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The subconstituent algebra of a bipartite distance-regular

graph; thin modules with endpoint two

Mark MacLean∗ and Paul Terwilliger†

Abstract

We consider a bipartite distance-regular graph Γ with diameter D ≥ 4, valency k ≥ 3, intersection
numbers bi, ci, distance matrices Ai, and eigenvalues θ0 > θ1 > · · · > θD. Let X denote the vertex set
of Γ and fix x ∈ X. Let T = T (x) denote the subalgebra of MatX(C) generated by A,E∗

0 , E
∗
1 , . . . , E

∗
D,

where A = A1 and E∗
i denotes the projection onto the ith subconstituent of Γ with respect to x.

T is called the subconstituent algebra (or Terwilliger algebra) of Γ with respect to x. An irreducible
T -module W is said to be thin whenever dimE∗

i W ≤ 1 for 0 ≤ i ≤ D. By the endpoint of W
we mean min{i|E∗

i W 6= 0}. Assume W is thin with endpoint 2. Observe E∗
2W is a 1-dimensional

eigenspace for E∗
2A2E

∗
2 ; let η denote the corresponding eigenvalue. It is known θ̃1 ≤ η ≤ θ̃d where

θ̃1 = −1− b2b3(θ
2
1 − b2)

−1, θ̃d = −1− b2b3(θ
2
d − b2)

−1, and d = ⌊D/2⌋. To describe the structure of W
we distinguish four cases: (i) η = θ̃1; (ii) D is odd and η = θ̃d; (iii) D is even and η = θ̃d; (iv) θ̃1 < η < θ̃d.
We investigated cases (i), (ii) in [28]. Here we investigate cases (iii), (iv) and obtain the following results.
We show the dimension of W is D − 1 − e where e = 1 in case (iii) and e = 0 in case (iv). Let v
denote a nonzero vector in E∗

2W . We show W has a basis Eiv (i ∈ S), where Ei denotes the primitive
idempotent of A associated with θi and where the set S is {1, 2, . . . , d − 1} ∪ {d + 1, d + 2, . . . , D − 1}
in case (iii) and {1, 2, . . . , D − 1} in case (iv). We show this basis is orthogonal (with respect to the
Hermitian dot product) and we compute the square-norm of each basis vector. We show W has a basis
E∗

i+2Aiv (0 ≤ i ≤ D− 2− e), and we find the matrix representing A with respect to this basis. We show
this basis is orthogonal and we compute the square-norm of each basis vector. We find the transition
matrix relating our two bases for W .

Keywords. Distance-regular graph, association scheme, Terwilliger algebra, subconstituent algebra.
2000 Mathematics Subject Classification. Primary 05E30; Secondary 05E35, 05C50

1 Introduction

Let Γ denote a distance-regular graph with diameter D ≥ 4, valency k ≥ 3, intersection numbers ai, bi, ci,
and distance matrices Ai (see Section 2 for formal definitions). We recall the subconstituent algebra of Γ.
Let X denote the vertex set of Γ and fix x ∈ X . We view x as a “base vertex.” Let T = T (x) denote the
subalgebra of MatX(C) generated by A,E∗

0 , E
∗
1 , . . . , E

∗
D, where A = A1 and E∗

i represents the projection

onto the ith subconstituent of Γ with respect to x. The algebra T is called the subconstituent algebra (or
Terwilliger algebra) of Γ with respect to x [31]. Observe T has finite dimension. Moreover T is semi-simple;
the reason is each of A,E∗

0 , E
∗
1 , . . . , E

∗
D is symmetric with real entries, so T is closed under the conjugate-

transpose map [18, p. 157]. Since T is semi-simple, each T -module is a direct sum of irreducible T -modules.
Describing the irreducible T -modules is an active area of research [4]–[17], [19]–[24], [26], [28]–[36].

In this paper we are concerned with the irreducible T -modules that possess a certain property. In order to
define this property we make a few observations. Let W denote an irreducible T -module. Then W is the
direct sum of the nonzero spaces among E∗

0W,E
∗
1W, . . . , E

∗
DW . There is a second decomposition of interest.

To obtain it we make a definition. Let k = θ0 > θ1 > · · · > θD denote the distinct eigenvalues of A, and for
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0 ≤ i ≤ D let Ei denote the primitive idempotent of A associated with θi. Then W is the direct sum of the
nonzero spaces among E0W,E1W, . . . , EDW . If the dimension of E∗

iW is at most 1 for 0 ≤ i ≤ D then the
dimension of EiW is at most 1 for 0 ≤ i ≤ D [31, Lemma 3.9]; in this case we say W is thin. Let W denote
an irreducible T -module. By the endpoint of W we mean min{i|0 ≤ i ≤ D, E∗

iW 6= 0}. There exists a
unique irreducible T -module with endpoint 0 [21, Proposition 8.4]. We call this module V0. The module V0
is thin; in fact E∗

i V0 and EiV0 have dimension 1 for 0 ≤ i ≤ D [31, Lemma 3.6]. For a detailed description
of V0 see [9], [21].

For the rest of this section assume Γ is bipartite. There exists, up to isomorphism, a unique irreducible
T -module with endpoint 1 [9, Corollary 7.7]. We call this module V1. The module V1 is thin; in fact each
of E∗

i V1, EiV1 has dimension 1 for 1 ≤ i ≤ D − 1 and E∗
DV1 = 0, E0V1 = 0, EDV1 = 0. For a detailed

description of V1 see [9]. In this paper we are concerned with the thin irreducible T -modules with endpoint
2.

In order to describe the thin irreducible T -modules with endpoint 2 we define some parameters. Let Γ2
2 =

Γ2
2(x) denote the graph with vertex set X̆ and edge set R̆, where

X̆ = {y ∈ X | ∂(x, y) = 2},

R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2},

and where ∂ is the path-length distance function for Γ. The graph Γ2
2 has exactly k2 vertices, where k2 is

the second valency of Γ. Also, Γ2
2 is regular with valency p222. We let η1, η2, . . . , ηk2 denote the eigenvalues

of the adjacency matrix of Γ2
2. By [10, Theorem 11.7], these eigenvalues may be ordered such that η1 = p222

and ηi = b3 − 1 (2 ≤ i ≤ k).

Abbreviate d = ⌊D/2⌋. It is shown in [28, Theorem 11.4] that θ̃1 ≤ ηi ≤ θ̃d for k + 1 ≤ i ≤ k2, where
θ̃1 = −1− b2b3(θ

2
1 − b2)

−1 and θ̃d = −1− b2b3(θ
2
d − b2)

−1. We remark θ21 > b2 > θ2d by [27, Lemma 2.6], so

θ̃1 < −1 and θ̃d ≥ 0.

Let W denote a thin irreducible T -module with endpoint 2. Observe E∗
2W is a 1-dimensional eigenspace

for E∗
2A2E

∗
2 ; let η denote the corresponding eigenvalue. It turns out η is among ηk+1, ηk+2, . . . , ηk2 so

θ̃1 ≤ η ≤ θ̃d. We call η the local eigenvalue of W . To describe the structure of W we distinguish four cases:
(i) η = θ̃1; (ii) D is odd and η = θ̃d; (iii) D is even and η = θ̃d; (iv) θ̃1 < η < θ̃d. In [28] we investigated
cases (i), (ii). In the present paper we investigate cases (iii), (iv).

Concerning cases (i), (ii) our results from [28] are summarized as follows. Choose n ∈ {1, d} if D is odd,
and let n = 1 if D is even. Define η = θ̃n. Let W denote a thin irreducible T -module with endpoint 2 and
local eigenvalue η. Then W has dimension D − 3. Let v denote a nonzero vector in E∗

2W . We showed W
has a basis Eiv (1 ≤ i ≤ D − 1, i 6= n, i 6= D − n). We showed this basis is orthogonal (with respect to the
Hermitian dot product) and we computed the square-norm of each basis vector. We showed W has a basis
E∗

i+2Aiv (0 ≤ i ≤ D − 4). We found the matrix representing A with respect to this basis. We showed this
basis is orthogonal and we computed the square-norm of each basis vector. We found the transition matrix
relating our two bases for W . We showed the following scalars are equal: (i) The multiplicity with which W
appears in the standard module CX ; (ii) The number of times η appears among ηk+1, ηk+2, . . . , ηk2 .

Concerning case (iii) above, in the present paper we obtain the following results. Assume D is even, and let
W denote a thin irreducible T -module with endpoint 2 and local eigenvalue θ̃d. We show the dimension of
W is D− 2. Let v denote a nonzero vector in E∗

2W . We show W has a basis Eiv (1 ≤ i ≤ D− 1, i 6= d). We
show this basis is orthogonal and we compute the square-norm of each basis vector. We show W has a basis
E∗

i+2Aiv (0 ≤ i ≤ D − 3). We find the matrix representing A with respect to this basis. We show this basis
is orthogonal and we compute the square-norm of each basis vector. We find the transition matrix relating
our two bases for W .

Concerning case (iv) above, in the present paper we obtain the following results. Let W denote a thin
irreducible T -module with endpoint 2 and local eigenvalue η (θ̃1 < η < θ̃d). We show the dimension of
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W is D − 1. Let v denote a nonzero vector in E∗
2W . We show W has a basis Eiv (1 ≤ i ≤ D − 1). We

show this basis is orthogonal and we compute the square-norm of each basis vector. We show W has a basis
E∗

i+2Aiv (0 ≤ i ≤ D − 2). We find the matrix representing A with respect to this basis. We show this basis
is orthogonal and we compute the square-norm of each basis vector. We find the transition matrix relating
our two bases for W .

For all η ∈ R let µη denote the multiplicity with which W appears in CX , where W is a thin irreducible
T -module with endpoint 2 and local eigenvalue η. If no such W exists we interpret µη = 0. We show µη

is at most the number of times η appears among ηk+1, ηk+2, . . . , ηk2 . Concerning the case of equality, we
show the following are equivalent: (i) For all η ∈ R, µη is equal to the number of times η appears among
ηk+1, ηk+2, . . . , ηk2 ; (ii) Every irreducible T -module with endpoint 2 is thin.

2 Preliminaries concerning distance-regular graphs

In this section we review some definitions and basic concepts concerning distance-regular graphs. For more
background information we refer the reader to [1], [3], [25] or [31].

Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra consisting of all matrices whose
rows and columns are indexed by X and whose entries are in C. Let V = CX denote the vector space over
C consisting of column vectors whose coordinates are indexed by X and whose entries are in C. We observe
MatX(C) acts on V by left multiplication. We endow V with the Hermitian inner product 〈 , 〉 which satisfies
〈u, v〉 = utv for all u, v ∈ V , where t denotes transpose and − denotes complex conjugation. We abbreviate
‖u‖2 = 〈u, u〉 for all u ∈ V. For all y ∈ X, let ŷ denote the element of V with a 1 in the y coordinate and 0
in all other coordinates. We observe {ŷ | y ∈ X} is an orthonormal basis for V. The following formula will
be useful. For all B ∈ MatX(C) and for all u, v ∈ V ,

〈Bu, v〉 = 〈u,B
t
v〉. (1)

Let Γ = (X,R) denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set
X and edge set R. Let ∂ denote the path-length distance function for Γ, and setD = max{∂(x, y) | x, y ∈ X}.
We refer to D as the diameter of Γ. Let ⌊D/2⌋ denote the greatest integer at most D/2. Vertices x, y ∈ X
are called adjacent whenever xy is an edge. For an integer k ≥ 0, we say Γ is regular with valency k whenever
each vertex of Γ is adjacent to exactly k distinct vertices of Γ. We say Γ is distance-regular whenever for all
integers h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X with ∂(x, y) = h, the number

phij = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}| (2)

is independent of x and y. The phij are called the intersection numbers of Γ. We abbreviate ci = pi1i−1 (1 ≤

i ≤ D), ai = pi1i (0 ≤ i ≤ D), and bi = pi1i+1 (0 ≤ i ≤ D − 1). For notational convenience, we define c0 = 0
and bD = 0. We note a0 = 0 and c1 = 1.

For the rest of this paper we assume Γ is distance-regular with diameter D ≥ 3.

By (2) and the triangle inequality,

ph1j = 0 if |h− j| > 1 (0 ≤ h, j ≤ D). (3)

Observe Γ is regular with valency k = b0, and that ci + ai + bi = k for 0 ≤ i ≤ D. Moreover bi > 0 (0 ≤ i ≤
D − 1) and ci > 0 (1 ≤ i ≤ D). For 0 ≤ i ≤ D we abbreviate ki = p0ii, and observe

ki = |{z ∈ X | ∂(x, z) = i}|, (4)

where x is any vertex in X . Apparently k0 = 1 and k1 = k. By [1, p.195] we have

ki =
b0b1 · · · bi−1

c1c2 · · · ci
(0 ≤ i ≤ D). (5)
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We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D let Ai denote the matrix in MatX(C) with xy entry

(Ai)xy =

{

1, if ∂(x, y) = i
0, if ∂(x, y) 6= i

(x, y ∈ X).

We call Ai the i
th distance matrix of Γ. For convenience we define Ai = 0 for i < 0 and i > D.We abbreviate

A = A1 and call this the adjacency matrix of Γ. We observe (ai) A0 = I; (aii)
∑D

i=0 Ai = J ; (aiii) Ai = Ai

(0 ≤ i ≤ D); (aiv) At
i = Ai (0 ≤ i ≤ D); (av) AiAj =

∑D

h=0 p
h
ijAh (0 ≤ i, j ≤ D), where I denotes the

identity matrix and J denotes the all 1’s matrix. Let M denote the subalgebra of MatX(C) generated by A.
Using (ai), (av) one can readily show A0, A1, . . . , AD form a basis for M. We refer to M as the Bose-Mesner

algebra of Γ. By [3, p.45]M has a second basis E0, E1, . . . , ED such that (ei) E0 = |X |−1J ; (eii)
∑D

i=0Ei = I;
(eiii) Ei = Ei (0 ≤ i ≤ D); (eiv) Et

i = Ei (0 ≤ i ≤ D); (ev) EiEj = δijEi (0 ≤ i, j ≤ D). We refer to
E0, E1, . . . , ED as the primitive idempotents of Γ. We call E0 the trivial idempotent of Γ.

We recall the eigenvalues of Γ. Since E0, E1, . . . , ED form a basis for M, there exist complex scalars
θ0, θ1, . . . , θD such that A =

∑D

i=0 θiEi. Combining this with (ev) we find AEi = EiA = θiEi for 0 ≤ i ≤ D.
Using (aiii) and (eiii) we find θ0, θ1, . . . , θD are in R. Observe θ0, θ1, . . . , θD are distinct since A generatesM.
By [2, Proposition 3.1] we have θ0 = k and −k ≤ θi ≤ k for 0 ≤ i ≤ D. Throughout this paper we assume
E0, E1, . . . , ED are indexed so that θ0 > θ1 > · · · > θD. We refer to θi as the eigenvalue of Γ associated with
Ei. We call θ0 the trivial eigenvalue of Γ. For 0 ≤ i ≤ D let mi denote the rank of Ei. We refer to mi as the
multiplicity of Ei (or θi). From (ei) we find m0 = 1. Using (eii)–(ev) we find

V = E0V + E1V + · · ·+ EDV (orthogonal direct sum). (6)

For 0 ≤ i ≤ D the space EiV is the eigenspace of A associated with θi. We observe the dimension of EiV is
mi. We now record a fact about the eigenvalues θ1 and θD.

Lemma 2.1 [27, Lemma 2.6] Let Γ denote a distance-regular graph with diameter D ≥ 3 and eigenvalues
k = θ0 > θ1 > · · · > θD. Then (i) −1 < θ1 < k; (ii) a1 − k ≤ θD < −1.

Later in this paper we will discuss polynomials in one or two variables. We will use the following notation.
Let λ denote an indeterminate. Let R[λ] denote the R-algebra consisting of all polynomials in λ that have
coefficients in R. Let µ denote an indeterminate which commutes with λ. Let R[λ, µ] denote the R-algebra
consisting of all polynomials in λ and µ that have coefficients in R.

3 Bipartite distance-regular graphs

We now consider the case in which Γ is bipartite. We say Γ is bipartite whenever the vertex set X can be
partitioned into two subsets, neither of which contains an edge. In the next few lemmas, we recall some
routine facts concerning the case in which Γ is bipartite. To avoid trivialities, we will generally assume
D ≥ 4.

Lemma 3.1 [3, Propositions 3.2.3, 4.2.2] Let Γ denote a distance-regular graph with diameter D ≥ 4,
valency k, and eigenvalues θ0 > θ1 > · · · > θD. The following are equivalent:

(i) Γ is bipartite.

(ii) phij = 0 if h+ i+ j is odd (0 ≤ h, i, j ≤ D).

(iii) ai = 0 (0 ≤ i ≤ D).

(iv) ci + bi = k (0 ≤ i ≤ D).

(v) θD−i = −θi (0 ≤ i ≤ D).

Lemma 3.2 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenvalues k = θ0 >
θ1 > · · · > θD.

4



(i) Assume D is even and let d = D/2. Then θd = 0.

(ii) Assume D is odd and let d = (D − 1)/2. Then θd > 0 and θd+1 = −θd.

Proof. Immediate from Lemma 3.1(v). �

Lemma 3.3 [28, Lemma 3.4] Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4
and eigenvalues θ0 > θ1 > · · · > θD. Then ED = |X |−1J ′, where

J ′ =
D
∑

i=0

(−1)iAi. (7)

Lemma 3.4 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenvalues θ0 > θ1 >
· · · > θD. Then θ21 > b2 > θ2d, where d = ⌊D/2⌋.

Proof. Apply Lemma 2.1 to the halved graph of Γ, and use [3, Proposition 4.2.3]. �

4 Two families of polynomials

Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4. In this section we recall two
types of polynomials associated with Γ. To motivate things, we recall by (av) and the triangle inequality
that

AAi = bi−1Ai−1 + ci+1Ai+1 (0 ≤ i ≤ D), (8)

where b−1 = 0 and cD+1 = 0. Let f0, f1, . . . ,fD denote the polynomials in R[λ] satisfying f0 = 1 and

λfi = bi−1fi−1 + ci+1fi+1 (0 ≤ i ≤ D − 1), (9)

where f−1 = 0. For 0 ≤ i ≤ D the polynomial fi has degree i, and the coefficient of λi is (c1c2 · · · ci)
−1. Com-

paring (8) and (9) we find fi(A) = Ai. By [1, p. 63] the polynomials f0, f1, . . . , fD satisfy the orthogonality
relation

D
∑

h=0

fi(θh)fj(θh)mh = δij |X |ki (0 ≤ i, j ≤ D).

We now recall some polynomials related to the fi. Let p0, p1, . . . , pD denote the polynomials in R[λ] satisfying

pi =

{

f0 + f2 + f4 + · · ·+ fi, if i is even
f1 + f3 + f5 + · · ·+ fi, if i is odd

(0 ≤ i ≤ D). (10)

Observe p0 = 1. For 0 ≤ i ≤ D the polynomial pi has degree i, and the coefficient of λi is (c1c2 · · · ci)
−1.

Recalling fj(A) = Aj (0 ≤ j ≤ D), we observe

pD(A) + pD−1(A) = J, pD(A) − pD−1(A) = (−1)DJ ′, (11)

where J ′ is from (7). By [28, Theorem 4.2], we have

λpi = ci+1pi+1 + bi+1pi−1 (0 ≤ i ≤ D − 1), (12)

where p−1 = 0. We record a fact for later use.

Lemma 4.1 [28, Lemma 4.3] Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4
and eigenvalues k = θ0 > θ1 > · · · > θD. Let the polynomials p0, p1, . . . , pD be as in (10). Then pD−1(θh) = 0
and pD(θh) = 0 for 1 ≤ h ≤ D − 1. Moreover,

D
∑

h=0

pi(θh)pj(θh)(k
2 − θ2h)mh = δij |X |kibibi+1 (0 ≤ i, j ≤ D − 2). (13)
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5 The polynomials Ψi

Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. In the previous section we used Γ to
define two families of polynomials in one variable. We called these polynomials the fi and the pi. Later in
this paper we will use Γ to define a third family of polynomials in one variable. We will call these polynomials
the gi. To define and study the gi it is convenient to first consider some polynomials Ψi in two variables.

Definition 5.1 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. For 0 ≤ i ≤ D − 2
let Ψi denote the polynomial in R[λ, µ] given by

Ψi =
i

∑

h=0
i−h even

ph(λ)ph(µ)
kibibi+1

khbhbh+1
, (14)

where the polynomials p0, p1, . . . , pD−2 are from (10). We observe Ψ0 = 1 and Ψ1 = λµ.

Lemma 5.2 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. Let the polynomials pi,Ψi

be as in (10), (14), respectively. Then

pi(λ)pi(µ) = Ψi −
bibi+1

cici−1
Ψi−2 (2 ≤ i ≤ D − 2).

Proof. Use Definition 5.1 and (5). �

The following equation is a variation of the Christoffel-Darboux formula.

Lemma 5.3 [28, Lemma 5.3] Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. Let the
polynomials pi,Ψi be as in (10), (14) respectively. Then for 1 ≤ i ≤ D − 1,

pi+1(λ)pi−1(µ)− pi−1(λ)pi+1(µ) = c−1
i c−1

i+1(λ
2 − µ2)Ψi−1.

Lemma 5.4 [28, Lemma 5.4] Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4
and eigenvalues k = θ0 > θ1 > · · · > θD. Let the polynomials pi, Ψi be as in (10), (14) respectively. Then
for 0 ≤ i, j ≤ D − 2,

D
∑

h=0

Ψi(θh, µ)Ψj(θh, µ)(k
2 − θ2h)(µ

2 − θ2h)mh = δij |X |pi(µ)pi+2(µ)kibibi+1ci+1ci+2.

(We recall mh denotes the multiplicity of θh for 0 ≤ h ≤ D.)

Lemma 5.5 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenvalues k = θ0 >
θ1 > · · · > θD. Let the polynomials pi be as in (10). Then the following (i), (ii) hold for all θ ∈ R:

(i) Suppose θ = θ1. Then pi(θ) > 0 for 0 ≤ i ≤ D − 2, and pD−1(θ) = 0, pD(θ) = 0.

(ii) Suppose θ > θ1. Then pi(θ) > 0 for 0 ≤ i ≤ D.

Proof. Observe pD−1(θ1) = 0, pD(θ1) = 0 by Lemma 4.1. For notational convenience set e = 0 if θ > θ1
and e = 1 if θ = θ1. Suppose there exists an integer i (0 ≤ i ≤ D − 2e) such that pi(θ) ≤ 0. Let us pick
the minimal such i. Observe i ≥ 2 since p0(θ) = 1, p1(θ) = θ. Apparently pi−2(θ) > 0. We claim there
exists an integer h (1 + e ≤ h ≤ D − 1 − e) such that Ψi−2(θh, θ) 6= 0. To see this, observe by Definition
5.1 that Ψi−2(λ, θ) is a polynomial in λ with degree i − 2. In this polynomial the coefficient of λi−2 is
pi−2(θ)(c1c2 · · · ci−2)

−1. Apparently this polynomial is not identically 0 so there exist at most i− 2 integers
h (1 + e ≤ h ≤ D− 1− e) such that Ψi−2(θh, θ) = 0. By this and since i ≤ D − 2e, there exists at least one
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integer h (1 + e ≤ h ≤ D − 1 − e) such that Ψi−2(θh, θ) 6= 0. We have now proved our claim. We may now
argue

0 <

D−1−e
∑

h=1+e

Ψ2
i−2(θh, θ)(k

2 − θ2h)(θ
2 − θ2h)mh

=

D
∑

h=0

Ψ2
i−2(θh, θ)(k

2 − θ2h)(θ
2 − θ2h)mh (by the definition of e)

= |X |pi−2(θ)pi(θ)ki−2bi−2bi−1ci−1ci (by Lemma 5.4)

≤ 0.

We now have a contradiction and the result follows. �

Lemma 5.6 Let Γ denote a bipartite distance-regular graph with odd diameter D ≥ 4 and eigenvalues
k = θ0 > θ1 > · · · > θD. Let d denote the integer satisfying 2d+1 = D. Let the polynomials pi be as in (10).
Then the following (i), (ii) hold for all θ ∈ R:

(i) Suppose θ = θd. Then (−1)⌊
i
2 ⌋pi(θ) > 0 for 0 ≤ i ≤ D − 2, and pD−1(θ) = 0, pD(θ) = 0.

(ii) Suppose 0 < θ < θd. Then (−1)⌊
i
2 ⌋pi(θ) > 0 for 0 ≤ i ≤ D.

Proof. Observe pD−1(θd) = 0, pD(θd) = 0 by Lemma 4.1. For notational convenience set e = 0 if 0 < θ < θd
and e = 1 if θ = θd. Also for notational convenience we define the set S to be {1, 2, . . . , D − 1} if e = 0,
and {1, 2, . . . , d− 1} ∪ {d+ 2, d+ 3, . . . , D − 1} if e = 1. Suppose there exists an integer i (0 ≤ i ≤ D − 2e)

such that (−1)⌊
i
2 ⌋pi(θ) ≤ 0. Let us pick the minimal such i. Observe i ≥ 2 since p0(θ) = 1, p1(θ) = θ.

Apparently (−1)⌊
i−2
2 ⌋pi−2(θ) > 0, so pi−2(θ)pi(θ) ≥ 0. We claim there exists an integer h ∈ S such that

Ψi−2(θh, θ) 6= 0. To see this, observe by Definition 5.1 that Ψi−2(λ, θ) is a polynomial in λ with degree
i−2. This polynomial is not identically zero, since the coefficient of λi−2 is pi−2(θ)(c1c2 · · · ci−2)

−1 and since
pi−2(θ) 6= 0 by construction. Therefore there exist at most i − 2 integers h ∈ S such that Ψi−2(θh, θ) = 0.
By this and since i ≤ D − 2e, there exists at least one integer h ∈ S such that Ψi−2(θh, θ) 6= 0. We have
now proved our claim. We may now argue

0 >
∑

h∈S

Ψ2
i−2(θh, θ)(k

2 − θ2h)(θ
2 − θ2h)mh

=

D
∑

h=0

Ψ2
i−2(θh, θ)(k

2 − θ2h)(θ
2 − θ2h)mh (by the definitions of S and e)

= |X |pi−2(θ)pi(θ)ki−2bi−2bi−1ci−1ci (by Lemma 5.4)

≥ 0.

We now have a contradiction and the result follows. �

6 A variation of the pi polynomials

In Section 4 we defined some polynomials pi. In this section we define some closely related polynomials that
we call the Pi. We do so for a technical reason that will become apparent later in the paper. We start with
an observation. Recall that a polynomial in R[λ] is even (resp. odd) whenever the coefficient of λi is zero for
all odd i (resp. all even i).

Lemma 6.1 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. Then for 0 ≤ i ≤ D the
polynomial pi from (10) is even (resp. odd) if i is even (resp. odd).
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Proof. Routine using (12) and induction. �

In view of Lemma 6.1 we can make the following definition.

Definition 6.2 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. For 0 ≤ i ≤ D let Pi

denote the polynomial in R[λ] such that

pi(λ) =

{

Pi(λ
2), if i is even

λPi(λ
2), if i is odd,

(15)

where pi is from (10). Observe the degree of Pi is i/2 if i is even and (i − 1)/2 if i is odd. For notational
convenience we define P−1 = 0.

Lemma 6.3 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4. Let the polynomials
P0, P1, . . . , PD be as in Definition 6.2. Then the following (i), (ii) hold for 0 ≤ i ≤ D − 1:

(i) Suppose i is odd. Then λPi = ci+1Pi+1 + bi+1Pi−1.

(ii) Suppose i is even. Then Pi = ci+1Pi+1 + bi+1Pi−1.

Proof. Routine using (12) and Definition 6.2. �

Referring to Lemma 6.3, in order to handle the cases of i odd and i even in a uniform fashion we introduce
some notation.

Definition 6.4 For any integer i we define

s(i) =

{

0, if i is even
1, if i is odd.

Lemma 6.3 looks as follows in terms of s(i).

Corollary 6.5 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4, and let the polynomials
P0, P1, . . . , PD be as in Definition 6.2. Then for 0 ≤ i ≤ D − 1,

λs(i)Pi = ci+1Pi+1 + bi+1Pi−1. (16)

Lemma 6.6 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenvalues k = θ0 >
θ1 > · · · > θD. Let the polynomials P0, P1, . . . , PD be as in Definition 6.2. Then the following (i)–(iii) hold
for all ψ ∈ R:

(i) Assume ψ > θ21. Then Pi(ψ) > 0 (0 ≤ i ≤ D).

(ii) Assume D is odd and ψ < θ2d, where d = (D − 1)/2. Then (−1)⌊
i
2 ⌋Pi(ψ) > 0 (0 ≤ i ≤ D).

(iii) Assume D is even and ψ ≤ 0. Then (−1)⌊
i
2 ⌋Pi(ψ) > 0 (0 ≤ i ≤ D − 1). Moreover (−1)⌊

D
2 ⌋PD(ψ) > 0

if ψ < 0 and PD(0) = 0.

Proof. (i). Since ψ is positive, there exists a positive real number α such that α2 = ψ. By the construction
α > θ1. For 0 ≤ i ≤ D we have pi(α) > 0 by Lemma 5.5(ii) so Pi(ψ) > 0 in view of Definition 6.2.
(ii). First assume 0 < ψ < θ2d. Again ψ is positive, so there exists a positive real number α such that

α2 = ψ. By the construction 0 < α < θd. For 0 ≤ i ≤ D we have (−1)⌊
i
2 ⌋pi(α) > 0 by Lemma 5.6(ii) so

(−1)⌊
i
2 ⌋Pi(ψ) > 0 in view of Definition 6.2.

Now assume ψ ≤ 0. Suppose there exists an integer i (0 ≤ i ≤ D) such that (−1)⌊
i
2 ⌋Pi(ψ) ≤ 0. Let us

pick the minimal such i. Observe i ≥ 2 since P0(ψ) = 1, P1(ψ) = 1. Setting λ = ψ and replacing i by i− 1

in (16) and then multiplying this equation by (−1)⌊
i
2 ⌋, we find

(−1)⌊
i
2 ⌋Pi(ψ) = (−1)⌊

i
2 ⌋ψs(i−1)Pi−1(ψ)c

−1
i − (−1)⌊

i
2 ⌋Pi−2(ψ)bic

−1
i

= (−ψ)s(i−1)(−1)⌊
i−1
2 ⌋Pi−1(ψ)c

−1
i − (−1)⌊

i
2 ⌋Pi−2(ψ)bic

−1
i (17)

> 0,
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where the last inequality follows from the minimality of i and ψ ≤ 0. We now have a contradiction and the
result follows.
(iii). Similar to (ii). When ψ = 0, however, observe that the right side of (17) is 0 for i = D, and hence
PD(0) = 0. �

Corollary 6.7 Let Γ denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenvalues k =
θ0 > θ1 > · · · > θD. Let the polynomials P0, P1, . . . , PD be as in Definition 6.2. Let θ denote a real number
in the following range: For D odd, we assume θ > θ21 or θ < θ2d, where d = (D − 1)/2. For D even, we
assume θ > θ21 or θ ≤ 0. Then Pi(θ) 6= 0 for 0 ≤ i ≤ D − 1.

7 A third family of polynomials

In this section we will use the following notation.

Notation 7.1 Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4 and eigenval-
ues k = θ0 > θ1 > · · · > θD. Let d = ⌊D/2⌋. Let the polynomials pi be as in (10), and let the polynomials
Pi be as in Definition 6.2. Let θ denote a real number in the following range: For D odd, we assume θ > θ21
or θ < θ2d. For D even, we assume θ > θ21 or θ ≤ 0. We observe that in all cases Pi(θ) 6= 0 for 0 ≤ i ≤ D− 1
by Corollary 6.7.

We now use Γ to define a family of polynomials in one variable. We call these polynomials the gi.

Definition 7.2 With reference to Notation 7.1, for 0 ≤ i ≤ D − 2 we define the polynomial gi ∈ R[λ] by

gi =

i
∑

h=0
i−h even

Ph(θ)

Pi(θ)

kibibi+1

khbhbh+1
ph. (18)

We emphasize gi depends on θ as well as the intersection numbers of Γ.

Lemma 7.3 With reference to Notation 7.1 and Definition 7.2,

pi = gi −
bibi+1

ci−1ci

Pi−2(θ)

Pi(θ)
gi−2 (2 ≤ i ≤ D − 2). (19)

Proof. Routine using Definition 7.2 and (5). �

Lemma 7.4 With reference to Notation 7.1 and Definition 7.2, the following (i), (ii) hold for 0 ≤ i ≤ D−2:

(i) The polynomial gi has degree exactly i.

(ii) The coefficient of λi in gi is (c1c2 · · · ci)
−1.

Proof. Routine. �

We now present a three-term recurrence satisfied by the polynomials gi.

Theorem 7.5 With reference to Notation 7.1 and Definition 7.2, g0 = 1 and

λgi = ci+1gi+1 + ωigi−1 (20)

for 0 ≤ i ≤ D − 2, where g−1 = 0, ω0 = 0, gD−1 = pD−1, and

ωi =
bi+1ci+2

ci

Pi−1(θ)Pi+2(θ)

Pi(θ)Pi+1(θ)
(1 ≤ i ≤ D − 2). (21)
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Proof. We find g0 = 1 by Definition 7.2. We now prove (20) by induction on i. Line (20) holds for i = 0, 1
using Definition 7.2, (12), and Definition 6.2. Next assume i ≥ 2 and by induction that

λgi−2 = ci−1gi−1 + ωi−2gi−3. (22)

Consider the right-hand side of (20). In this expression eliminate gi+1 using (19) if i < D−2 and gD−1 = pD−1

if i = D − 2. Also eliminate ωi using (21) and simplify the result using (16) to get

ci+1gi+1 + ωigi−1 = ci+1pi+1 +
bi+1θ

s(i+1)

ci

Pi−1(θ)

Pi(θ)
gi−1. (23)

Now consider the left-hand side of (20). Replacing gi in this expression using (19), and eliminating λpi,
λgi−2 in the result using (12), (22), respectively, we find

λgi = ci+1pi+1 + bi+1pi−1 +
bibi+1

ci−1ci

Pi−2(θ)

Pi(θ)
(ci−1gi−1 + ωi−2gi−3). (24)

If i > 2, in (24) we eliminate ωi−2 using (21) and then eliminate bi−1biPi−3(θ)(ci−2ci−1Pi−1(θ))
−1gi−3 in

the resulting equation using (19). If i = 2, in (24) we note ω0 = 0 and p1 = g1 in view of Definition 7.2. In
either case we find

λgi = ci+1pi+1 + bi+1
ciPi(θ) + biPi−2(θ)

ciPi(θ)
gi−1. (25)

Observe the right-hand sides of (23), (25) are equal in view of (16) and Definition 6.4, and thus the left-hand
sides are equal. We obtain (20) as desired. �

Lemma 7.6 With reference to Notation 7.1 and Definition 7.2, for 0 ≤ i ≤ D − 2 we have

c−1
i+1c

−1
i+2(λ

2 − θ)gi = pi+2 −
Pi+2(θ)

Pi(θ)
pi. (26)

Proof. We show (26) by induction on i. Line (26) holds for i = 0, 1 by Definition 7.2, (12), and Definition
6.2. Next assume i ≥ 2 and by induction that

c−1
i−1c

−1
i (λ2 − θ)gi−2 = pi −

Pi(θ)

Pi−2(θ)
pi−2. (27)

Repeatedly applying (12), we find

λ2pi = ci+1ci+2pi+2 + (ci+1bi+2 + bi+1ci)pi + bibi+1pi−2. (28)

Similarly, by repeatedly applying Lemma 6.3, we find

θPi(θ) = ci+1ci+2Pi+2(θ) + (ci+1bi+2 + bi+1ci)Pi(θ) + bibi+1Pi−2(θ). (29)

By (19), we find

gi = pi +
bibi+1

ci−1ci

Pi−2(θ)

Pi(θ)
gi−2. (30)

Using (30) to eliminate gi−2 in (27), and then applying (28), (29), we obtain (26). �

Theorem 7.7 With reference to Notation 7.1 and Definition 7.2, for 0 ≤ i, j ≤ D − 2 we have

D
∑

h=0

gi(θh)gj(θh)(k
2 − θ2h)(θ − θ2h)mh = δij |X |kibibi+1ci+1ci+2

Pi+2(θ)

Pi(θ)
. (31)
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Proof. Without loss of generality, we may assume i ≤ j. First we eliminate gi(θh) and gj(θh)(θ − θ2h) in
the left-hand side of (31) by using Definition 7.2 and (26), respectively. Simplifying the resulting expression
using (13) and the fact that i ≤ j, we obtain the right-hand side of (31). The result follows. �

We finish this section with a comment.

Lemma 7.8 With reference to Notation 7.1 and Definition 7.2, assume D is even and θ = 0. Then
gD−2(θh) = 0 for 1 ≤ h ≤ D − 1, h 6= d.

Proof. Recall θd = 0 by Lemma 3.2. Setting i = j = D − 2 and θ = 0 in (31), we find

D−1
∑

h=1
h6=d

θ2hg
2
D−2(θh)(k

2 − θ2h)mh = −|X |kD−2bD−2bD−1cD−1cD
PD(0)

PD−2(0)
. (32)

In (32) the right-hand side is zero by Lemma 6.6. In the left-hand side each summand is nonnegative so each
summand is zero. In each summand the factor θ2h(k

2 − θ2h)mh is nonzero so the remaining factor gD−2(θh)
is zero. The result follows. �

8 The subconstituent algebra and its modules

In this section we recall some definitions and basic concepts concerning the subconstituent algebra and its
modules. For more information we refer the reader to [4], [9], [10], [23], [26], [31].

Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. We recall the dual Bose-Mesner
algebra of Γ. From now on we fix a vertex x ∈ X. For 0 ≤ i ≤ D let E∗

i = E∗
i (x) denote the diagonal matrix

in MatX(C) with yy entry

(E∗
i )yy =

{

1, if ∂(x, y) = i
0, if ∂(x, y) 6= i

(y ∈ X). (33)

We call E∗
i the ith dual idempotent of Γ with respect to x. We observe (di)

∑D
i=0 E

∗
i = I; (dii) E∗

i = E∗
i (0 ≤

i ≤ D); (diii) E∗t
i = E∗

i (0 ≤ i ≤ D); (div) E∗
i E

∗
j = δijE

∗
i (0 ≤ i, j ≤ D). Using (di) and (div) we find

E∗
0 , E

∗
1 , . . . , E

∗
D form a basis for a commutative subalgebra M∗ =M∗(x) of MatX(C). We call M∗ the dual

Bose-Mesner algebra of Γ with respect to x. We recall the subconstituents of Γ. Using (33) we find

E∗
i V = span {ŷ | y ∈ X, ∂(x, y) = i} (0 ≤ i ≤ D). (34)

By (34) and since {ŷ | y ∈ X} is an orthonormal basis for V we find

V = E∗
0V + E∗

1V + · · ·+ E∗
DV (orthogonal direct sum).

Combining (34) and (4) we find the dimension of E∗
i V is ki for 0 ≤ i ≤ D. We call E∗

i V the ith subconstituent
of Γ with respect to x.

We recall how M and M∗ are related. By [31, Lemma 3.2],

E∗
hAiE

∗
j = 0 if and only if phij = 0 (0 ≤ h, i, j ≤ D). (35)

Combining (35) and (3) we find

E∗
i AE

∗
j = 0 if |i− j| > 1 (0 ≤ i, j ≤ D). (36)

Let T = T (x) denote the subalgebra of MatX(C) generated by M and M∗. We call T the subconstituent
algebra of Γ with respect to x [31]. We observe T has finite dimension. Moreover T is semi-simple; the reason
is that T is closed under the conjugate-transpose map [18, p. 157].
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We now consider the modules for T. By a T-module we mean a subspace W ⊆ V such that BW ⊆ W for
all B ∈ T. We refer to V itself as the standard module for T. Let W denote a T -module. Then W is said to
be irreducible whenever W is nonzero and W contains no T -modules other than 0 and W. Let W,W ′ denote
T -modules. By an isomorphism of T -modules from W to W ′ we mean an isomorphism of vector spaces
σ : W →W ′ such that

(σB −Bσ)W = 0 for all B ∈ T.

The modules W,W ′ are said to be isomorphic as T -modules whenever there exists an isomorphism of T -
modules from W to W ′.

Let W denote a T -module and let W ′ denote a T -module contained in W . Using (1) we find the orthogonal
complement of W ′ in W is a T -module. It follows that each T -module is an orthogonal direct sum of irre-
ducible T -modules. We mention any two nonisomorphic irreducible T -modules are orthogonal [18, Chapter
IV].

Let W denote an irreducible T -module. Using (di)–(div) above we find W is the direct sum of the nonzero
spaces among E∗

0W,E
∗
1W, . . . , E

∗
DW . Similarly using (eii)–(ev) we find W is the direct sum of the nonzero

spaces among E0W,E1W, . . . , EDW . If the dimension of E∗
iW is at most 1 for 0 ≤ i ≤ D then the dimension

of EiW is at most 1 for 0 ≤ i ≤ D [31, Lemma 3.9]; in this case we say W is thin. Let W denote an
irreducible T -module. By the endpoint of W we mean

min {i | 0 ≤ i ≤ D, E∗
iW 6= 0}.

For the rest of the paper we adopt the following notational convention.

Definition 8.1 Let Γ = (X,R) denote a bipartite distance-regular graph with diameter D ≥ 4, valency
k ≥ 3, intersection numbers bi, ci, distance matrices Ai, Bose-Mesner algebra M , and eigenvalues θ0 > θ1 >
· · · > θD. For 0 ≤ i ≤ D we let Ei denote the primitive idempotent of Γ associated with θi. We define
d = ⌊D/2⌋. We fix x ∈ X and abbreviate E∗

i = E∗
i (x) (0 ≤ i ≤ D), M∗ = M∗(x), T = T (x). We let V

denote the standard module for Γ. We define

si =
∑

y∈X

∂(x,y)=i

ŷ (0 ≤ i ≤ D). (37)

9 The T -module of endpoint 0

With reference to Definition 8.1, there exists a unique irreducible T -module with endpoint 0 [21, Proposition
8.4]. We call this module V0. The module V0 is described in [9], [21]. We summarize some details below in
order to motivate the results that follow.

The module V0 is thin. In fact each of EiV0, E
∗
i V0 has dimension 1 for 0 ≤ i ≤ D. We give two bases

for V0. The vectors E0x̂, E1x̂, . . . , EDx̂ form a basis for V0. These vectors are mutually orthogonal and
‖Eix̂‖

2 = mi|X |−1 for 0 ≤ i ≤ D. To motivate the second basis we make some comments. For 0 ≤ i ≤ D
we have si = Aix̂. Moreover si = E∗

i δ, where δ =
∑

y∈X ŷ. The vectors s0, s1, . . . , sD form a basis for V0.

These vectors are mutually orthogonal and ‖si‖
2 = ki for 0 ≤ i ≤ D. With respect to the basis s0, s1, . . . , sD

the matrix representing A is

















0 b0 0
c1 0 b1

c2 · ·
· · ·

· · bD−1

0 cD 0

















.
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The two bases for V0 given above are related as follows. For 0 ≤ i ≤ D we have

si =
D
∑

h=0

fi(θh)Ehx̂,

where the polynomial fi is from (9).

10 The T -modules of endpoint 1

With reference to Definition 8.1, there exists, up to isomorphism, a unique irreducible T -module with end-
point 1 [9, Corollary 7.7]. We call this module V1. The module V1 is described in [9], [24]. We summarize
some details below.

The module V1 is thin with dimension D − 1. We give two bases for V1. Let v denote a nonzero vector in
E∗

1V1. The vectors
Eiv (1 ≤ i ≤ D − 1) (38)

form a basis for V1 and E0v = 0, EDv = 0. The vectors in (38) are mutually orthogonal and

||Eiv||
2 =

mi(k
2 − θ2i )

|X |k(k − 1)
||v||2 (1 ≤ i ≤ D − 1).

To motivate the second basis we make some comments. We have E∗
i+1Aiv = pi(A)v for 0 ≤ i ≤ D−1, where

the pi are from (10). The vectors
E∗

i+1Aiv (0 ≤ i ≤ D − 2) (39)

form a basis for V1 and E∗
DAD−1v = 0. The vectors in (39) are mutually orthogonal and

||E∗
i+1Aiv||

2 =
b2 · · · bi+1

c1 · · · ci
||v||2 (0 ≤ i ≤ D − 2).

With respect to the basis (39) the matrix representing A is

















0 b2 0
c1 0 b3

c2 · ·
· · ·

· · bD−1

0 cD−2 0

















.

The two bases for V1 given above are related as follows. For 0 ≤ i ≤ D − 2 we have

E∗
i+1Aiv =

D−1
∑

h=1

pi(θh)Ehv.

We comment that V1 appears in V with multiplicity k − 1. We will need the following result.

Corollary 10.1 With reference to Definition 8.1, let W denote an irreducible T -module with endpoint 1.
Observe E∗

2W is an eigenspace for E∗
2A2E

∗
2 . The corresponding eigenvalue is b3 − 1.

Proof. The desired eigenvalue is the entry in the second row and second column of the matrix representing A2

with respect to the basis (39). To compute this entry, first set i = 1 in (8) and observe that c2A2 = A2− kI.
Using this fact and the above matrix display of A, we verify the specified matrix entry is b3 − 1. �
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11 The local eigenvalues

A bit later in this paper we will consider the thin irreducible T -modules with endpoint 2. In order to discuss
these we recall the local eigenvalues.

Definition 11.1 With reference to Definition 8.1, we let Γ2
2 = Γ2

2(x) denote the graph (X̆, R̆), where

X̆ = {y ∈ X | ∂(x, y) = 2},

R̆ = {yz | y, z ∈ X̆, ∂(y, z) = 2},

where we recall ∂ denotes the path-length distance function for Γ. The graph Γ2
2 has exactly k2 vertices,

where k2 is the second valency of Γ. Also, Γ2
2 is regular with valency p222. We let Ă denote the adjacency

matrix of Γ2
2. The matrix Ă is symmetric with real entries; therefore Ă is diagonalizable with all eigenvalues

real. We let η1, η2, . . . , ηk2 denote the eigenvalues of Ă. We call η1, η2, . . . , ηk2 the local eigenvalues of Γ with
respect to x.

With reference to Definition 8.1, we consider the second subconstituent E∗
2V . We recall the dimension of

E∗
2V is k2. Observe E∗

2V is invariant under the action of E∗
2A2E

∗
2 . To illuminate this action we make an

observation. For an appropriate ordering of the vertices of Γ we have

E∗
2A2E

∗
2 =

(

Ă 0
0 0

)

,

where Ă is from Definition 11.1. Apparently the action of E∗
2A2E

∗
2 on E∗

2V is essentially the adjacency map
for Γ2

2. In particular the action of E∗
2A2E

∗
2 on E∗

2V is diagonalizable with eigenvalues η1, η2, . . . , ηk2 . We
observe the vector s2 from (37) is contained in E∗

2V . One may easily show that s2 is an eigenvector for
E∗

2A2E
∗
2 with eigenvalue p222. Let v denote a vector in E∗

2V . We observe the following are equivalent: (i) v is
orthogonal to s2; (ii) E0v = 0; (iii) Jv = 0; (iv) EDv = 0; (v) J ′v = 0. Let V1 denote an irreducible T -module
of endpoint 1, and let v denote a vector in E∗

2V1. By Corollary 10.1, v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue b3−1. Reordering the local eigenvalues if necessary, we have η1 = p222 and ηi = b3−1 (2 ≤ i ≤ k).
For the rest of this paper we assume the local eigenvalues of Γ are ordered in this way.

We now need some notation.

Definition 11.2 With reference to Definition 8.1, let Y denote the subspace of V spanned by the irreducible
T -modules with endpoint 1. We define U to be the orthogonal complement of E∗

2V0 + E∗
2Y in E∗

2V .

Definition 11.3 With reference to Definition 8.1, let Φ denote the set of distinct scalars among ηk+1,ηk+2,. . .,
ηk2 , where the ηi are from Definition 11.1. For η ∈ R we let multη denote the number of times η appears
among ηk+1, ηk+2, . . . , ηk2 . We observe multη 6= 0 if and only if η ∈ Φ.

Using (1) we find U is invariant under E∗
2A2E

∗
2 . Apparently the restriction of E∗

2A2E
∗
2 to U is diagonalizable

with eigenvalues ηk+1, ηk+2, . . . , ηk2 . For η ∈ R let Uη denote the set consisting of those vectors in U that
are eigenvectors for E∗

2A2E
∗
2 with eigenvalue η. We observe Uη is a subspace of U with dimension multη.

We emphasize the following are equivalent: (i) multη 6= 0; (ii) Uη 6= 0; (iii) η ∈ Φ. By (1) and since E∗
2A2E

∗
2

is symmetric with real entries we find

U =
∑

η∈Φ

Uη (orthogonal direct sum). (40)

Definition 11.4 With reference to Definition 8.1, for all z ∈ C ∪∞ we define

z̃ =







−1− b2b3
z2−b2

, if z 6= ∞, z2 6= b2
∞, if z2 = b2
−1, if z = ∞.
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Note 11.5 With reference to Definition 8.1, neither of θ21 , θ
2
d is equal to b2 by Lemma 3.4, so

θ̃1 = −1− b2b3(θ
2
1 − b2)

−1, θ̃d = −1− b2b3(θ
2
d − b2)

−1. (41)

By the data in Lemma 3.4 we have θ̃1 < −1. Moreover θ̃d > b3 − 1 if D is odd and θ̃d = b3 − 1 if D is even.
In either case θ̃d ≥ 0.

Lemma 11.6 [28, Theorem 11.4] With reference to Definitions 8.1 and 11.1, we have θ̃1 ≤ ηi ≤ θ̃d for
k + 1 ≤ i ≤ k2.

We remark on the case of equality in the above lemma.

Lemma 11.7 [28, Lemma 11.5] With reference to Definition 8.1, let v denote a nonzero vector in U . Then
(i)–(vi) hold below:

(i) E0v = 0 and EDv = 0.

(ii) For 1 ≤ i ≤ D − 1, Eiv 6= 0 provided i is not among 1, d,D − d,D − 1.

(iii) E1v = 0 if and only if v ∈ Uθ̃1
.

(iv) ED−1v = 0 if and only if v ∈ Uθ̃1
.

(v) Edv = 0 if and only if v ∈ Uθ̃d
.

(vi) ED−dv = 0 if and only if v ∈ Uθ̃d
.

Corollary 11.8 [28, Corollary 11.6] With reference to Definition 8.1, let v denote a nonzero vector in U .
Then (i)–(iv) hold below:

(i) If v ∈ Uθ̃1
then Mv has dimension D − 3.

(ii) If v ∈ Uθ̃d
and D is odd, then Mv has dimension D − 3.

(iii) If v ∈ Uθ̃d
and D is even, then Mv has dimension D − 2.

(iv) If v /∈ Uθ̃1
and v /∈ Uθ̃d

then Mv has dimension D − 1.

Definition 11.9 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint
2. Observe E∗

2W is a 1-dimensional eigenspace for E∗
2A2E

∗
2 ; let η denote the corresponding eigenvalue. We

observe E∗
2W is contained in E∗

2V and is orthogonal to any irreducible T -module with endpoint 0 or 1, so
E∗

2W ⊆ Uη. Apparently Uη 6= 0 so η is among ηk+1, ηk+2, . . . , ηk2 . We have θ̃1 ≤ η ≤ θ̃d by Lemma 11.6.
We refer to η as the local eigenvalue of W .

With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2 and local
eigenvalue η. In order to describe W we distinguish four cases: (i) η = θ̃1; (ii) D is odd and η = θ̃d; (iii) D
is even and η = θ̃d; (iv) θ̃1 < η < θ̃d. For cases (i), (ii) the module W was described by the present authors
in [28]; we summarize these results in the following section. For cases (iii), (iv) we describe W in Sections
14 and 16.

12 Some thin irreducible T -modules with endpoint 2

In this section we summarize some results from [28] concerning the thin irreducible T -modules with endpoint
2 and local eigenvalue η, where η = θ̃1, or η = θ̃d with D odd.

With reference to Definition 8.1, choose n ∈ {1, d} if D is odd, and let n = 1 if D is even. Define η = θ̃n.
Let W denote a thin irreducible T -module with endpoint 2 and local eigenvalue η. The dimension of W is
D − 3. For 0 ≤ i ≤ D, E∗

iW is zero if i ∈ {0, 1, D − 1, D}, and has dimension 1 if i 6∈ {0, 1, D − 1, D}.
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Moreover EiW is zero if i ∈ {0, n,D − n,D}, and has dimension 1 if i 6∈ {0, n,D − n,D}. Let v denote a
nonzero vector in E∗

2W . Then W =Mv. The vectors

Eiv (1 ≤ i ≤ D − 1, i 6= n, i 6= D − n) (42)

form a basis for W , and each of E0v, Env, ED−nv, EDv is zero. The vectors in (42) are mutually orthogonal
and

‖Eiv‖
2 =

mi(θ
2
i − k2)(θ2i − θ2n)

|X |kb1(θ2n − b2)
‖v‖2 (1 ≤ i ≤ D − 1, i 6= n, i 6= D − n).

We mention a second basis for W . To motivate things we remark

E∗
i+2Aiv =

i
∑

h=0
i−h even

ph(θn)

pi(θn)

kibibi+1

khbhbh+1
ph(A)v (0 ≤ i ≤ D − 2).

The vectors
E∗

i+2Aiv (0 ≤ i ≤ D − 4) (43)

form a basis for W , and E∗
D−1AD−3v = 0, E∗

DAD−2v = 0. The vectors in (43) are mutually orthogonal and

‖E∗
i+2Aiv‖

2 =
kibibi+1ci+1ci+2

kb1(θ2n − b2)

pi+2(θn)

pi(θn)
‖v‖2 (0 ≤ i ≤ D − 4).

With respect to the basis given in (43) the matrix representing A is
















0 w1 0
c1 0 w2

c2 · ·
· · ·

· · wD−4

0 cD−4 0

















,

where

wi =
bi+1ci+2

ci

pi−1(θn)pi+2(θn)

pi(θn)pi+1(θn)
(1 ≤ i ≤ D − 4).

The bases for W given in (42), (43) are related as follows. For 0 ≤ i ≤ D − 4 we have

E∗
i+2Aiv =

∑

1≤j≤D−1
j 6=n, j 6=D−n

γi(θj)Ejv,

where

γi =

i
∑

h=0
i−h even

ph(θn)

pi(θn)

kibibi+1

khbhbh+1
ph.

We finish this section with a comment.

Lemma 12.1 [28, Theorem 12.9] With reference to Definition 8.1, let v denote a nonzero vector in U . Let
n ∈ {1, d} if D is odd, and let n = 1 if D is even. Assume v is an eigenvector for E∗

2A2E
∗
2 with eigenvalue

θ̃n. Then Mv is a thin irreducible T -module with endpoint 2 and local eigenvalue θ̃n.

13 The space Mv when D is even and v ∈ Uθ̃d

With reference to Definition 8.1, assume D is even. One of our ultimate goals in this paper is to describe
the thin irreducible T -modules with endpoint 2 and local eigenvalue θ̃d. Before we get to this, we find it
illuminating to consider a more general type of space. Let v denote a nonzero vector in U and assume v is an
eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. In this section we investigate the space Mv. We

present two orthogonal bases for Mv which we find attractive. Recall that since D is even, we have θd = 0
and thus θ̃d = b3 − 1.

16



Theorem 13.1 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector
in U . Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. Then the vectors Eiv

(1 ≤ i ≤ D − 1, i 6= d) form a basis for Mv. Moreover E0v = 0, Edv = 0, EDv = 0.

Proof. Recall E0, E1, . . . , ED form a basis for M . Observe E0v = 0, Edv = 0, EDv = 0 by Lemma 11.7 so
the vectors Eiv (1 ≤ i ≤ D − 1, i 6= d) span Mv. These vectors are nonzero by Lemma 11.7 and mutually
orthogonal by (6), so they are linearly independent. The result follows. �

Theorem 13.2 [28, Theorem 11.2] With reference to Definition 8.1, assume D is even, and let v denote a
nonzero vector in U . Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. Then the

vectors Eiv (1 ≤ i ≤ D− 1, i 6= d) are mutually orthogonal. Moreover the square-norms of these vectors are
given as follows:

‖Eiv‖
2 =

mi(k − θi)(k + θi)θ
2
i

|X |kb1b2
‖v‖2 (1 ≤ i ≤ D − 1, i 6= d).

(The scalar mi denotes the multiplicity of θi.)

Referring to Theorem 13.1, we now consider a second basis for Mv.

Definition 13.3 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector
in U . Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. We define the vectors

v0, v1, . . . , vD−2 by

vi =

i
∑

h=0
i−h even

Ph(0)

Pi(0)

kibibi+1

khbhbh+1
ph(A)v (0 ≤ i ≤ D − 2). (44)

(The polynomials pi are from (10), and the Pi are from (15).) The denominators in (44) are nonzero by
Corollary 6.7.

Theorem 13.4 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector in
U . Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. Then with reference to (44),

the vectors v0, v1, . . . , vD−3 form a basis for Mv and vD−2 = 0.

Proof. By Theorem 13.1 we find Mv has dimension D − 2. By this and since A generates M , we find Mv
has a basis v,Av, . . . , AD−3v. For 0 ≤ i ≤ D − 3 the vector vi is contained in the span of v,Av, . . . , Aiv
but not in the span of v,Av, . . . , Ai−1v. It follows that v0, v1, . . . , vD−3 form a basis for Mv. To see that
vD−2 = 0, first let gD−2 denote the polynomial from Definition 7.2, where θ = 0. Comparing (18), (44)

we find vD−2 = gD−2(A)v. Using this and (eii) we routinely obtain vD−2 =
∑D

j=0 gD−2(θj)Ejv. Applying
Lemma 7.8 and Theorem 13.1, we find vD−2 = 0. �

With reference to Definition 13.3, we will show the vectors v0, v1, . . . , vD−3 are mutually orthogonal and we
will compute their square-norms. To do this we need the following result.

Theorem 13.5 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector in U .
Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. Let the vectors v0, v1, . . . , vD−3

be as in Definition 13.3. Then for 0 ≤ i ≤ D − 3 we have

vi =

D−1
∑

j=1
j 6=d

gi(θj)Ejv, (45)

where

gi =

i
∑

h=0
i−h even

Ph(0)

Pi(0)

kibibi+1

khbhbh+1
ph. (46)
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Proof. Let the integer i be given. Comparing (44), (46) we find vi = gi(A)v. Using this and (eii) we routinely

obtain vi =
∑D

j=0 gi(θj)Ejv. Line (45) follows since E0v = 0, Edv = 0, EDv = 0 by Theorem 13.1. �

Theorem 13.6 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector in U .
Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. Then the vectors v0, v1, . . . , vD−3

from Definition 13.3 are mutually orthogonal. Moreover the square-norms of these vectors are given as
follows:

‖vi‖
2 = −

kibibi+1ci+1ci+2

kb1b2

Pi+2(0)

Pi(0)
‖v‖2 (0 ≤ i ≤ D − 3). (47)

Proof. Let the polynomials g0, g1, . . . , gD−3 be as in (46). Using in order Theorem 13.5, Theorem 13.2, and
Theorem 7.7, we find that for 0 ≤ i, j ≤ D − 3,

〈vi, vj〉 =

D−1
∑

h=1
h6=d

gi(θh)gj(θh)‖Ehv‖
2

=

D−1
∑

h=1
h6=d

gi(θh)gj(θh)
mh(k − θh)(k + θh)θ

2
h

|X |kb1b2
‖v‖2

= −δij
kibibi+1ci+1ci+2

kb1b2

Pi+2(0)

Pi(0)
‖v‖2.

Apparently v0, v1, . . . , vD−3 are mutually orthogonal and satisfy (47). �

Theorem 13.7 With reference to Definition 8.1, assume D is even, and let v denote a nonzero vector in
U . Assume v is an eigenvector for E∗

2A2E
∗
2 with corresponding eigenvalue θ̃d. With respect to the basis

v0, v1, . . . , vD−3 for Mv given in Definition 13.3 the matrix representing A is

















0 ω1 0
c1 0 ω2

c2 · ·
· · ·

· · ωD−3

0 cD−3 0

















,

where

ωi =
bi+1ci+2

ci

Pi−1(0)Pi+2(0)

Pi(0)Pi+1(0)
(1 ≤ i ≤ D − 3). (48)

Proof. For 0 ≤ i ≤ D−2 we define gi as in Definition 7.2, where θ = 0. Setting λ = A and θ = 0 in Theorem
7.5 we find

Agi(A) = ci+1gi+1(A) + ωigi−1(A) (0 ≤ i ≤ D − 3), (49)

where g−1 = 0, ω0 = 0, and the ωi are from (48). Observe gi(A)v = vi for 0 ≤ i ≤ D − 2. Applying (49) to
v, and simplifying the result using these comments, we find

Avi = ci+1vi+1 + ωivi−1 (0 ≤ i ≤ D − 3),

where v−1 = 0. The result follows from this and since vD−2 = 0 by Theorem 13.4. �
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14 The thin irreducible T -modules with endpoint 2 and local eigen-

value θ̃d, when D is even

With reference to Definition 8.1, assume D is even. We now describe the thin irreducible T -modules with
endpoint 2 and local eigenvalue θ̃d. This section contains some of our main results. Because of this we have
tried to make it as self-contained as possible.

Theorem 14.1 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Let v denote a nonzero vector in E∗

2W . Then W =Mv.
The vectors

Eiv (1 ≤ i ≤ D − 1, i 6= d) (50)

form a basis for W and E0v = 0, Edv = 0, EDv = 0.

Proof. We first show W =Mv. From the construction Mv is nonzero and contained in W . Consequently in
order to show Mv =W , it suffices to show Mv is a T -module. By construction Mv is closed under multipli-
cation by M . We now show that Mv is closed under multiplication by M∗. By Definition 11.9 the vector v
is contained in U . Moreover v is an eigenvector for E∗

2A2E
∗
2 with eigenvalue θ̃d. Observe that Mv has basis

v,Av, . . . , AD−3v by Definition 13.3 and Theorem 13.4. Using this and (36) we find Mv ⊆
∑D−1

h=2 E
∗
hW .

Observe the dimension of Mv is D − 2 and the dimension of
∑D−1

h=2 E
∗
hW is at most D − 2. Therefore

Mv =
∑D−1

h=2 E
∗
hW . From this we find Mv is closed under multiplication by M∗ as desired. We have shown

that Mv is a nonzero T -submodule of W so Mv = W by the irreducibility of W . The remaining assertions
of the present theorem follow in view of Theorem 13.1. �

Theorem 14.2 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Then the basis vectors for W from (50) are mutually
orthogonal. Moreover the square-norms of these vectors are given as follows:

‖Eiv‖
2 =

mi(k − θi)(k + θi)θ
2
i

|X |kb1b2
‖v‖2 (1 ≤ i ≤ D − 1, i 6= d).

(The scalar mi denotes the multiplicity of θi.)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. Applying Theorem 13.2 we obtain the result. �

Theorem 14.3 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Let v denote a nonzero vector in E∗

2W . Then

E∗
i+2Aiv =

i
∑

h=0
i−h even

Ph(0)

Pi(0)

kibibi+1

khbhbh+1
ph(A)v (0 ≤ i ≤ D − 2). (51)

Moreover, each side of (51) is zero for i = D − 2. (The polynomials pi are from (10), and the Pi are from
(15).)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. Let the vectors v0, v1, . . . , vD−2 be as in Definition 13.3. We show E∗
i+2Aiv = vi for 0 ≤ i ≤

D− 2. Using (36) we find Aiv is contained in E∗
2W + · · ·+E∗

i+2W for 0 ≤ i ≤ D− 2. Also for 0 ≤ i ≤ D− 2,
vi is a linear combination of v,Av, . . . , Aiv, so vi is contained in E∗

2W + · · · + E∗
i+2W . By this and since

v0, v1, . . . , vD−3 are linearly independent, we find

v0, v1, . . . , vi is a basis for E∗
2W + E∗

3W + · · ·+ E∗
i+2W (0 ≤ i ≤ D − 3). (52)
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For the rest of this proof, fix an integer i (0 ≤ i ≤ D − 2). We show vi is contained in E∗
i+2W . To see this,

recall E∗
2W, . . . , E

∗
DW are mutually orthogonal. Therefore E∗

i+2W is equal to the orthogonal complement
of E∗

2W + · · ·+ E∗
i+1W in E∗

2W + · · ·+ E∗
i+2W . Recall vi is orthogonal to each of v0, v1, . . . , vi−1. By (52)

the vectors v0, v1, . . . , vi−1 form a basis for E∗
2W + · · ·+E∗

i+1W so vi is orthogonal to E
∗
2W + · · ·+E∗

i+1W .
Apparently vi is contained in E∗

i+2W as desired. We show E∗
i+2Aiv = vi. We mentioned the vector vi is a

linear combination of v,Av, . . . , Aiv. In this combination the coefficient of Aiv is (c1c2 · · · ci)
−1 in view of

Lemma 7.4(ii). Similarly Aiv is a linear combination of v,Av, . . . , Aiv, and in this combination the coefficient
of Aiv is (c1c2 · · · ci)

−1. Apparently Aiv − vi is a linear combination of v,Av, . . . , Ai−1v. From this and our
above comments Aiv− vi is contained in E∗

2W + · · ·+E∗
i+1W so E∗

i+2(Aiv− vi) is zero. We already showed
vi ∈ E∗

i+2W so E∗
i+2vi = vi. Now E∗

i+2Aiv = vi as desired. Recall vD−2 = 0 by Theorem 13.4, so both sides
of (51) are zero for i = D − 2. �

Theorem 14.4 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Let v denote a nonzero vector in E∗

2W . Then the vectors

E∗
i+2Aiv (0 ≤ i ≤ D − 3) (53)

form a basis for W .

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. Let the vectors v0, v1, . . . , vD−3 be as in Definition 13.3. By Theorem 13.4 the vectors
v0, v1, . . . , vD−3 form a basis for Mv. Recall Mv =W by Theorem 14.1 so v0, v1, . . . , vD−3 form a basis for
W . By Theorem 14.3 vi = E∗

i+2Aiv for 0 ≤ i ≤ D − 3 and the result follows. �

Theorem 14.5 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible T -
module with endpoint 2 and local eigenvalue θ̃d. Then the vectors in (53) are mutually orthogonal. Moreover
the square-norms of these vectors are given as follows:

‖E∗
i+2Aiv‖

2 = −
kibibi+1ci+1ci+2

kb1b2

Pi+2(0)

Pi(0)
‖v‖2 (0 ≤ i ≤ D − 3).

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. The result follows in view of Theorem 13.6 and Theorem 14.3. �

Theorem 14.6 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. With respect to the basis for W given in (53) the matrix
representing A is

















0 ω1 0
c1 0 ω2

c2 · ·
· · ·

· · ωD−3

0 cD−3 0

















,

where

ωi =
bi+1ci+2

ci

Pi−1(0)Pi+2(0)

Pi(0)Pi+1(0)
(1 ≤ i ≤ D − 3). (54)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. The result follows in view of Theorem 13.7 and Theorem 14.3. �
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Theorem 14.7 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Let v denote a nonzero vector in E∗

2W . Then for
0 ≤ i ≤ D − 3 we have

E∗
i+2Aiv =

D−1
∑

j=1
j 6=d

gi(θj)Ejv,

where

gi =
i

∑

h=0
i−h even

Ph(0)

Pi(0)

kibibi+1

khbhbh+1
ph.

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue θ̃d. The result follows in view of Theorem 13.5 and Theorem 14.3. �

In summary we have the following theorem.

Theorem 14.8 With reference to Definition 8.1, assume D is even, and let W denote a thin irreducible
T -module with endpoint 2 and local eigenvalue θ̃d. Then W has dimension D − 2. For 0 ≤ i ≤ D, E∗

iW is
zero if i ∈ {0, 1, D} and has dimension 1 if 2 ≤ i ≤ D − 1. Moreover EiW is zero if i ∈ {0, d,D} and has
dimension 1 if 1 ≤ i ≤ D − 1, i 6= d.

Proof. The dimension of W is D − 2 by Theorem 14.1. Fix an integer i (0 ≤ i ≤ D). From Theorem 14.4
we find E∗

iW is zero if i ∈ {0, 1, D} and has dimension 1 if 2 ≤ i ≤ D− 1. From Theorem 14.1 we find EiW
is zero if i ∈ {0, d,D} and has dimension 1 if 1 ≤ i ≤ D − 1, i 6= d. �

15 The space Mv for v ∈ Uη (θ̃1 < η < θ̃d)

With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an eigenvector for E∗
2A2E

∗
2 ,

and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. Given these assumptions we will
examine the space Mv.

Theorem 15.1 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. Then the

vectors E1v, E2v, . . . , ED−1v form a basis for Mv. Moreover E0v = 0, EDv = 0.

Proof. Recall E0, E1, . . . , ED form a basis for M . Observe E0v = 0, EDv = 0 by Lemma 11.7 so
E1v, E2v, . . . , ED−1v span Mv. These vectors are nonzero by Lemma 11.7 and mutually orthogonal by
(6), so they are linearly independent. The result follows. �

Theorem 15.2 [28, Theorem 11.2] With reference to Definition 8.1, let v denote a nonzero vector in U .
Assume v is an eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d.

Then the vectors E1v, E2v, . . . , ED−1v are mutually orthogonal. Moreover the square-norms of these vectors
are given as follows:

(i) Assume η 6= −1. Then

‖Eiv‖
2 =

mi(θi − k)(θi + k)(θ2i − ψ)

|X |kb1(ψ − b2)
‖v‖2 (1 ≤ i ≤ D − 1), (55)

where

ψ = b2

(

1−
b3

1 + η

)

. (56)

We remark the denominator in (55) is nonzero by (56).
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(ii) Assume η = −1. Then

‖Eiv‖
2 =

mi(k − θi)(k + θi)

|X |kb1
‖v‖2 (1 ≤ i ≤ D − 1).

(The scalar mi denotes the multiplicity of θi.)

As we proceed in this section, we will encounter scalars of the form Pi(ψ) in the denominator of some rational
expressions. To make it clear these scalars are nonzero we present the following result.

Lemma 15.3 With reference to Definition 8.1, let η denote a real number such that η 6= −1 and θ̃1 < η < θ̃d,
and let ψ be as in (56). Then (i)–(iii) hold below:

(i) Assume θ̃1 < η < −1. Then ψ > θ21 and Pi(ψ) > 0 for 0 ≤ i ≤ D.

(ii) Assume −1 < η < θ̃d. Then ψ < θ2d and (−1)⌊
i
2 ⌋Pi(ψ) > 0 for 0 ≤ i ≤ D.

(iii) Pi(ψ) 6= 0 for 0 ≤ i ≤ D.

Proof. (i) Combining the inequalities θ̃1 < η < −1 with (41), (56), and using Lemma 3.4, we routinely find
ψ > θ21. Thus Pi(ψ) > 0 (0 ≤ i ≤ D) by Lemma 6.6(i).
(ii) Combining the inequalities −1 < η < θ̃d with (41), (56), and using Lemma 3.4, we routinely find ψ < θ2d.

Thus (−1)⌊
i
2 ⌋Pi(ψ) > 0 (0 ≤ i ≤ D) by Lemma 6.6(ii),(iii).

(iii) Immediate from (i), (ii) above. �

Referring to Theorem 15.1, we now consider a second basis for Mv.

Definition 15.4 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. We define the

vectors v0, v1, . . . , vD−2 as follows:

(i) Suppose η 6= −1. Then

vi =

i
∑

h=0
i−h even

Ph(ψ)

Pi(ψ)

kibibi+1

khbhbh+1
ph(A)v (0 ≤ i ≤ D − 2), (57)

where ψ is from (56).

(ii) Suppose η = −1. Then vi = pi(A)v for 0 ≤ i ≤ D − 2.

(The polynomials pi are from (10), and the Pi are from (15).)

Theorem 15.5 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. Then the

vectors v0, v1, . . . , vD−2 from Definition 15.4 form a basis for Mv.

Proof. By Theorem 15.1 we find Mv has dimension D − 1. By this and since A generates M , we find Mv
has a basis v,Av, . . . , AD−2v. For 0 ≤ i ≤ D− 2 the vector vi is contained in the span of v,Av, . . . , Aiv but
not in the span of v,Av, . . . , Ai−1v. It follows that v0, v1, . . . , vD−2 form a basis for Mv. �

With reference to Definition 15.4, we will show that the vectors v0, v1, . . . , vD−2 are mutually orthogonal and
we will compute their square-norms. To do this we need the following result.

Theorem 15.6 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. Let the vectors

v0, v1, . . . , vD−2 be as in Definition 15.4.
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(i) Suppose η 6= −1. Then for 0 ≤ i ≤ D − 2 we have

vi =

D−1
∑

j=1

gi(θj)Ejv, (58)

where

gi =
i

∑

h=0
i−h even

Ph(ψ)

Pi(ψ)

kibibi+1

khbhbh+1
ph (59)

and ψ is from (56).

(ii) Suppose η = −1. Then

vi =

D−1
∑

j=1

pi(θj)Ejv (0 ≤ i ≤ D − 2).

Proof. (i) Let the integer i be given. Comparing (57), (59) we find vi = gi(A)v. Using this and (eii) we

routinely obtain vi =
∑D

j=0 gi(θj)Ejv. Line (58) follows since E0v = 0, EDv = 0 by Lemma 11.7(i).
(ii) Similar to the proof of (i) above. �

Theorem 15.7 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. Then the

vectors v0, v1, . . . , vD−2 from Definition 15.4 are mutually orthogonal. Moreover the square-norms of these
vectors are given as follows:

(i) Suppose η 6= −1. Then

‖vi‖
2 =

kibibi+1ci+1ci+2

kb1(ψ − b2)

Pi+2(ψ)

Pi(ψ)
‖v‖2 (0 ≤ i ≤ D − 2), (60)

where ψ is from (56).

(ii) Suppose η = −1. Then

‖vi‖
2 =

kibibi+1

kb1
‖v‖2 (0 ≤ i ≤ D − 2).

Proof. (i) Let the polynomials g0, g1, . . . , gD−2 be as in (59). Using in order Theorem 15.6, Theorem 15.2,
and Theorem 7.7, we find that for 0 ≤ i, j ≤ D − 2,

〈vi, vj〉 =

D−1
∑

h=1

gi(θh)gj(θh)‖Ehv‖
2

=

D−1
∑

h=1

gi(θh)gj(θh)
mh(θh − k)(θh + k)(θ2h − ψ)

|X |kb1(ψ − b2)
‖v‖2

= δij
kibibi+1ci+1ci+2

kb1(ψ − b2)

Pi+2(ψ)

Pi(ψ)
‖v‖2.

Apparently v0, v1, . . . , vD−2 are mutually orthogonal and satisfy (60).

(ii) The argument is similar to (i) above, with the pi taking the place of the gi and Lemma 4.1 taking the
place of Theorem 7.7. �
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Theorem 15.8 With reference to Definition 8.1, let v denote a nonzero vector in U . Assume v is an
eigenvector for E∗

2A2E
∗
2 and let η denote the corresponding eigenvalue. Assume θ̃1 < η < θ̃d. With respect

to the basis v0, v1, . . . , vD−2 for Mv given in Definition 15.4 the matrix representing A is
















0 ω1 0
c1 0 ω2

c2 · ·
· · ·

· · ωD−2

0 cD−2 0

















,

where the ωi are as follows:

(i) Suppose η 6= −1. Then

ωi =
bi+1ci+2

ci

Pi−1(ψ)Pi+2(ψ)

Pi(ψ)Pi+1(ψ)
(1 ≤ i ≤ D − 2), (61)

where ψ is from (56).

(ii) Suppose η = −1. Then
ωi = bi+1 (1 ≤ i ≤ D − 2). (62)

Proof. (i) For 0 ≤ i ≤ D − 2 we define gi as in (59). Setting λ = A and θ = ψ in Theorem 7.5 we find

Agi(A) = ci+1gi+1(A) + ωigi−1(A) (0 ≤ i ≤ D − 2), (63)

where g−1 = 0, ω0 = 0, gD−1 = pD−1, and the ωi are from (61). Observe gi(A)v = vi for 0 ≤ i ≤ D − 2.
Applying both equations in (11) to v and recalling Jv = 0, J ′v = 0, we find pD−1(A)v = 0. Applying (63)
to v, and simplifying the result using these comments, we find

Avi = ci+1vi+1 + ωivi−1 (0 ≤ i ≤ D − 2),

where v−1 = 0 and vD−1 = 0. The result follows.
(ii) The argument is similar to (i) above, with the pi taking the place of the gi and (12) taking the place of
Theorem 7.5. �

16 The thin irreducible T -modules with endpoint 2 and local eigen-
value η (θ̃1 < η < θ̃d)

With reference to Definition 8.1, we now describe the thin irreducible T -modules with endpoint 2 and local
eigenvalue η (θ̃1 < η < θ̃d). This section contains some of our main results. Because of this we have tried to
make it as self-contained as possible.

Theorem 16.1 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η (θ̃1 < η < θ̃d). Let v denote a nonzero vector in E∗

2W . Then W =Mv. The vectors

E1v, E2v, . . . , ED−1v (64)

form a basis for W and E0v = 0, EDv = 0.

Proof. To see W =Mv, observe that W contains v and is invariant under M so Mv ⊆W . We assume W is
thin with endpoint 2, so the dimension of W is at most D − 1. By Definition 11.9 the vector v is contained
in U . Moreover v is an eigenvector for E∗

2A2E
∗
2 with eigenvalue η. Now Theorem 15.1 applies. By that

theorem Mv has dimension D − 1 so W = Mv. The remaining assertions of the present theorem follow in
view of Theorem 15.1. �
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Theorem 16.2 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint
2 and local eigenvalue η (θ̃1 < η < θ̃d). Then the basis vectors for W from (64) are mutually orthogonal.
Moreover the square-norms of these vectors are given as follows:

(i) Suppose η 6= −1. Then

‖Eiv‖
2 =

mi(θi − k)(θi + k)(θ2i − ψ)

|X |kb1(ψ − b2)
‖v‖2 (1 ≤ i ≤ D − 1),

where

ψ = b2

(

1−
b3

1 + η

)

. (65)

(ii) Suppose η = −1. Then

‖Eiv‖
2 =

mi(k − θi)(k + θi)

|X |kb1
‖v‖2 (1 ≤ i ≤ D − 1).

(The scalar mi denotes the multiplicity of θi.)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue η. Applying Theorem 15.2 we obtain the result. �

Theorem 16.3 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η (θ̃1 < η < θ̃d). Let v denote a nonzero vector in E∗

2W .

(i) Suppose η 6= −1. Then

E∗
i+2Aiv =

i
∑

h=0
i−h even

Ph(ψ)

Pi(ψ)

kibibi+1

khbhbh+1
ph(A)v (0 ≤ i ≤ D − 2),

where ψ is from (65).

(ii) Suppose η = −1. Then
E∗

i+2Aiv = pi(A)v (0 ≤ i ≤ D − 2).

(The polynomials pi are from (10), and the Pi are from (15).)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue η. Let the vectors v0, v1, . . . , vD−2 be as in Definition 15.4. We show E∗
i+2Aiv = vi for 0 ≤ i ≤

D− 2. Using (36) we find Aiv is contained in E∗
2W + · · ·+E∗

i+2W for 0 ≤ i ≤ D− 2. Also for 0 ≤ i ≤ D− 2,
vi is a linear combination of v,Av, . . . , Aiv, so vi is contained in E∗

2W + · · · + E∗
i+2W . By this and since

v0, v1, . . . , vD−2 are linearly independent, we find

v0, v1, . . . , vi is a basis for E∗
2W + E∗

3W + · · ·+ E∗
i+2W (0 ≤ i ≤ D − 2). (66)

For the rest of this proof, fix an integer i (0 ≤ i ≤ D−2). We show that vi is contained in E∗
i+2W . To see this,

recall E∗
2W, . . . , E

∗
DW are mutually orthogonal. Therefore E∗

i+2W is equal to the orthogonal complement
of E∗

2W + · · ·+ E∗
i+1W in E∗

2W + · · ·+ E∗
i+2W . Recall vi is orthogonal to each of v0, v1, . . . , vi−1. By (66)

the vectors v0, v1, . . . , vi−1 form a basis for E∗
2W + · · ·+E∗

i+1W so vi is orthogonal to E
∗
2W + · · ·+E∗

i+1W .
Apparently vi is contained in E∗

i+2W as desired. We show that E∗
i+2Aiv = vi. We mentioned that the vector

vi is a linear combination of v,Av, . . . , Aiv. In this combination the coefficient of Aiv is (c1c2 · · · ci)
−1 in

view of Lemma 7.4(ii). Similarly Aiv is a linear combination of v,Av, . . . , Aiv, and in this combination the
coefficient of Aiv is (c1c2 · · · ci)

−1. Apparently Aiv − vi is a linear combination of v,Av, . . . , Ai−1v. From
this and our above comments Aiv − vi is contained in E∗

2W + · · · + E∗
i+1W so E∗

i+2(Aiv − vi) is zero. We
already showed that vi ∈ E∗

i+2W so E∗
i+2vi = vi. Now E∗

i+2Aiv = vi as desired. �
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Theorem 16.4 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η (θ̃1 < η < θ̃d). Let v denote a nonzero vector in E∗

2W . Then the vectors

E∗
i+2Aiv (0 ≤ i ≤ D − 2) (67)

form a basis for W .

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with eigen-

value η. Let the vectors v0, v1, . . . , vD−2 be as in Definition 15.4. By Theorem 15.5 the vectors v0, v1, . . . , vD−2

form a basis for Mv. Recall Mv =W by Theorem 16.1 so v0, v1, . . . , vD−2 form a basis for W . By Theorem
16.3 vi = E∗

i+2Aiv for 0 ≤ i ≤ D − 2 and the result follows. �

Theorem 16.5 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint
2 and local eigenvalue η (θ̃1 < η < θ̃d). Then the vectors in (67) are mutually orthogonal. Moreover the
square-norms of these vectors are given as follows:

(i) Suppose η 6= −1. Then

‖E∗
i+2Aiv‖

2 =
kibibi+1ci+1ci+2

kb1(ψ − b2)

Pi+2(ψ)

Pi(ψ)
‖v‖2 (0 ≤ i ≤ D − 2),

where ψ is from (65).

(ii) Suppose η = −1. Then

‖E∗
i+2Aiv‖

2 =
kibibi+1

kb1
‖v‖2 (0 ≤ i ≤ D − 2).

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue η. The result follows in view of Theorem 15.7 and Theorem 16.3. �

Theorem 16.6 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η (θ̃1 < η < θ̃D). With respect to the basis for W given in (67) the matrix representing
A is

















0 ω1 0
c1 0 ω2

c2 · ·
· · ·

· · ωD−2

0 cD−2 0

















,

where the ωi are as follows.

(i) Suppose η 6= −1. Then

ωi =
bi+1ci+2

ci

Pi−1(ψ)Pi+2(ψ)

Pi(ψ)Pi+1(ψ)
(1 ≤ i ≤ D − 2), (68)

where ψ is from (65).

(ii) Suppose η = −1. Then
ωi = bi+1 (1 ≤ i ≤ D − 2). (69)

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue η. The result follows in view of Theorem 15.8 and Theorem 16.3. �
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Theorem 16.7 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η (θ̃1 < η < θ̃d). Let v denote a nonzero vector in E∗

2W .

(i) Suppose η 6= −1. Then for 0 ≤ i ≤ D − 2 we have

E∗
i+2Aiv =

D−1
∑

j=1

gi(θj)Ejv,

where

gi =

i
∑

h=0
i−h even

Ph(ψ)

Pi(ψ)

kibibi+1

khbhbh+1
ph

and ψ is from (65).

(ii) Suppose η = −1. Then

E∗
i+2Aiv =

D−1
∑

j=1

pi(θj)Ejv (0 ≤ i ≤ D − 2).

Proof. By Definition 11.9 the vector v is contained in U . Moreover v is an eigenvector for E∗
2A2E

∗
2 with

eigenvalue η. The result follows in view of Theorem 15.6 and Theorem 16.3. �

In summary we have the following theorem.

Theorem 16.8 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint
2 and local eigenvalue η (θ̃1 < η < θ̃d). Then W has dimension D − 1. For 0 ≤ i ≤ D, E∗

iW is zero if
i ∈ {0, 1} and has dimension 1 if 2 ≤ i ≤ D. Moreover EiW is zero if i ∈ {0, D} and has dimension 1 if
1 ≤ i ≤ D − 1.

Proof. The dimension of W is D− 1 by Theorem 16.1. Fix an integer i (0 ≤ i ≤ D). From Theorem 16.4 we
find E∗

iW is zero if i ∈ {0, 1} and has dimension 1 if 2 ≤ i ≤ D. From Theorem 16.1 we find EiW is zero if
i ∈ {0, D} and has dimension 1 if 1 ≤ i ≤ D − 1. �

17 Some multiplicities

With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2 and local
eigenvalue η. In this section we show that the isomorphism class of W as a T -module is determined by η.
We show that the multiplicity with which W appears in the standard module V is at most the number of
times η appears among ηk+1, ηk+2, . . . , ηk2 . We investigate the case of equality.

Theorem 17.1 With reference to Definition 8.1, let W denote a thin irreducible T -module with endpoint 2
and local eigenvalue η. Let W ′ denote an irreducible T -module. Then the following (i), (ii) are equivalent:

(i) W and W ′ are isomorphic as T -modules.

(ii) W ′ is thin with endpoint 2 and local eigenvalue η.

Proof. (i)⇒(ii) Clear.
(ii)⇒(i) First observe that η satisfies one of the cases (i)–(iv) mentioned below Definition 11.9. If η satisfies
case (i) or case (ii) then statement (i) of the present theorem holds by [28, Theorem 14.1]. Now assume η
satisfies case (iii) or case (iv). For notational convenience set e = 1 if η satisfies case (iii) and set e = 0 if
η satisfies case (iv). We display an isomorphism of T -modules from W to W ′. Observe E∗

2W and E∗
2W

′

are both nonzero. Let v (resp. v′) denote a nonzero vector in E∗
2W (resp. E∗

2W
′). By Theorem 14.4 or

Theorem 16.4 the vectors
E∗

i+2Aiv (0 ≤ i ≤ D − 2− e) (70)
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form a basis for W . Similarly the vectors

E∗
i+2Aiv

′ (0 ≤ i ≤ D − 2− e) (71)

form a basis for W ′. Let σ : W → W ′ denote the isomorphism of vector spaces that sends E∗
i+2Aiv to

E∗
i+2Aiv

′ for 0 ≤ i ≤ D− 2− e. We show σ is an isomorphism of T -modules. By Theorem 14.6 or Theorem
16.6 the matrix representing A with respect to the basis (70) is equal to the matrix representing A with re-
spect to the basis (71). It follows σA−Aσ vanishes onW . From the construction we find that for 0 ≤ h ≤ D,
the matrix representing E∗

h with respect to the basis (70) is equal to the matrix representing E∗
h with respect

to the basis (71). It follows σE∗
h −E∗

hσ vanishes on W . The algebra T is generated by A,E∗
0 , E

∗
1 , . . . , E

∗
D. It

follows σB−Bσ vanishes onW for all B ∈ T . We now see σ is an isomorphism of T -modules fromW toW ′. �

Lemma 17.2 With reference to Definition 8.1, for all η ∈ R we have

Uη ⊇ E∗
2Hη, (72)

where Hη denotes the subspace of V spanned by all the thin irreducible T -modules with endpoint 2 and local
eigenvalue η.

Proof. Observe E∗
2Hη is spanned by the E∗

2W , where W ranges over all the thin irreducible T -modules with
endpoint 2 and local eigenvalue η. For all such W the space E∗

2W is contained in Uη by Definition 11.9. The
result follows. �

We remark on the dimension of the right-hand side in (72). To do this we make a definition.

Definition 17.3 With reference to Definition 8.1, and from our discussion in Section 8, the standard module
V can be decomposed into an orthogonal direct sum of irreducible T -modules. Let W denote an irreducible
T -module. By the multiplicity with which W appears in V , we mean the number of irreducible T -modules
in the above decomposition which are isomorphic to W .

Definition 17.4 With reference to Definition 8.1, for all η ∈ R we let µη denote the multiplicity with which
W appears in V , where W is a thin irreducible T -module with endpoint 2 and local eigenvalue η. If no such
W exists we interpret µη = 0.

Theorem 17.5 With reference to Definition 8.1, for all η ∈ R the following scalars are equal:

(i) The scalar µη from Definition 17.4.

(ii) The dimension of E∗
2Hη, where Hη is from Lemma 17.2.

Moreover
multη ≥ µη. (73)

Proof. We first show that µη is equal to the dimension of E∗
2Hη. Observe Hη is a T -module so it is an

orthogonal direct sum of irreducible T -modules. More precisely

Hη =W1 +W2 + · · ·+Wm (orthogonal direct sum), (74)

where m is a nonnegative integer, and where W1,W2, . . . ,Wm are thin irreducible T -modules with endpoint
2 and local eigenvalue η. Apparently m is equal to µη. We show m is equal to the dimension of E∗

2Hη.
Applying E∗

2 to (74) we find

E∗
2Hη = E∗

2W1 + E∗
2W2 + · · ·+ E∗

2Wm (orthogonal direct sum). (75)

Observe each summand on the right in (75) has dimension 1. These summands are mutually orthogonal so
m is equal to the dimension of E∗

2Hη. Now µη is equal to the dimension of E∗
2Hη. We mentioned earlier

that the dimension of Uη is multη. Combining these facts with Lemma 17.2 we obtain (73). �

We are interested in the case of equality in (72) and (73). We begin with a result which is a routine
consequence of Lemma 12.1.

28



Lemma 17.6 [28, Lemma 14.2] With reference to Definition 8.1, choose n ∈ {1, d} if D is odd, and let
n = 1 if D is even. Let η = θ̃n. Then Uη = E∗

2Hη and multη = µη.

Lemma 17.7 With reference to Definition 8.1, let L denote the subspace of V spanned by the nonthin
irreducible T -modules with endpoint 2. Then

U = E∗
2L+

∑

η∈Φ

E∗
2Hη (orthogonal direct sum). (76)

Proof. Let S denote the subspace of V spanned by all irreducible T -modules with endpoint 2, thin or not.
Then

S = L+
∑

η∈Φ

Hη (orthogonal direct sum). (77)

Applying E∗
2 to each term in (77) and using E∗

2S = U we obtain (76). �

Theorem 17.8 With reference to Definition 8.1, the following (i)–(iii) are equivalent:

(i) Equality holds in (72) for all η ∈ R.

(ii) Equality holds in (73) for all η ∈ R.

(iii) Every irreducible T -module with endpoint 2 is thin.

Proof. (i)⇔(ii) Recall multη (resp. µη) is the dimension of Uη (resp. E∗
2Hη).

(i)⇒(iii) Let W denote an irreducible T -module with endpoint 2. We show W is thin. Suppose not. Then
W is contained in the space L from Lemma 17.7. Observe E∗

2W 6= 0 since W has endpoint 2, so E∗
2L 6= 0.

We show E∗
2L = 0 to get a contradiction. We assume Uη = E∗

2Hη for all η ∈ R; combining this with (40)
we find U =

∑

η∈ΦE
∗
2Hη. From this and Lemma 17.7 we find E∗

2L = 0. We now have a contradiction and
it follows W is thin.
(iii)⇒(i) There does not exist a nonthin irreducible T -module with endpoint 2, so L = 0. Setting L = 0 in
(76) we find U =

∑

η∈ΦE
∗
2Hη. Combining this with (40) and Lemma 17.2 we routinely find Uη = E∗

2Hη for
all η ∈ Φ. For any real number η that is not in Φ the spaces Uη and Hη are both 0. Now Uη = E∗

2Hη for all
η ∈ R. �
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