake problem in [6] also treats blocks and singletons differently, but

not via a weight function.

Theorem 2. f(n) ≤ ⌊2n/3⌋, for every positive integer n.

Proof. We first give an algorithm that sorts the permutation using at most ⌊2n/3⌋+1 moves,

then give a small modification that sorts the permutation in at most ⌊2n/3⌋ moves.

Let the weight of a permutation be

(number of blocks) + (2/3)(number of singletons).

Every permutation consisting of a single increasing block, including the identity permutation,

has weight 1. The maximum weight of a permutation of [n] is 2n/3, achieved by permutations

having no blocks. The gain of a move is the amount by which it reduces the weight.

Using one move, we establish an increasing block at the beginning of the permutation.

We show that when such a block exists, we can gain at least 1 in one move or gain at least 2

in two moves, while maintaining that condition. We thus reach a permutation with weight 1

(a single increasing block) in at most 1 + ⌊2n/3⌋ − 1 steps. One more move may be needed

to sort the single increasing block.

In each move, the string we cut out is a union of full blocks and singletons, never part

of a block. Also, we never paste this string into the interior of a block. That is, we never

break adjacencies, and the numbers of singletons and blocks can change only by creating

adjacencies. Creating a block from two singletons gains 1/3. Absorbing a singleton into an

existing block gains 2/3 (this is an absorbing move). Creating one block by combining two

blocks gains 1. In all moves we ignore the possible gain resulting from closing the gap left

by the extracted string, counting only the gain from pasting it elsewhere.

If our permutation has i and i + 1 in distinct blocks, then cutting out one of these

blocks and pasting it next to the other gains at least 1. We call this a block move. When a

block move is available, we perform it, leaving (or augmenting) the increasing block at the

beginning of the permutation.

A bonus move is one that gains two adjacencies by the insertion. That is, the cut string

(without splitting a block) has i and j at its ends, and it is inserted between two consecutive

elements whose values are next to i and next to j. If one of these four elements was in a

block, then the move gains 1. If at least two of them were in blocks, then the gain is at
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least 4/3 (this is an extra bonus move). When we make two moves to gain 2, they will be an

absorbing move and an extra bonus move.

Let l be the last value in the initial increasing block, and let l′ = l+1. Let p be the value

in the position following l, and let p′ be a value immediately above or below p that is not

located next to p (there are two choices for p′ if p is singleton, one if p is in a block). We

consider several cases based on the condition of these elements.

If l′ is in a block, then a block move is available, so we may assume that l′ is a singleton.

If p′ is a singleton, or if the string S with l′ and p′ as its end-elements contains the block

that p′ ends, then we cut S and insert it between l and p (if p′ is at the left end of S, we

reverse S before inserting); see Figure 1. Since l is in a block, this is a bonus move that

gains at least 1 (extra bonus if p′ is in a block).

l p l′ p′

Figure 1: A bonus move

Hence we may assume that p′ is in a block B that is not contained in S. Let q be the

end of B other than p′. Let q′ be the value next to q (up or down) that is not in B. If q′ or

p is in a block, then a block move is available to combine B with the block containing q′ or

p, so we may assume that q′ and p are singletons. See Figure 2.

Bl p q′ q p′ l′

Move 1

Move 2

Figure 2: An absorbing move followed by an extra bonus move

Now we make two moves. We first insert B between l and p, with p′ next to p (if p′ is at

the left end of B, then we reverse B before inserting); this is an absorbing move, and it puts

q next to l. We now insert the string from l′ to q′ between l and q (if q′ is at the left end

of this string, we reverse this string before inserting); since both l and q are now in blocks,

this is an extra bonus move. As noted earlier, an absorbing move and an extra bonus move

together gain (at least) 2.

A slight variation of the algorithm sorts the permutation in at most ⌊2n/3⌋ moves. The

idea is to keep element 1 in the first position and thus avoid a final move to sort an increasing

block. In general, when the first element is a, we bring a segment from 1 to a′ to the front.
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Now the permutation begins 1b, and we put a segment from 2 to b′ between them without

breaking a block. Six singletons become three blocks, or five become two blocks (if b = a′),

so the resulting permutation has weight at most 2n/3 − 1. Since we have spent two moves

and reduce to weight 1 at the end, we use at most ⌊2n/3⌋ moves.

This argument may fail when a ∈ {1, 2} or b = n. When a = 1, we sort the rest of the

list inductively. When a = 2, we bring 1 to the front and sort the rest inductively in at most

2(n − 2)/3 moves. When b = n, we first move 1n to the front and then move the segment

from n till just before 2 to the back (reversed). The permutation of {3, . . . , n− 1} can now

be sorted inductively in ⌊2(n− 3)/3⌋ moves, which with the two initial moves satisfies the

bound.

It is straightforward to implement this algorithm with a running time of O(n2). At

each move, we linearly search for each of the numbers indicated in Figure 1 or Figure 2. Jeff

Erickson has noted that the algorithm can be implemented with a running time of O(n logn),

but the details are much more complicated.

References

[1] M. Aigner and D. B. West, Sorting by insertion of leading elements. J. Combin. Theory

Ser. A 45 (1987), 306–309.

[2] D. S. Cohen and M. Blum, On the problem of sorting burnt pancakes. Discrete Appl.

Math. 61 (1995), 105–120.

[3] Harry Dweighter, Elementary Problems. Amer. math. Monthly 82 (1975), 1010.
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