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The subconstituent algebra of a bipartite distance-regular
graph; thin modules with endpoint two

Mark MacLean* and Paul Terwilliger

Abstract

We consider a bipartite distance-regular graph I' with diameter D > 4, valency k > 3, intersection
numbers b;, ¢;, distance matrices A;, and eigenvalues 6y > 61 > --- > 0p. Let X denote the vertex set
of I' and fix z € X. Let T'= T'(z) denote the subalgebra of Matx (C) generated by A, Eg, ET,...,ED,
where A = A; and EJ denotes the projection onto the i™ subconstituent of T' with respect to x.
T is called the subconstituent algebra (or Terwilliger algebra) of T' with respect to x. An irreducible
T-module W is said to be thin whenever dimFE;W < 1 for 0 < ¢ < D. By the endpoint of W
we mean min{i|E;W # 0}. Assume W is thin with endpoint 2. Observe E5W is a 1-dimensional
eigenspace for E5 AxFE3; let n denote the corresponding eigenvalue. It is known 6 < n < 64 where
01 = —1—bob3 (03 —ba) ™, 04 = —1—bab3(6% —b2)~", and d = | D/2]. To describe the structure of W
we distinguish four cases: (i) 7 = 61; (ii) D is odd and 1 = f4; (iii) D is even and n = fg; (iv) 01 < 1 < 4.
We investigated cases (i), (ii) in [28]. Here we investigate cases (iii), (iv) and obtain the following results.
We show the dimension of W is D — 1 — e where e = 1 in case (iii) and e = 0 in case (iv). Let v
denote a nonzero vector in E5W. We show W has a basis F;v (i € S), where F; denotes the primitive
idempotent of A associated with 6; and where the set S is {1,2,...,d =1} U{d+1,d+2,...,D — 1}
in case (iii) and {1,2,...,D — 1} in case (iv). We show this basis is orthogonal (with respect to the
Hermitian dot product) and we compute the square-norm of each basis vector. We show W has a basis
Ef 5Av (0<i<D-—2-¢), and we find the matrix representing A with respect to this basis. We show
this basis is orthogonal and we compute the square-norm of each basis vector. We find the transition
matrix relating our two bases for W.
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1 Introduction

Let T denote a distance-regular graph with diameter D > 4, valency k > 3, intersection numbers a;, b;, ¢;,
and distance matrices A; (see Section 2 for formal definitions). We recall the subconstituent algebra of T'.
Let X denote the vertex set of I' and fix x € X. We view = as a “base vertex.” Let T" = T(z) denote the

subalgebra of Matx (C) generated by A, Ef, EY,...,E},, where A = A; and E} represents the projection

onto the it subconstituent of I' with respect to . The algebra T is called the subconstituent algebra (or

Terwilliger algebra) of T with respect to z [31]. Observe T has finite dimension. Moreover T is semi-simple;
the reason is each of A, Efj, ET, ..., E}, is symmetric with real entries, so 1" is closed under the conjugate-
transpose map [I8, p. 157]. Since T is semi-simple, each T-module is a direct sum of irreducible T-modules.
Describing the irreducible T-modules is an active area of research [, [T9]-[24], [26], 28]-36].

In this paper we are concerned with the irreducible T-modules that possess a certain property. In order to
define this property we make a few observations. Let W denote an irreducible T-module. Then W is the
direct sum of the nonzero spaces among EgW, EYW, ..., E,W. There is a second decomposition of interest.
To obtain it we make a definition. Let k = 0y > 61 > --- > 0p denote the distinct eigenvalues of A, and for
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0 <i < D let E; denote the primitive idempotent of A associated with ;. Then W is the direct sum of the
nonzero spaces among EoW, E\W, ..., EpW. If the dimension of EW is at most 1 for 0 <7 < D then the
dimension of E;W is at most 1 for 0 < ¢ < D [31), Lemma 3.9]; in this case we say W is thin. Let W denote
an irreducible T-module. By the endpoint of W we mean min{i|0 < ¢ < D, EfW # 0}. There exists a
unique irreducible T-module with endpoint 0 |21}, Proposition 8.4]. We call this module V. The module V;
is thin; in fact EfVy and E;Vp have dimension 1 for 0 < ¢ < D [B1l Lemma 3.6]. For a detailed description
of Vy see [@], [211.

For the rest of this section assume I' is bipartite. There exists, up to isomorphism, a unique irreducible
T-module with endpoint 1 [, Corollary 7.7]. We call this module V;. The module V; is thin; in fact each
of EfVi, E;Vi has dimension 1 for 1 < i < D —1 and EpV; =0, EgVy = 0, EpVy = 0. For a detailed
description of V; see [9]. In this paper we are concerned Wlth the thin irreducible T-modules with endpoint
2.

In order to describe the thin irreducible T-modules with endpoint 2 we define some parameters. Let '3 =
I'3(z) denote the graph with vertex set X and edge set R, where

X = {yeX|oy) =2},

R = {yz|y,z€X,d(y,2) =2},

and where 9 is the path-length distance function for I'. The graph ' has exactly ks vertices, where ks is
the second valency of I'. Also, I'Z is regular with valency p2,. We let 11,72, ...,nk, denote the eigenvalues
of the adjacency matrix of I'3. By [I0}, Theorem 11.7], these eigenvalues may be ordered such that n; = p3,
and n; = b3 —1(2<i<k).

Abbreviate d = |D/2]. It is shown in [28, Theorem 11.4] that 0, < ni < 04 for k+1 < i < ky, where
91 —-1- b2b3(92 —by)" ! and 04 = —1 — bob3(02 — bo)~'. We remark 67 > by > 62 by [27, Lemma 2.6], so
6, < —1 and 6, > 0.

Let W denote a thin irreducible T-module with endpoint 2. Observe E5W is a 1-dimensional eigenspace
for E3A2E3; let n denote the corresponding eigenvalue. It turns out 7 is among Mgi1, Mk+2,---, Mk, SO
6, < n < 4. We call n the local eigenvalue of W. To describe the structure of W we distinguish four cases:
(i) n = 6y; (ii) D is odd and n = 0; (iii) D is even and n = 0y; (iv) 6; < 1 < 4. In [28] we investigated
cases (i), (ii). In the present paper we investigate cases (iii), (iv).

Concerning cases (i), (ii) our results from [28] are summarized as follows. Choose n € {1,d} if D is odd,
and let n = 1 if D is even. Define n = 0,,. Let W denote a thin irreducible T-module with endpoint 2 and
local eigenvalue . Then W has dimension D — 3. Let v denote a nonzero vector in E5W. We showed W
has a basis Fv (1<i<D -1, i#n, i # D —n). We showed this basis is orthogonal (with respect to the
Hermitian dot product) and we computed the square-norm of each basis vector. We showed W has a basis
EHQA v (0 <i<D—4). We found the matrix representing A with respect to this basis. We showed this
basis is orthogonal and we computed the square-norm of each basis vector. We found the transition matrix
relating our two bases for W. We showed the following scalars are equal: (i) The multiplicity with which W
appears in the standard module C¥; (ii) The number of times 7 appears among Mg+1, Mk+2, - - - » M-

Concerning case (iii) above, in the present paper we obtain the following results. Assume D is even, and let
W denote a thin irreducible T-module with endpoint 2 and local eigenvalue 4. We show the dimension of
W is D —2. Let v denote a nonzero vector in E5W. We show W has a basis BEjv (1 <i < D-1, i #d). We
show this basis is orthogonal and we compute the square-norm of each basis vector. We show W has a basis
EHQA v (0 <4< D—3). We find the matrix representing A with respect to this basis. We show this basis
is orthogonal and we compute the square-norm of each basis vector. We find the transition matrix relating
our two bases for W.

Concerning case (iv) above, in the present paper we obtain the following results. Let W denote a thin
irreducible T-module with endpoint 2 and local eigenvalue 1 (01 < n < 64). We show the dimension of



W is D — 1. Let v denote a nonzero vector in E5W. We show W has a basis E;v (1 <¢ < D —1). We
show this basis is orthogonal and we compute the square-norm of each basis vector. We show W has a basis
Ef A (0<i <D —2). We find the matrix representing A with respect to this basis. We show this basis
is orthogonal and we compute the square-norm of each basis vector. We find the transition matrix relating
our two bases for W.

For all n € R let p, denote the multiplicity with which W appears in C¥X, where W is a thin irreducible
T-module with endpoint 2 and local eigenvalue 7. If no such W exists we interpret pu, = 0. We show
is at most the number of times 7 appears among ng+1, Mk+2,---, Mk, Concerning the case of equality, we
show the following are equivalent: (i) For all n € R, p, is equal to the number of times 7 appears among
N1 Me+2s - - - » N3 (1) Every irreducible T-module with endpoint 2 is thin.

2 Preliminaries concerning distance-regular graphs

In this section we review some definitions and basic concepts concerning distance-regular graphs. For more
background information we refer the reader to [, [3], [25] or [31].

Let X denote a nonempty finite set. Let Matx(C) denote the C-algebra consisting of all matrices whose
rows and columns are indexed by X and whose entries are in C. Let V = CX denote the vector space over
C consisting of column vectors whose coordinates are indexed by X and whose entries are in C. We observe
Mat x (C) acts on V by left multiplication. We endow V with the Hermitian inner product (, ) which satisfies
(u,v) = u'v for all u,v € V, where ¢ denotes transpose and — denotes complex conjugation. We abbreviate
|u]|? = (u,u) for all u € V. For all y € X, let § denote the element of V with a 1 in the y coordinate and 0
in all other coordinates. We observe {§ | y € X} is an orthonormal basis for V. The following formula will
be useful. For all B € Matx (C) and for all u,v € V,

(Bu,v) = (u, B'). (1)

Let T' = (X, R) denote a finite, undirected, connected graph, without loops or multiple edges, with vertex set
X and edge set R. Let 0 denote the path-length distance function for I', and set D = max{d(z,y) | z,y € X }.
We refer to D as the diameter of T'. Let | D/2] denote the greatest integer at most D/2. Vertices z,y € X
are called adjacent whenever xy is an edge. For an integer k > 0, we say I is regular with valency k whenever
each vertex of I' is adjacent to exactly k distinct vertices of I'. We say I is distance-regular whenever for all
integers h,i,j (0 < h,i,j < D) and for all vertices z,y € X with 9(x,y) = h, the number

vy =z € X | 0(x,2) =14,0(2,y) = j} (2)

is independent of z and y. The p?j are called the intersection numbers of I'. We abbreviate ¢; = pt, ; (1 <
i < D), a;=p}; (0<i<D),and b; =pi,,; (0 <i<D—1). For notational convenience, we define ¢y = 0
and bp = 0. We note ag = 0 and ¢; = 1.

For the rest of this paper we assume I' is distance-regular with diameter D > 3.

By @) and the triangle inequality,

phi=0 if  |h—j|>1 (0<h,j<D). 3

~

Observe I is regular with valency k = by, and that ¢; +a; +b; = k for 0 < i < D. Moreover b; > 0 (0 <14 <
D —1)and ¢; >0 (1 <i< D). For0<i< D we abbreviate k; = p{;, and observe

ki={z€ X |d(x,2) =1}, (4)
where z is any vertex in X. Apparently kg = 1 and k; = k. By [Il, p.195] we have
_ boby -+ b1

C1C2 - C

ki (0<i<D). (5)



We recall the Bose-Mesner algebra of T'. For 0 <i < D let A; denote the matrix in Matx (C) with zy entry

1, ifd(x,y) =1
(Ai)ay = {O, if O(x,y) #1 (z,y € X).
We call A; the ith distance matriz of T'. For convenience we define A; =0fori < 0and ¢ > D. We abbreviate
A = A; and call this the adjacency matriz of T'. We observe (ai) Ag = I; (aii) ZZD:O A = J; (aiii) 4; = A;
(0 < i < D); (aiv) AL = A; (0 < i < D); (av) 445 = S opliAn (0 < i,j < D), where I denotes the
identity matrix and J denotes the all 1’s matrix. Let M denote the subalgebra of Matx (C) generated by A.
Using (ai), (av) one can readily show Ag, A1, ..., Ap form a basis for M. We refer to M as the Bose-Mesner
algebra of T'. By [3, p.45] M has a second basis Ey, E1, ..., Ep such that (ei) Ey = | X|71J; (eii) Eio E, =1,
Ey, E1,...,Ep as the primitive idempotents of I'. We call Ey the trivial idempotent of T'.

We recall the eigenvalues of I'. Since FEy, E1,...,Ep form a basis for M, there exist complex scalars
00,01, ...,0p such that A = Eio 0, E;. Combining this with (ev) we find AE; = E;A =0,F; for 0 <i < D.
Using (aiii) and (eiii) we find 6y, 61, ...,0p are in R. Observe 0,01, ...,0p are distinct since A generates M.
By [2, Proposition 3.1] we have 8y = k and —k < 6; < k for 0 < i < D. Throughout this paper we assume
Ey, Eq,...,Ep are indexed so that 6y > 0, > --- > 0p. We refer to 0; as the eigenvalue of T" associated with
E;. We call 0y the trivial eigenvalue of T'. For 0 < i < D let m; denote the rank of E;. We refer to m; as the
multiplicity of E; (or 6;). From (ei) we find mo = 1. Using (eii)—(ev) we find

V=EV+EV+. - -+EpV (orthogonal direct sum). (6)

For 0 < i < D the space E;V is the eigenspace of A associated with 6;. We observe the dimension of E;V is
m;. We now record a fact about the eigenvalues 6; and 0p.

Lemma 2.1 [27, Lemma 2.6] Let T denote a distance-regular graph with diameter D > 3 and eigenvalues
k=00>61>--->0p. Then (i) -1 < 601 < k; (ii) a1 —k < 0p < —1.

Later in this paper we will discuss polynomials in one or two variables. We will use the following notation.
Let A denote an indeterminate. Let R[A] denote the R-algebra consisting of all polynomials in A that have
coefficients in R. Let u denote an indeterminate which commutes with X\. Let R[A, x| denote the R-algebra
consisting of all polynomials in A and p that have coefficients in R.

3 Bipartite distance-regular graphs

We now consider the case in which T' is bipartite. We say I' is bipartite whenever the vertex set X can be
partitioned into two subsets, neither of which contains an edge. In the next few lemmas, we recall some
routine facts concerning the case in which I' is bipartite. To avoid trivialities, we will generally assume
D > 4.

Lemma 3.1 [3, Propositions 3.2.3, 4.2.2]  Let T' denote a distance-regular graph with diameter D > 4,
valency k, and eigenvalues 0y > 01 > --- > 0p. The following are equivalent:

(i) T is bipartite.

(ii) ply =0 if h+i+jisodd  (0<h,i,j<D).
(i) a; =0  (0<i<D).

(iv) ¢;+ b=k (0<i< D).

(v) Op—i = —0; (0<i< D).

Lemma 3.2 Let I" denote a bipartite distance-regular graph with diameter D > 4 and eigenvalues k = 6y >
0y >--->0p.



(i) Assume D is even and let d = D/2. Then 64 = 0.
(ii) Assume D is odd and let d = (D —1)/2. Then 64 > 0 and 0441 = —04.
Proof. Tmmediate from Lemma BIv). O

Lemma 3.3 28, Lemma 3.4] Let T = (X, R) denote a bipartite distance-regular graph with diameter D > 4
and eigenvalues 6g > 61 > -+ > 0p. Then Ep = |X|~1J', where

D

J = (1) A (7)

i=0
Lemma 3.4 Let I’ denote a bipartite distance-reqular graph with diameter D > 4 and eigenvalues 6y > 61 >
-+ >0p. Then 03 > by > 62, where d = |D/2].

Proof. Apply Lemma BTl to the halved graph of T', and use [3, Proposition 4.2.3]. O

4 Two families of polynomials

Let I' = (X, R) denote a bipartite distance-regular graph with diameter D > 4. In this section we recall two
types of polynomials associated with I'. To motivate things, we recall by (av) and the triangle inequality
that

AAi = bi—lAi—l + Ci+1Ai+1 (O S0 D)’ (8)
where b_; = 0 and cp41 = 0. Let fo, f1,...,fp denote the polynomials in R[A] satisfying fo = 1 and
Afi =bi—1fi—1 + cit1fita (0<i<D-1), (9)

where f_; = 0. For 0 < i < D the polynomial f; has degree i, and the coefficient of A\* is (cicz - - ¢;) ™!, Com-
paring @) and @) we find f;(A) = A;. By [Il p. 63] the polynomials fy, f1,..., fp satisfy the orthogonality
relation

D
Z [i(On) f5(On)mp = 04| X |K; (0<i,j<D).
h=0
We now recall some polynomials related to the f;. Let pg,p1,...,pp denote the polynomials in R[A] satisfying
fo+tfot+fat+---+ fi, ifiiseven ]
i = PR 0<i<D). 10
P {f1+f3+f5+---+fi, if 4 is odd (0<i<D) (10)

Observe pg = 1. F i < D the polynomial p; has degree i, and the coefficient of A" is (cica---¢;) 7L
j <D

or 0 <
Recalling f;(A) = A; (0 <j < D), we observe

pp(A) +pp-1(4) = J, pp(4) —pp-1(4) = (-1)7J, (11)
where J' is from (). By [28, Theorem 4.2], we have
Api = Ciy1pit1 T bipapi-1 (0<i< D —1), (12)

where p_; = 0. We record a fact for later use.

Lemma 4.1 [28, Lemma 4.3] Let T = (X, R) denote a bipartite distance-regular graph with diameter D > 4
and eigenvalues k = 0y > 01 > - -+ > Op. Let the polynomials pg,p1,...,pp be as in {I). Then pp—_1(0r) =0
and pp(0r) =0 for 1 < h < D — 1. Moreover,

D
Zpi(Hh)pj(Gh)(kQ — Hz)mh = 51]|X|kzbzbz+l (O S i,j S D — 2) (13)
h=0



5 The polynomials V;

Let T denote a bipartite distance-regular graph with diameter D > 4. In the previous section we used I' to
define two families of polynomials in one variable. We called these polynomials the f; and the p;. Later in
this paper we will use I' to define a third family of polynomials in one variable. We will call these polynomials
the g;. To define and study the g; it is convenient to first consider some polynomials ¥; in two variables.

Definition 5.1 Let I" denote a bipartite distance-regular graph with diameter D > 4. For 0 <i < D — 2
let ¥; denote the polynomial in R[A, u] given by

%

U= Y pn(Npa(n)

h=0
i—h even

kibibiy1

Hi0ibigr 14
knbrbni1 (14)

where the polynomials pg,p1,...,pp—2 are from (). We observe ¥y =1 and ¥y = Ap.

Lemma 5.2 LetT' denote a bipartite distance-reqular graph with diameter D > 4. Let the polynomials p;, ¥;
be as in (D), [TA), respectively. Then

bibiJrl

i(A)pi(p) = Wi —
piOpi(p) = w201

U,y (2<i<D-2).

Proof. Use Definition Bl and (). O

The following equation is a variation of the Christoffel-Darboux formula.

Lemma 5.3 [28, Lemma 5.3] Let T denote a bipartite distance-regular graph with diameter D > 4. Let the
polynomials p;, ¥; be as in {I0), ([I4) respectively. Then for 1 <i< D —1,

Pitt(Npi—1 (1) — it (N)piga () = ¢; ey (N = p®) Wiy

Lemma 5.4 [28, Lemma 5.4] Let T = (X, R) denote a bipartite distance-regular graph with diameter D > 4
and eigenvalues k = 6y > 61 > --- > Op. Let the polynomials p;, V; be as in ({Id), (I respectively. Then
for0<4,j <D -2,

D

D WO, 1) W5 (On, 1) (K = 07) (1 = 07 )mi = 65| X |pi(p)pia (1) kibibigrcipiciga.
h=0

(We recall my, denotes the multiplicity of 0y, for 0 < h < D.)

Lemma 5.5 Let I" denote a bipartite distance-regular graph with diameter D > 4 and eigenvalues k = 0y >
01 > --- > 0p. Let the polynomials p; be as in ({I). Then the following (i), (i) hold for all 6 € R:

(1) Suppose 8 =61. Then p;(0) >0 for 0 <i< D —2, and pp_1(0) =0, pp(9) = 0.
(ii) Suppose 6 > 61. Then p;(6) >0 for 0 <i < D.

Proof. Observe pp_1(01) = 0, pp(61) = 0 by Lemma EETl For notational convenience set e = 0 if § > 6,
and e = 1 if § = 6;. Suppose there exists an integer ¢ (0 < ¢ < D — 2¢e) such that p;(f) < 0. Let us pick
the minimal such i. Observe ¢ > 2 since po(8) = 1, p1(f) = 0. Apparently p;_2(0) > 0. We claim there
exists an integer h (1+e < h < D —1—e) such that U;_5(6p,0) # 0. To see this, observe by Definition
ET that W, (A, 0) is a polynomial in A\ with degree i — 2. In this polynomial the coefficient of =2 is
pi—2(0)(crc2 -+ c;i_o)~ L. Apparently this polynomial is not identically 0 so there exist at most i — 2 integers
h(l4+e<h<D-—1-e)such that ¥;_5(6p,0) = 0. By this and since ¢ < D — 2e¢, there exists at least one



integer h (1+e <h < D —1—e) such that U;_o(0j,6) # 0. We have now proved our claim. We may now
argue

D—1—e
0 < Y W ,(0n0)(k —607)(6> - 67)m
h=1+e
= Z U2 (0, 0)(k* — 62)(6% — 02)my,  (by the definition of e)
= |X|Pi—2( )i (0)ki—2bi—2bi_1ci—1¢;  (by Lemma BA)
< 0.
We now have a contradiction and the result follows. O

Lemma 5.6 Let I' denote a bipartite distance-regular graph with odd diameter D > 4 and eigenvalues
k=00>61>--->0p. Let d denote the integer satisfying 2d+1 = D. Let the polynomials p; be as in ([{I0).
Then the following (i), (i) hold for all 6 € R:

(i) Suppose 0 = 04. Then (=1)L2)p;(0) > 0 for 0 <i < D —2, and pp_1(0) =0, pp(h) = 0.
(i) Suppose 0 < 6 < 04. Then (—=1)L21p;(0) > 0 for 0 <i < D.

Proof. Observe pp_1(684) =0, pp(f4) = 0 by Lemma Il For notational convenience set e = 0if 0 < 6 < 6y
and e = 1 if # = 4. Also for notational convenience we define the set S to be {1,2,...,D — 1} if e = 0,
and {1,2,...,d—1}U{d+2,d+3,...,D — 1} if e = 1. Suppose there exists an integer i (0 <1i < D — 2e)
such that (—1)l2/p;(#) < 0. Let us pick the minimal such 4. Observe i > 2 since po(6) = 1, p1(6) = 6.
Apparently (—1)1=21p;_5(6) > 0, so pi_2(6)p;(8) > 0. We claim there exists an integer h € S such that
W, _o(0n,0) # 0. To see this, observe by Definition BTl that ¥;_o()\, 0) is a polynomial in A with degree
i—2. This polynomial is not identically zero, since the coefficient of A\*=2 is p; _2(0)(c1co -+~ ;o) "' and since
pi—2(0) # 0 by construction. Therefore there exist at most ¢ — 2 integers h € S such that U;_5(65,6) = 0.
By this and since i < D — 2e, there exists at least one integer h € S such that U;_2(0,6) # 0. We have
now proved our claim. We may now argue

0 > > WP ,(0h,0)(k* - 07)(6> — 67)m
hes
= Z T2 (0, 0)(k* — 07)(6% — 03 )my,  (by the definitions of S and e)
= |X|pi72( )i (0)ki—2b;—2bi—1ci—1c;  (by Lemma BA)
> 0.
We now have a contradiction and the result follows. O

6 A variation of the p; polynomials

In Section 4 we defined some polynomials p;. In this section we define some closely related polynomials that
we call the P;. We do so for a technical reason that will become apparent later in the paper. We start with
an observation. Recall that a polynomial in R[)] is even (resp. odd) whenever the coefficient of A’ is zero for
all odd ¢ (resp. all even 7).

Lemma 6.1 Let I' denote a bipartite distance-regular graph with diameter D > 4. Then for 0 <1i < D the
polynomial p; from ([I) is even (resp. odd) if i is even (resp. odd).



Proof. Routine using ([[@) and induction. O

In view of Lemma Bl we can make the following definition.

Definition 6.2 Let I' denote a bipartite distance-regular graph with diameter D > 4. For 0 <¢ < D let B;
denote the polynomial in R[A] such that

S Pi(A?),  ifdis even
pild) = {APZ-(AQ), if 4 is odd, (1)

where p; is from ([[T). Observe the degree of P; is ¢/2 if ¢ is even and (¢ — 1)/2 if ¢ is odd. For notational
convenience we define P_; = 0.

Lemma 6.3 Let I' denote a bipartite distance-reqular graph with diameter D > 4. Let the polynomials
Py, Py, ..., Pp be as in Definition[EA Then the following (i), (i) hold for 0 <i< D —1:

(i) Suppose i is odd. Then AP; = ¢;41 P41 + biy1Pi1.
(ii) Suppose i is even. Then P; = ¢;41 P41 + biy1Pi—1.
Proof. Routine using ([[A) and Definition O

Referring to LemmalE3 in order to handle the cases of ¢ odd and i even in a uniform fashion we introduce
some notation.

Definition 6.4 For any integer ¢ we define

s(i) = 0, if¢is even
T\ 1, ifeis odd.

Lemma 63 looks as follows in terms of (7).

Corollary 6.5 Let ' denote a bipartite distance-reqular graph with diameter D > 4, and let the polynomials
Py, Py, ..., Pp be as in Definition[EA. Then for 0 <i < D —1,

NOP = ¢ 1Py +big1 Py o)

Lemma 6.6 Let I' denote a bipartite distance-regular graph with diameter D > 4 and eigenvalues k = 6y >
01 > -+ > 0p. Let the polynomials Py, P1,...,Pp be as in Definition Q. Then the following (i)-(iii) hold
for all ¢ € R:

(i) Assume ) > 62. Then Pi(v)) >0 (0<i< D).
(ii) Assume D is odd and v < 03, where d = (D —1)/2. Then (—I)L%JPi(w) >0 (0<i< D).

(i) Assume D is even and ¢ < 0. Then (—1)L2)P,()) >0 (0 <i < D —1). Moreover (—1)L2Pp(¢) >0
if v <0 and Pp(0) =0.

Proof. (i). Since v is positive, there exists a positive real number « such that a? = 1. By the construction
a > 6. For 0 <i < D we have p;(«) > 0 by Lemma BEIii) so P;(¢) > 0 in view of Definition
(ii). First assume 0 < 3 < 6% Again v is positive, so there exists a positive real number « such that
a2 = 1. By the construction 0 < o < 64. For 0 < i < D we have (—1)!2)p;() > 0 by Lemma EB(ii) so
(=1)L2) Py(4) > 0 in view of Definition

Now assume 1) < 0. Suppose there exists an integer i (0 < i < D) such that (—1)l2JP;(¢) < 0. Let us
pick the minimal such i. Observe ¢ > 2 since Py(¢) = 1, Pi(v)) = 1. Setting A = ¢ and replacing i by i — 1
in (@) and then multiplying this equation by (—1)l2!, we find

(—DEIPw) = (D)D)t — (=) B P s ()b
= (=) ()P @)t = (1) Pa(u)bic; (17)
> 0,



where the last inequality follows from the minimality of ¢ and ¢ < 0. We now have a contradiction and the
result follows.

(iii). Similar to (ii). When ¢ = 0, however, observe that the right side of [[) is 0 for i = D, and hence
Pp(0) =0. O

Corollary 6.7 Let I' denote a bipartite distance-reqular graph with diameter D > 4 and eigenvalues k =
Oy > 61 > --- > 0p. Let the polynomials Py, Py, ..., Pp be as in Definition A Let 6 denote a real number
in the following range: For D odd, we assume 6 > 6% or 6 < 62, where d = (D —1)/2. For D even, we
assume 0 > 02 or § < 0. Then P;(0) #0 for 0 <i<D —1.

7 A third family of polynomials

In this section we will use the following notation.

Notation 7.1 Let I' = (X, R) denote a bipartite distance-regular graph with diameter D > 4 and eigenval-
ues k =60y >0, >--->0p. Let d = | D/2|. Let the polynomials p; be as in [[), and let the polynomials
P; be as in Definition Let 6 denote a real number in the following range: For D odd, we assume 6 > 6%
or 0 < 6%. For D even, we assume 6 > 67 or § < 0. We observe that in all cases P;(#) #0 for 0 <i < D —1
by Corollary G7

We now use I' to define a family of polynomials in one variable. We call these polynomials the g;.

Definition 7.2 With reference to Notation [Tl for 0 < i < D — 2 we define the polynomial g; € R[] by

%

B Pp(0) kibibita
9= Z Pi(9) Fnbnbnial " (18)

h=0
i—h even

We emphasize g; depends on 6 as well as the intersection numbers of T

Lemma 7.3 With reference to Notation [T] and Definition [7.3,
 bibiy1 Pio(0)

i =i i 2<i<D-2). 19
P e P;(0) gize (2<i ) (19)
Proof. Routine using Definition and (@). O

Lemma 7.4 With reference to Notation[71] and Definition[7.3, the following (i), (i) hold for 0 <i < D—2:
(i) The polynomial g; has degree exactly i.
(ii) The coefficient of ' in g; is (c1co---c;)7 L.

Proof. Routine. g

We now present a three-term recurrence satisfied by the polynomials g;.
Theorem 7.5 With reference to Notation [T and Definition[T.3, go =1 and

Agi = Cit1Gi+1 + Wigi—1 (20)
for0<i< D -2, whereg_1 =0,wy=0, gp_1 =pp_1, and

o bit1cita Pi—1(0)Piya(0)
' ci  Pi(0)Piy1(9)

(1<i<D-2). (21)



Proof. We find go = 1 by Definition We now prove ([0) by induction on i. Line (Z0) holds for ¢ = 0,1
using Definition [L2 ([2), and Definition Next assume ¢ > 2 and by induction that

AGi—2 = Ci—1gi—1 + Wi—2Gi—3. (22)

Consider the right-hand side of 0. In this expression eliminate g;+1 using ([d) if i < D—2and gp_1 = pp—1
if i = D — 2. Also eliminate w; using [ZIl) and simplify the result using (IH) to get

bi10°0+Y) Py (0)

Ci+10i+1 T Wigi—1 = Ci+1Pi+1 + gi—1- (23)

Now consider the left-hand side of [£0). Replacing g; in this expression using ([[@), and eliminating Ap;,

Agi—2 in the result using ([[2), 22), respectively, we find

bibit1 Pi—2(0)
ci—1¢i Pi(0)

Agi = Ciy1Div1 + bip1pio1 + (Ci—19i—1 + wi—2gi-3). (24)
If i > 2, in @) we eliminate w;_» using (&) and then eliminate b;_1b; P;_3(6)(ci—2ci—1Pi—1(0))"'gi_3 in
the resulting equation using [[@). If ¢ = 2, in ([Z4)) we note wy = 0 and p; = g1 in view of Definition In

either case we find
ciP;(0) 4+ b;P;_2(6)

AGi = Ciy1Di b -1 25

gi = Cit1Pi+1 T bit1 P (0) gi-1 (25)

Observe the right-hand sides of [Z3), (23) are equal in view of ([[d) and Definition B4l and thus the left-hand
sides are equal. We obtain (Z0) as desired. O

Lemma 7.6 With reference to Notation [T]] and Definition[7.3, for 0 < i < D — 2 we have

P;12(0)
o) "

Cit1Cipa (X = 0)gi = piga — (26)

Proof. We show (8] by induction on 4. Line 28] holds for ¢ = 0,1 by Definition [ ([[2), and Definition
6.2 Next assume ¢ > 2 and by induction that

o Pi(0)
1 1742 i
Lt A2 —0)gio = p; — 9. 27
a6 ( )gi—2 =P P (@)’ (27)
Repeatedly applying ([[2), we find
Np; = ciy1¢ipapive + (Cipabiva + biy1i)pi + bibiy1pi—o. (28)
Similarly, by repeatedly applying Lemma B3] we find
OP;(0) = cit1citaPiya(0) + (Cip1bite + biy16:) Pi(0) + bibiy1Pi—2(0). (29)
By @), we find
bibiy1 Pi—2(0)
i =Dit+ ——— 5 Ji—2- 30
g =Pit R (30)
Using [B0) to eliminate g;_o in (1), and then applying E8), @), we obtain (24l). O

Theorem 7.7 With reference to Notation [T and Definition[T.3, for 0 <i,j < D — 2 we have

Pi12(0)
Pi(0)

D
> 9i(0n)g; (On) (K> — 07)(0 — 63 )mi = 63| X |kibibig1ciycita (31)
h=0
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Proof. Without loss of generality, we may assume i < j. First we eliminate g;(6,) and g;(6,)(6 — 67) in
the left-hand side of @II) by using Definition and (20)), respectively. Simplifying the resulting expression
using () and the fact that ¢ < j, we obtain the right-hand side of ([BIl). The result follows. O

We finish this section with a comment.

Lemma 7.8 With reference to Notation [TJ] and Definition [T, assume D is even and 8 = 0. Then
gp—2(0p) =0 for L<h<D-1, h#d.

Proof. Recall 8; =0 by Lemma B2 Setting i =j =D — 2 and § =0 in @), we find

D-1

Pp(0
S GRah 2(00) (K = 82)mi = | X |kp—2bpsbp- 101002 (3)
2 5 —2(0)
h#d

In B2) the right-hand side is zero by Lemma 8l In the left-hand side each summand is nonnegative so each
summand is zero. In each summand the factor 67 (k% — 67 )my, is nonzero so the remaining factor gp_2(65)
is zero. The result follows. O

8 The subconstituent algebra and its modules

In this section we recall some definitions and basic concepts concerning the subconstituent algebra and its
modules. For more information we refer the reader to [, [, [10], [23], [26], B1].

Let I' = (X, R) denote a distance-regular graph with diameter D > 3. We recall the dual Bose-Mesner
algebra of I'. From now on we fix a vertex x € X. For 0 < < D let Ef = E(x) denote the diagonal matrix
in Matx (C) with yy entry

1, ifd(x,y) =1

En={5 Homh 2l e, (33)

We call E} the it dual idempotent of T' with respect to 7. We observe (di) Zio Er =1; (dii) Ef = Ef (0<
i < D); (diii) Eff = EF (0 < i < D); (div) EXE* = 6i;E? (0 < 4,j < D). Using (di) and (div) we find
E§,E%, ..., E% form a basis for a commutative subalgebra M* = M*(x) of Matx (C). We call M* the dual
Bose-Mesner algebra of T' with respect to x. We recall the subconstituents of I'. Using ([B3) we find
EiV =span{j|ye X, O(z,y)=i} (0<i<D). (34)
By @4) and since {f | y € X} is an orthonormal basis for V' we find
V=EV+EV+---+ELV (orthogonal direct sum).

Combining ([B4l) and @) we find the dimension of EfV is k; for 0 < i < D. We call EXV the ith subconstituent
of I with respect to x.

We recall how M and M* are related. By [B1, Lemma 3.2],
E;A;E; =0 if and only if pl; =0 (0 < h,i,j < D). (35)
Combining [BH) and Bl we find
EfAE; =0 if li—j]>1 (0<i,j <D). (36)

Let T = T'(x) denote the subalgebra of Matx (C) generated by M and M*. We call T the subconstituent
algebra of T' with respect to x [31]. We observe T has finite dimension. Moreover T is semi-simple; the reason
is that T is closed under the conjugate-transpose map [I8, p. 157].

11



We now consider the modules for T'. By a T-module we mean a subspace W C V such that BW C W for
all B € T. We refer to V itself as the standard module for T. Let W denote a T-module. Then W is said to
be irreducible whenever W is nonzero and W contains no T-modules other than 0 and W. Let W, W’ denote
T-modules. By an isomorphism of T-modules from W to W’/ we mean an isomorphism of vector spaces
o: W — W’ such that

(6B—Bo)W =0 forall BeT.

The modules W, W' are said to be isomorphic as T-modules whenever there exists an isomorphism of T-
modules from W to W'.

Let W denote a T-module and let W’ denote a T-module contained in W. Using ([l) we find the orthogonal
complement of W’ in W is a T-module. It follows that each T-module is an orthogonal direct sum of irre-
ducible T-modules. We mention any two nonisomorphic irreducible T-modules are orthogonal [I8, Chapter
v].

Let W denote an irreducible T-module. Using (di)—(div) above we find W is the direct sum of the nonzero
spaces among EGW, EW, ..., E5W. Similarly using (eii)—(ev) we find W is the direct sum of the nonzero
spaces among EgW, E\W, ..., EpW. If the dimension of EW is at most 1 for 0 <7 < D then the dimension
of E;W is at most 1 for 0 < ¢ < D |31, Lemma 3.9]; in this case we say W is thin. Let W denote an
irreducible T-module. By the endpoint of W we mean

min{i |0 <i< D, EW # 0}.
For the rest of the paper we adopt the following notational convention.

Definition 8.1 Let T' = (X, R) denote a bipartite distance-regular graph with diameter D > 4, valency
k > 3, intersection numbers b;, ¢;, distance matrices A;, Bose-Mesner algebra M, and eigenvalues 6y > 61 >
-+« >0p. For 0 < i < D we let F; denote the primitive idempotent of I' associated with 6;. We define
d=|D/2|. We fix z € X and abbreviate Ef = Ef(z) (0 <i < D), M* = M*(x), T = T(x). We let V
denote the standard module for I'. We define

si= > ) (0 <i< D). (37)
a(ye);;

9 The T-module of endpoint 0

With reference to Definition BTl there exists a unique irreducible T-module with endpoint 0 [21, Proposition
8.4]. We call this module V;. The module V; is described in [9], [ZT]. We summarize some details below in
order to motivate the results that follow.

The module V; is thin. In fact each of E;Vp, EfV has dimension 1 for 0 < ¢ < D. We give two bases
for Vy. The vectors EgZ, F1Z,...,EpZ form a basis for V. These vectors are mutually orthogonal and
|E:z||? = m;|X|~! for 0 < i < D. To motivate the second basis we make some comments. For 0 <i < D
we have s; = A;Z. Moreover s; = E}J, where 6 = ZyGX y. The vectors sg, s1,...,$p form a basis for V.
These vectors are mutually orthogonal and [|s;||? = k; for 0 < i < D. With respect to the basis sg, s1,...,5p
the matrix representing A is

0 bo 0
C1 0 bl
(6] .
- bp_1
0 CD 0

12



The two bases for Vj given above are related as follows. For 0 < i < D we have

D
5; = Z fi(0n)Ent,

h=0

where the polynomial f; is from ().

10 The T-modules of endpoint 1

With reference to Definition Bl there exists, up to isomorphism, a unique irreducible T-module with end-
point 1 [9, Corollary 7.7]. We call this module V4. The module V; is described in [9], [24]. We summarize
some details below.

The module V; is thin with dimension D — 1. We give two bases for V;. Let v denote a nonzero vector in
E7V;i. The vectors
Ev (1<i<D-1) (38)

form a basis for V; and Fov = 0, Epv = 0. The vectors in ([B8]) are mutually orthogonal and

(k29
a2 = i 0)

2
=" T ]2 <i<D-1).

To motivate the second basis we make some comments. We have EZT“HAZ-U =pi(A)v for 0 <i < D—1, where
the p; are from ([[[). The vectors
Ef A (0<i<D-2) (39)

form a basis for V7 and E5Ap_1v = 0. The vectors in (BY) are mutually orthogonal and

" bo - bit1 .
1B} 1 Al |* = ﬁHUHQ (0<i<D-2).

2

With respect to the basis (BJ) the matrix representing A is

0 by 0
C1 0 b
C2 .
. . bD71
0 CpD—-2 0

The two bases for V; given above are related as follows. For 0 < i < D — 2 we have

D—1
Ef A= Z i(0rn)Epv.

h=1
We comment that V; appears in V' with multiplicity £ — 1. We will need the following result.

Corollary 10.1 With reference to Definition 8, let W denote an irreducible T-module with endpoint 1.
Observe ESW is an eigenspace for E3AsE5. The corresponding eigenvalue is bg — 1.

Proof. The desired eigenvalue is the entry in the second row and second column of the matrix representing Ao
with respect to the basis ([Bd). To compute this entry, first set i = 1 in () and observe that co Ay = A% — k1.
Using this fact and the above matrix display of A, we verify the specified matrix entry is b3 — 1. O
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11 The local eigenvalues

A bit later in this paper we will consider the thin irreducible T-modules with endpoint 2. In order to discuss
these we recall the local eigenvalues.

Definition 11.1 With reference to Definition Bl we let T2 = I'3(z) denote the graph (X, R), where

X = {yeX|oy) =2},

R = {yz|y,z€X,d(y,2) =2},

where we recall 9 denotes the path-length distance function for I'. The graph I'} has exactly ks vertices,
where ks is the second valency of I'. Also, I'3 is regular with valency p3,. We let A denote the adjacency
matrix of I'3. The matrix Ais symmetric with real entries; therefore Ais diagonalizable with all eigenvalues
real. We let ny,m2,...,nk, denote the eigenvalues of A. We call M, M2, - - -, Nk, the local eigenvalues of I' with
respect to x.

With reference to Definition Bl we consider the second subconstituent E5V. We recall the dimension of
E3V is ko. Observe E3V is invariant under the action of E5AsFE5. To illuminate this action we make an
observation. For an appropriate ordering of the vertices of I" we have

g (A0

where A is from Definition [Tl Apparently the action of E5 A3 E3 on E3V is essentially the adjacency map
for T'3. In particular the action of EAsE3 on E3V is diagonalizable with eigenvalues n1,72, ..., Nk,. We
observe the vector sy from (B is contained in E5V. One may easily show that s is an eigenvector for
E} Ay E3 with eigenvalue p3,. Let v denote a vector in E3V. We observe the following are equivalent: (i) v is
orthogonal to sg; (ii) Egv = 05 (iii) Jv = 0; (iv) Epv = 0; (v) J'v = 0. Let V; denote an irreducible T-module
of endpoint 1, and let v denote a vector in E5V;. By Corollary [Tl v is an eigenvector for E3 Ay E5 with
eigenvalue bz — 1. Reordering the local eigenvalues if necessary, we have n; = p3, and ; = b3 —1 (2 < i < k).
For the rest of this paper we assume the local eigenvalues of I' are ordered in this way.

We now need some notation.

Definition 11.2 With reference to Definition Bl let Y denote the subspace of V' spanned by the irreducible
T-modules with endpoint 1. We define U to be the orthogonal complement of E3Vy + E3Y in ESV.

Definition 11.3 With reference to Definition Bl let ® denote the set of distinct scalars among nx41,7k+2,- - -
Mi,, Where the n; are from Definition [Tl For n € R we let mult, denote the number of times n appears
AMONgG Mk41, Nk+25 - - - » Nk - We observe mult,, # 0 if and only if n € ®.

Using ([@) we find U is invariant under E5 A3 E5. Apparently the restriction of E5 A3 E3 to U is diagonalizable
with eigenvalues Mg41, k42, ..., Mky. For 7 € R let U,) denote the set consisting of those vectors in U that
are eigenvectors for E5 A E5 with eigenvalue 7. We observe U, is a subspace of U with dimension mult,,.
We emphasize the following are equivalent: (i) mult,, # 0; (ii) U, # 0; (iii) n € ®. By (@) and since E5A>E3
is symmetric with real entries we find

U= Z U, (orthogonal direct sum). (40)
ned

Definition 11.4 With reference to Definition Rl for all z € C U oo we define

bab: . 2
—1- 2, if 2 # 00, 2% # by
0, if 22 = by

-1, if z = o0.

N3
Il
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Note 11.5 With reference to Definition Bl neither of 67,62 is equal to by by Lemma B4l so

01 = —1 — babg(6? — by) 7L, g = —1 — babs(62 — by) L. (41)

By the data in Lemma [E.4 we have 6, < —1. Moreover 64 > by — 1 if D is odd and 4 = by — 1 if D is even.
In either case 64 > 0.

Lemma 11.6 [28, Theorem 11.4/] With reference to Definitions Bl and L1, we have 01 < m; < 04 for
E+1<1i<ks.

We remark on the case of equality in the above lemma.

Lemma 11.7 [Z8, Lemma 11.5] With reference to Definition[81), let v denote a nonzero vector in U. Then
(i)—(vi) hold below:

(i) Eov =0 and Epv =0.

(ii) For1<i<D—1, E;v#0 provided i is not among 1,d,D —d, D — 1.
(iii) F1v =0 if and only if v € Uy, .

(iv) Ep—1v =0 if and only if v € Uy, .

(v) Eqv =0 if and only if v € Uy .

(vi) Ep—qv =0 if and only if v € Uy, .

Corollary 11.8 [28, Corollary 11.6] With reference to Definition [8l, let v denote a nonzero vector in U.
Then (i)—-(iv) hold below:

i) If v € Uz, then Mv has dimension D — 3.
ii) Ifve U, and D is odd, then Mv has dimension D — 3.

iii) Ifv e U, and D is even, then Mv has dimension D — 2.

(
(
(
(iv) Ifv ¢ U, and v ¢ U;, then Mv has dimension D — 1.

Definition 11.9 With reference to Definition Bl let W denote a thin irreducible T-module with endpoint
2. Observe E5W is a 1-dimensional eigenspace for E5AsE3; let nn denote the corresponding eigenvalue. We
observe E5W is contained in E5V and is orthogonal to any irreducible T-module with endpoint 0 or 1, so
EsW C U,. Apparently U, # 0 so n is among nx41, Mk+2, - .-, Mk,- We have 81 < n < 64 by Lemma [[TH
We refer to 7 as the local eigenvalue of W.

With reference to Definition Bl let W denote a thin irreducible T-module with endpoint 2 and local
eigenvalue 7. In order to describe W we distinguish four cases: (i) 7 = 6;; (ii) D is odd and n = 8; (iii) D
is even and 7 = fg; (iv) 6; < n < 6. For cases (i), (i) the module W was described by the present authors
in [28]; we summarize these results in the following section. For cases (iii), (iv) we describe W in Sections

[[4l and [[A

12 Some thin irreducible T-modules with endpoint 2
In this section we summarize some results from L‘ZX] concerning the thin irreducible T-modules with endpoint
2 and local eigenvalue 7, where n = 61, or n = 6,4 with D odd.

With reference to Definition Bl choose n € {1,d} if D is odd, and let n = 1 if D is even. Define n = 0,,.
Let W denote a thin irreducible T-module with endpoint 2 and local eigenvalue 7. The dimension of W is
D —3. For 0 <¢ < D, EfW is zero if i € {0,1,D — 1, D}, and has dimension 1 if ¢ ¢ {0,1,D — 1, D}.

15



Moreover E;W is zero if ¢ € {0,n, D — n, D}, and has dimension 1 if ¢ & {0,n, D — n, D}. Let v denote a
nonzero vector in E5W. Then W = Mwv. The vectors

Ev (1<i<D-1, i#n,i#D—n) (42)

form a basis for W, and each of Eyv, E,,v, Ep_nv, Epv is zero. The vectors in [f2) are mutually orthogonal
and

_ om0 — k)67 — 07)
| X [kb1 (62 — b2)

We mention a second basis for W. To motivate things we remark

| Eiv|)? [|v||? (1<i<D-1, i#n, i# D —n).

ph (0n) kibibit: )
= - <1< D—-2).
E; A = E ) khbhbhﬂph(A)v (0<i<D-2)

i— h even

The vectors
E} A (0<i<D-4) (43)

form a basis for W, and E}, ;Ap_3v =0, Ef5Ap_ov = 0. The vectors in ([@3)) are mutually orthogonal and

kibibiyiCiyiCiva Di 2(9n) .
Er A = mian Al das ok 0<i<D-4).
|z Al = =R G 2 S ol (0<i<D -4

With respect to the basis given in (3] the matrix representing A is

0 w1 0
C1 0 w9
C2
)
Wp—4
0 CD—4 0

where
bit1Cit2 Pi—1(0n)Dit2(0n)

Ci Pi(0n)pi+1(0n)
The bases for W given in [@2), [{3)) are related as follows. For 0 <i < D — 4 we have

Ei s Aiv = Z i (0;) Ejv,

1<j<D-1
J#n, j#ZD—n

w; = (1<i<D-4).

where

Z ph ) kibibiy1
T 7 5 _Pn

khbhbh—i-l

i— h even

We finish this section with a comment.

Lemma 12.1 [Z8, Theorem 12.9] With reference to Definition B, let v denote a nonzero vector in U. Let
n € {1,d} if D is odd, and let n =1 if D is even. Assume v is an eigenvector for E5AsE5 with eigenvalue
0. Then Mwv is a thin irreducible T-module with endpoint 2 and local eigenvalue 6,,.

13 The space Mv when D is even and v € Uy,

With reference to Definition Bl assume D is even. One of our ultimate goals in this paper is to describe
the thin irreducible T-modules with endpoint 2 and local eigenvalue 64. Before we get to this, we find it
illuminating to consider a more general type of space. Let v denote a nonzero vector in U and assume v is an
eigenvector for E5 Ao ES with corresponding eigenvalue 04. In this section we investigate the space Mv. We
present two orthogonal bases for Mwv which we find attractive. Recall that since D is even, we have 6, = 0
and thus éd =b3 —1.
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Theorem 13.1 With reference to Definition [E1l, assume D is even, and let v _denote a nonzero vector
in U. Assume v is an eigenvector for E5AsE; with corresponding eigenvalue 84. Then the vectors E;v
(1<i<D-1,i%#d) form a basis for Mv. Moreover Eqyv =0, Equ =0, Epv = 0.

Proof. Recall Egy, E1,...,Ep form a basis for M. Observe Egv = 0, Eqv = 0, Epv = 0 by Lemma [[T.1 so
the vectors Fv (1 <4< D —1, i # d) span Mv. These vectors are nonzero by Lemma [[T77 and mutually
orthogonal by (@), so they are linearly independent. The result follows. O

Theorem 13.2 [28, Theorem 11.2] With reference to Definition 81, assume D is even, and let v denote a
nonzero vector in U. Assume v is an eigenvector for E5 Ao E5 with corresponding eigenvalue 6q4. Then the
vectors Eiv (1 <i< D —1, i#d) are mutually orthogonal. Moreover the square-norms of these vectors are
given as follows:

E; o) 1<i<D-1,i4#d).
1Bl T (1<i<D-1i#d)

(The scalar m; denotes the multiplicity of 0;.)
Referring to Theorem [[3] we now consider a second basis for Mw.

Definition 13.3 With reference to Definition Bl assume D is even, and let v denote a nonzero vector
in U. Assume v is an eigenvector for FjAsE5 with corresponding eigenvalue 5. We define the vectors

Vo, V1y.-.,UD-2 by
'\ Pu(0) kibibisa
P;(0) kpbpbpia Ph

(A (0<i<D-2). (44)

V; =
h=0
i—h even
(The polynomials p; are from (), and the P; are from ([[H).) The denominators in (@) are nonzero by
Corollary 61

Theorem 13.4 With reference to Definition [81), assume D is even, and let v denote a nonzero vector in
U. Assume v is an eigenvector for E3 AsE3 with corresponding eigenvalue 64. Then with reference to ([{4),
the vectors vg,v1,...,vp—3 form a basis for Mv and vp_o = 0.

Proof. By Theorem [[3] we find Mv has dimension D — 2. By this and since A generates M, we find Mv
has a basis v, Av, ..., AP 3v. For 0 < i < D — 3 the vector v; is contained in the span of v, Av, ..., A
but not in the span of v, Av, ..., A" lv. It follows that vo,v1,...,vp_3 form a basis for Mv. To see that
vp—g = 0, first let gp_o denote the polynomial from Definition [[2 where § = 0. Comparing (), )
we find vp_o = gp_2(A)v. Using this and (eii) we routinely obtain vp_o = ZJD:O gp—2(6;)E;v. Applying

Lemma [C8 and Theorem [[31] we find vp_o = 0. O
With reference to Definition [[33] we will show the vectors vy, v1,...,vp_3 are mutually orthogonal and we

will compute their square-norms. To do this we need the following result.

Theorem 13.5 With reference to Definition 8, assume D is even, and let v denote a nonzero vector in U.
Assume v is an eigenvector for EiAsE3 with corresponding eigenvalue 64. Let the vectors vo,v1,...,vp_3
be as in Definition 33 Then for 0 < i < D — 3 we have

D-1
vi= Y gi(0;)Ejv, (45)
i
where _
~ Py(0) kibsb;
gi= 3 D0 Kb (46)

P;(0) knbrbpn i1
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Proof. Let the integer i be given. Comparing (@), [ H) we find v; = g;(A)v. Using this and (eii) we routinely
obtain v; = EJD:O 9i(6;)E;v. Line #3) follows since Egv = 0, Eqv = 0, Epv = 0 by Theorem [311 O

Theorem 13.6 With reference to Definition[81l, assume D is even, and let v denote a nonzero vector in U.
Assume v is an eigenvector for E5 Ao E3 with corresponding eigenvalue éd. Then the vectors vg,v1,...,Vp_3
from Definition [LZ3 are mutually orthogonal. Moreover the square-norms of these vectors are given as
follows:
s = kibibipiciticive Piya(0) Io])?
kb1bo P;(0)

(0<i<D-3). (47)

Proof. Let the polynomials go, g1, -..,9p—3 be as in (). Using in order Theorem [ZH Theorem [ and
Theorem [ we find that for 0 <i,j < D — 3,

D-1

(Wiv) = > gi(6n)g; (On)|| Envl|?
hza
D—1
mh(k — Hh)(k + Hh)t?i 2
= i(0r)g;(0
h#d
kibibiticiyicive Pipa(0) 9
= —0y — [l
kb1bo P;(0)
Apparently vg, v1,...,vp_3 are mutually orthogonal and satisfy ). O

Theorem 13.7 With reference to Definition [81), assume D is even, and let v denote a nonzero vector in
U. Assume v is an eigenvector for E3AsE5 with corresponding eigenvalue 64. With respect to the basis

Vg, V1, ...,Up_3 for Mv given in Definition [[Z3 the matriz representing A is

0 w1 0

C1 0 w2

C2
)
: Wp-3

0 CpD-3 0

where

_ biticite P;_1(0)Pi12(0)
ci  Pi(0)Piy1(0)

(1<i<D-3). (48)

Proof. For 0 < i < D —2 we define g; as in Definition [C2 where 8 = 0. Setting A = A and 6 = 0 in Theorem
we find

Agi(A) = cit19i+1(A) +wigi-1(A) (0<i<D-3), (49)

where g_1 = 0, wyp = 0, and the w; are from EX). Observe g;(A)v = v; for 0 < i < D — 2. Applying EI) to
v, and simplifying the result using these comments, we find

Avi = ¢i410Vi41 + wivi—1 (0<i<D-3),

where v_; = 0. The result follows from this and since vp_s = 0 by Theorem [[34 O
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14 The thin irreducible T-modules with endpoint 2 and local eigen-
value 6;, when D is even

With reference to Definition Bl assume D is even. We now describe the thin irreducible T-modules with
endpoint 2 and local eigenvalue 6,. This section contains some of our main results. Because of this we have
tried to make it as self-contained as possible.

Theorem 14.1 With reference to Definition [E1l, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 64. Let v denote a nonzero vector in E3W. Then W = Mw.

The vectors
Ev (1<i<D-1,i#4d) (50)

form a basis for W and Eyv =0, Eqv =0, Epv = 0.

Proof. We first show W = Mwv. From the construction Mv is nonzero and contained in W. Consequently in
order to show Mv = W, it suffices to show Mwv is a T-module. By construction Mwv is closed under multipli-
cation by M. We now show that Mw is closed under multiplication by M*. By Definition [Td the vector v
is contained in U. Moreover v is an eigenvector for F3 Ay E5 with eigenvalue f4. Observe that Mv has basis
v, Av, ..., AP73y by Definition and Theorem 34 Using this and @f) we find Mv C 25;21 E;W.
Observe the dimension of Mv is D — 2 and the dimension of 25;21 EyW is at most D — 2. Therefore

Mv = hD:_21 E;W. From this we find Mwv is closed under multiplication by M* as desired. We have shown
that Mwv is a nonzero T-submodule of W so Mv = W by the irreducibility of . The remaining assertions
of the present theorem follow in view of Theorem 311 a

Theorem 14.2 With reference to Definition [81l, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 4. Then the basis vectors for W from (&) are mutually
orthogonal. Moreover the square-norms of these vectors are given as follows:

o ma(k — 6:)(k + 0,62

E; *w)|? 1<i<D-1,i4#d).
1Bl T (1<i<D-1i#d)

(The scalar m; denotes the multiplicity of 0;.)

Proof. By Definition [[T3 the vector v is contained in U. Moreover v is an eigenvector for E3 A E3 with
eigenvalue 6. Applying Theorem we obtain the result. a

Theorem 14.3 With reference to Definition [, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 04. Let v denote a nonzero vector in E3W . Then
L Pu(0) kibibita
Ef Av = —_—
fradiv =3, P,(0) Fnbrbars

h=0
i—h even

B(A) (0<i<D-2). (51)

Moreover, each side of &) is zero for i = D — 2. (The polynomials p; are from (), and the P; are from
@3).)

Proof. By Definition [T the vector v is contained in U. Moreover v is an eigenvector for E3A;ES with
eigenvalue 0,. Let the vectors V9,01, ...,Vp_2 be as in Definition We show Ej,,Ajv = v; for 0 <i <
D —2. Using [B4l) we find A’y is contained in ESW +-- -+ Ef , W for0<i<D-2. Alsofor0<i<D-—2,
v; is a linear combination of v, Av,..., A", so v; is contained in ESW + --- + Ef, ,W. By this and since
Vg, V1, .. .,Up—3 are linearly independent, we find

V0,V1,...,v; is a basis for  ESW + ESW +--- + B, W (0<i<D-3). (52)
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For the rest of this proof, fix an integer i (0 < i < D — 2). We show v; is contained in EJ, ,WW. To see this,
recall ESW, ..., EL,W are mutually orthogonal. Therefore E},,W is equal to the orthogonal complement
of E3W + -+ E; ;W in E5W +--- 4+ Ef, ,W. Recall v; is orthogonal to each of vp,vy,...,v;—1. By (B2)
the vectors vg, v1, . ..,v;—1 form a basis for E5W +--- + E} W so v; is orthogonal to ESW +---+ Ef | W.
Apparently v; is contained in E}, ,W as desired. We show E},,A;v = v;. We mentioned the vector v; is a
linear combination of v, Av,..., A%v. In this combination the coefficient of Av is (c1ca---¢;)~! in view of
Lemma[ZA(ii). Similarly A;v is a linear combination of v, Av, ..., A'v, and in this combination the coefficient
of Al is (ciea---¢;)~ 1. Apparently A;v — v; is a linear combination of v, Av, ..., A" 1v. From this and our
above comments A;v —v; is contained in E5W +--- + Ef ;W so E} ,(Ajv —v;) is zero. We already showed
v; € B ;W so Ef yv; = v;. Now Ej 5, A;v = v; as desired. Recall vp_o = 0 by Theorem [[34 so both sides
of (BIl) are zero for i = D — 2. O

Theorem 14.4 With reference to Definition [, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 84. Let v denote a nonzero vector in E5W . Then the vectors

Ef A (0<i<D-3) (53)
form a basis for W.

Proof. By Definition [[TH the vector v is contained in U. Moreover v is an eigenvector for E3 A E5 with
eigenvalue 6,. Let the vectors vg,v1,...,vp_3 be as in Definition By Theorem [[Z4 the vectors

Vg, V1, . ..,VUp_3 form a basis for Mv. Recall Mv = W by Theorem [[Z1] so vg,v1,...,vp_3 form a basis for
W. By Theorem v; = B} ,Ajv for 0 <i < D — 3 and the result follows. O

Theorem 14.5 With reference to Definition [81], assume D is even, and let W denote a thin irreducible T'-
module with endpoint 2 and local eigenvalue 04. Then the vectors in [&3) are mutually orthogonal. Moreover
the square-norms of these vectors are given as follows:

kibibiqaicipicive Pigo (0)

Ef A =
|| 142 U” kble PZ(O)

l|lv||? (0<i<D-3).

Proof. By Definition [[TH the vector v is contained in U. Moreover v is an eigenvector for E3 A2 E5 with
eigenvalue 6. The result follows in view of Theorem [[38 and Theorem a

Theorem 14.6 With reference to Definition [E1l, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 4. With respect to the basis for W given in &3) the matriz
representing A is

0 w1 0
C1 0 w2
C2
)
wWp-3
0 Cp—3 0

where
biy1cit2 Pi—1(0)P;y2(0)
¢i  P(0)Piy1(0)

(1<i<D-3). (54)

W; =

Proof. By Definition [[T3 the vector v is contained in U. Moreover v is an eigenvector for E3 Ay E3 with
eigenvalue 6. The result follows in view of Theorem [[371 and Theorem a

20



Theorem 14.7 With reference to Definition [§1l, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue 04. Let v denote a nonzero vector in ESW. Then for
0<i<D—3 we have

D—1
EfpAiv =Y gi(6;)Ejv,
iz

where )
‘L PL(0) kibibii1
P;(0) knbpbpi1 Ph

9i =

h=0
i—h even
Proof. By Definition [[TH the vector v is contained in U. Moreover v is an eigenvector for E5 A E5 with
eigenvalue 4. The result follows in view of Theorem [[3.H and Theorem O

In summary we have the following theorem.

Theorem 14.8 With reference to Definition [Bl, assume D is even, and let W denote a thin irreducible
T-module with endpoint 2 and local eigenvalue éd. Then W has dimension D —2. For 0 <i <D, EfW is
zero if i € {0,1, D} and has dimension 1 if 2 <i < D — 1. Moreover E;W is zero if i € {0,d, D} and has
dimension 1if1<i<D—1,i#d.

Proof. The dimension of W is D — 2 by Theorem [Zl Fix an integer i (0 < ¢ < D). From Theorem [[ZZ
we find EXW is zero if ¢ € {0,1, D} and has dimension 1 if 2 < ¢ < D — 1. From Theorem [[Z1l we find E;W
is zero if ¢ € {0,d, D} and has dimension 1 if 1 <i< D —1, i # d. O

15 The space Mwv for v € U, (9~1 <n< éd)

With reference to Definition BTl let v denote a nonzero vector in U. Assume v is an eigenvector for E3 A E3,
and let 1 denote the corresponding eigenvalue. Assume 67 < 1 < 64. Given these assumptions we will
examine the space Mv.

Theorem 15.1 With reference to Definition [8, let v denote a nonzero vector in U. Assume v is an
eigenvector for E35AyES and let 7 denote the corresponding eigenvalue. Assume 61 < 1 < 04. Then the
vectors Fhv, Fav, ..., Ep_jv form a basis for Mv. Moreover Eyv =0, Epv = 0.

Proof. Recall Ey, Eq,...,Ep form a basis for M. Observe Eqv = 0, Epv = 0 by Lemma [T1 so
Eiv, Esv, ..., Ep_1v span Mv. These vectors are nonzero by Lemma [T and mutually orthogonal by
@), so they are linearly independent. The result follows. 0

Theorem 15.2 [28, Theorem 11.2] With reference to Definition B, let v denote a nonzero vector in U.
Assume v is an eigenvector for E5 AsE5 and let n denote the corresponding eigenvalue. Assume 0, < n < 0.
Then the vectors E1v, Eqv, ..., Ep_1v are mutually orthogonal. Moreover the square-norms of these vectors
are given as follows:

(i) Assumen # —1. Then

| X |kb1(¢) — b2)

oni )

We remark the denominator in (23) is nonzero by (&d).

| Eiv||* = (1<i<D-1), (55)

where
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(ii) Assumemn = —1. Then

2 _ mz(k — 91)(k5 + 91)

E;

]| (1<i<D-1)

(The scalar m; denotes the multiplicity of 0;.)

As we proceed in this section, we will encounter scalars of the form P;(¢) in the denominator of some rational
expressions. To make it clear these scalars are nonzero we present the following result.

Lemma 15.3 With reference to Definition[B, let ) denote a real number such that n # —1 and 6, < n < 04,
and let ¢ be as in [2@). Then (i)-(iii) hold below:

(i) Assume 6, <n < —1. Then ¢ > 63 and P;(¢) > 0 for 0 <i < D.
(ii) Assume —1 <n < 04. Then v < 62 and (—1)L31P,(1) > 0 for 0 <i < D.
(ifi) Pi(¢) £ 0 for 0< i< D.

Proof. (i) Combining the inequalities §; < < —1 with @), (58), and using Lemma B4l we routinely find
¥ > 62, Thus P;(v)) >0 (0 <i < D) by Lemma [E8(i).

(ii) Combining the inequalities —1 < 7 < 04 with D), BH), and using Lemma B4 we routinely find ¢ < 63.
Thus (—1)L2Pi(¢p) >0 (0 <4 < D) by Lemma BH(ii), (iii).

(iil) Immediate from (i), (ii) above. O

Referring to Theorem [[5J] we now consider a second basis for Mwv.

Definition 15.4 With reference to Definition Bl let v denote a nonzero vector in U. Assume v is an
eigenvector for E5 A2 E5 and let 7 denote the corresponding eigenvalue. Assume 6; < 7 < 04. We define the
vectors vg, vy, . ..,vp—2 as follows:

(i) Suppose n # —1. Then

‘P kib;b; .

where v is from (BH).
(ii) Suppose n = —1. Then v; = p;(A)v for 0 <i < D — 2.
(The polynomials p; are from ([[), and the P; are from ([H).)

Theorem 15.5 With reference to Definition [81, let v denote a nonzero vector in U. Assume v is an
eigenvector for E3AsES and let ) denote the corresponding eigenvalue. Assume 61 < n < 04. Then the
vectors vg, 1, . ..,vp—g from Definition[I54] form a basis for Muv.

Proof. By Theorem [[5J] we find Mv has dimension D — 1. By this and since A generates M, we find Mv

has a basis v, Av, ..., AP~2y. For 0 < i < D — 2 the vector v; is contained in the span of v, Av, ..., A'v but
not in the span of v, Av, ..., A" lv. It follows that vg,v1,...,vp_o form a basis for Mv. O
With reference to Definition [0 we will show that the vectors vg, v1, ..., vp_2 are mutually orthogonal and

we will compute their square-norms. To do this we need the following result.

Theorem 15.6 With reference to Definition [8l, let v denote a nonzero vector in U. Assume v is an
eigenvector for E5 Ao ES and let ) denote the corresponding eigenvalue. Assume 61 < n < 04. Let the vectors

Vo, V1, - .,Up—2 be as in Definition [I5.4}

22



(i) Suppose n # —1. Then for 0 < i < D — 2 we have

D-1

v; = Z gi(9j)EJ—v, (58)

=1

<.

where _
—~  Pu(¢) kibibia
;= B 59
I ; Py(4h) Fnbrbnar " (59)
i—h even
and v is from (20).
(ii) Suppose n = —1. Then
D—1
j=1

Proof. (i) Let the integer i be given. Comparing (7)), D) we find v; = g;(A)v. Using this and (eii) we
routinely obtain v; = ZJD:O g:(0;)E;v. Line (BY) follows since Egv = 0, Epv = 0 by Lemma [[TA(i).
(ii) Similar to the proof of (i) above. O

Theorem 15.7 With reference to Definition [, let v denote a nonzero vector in U. Assume v is an
eigenvector for E3AsE5 and let 1 denote the corresponding eigenvalue. Assume 0, < n < 4. Then the
vectors vg,v1,...,Vp—_2 from Definition are mutually orthogonal. Moreover the square-norms of these
vectors are given as follows:

(i) Suppose n # —1. Then

_ kibibiyicivicive Piya(9)

o = Betcistcuss Bt e o ci< o), (60
where v is from (20).
(ii) Suppose n = —1. Then
sl = 22 o ? O<i<D-2).

Proof. (i) Let the polynomials gg, g1,...,gp—2 be as in (Bd). Using in order Theorem A6 Theorem 52
and Theorem [ we find that for 0 <i,j < D — 2,

D-1
(vi,vj) = 9i(01)9; (0n) | Envl?
h=1
= mu (0 — k) (On + k)(62 — o)
— (01)g:(0 h 2
_ 5 kibibiticiticive Pira(¥) [o]|2.

YOk —ba)  Pi(Y)

Apparently vg, v1,...,vp_o are mutually orthogonal and satisfy (@0).

(ii) The argument is similar to (i) above, with the p; taking the place of the g; and Lemma ] taking the
place of Theorem [ |
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Theorem 15.8 With reference to Definition [81, let v denote a nonzero vector in U. Assume v is an
eigenvector for E3 A2E2 and let n denote the corresponding eigenvalue. Assume 0, < n < 0q4. With respect

to the basis vo, v1,...,vp—2 for Mv given in Definition [I5.7] the matriz representing A is
0 w1 0
C1 0 w2
C2
: Wp-2
0 Cp—2 0

where the w; are as follows:

(i) Suppose n # —1. Then

biticita Pim1(¥)Piya ()
i Pi()Pyai(v)

(1<i<D-2), (61)

w; =

where 1) is from (24).

(ii) Suppose n = —1. Then
Ww; = bi+1 (1 S ) S D — 2) (62)

Proof. (i) For 0 <i < D — 2 we define g; as in (B3). Setting A = A and 6 = ¢ in Theorem [ we find
Agi(A) = cit1gi+1(A) + wigi-1(A) (0<i<D-2), (63)

where g1 =0, wo = 0, gp—1 = pp—1, and the w; are from ). Observe g;(A)v = v; for 0 < i < D — 2.
Applying both equations in () to v and recalling Jv = 0, J'v = 0, we find pp_1(A)v = 0. Applying ([E3)
to v, and simplifying the result using these comments, we find

Av; = 11041 + Wivi—1 (0<i<D-2),

where v_; = 0 and vp_1 = 0. The result follows.
(ii) The argument is similar to (i) above, with the p; taking the place of the g; and ([ taking the place of
Theorem [CH O

16 The thin irreducible T-modules with endpoint 2 and local eigen-
value 1 (61 <n < 6y)
With reference to Definition Bl we now describe the thin irreducible T-modules with endpoint 2 and local

eigenvalue 7 (91 <n< éd). This section contains some of our main results. Because of this we have tried to
make it as self-contained as possible.

Theorem 16.1 With reference to Definition [E, let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue 7 (91 <n< 9d) Let v denote a nonzero vector in ESW. Then W = Mv. The vectors

El’U,EQ’U,...,ED_l’U (64)
form a basis for W and Eqv =0, Epv = 0.

Proof. To see W = Mwv, observe that W contains v and is invariant under M so Mv C W. We assume W is
thin with endpoint 2, so the dimension of W is at most D — 1. By Definition [T the vector v is contained
in U. Moreover v is an eigenvector for EjAsE3 with eigenvalue 7. Now Theorem [[h] applies. By that
theorem Mwv has dimension D —1 so W = Mwv. The remaining assertions of the present theorem follow in
view of Theorem [[5.11 O
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Theorem 16.2 With reference to Definition [81l, let W denote a thin irreducible T'-module with endpoint
2 and local eigenvalue n (61 < n < 84). Then the basis vectors for W from ([04) are mutually orthogonal.
Moreover the square-norms of these vectors are given as follows:

(i) Suppose n # —1. Then
m;(0; — k) (0; + k) (07 — o)

E|? = 2 1<i<D-1
where )
—by (1 — 65
vt (1- 12 (65)
(ii) Suppose n = —1. Then
(o L Gt D CR A NTE (1<i<D-1).

| X kb
(The scalar m; denotes the multiplicity of 0;.)

Proof. By Definition [Td the vector v is contained in U. Moreover v is an eigenvector for Ej Ay FE3 with
eigenvalue 7. Applying Theorem we obtain the result. a

Theorem 16.3 With reference to Definition [8, let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue n (01 < n < 0q). Let v denote a nonzero vector in E5W.

(i) Supposen # —1. Then

i

Pr(¢) kibibita

Ef A = SO0 L (A 0<i<D-2),
i+ 2. Bp) Fububam pn(4) ( )
i—h even
where 1) is from (G3).
(ii) Suppose n = —1. Then
Ef ,Aiv =pi(A)v (0<i<D-2).

(The polynomials p; are from {I), and the P; are from ([I1).)

Proof. By Definition [T the vector v is contained in U. Moreover v is an eigenvector for Ej Ay E5 with
eigenvalue 7. Let the vectors vg,v1,...,vp_2 be as in Definition 24 We show E}, ,A;v = v; for 0 < i <
D —2. Using (B4l we find A’y is contained in ESW +-- -+ Ef , W for0<i<D-2. Alsofor0<i<D-—2,
v; is a linear combination of v, Av, ..., A'v, so v; is contained in E5W + --- + E}, ,W. By this and since
Vg, V1, .. .,Up_o are linearly independent, we find

V0,V1,...,v; is a basis for  ESW + ESW +--- + B, W (0<i<D-2). (66)

For the rest of this proof, fix an integer ¢ (0 < ¢ < D—2). We show that v; is contained in E} ,W. To see this,
recall ESW, ..., EL,W are mutually orthogonal. Therefore E}, ,W is equal to the orthogonal complement
of EsW + -4+ E; (W in E;W +--- 4 Ef ,W. Recall v; is orthogonal to each of vp,v1,...,v;—1. By (Gf)
the vectors vg, v1,...,v;—1 form a basis for E5W + .-+ E¥, ;W so v; is orthogonal to E3W + .-+ E¥ | W.
Apparently v; is contained in E}, ,W as desired. We show that £}, ,A;v = v;. We mentioned that the vector
v; is a linear combination of v, Av, ..., A%v. In this combination the coefficient of A‘v is (cicz2---¢;)~! in
view of Lemma [C(ii). Similarly A;v is a linear combination of v, Av, ..., A'v, and in this combination the
coefficient of A% is (cic2---¢;)~t. Apparently A;v — v; is a linear combination of v, Av,..., A*"tv. From
this and our above comments A;v — v; is contained in E5W +--- + Ef W so Ef ,(Ajv — v;) is zero. We
already showed that v; € Ef, , W so E} yv; = v;. Now E}, 5 A;v = v; as desired. O

25



Theorem 16.4 With reference to Definition 8}, let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue n (01 < n < 0q). Let v denote a nonzero vector in E3W . Then the vectors

Ef , A (0<i<D-2) (67)
form a basis for W.

Proof. By Definition [T the vector v is contained in U. Moreover v is an eigenvector for E3 Ay E3 with eigen-

value n. Let the vectors vg, v1,...,vp_2 be as in Definition [ By Theorem [ the vectors vy, v1,...,vp_2
form a basis for Mv. Recall Mv = W by Theorem 60 so vy, v1,...,vp_2 form a basis for W. By Theorem
v; = Ef ;A for 0 <4 < D — 2 and the result follows. O

Theorem 16.5 With reference to Definition [81), let W denote a thin irreducible T-module with endpoint
2 and local eigenvalue n (6‘1 <n< Gd) Then the vectors in ([07) are mutually orthogonal. Moreover the
square-norms of these vectors are given as follows:

(i) Suppose n # —1. Then

kibibit1citiciva Pipa(v) )
|1 Ef o Aiv]|? = kﬂ@j@; ?)IIW (0<i<D-2),

where v is from (G3).
(ii) Suppose n = —1. Then

kbmﬂ

1E; 2 Aiv]|* = o] (0<i<D-2).

Proof. By Definition [TH the vector v is contained in U. Moreover v is an eigenvector for Ej Ay FE3 with
eigenvalue 7. The result follows in view of Theorem [ and Theorem a

Theorem 16.6 With reference to Definition [8), let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue n (6‘1 <n< HD) With respect to the basis for W given in ([07) the matriz representing
A s

0 w1 0
C1 0 wo
C2
)
. Wp—2
0 Cp—2 0

where the w; are as follows.

(i) Suppose n # —1. Then

biviCive Pim1(¢)Piga(t)
Ci Pi(¥)Piy1(v)

Ww; =

(1<i<D-2), (68)

where v is from (G3).

(ii) Suppose n = —1. Then

Proof. By Definition [[T3 the vector v is contained in U. Moreover v is an eigenvector for E5 Ay FE5 with
eigenvalue 7. The result follows in view of Theorem and Theorem O
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Theorem 16.7 With reference to Definition 8}, let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue n (01 < n < 0q). Let v denote a nonzero vector in E5W.

(i) Suppose n # —1. Then for 0 < i < D — 2 we have

where

i = Z Pr(¢) kibibita

and ¥ is from (G3).
(ii) Suppose n = —1. Then

D-1
E;F+2Ai’l} = Z pi(Hj)Ejv (0 < ) < D — 2)
j=1

Proof. By Definition [T the vector v is contained in U. Moreover v is an eigenvector for E5 Ay FE5 with
eigenvalue 7. The result follows in view of Theorem [[5:8 and Theorem O

In summary we have the following theorem.

Theorem 16.8 With reference to Definition [81), let W denote a thin irreducible T-module with endpoint
2 and local eigenvalue n (61 < n < 04). Then W has dimension D — 1. For 0 < i < D, EfW s zero if
i € {0,1} and has dimension 1 if 2 < i < D. Moreover E;W s zero if i € {0,D} and has dimension 1 if
1<i<D-1.

Proof. The dimension of W is D — 1 by Theorem [[G.1l Fix an integer ¢ (0 < ¢ < D). From Theorem [[G.4 we
find EfW is zero if i € {0,1} and has dimension 1 if 2 < i < D. From Theorem [[G.1] we find E;W is zero if
i € {0,D} and has dimension 1 if 1 <i< D — 1. O

17 Some multiplicities

With reference to Definition Bl let W denote a thin irreducible T-module with endpoint 2 and local
eigenvalue 7. In this section we show that the isomorphism class of W as a T-module is determined by 7.
We show that the multiplicity with which W appears in the standard module V' is at most the number of
times 7 appears among Mgy1, Mk+2, - - - s Nky- We investigate the case of equality.

Theorem 17.1 With reference to Definition [B1, let W denote a thin irreducible T-module with endpoint 2
and local eigenvalue n. Let W' denote an irreducible T-module. Then the following (i), (ii) are equivalent:

(i) W and W’ are isomorphic as T-modules.
(if) W’ is thin with endpoint 2 and local eigenvalue 7).

Proof. (i)=(ii) Clear.
(ii)=(i) First observe that n satisfies one of the cases (i)—(iv) mentioned below Definition [TA If n satisfies
case (i) or case (ii) then statement (i) of the present theorem holds by [28, Theorem 14.1]. Now assume 7
satisfies case (iii) or case (iv). For notational convenience set e = 1 if n satisfies case (iii) and set e = 0 if
7 satisfies case (iv). We display an isomorphism of T-modules from W to W'. Observe E5W and E;W’
are both nonzero. Let v (resp. v’) denote a nonzero vector in E3W (resp. E3W’). By Theorem [[Z4 or
Theorem [[6.4 the vectors

Ef A 0<i<D-2-¢) (70)
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form a basis for W. Similarly the vectors
Ef A (0<i<D-2-¢) (71)

form a basis for W’. Let o : W — W' denote the isomorphism of vector spaces that sends E} ,A;v to
Ef 4 A" for 0 <i < D —2—e. Weshow o is an isomorphism of T-modules. By Theorem [[Z or Theorem
[[G.6l the matrix representing A with respect to the basis [[) is equal to the matrix representing A with re-
spect to the basis ([[1)). It follows 0 A— Ao vanishes on W. From the construction we find that for 0 < h < D,
the matrix representing E} with respect to the basis [Z0) is equal to the matrix representing E; with respect
to the basis ([[J). It follows o E} — E}o vanishes on W. The algebra T is generated by A, E§, ES, ..., E}. It
follows 0 B— Bo vanishes on W for all B € T. We now see ¢ is an isomorphism of T-modules from W to W’. [

Lemma 17.2 With reference to Definition [81l, for all n € R we have
U, 2 E5H,, (72)

where H,, denotes the subspace of V' spanned by all the thin irreducible T'-modules with endpoint 2 and local
eigenvalue 1.

Proof. Observe E5 H,, is spanned by the E5W, where W ranges over all the thin irreducible T-modules with
endpoint 2 and local eigenvalue 7. For all such W the space E5W is contained in U,) by Definition [T.9 The
result follows. O

We remark on the dimension of the right-hand side in ([Z2). To do this we make a definition.

Definition 17.3 With reference to Definition Bl and from our discussion in Section8 the standard module
V' can be decomposed into an orthogonal direct sum of irreducible T-modules. Let W denote an irreducible
T-module. By the multiplicity with which W appears in V, we mean the number of irreducible T-modules
in the above decomposition which are isomorphic to W.

Definition 17.4 With reference to Definition ], for all 7 € R we let p,, denote the multiplicity with which
W appears in V', where W is a thin irreducible T-module with endpoint 2 and local eigenvalue 7. If no such
W exists we interpret p, = 0.

Theorem 17.5 With reference to Definition B, for all n € R the following scalars are equal:
(i) The scalar pu, from Definition [T72}
(ii) The dimension of E5H,, where Hy is from Lemma[I73

Moreover
multy > py. (73)

Proof. We first show that u, is equal to the dimension of E3H,. Observe H, is a T-module so it is an
orthogonal direct sum of irreducible T-modules. More precisely

Hy =Wy +Wa+ -+ W, (orthogonal direct sum), (74)

where m is a nonnegative integer, and where Wy, Ws, ... W, are thin irreducible T-modules with endpoint
2 and local eigenvalue 7. Apparently m is equal to u,. We show m is equal to the dimension of E3H,,.
Applying E3 to ([[d) we find

ESH, = EsW) + EsWa + - -+ E5W,, (orthogonal direct sum). (75)

Observe each summand on the right in ([3) has dimension 1. These summands are mutually orthogonal so
m is equal to the dimension of E5H,. Now u, is equal to the dimension of E5H,. We mentioned earlier
that the dimension of U, is mult,. Combining these facts with Lemma [[Z2 we obtain (Z3J). O

We are interested in the case of equality in [[2) and (@3)). We begin with a result which is a routine
consequence of Lemma [[211
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Lemma 17.6 [Z8, Lemma 14.2] With reference to Definition [81, choose n € {1,d} if D is odd, and let
n=11if D is even. Let n = 0,. Then U, = E5H, and mult, = u,.

Lemma 17.7 With reference to Definition B, let L denote the subspace of V' spanned by the nonthin
irreducible T-modules with endpoint 2. Then

U=E;L+ Z E5H, (orthogonal direct sum). (76)
ned

Proof. Let S denote the subspace of V' spanned by all irreducible T-modules with endpoint 2, thin or not.
Then

S=L+ Z H, (orthogonal direct sum). (77)
ned
Applying E3 to each term in ([{) and using F35S = U we obtain ([ZG). O

Theorem 17.8 With reference to Definition [, the following (i)—(iii) are equivalent:
(i) Equality holds in [73) for alln € R.

(ii) Equality holds in [73) for all n € R.

(iil) Ewvery irreducible T-module with endpoint 2 is thin.

Proof. (1)< (ii) Recall mult, (resp. p,) is the dimension of U,, (resp. E3H,).

(i)=(iii) Let W denote an irreducible T-module with endpoint 2. We show W is thin. Suppose not. Then
W is contained in the space L from Lemma [[Z771 Observe E3W # 0 since W has endpoint 2, so E3L # 0.
We show E5L = 0 to get a contradiction. We assume U, = E3H, for all n € R; combining this with (&)
we find U = Zne<1> E3H,. From this and Lemma [T we find 5L = 0. We now have a contradiction and
it follows W is thin.

(iii)=-(i) There does not exist a nonthin irreducible T-module with endpoint 2, so L = 0. Setting L = 0 in
(@) we find U =}, .4 E5H,. Combining this with ) and Lemma [T we routinely find U, = E3 H,, for
all n € ®. For any real number 7 that is not in ® the spaces U,, and H,, are both 0. Now U, = E35H, for all
n eR. O
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