Characterization and Enumeration of Toroidal $K_{3,3}$-Subdivision-Free Graphs

Andrei Gagarin, Gilbert Labelle and Pierre Leroux
Laboratoire de Combinatoire et d'Informatique Mathématique (LaCIM), Université du Québec à Montréal, Montréal, Québec, CANADA, H3C 3P8
e-mail: gagarin@math.uqam.ca, labelle.gilbert@uqam.ca and leroux.pierre@uqam.ca

October 8, 2018

Abstract

We describe the structure of 2-connected non-planar toroidal graphs with no $K_{3,3}$-subdivisions, using an appropriate substitution of planar networks into the edges of certain graphs called toroidal cores. The structural result is based on a refinement of the algorithmic results for graphs containing a fixed K_{5}-subdivision in [A. Gagarin and W. Kocay, "Embedding graphs containing K_{5}-subdivisions", Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time and makes possible to enumerate labelled 2 -connected toroidal graphs containing no $K_{3,3}$-subdivisions and having minimum vertex degree two or three by using an approach similar to [A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a $K_{3,3}$-subdivision", submitted, arXiv:math.CO/ 0406140, (2004)].

1 Introduction

We use basic graph-theoretic terminology from Bondy and Murty [5] and Diestel [6], and deal with undirected simple graphs. Graph embeddings on a surface are important in VLSI design and in statistical mechanics. We are interested in non-planar graphs that can be embedded on the torus or on the projective plane. By Kuratowski's theorem [13, a graph G is non-planar if and only if it contains a subdivision of K_{5} or $K_{3,3}$ (see Figure 1). In this paper we characterize (and enumerate) the 2-connected toroidal graphs with no $K_{3,3}$-subdivisions, following an analogous work for projective-planar graphs (9$]$). The next step in this research would be to characterize toroidal and projective-planar graphs containing a $K_{3,3}$-subdivision (with or without a K_{5}-subdivision).

Figure 1: Minimal non-planar graphs $K_{3,3}$ and K_{5}.

We assume that G is a 2 -connected non-planar graph. A graph containing no $K_{3,3^{-}}$ subdivisions will be called $K_{3,3}$-subdivision-free. A general recursive decomposition of nonplanar $K_{3,3}$-subdivision-free graphs is described in 16] and 12]. A local decomposition of non-planar graphs containing a K_{5}-subdivision of a special type is described in [7] and [8] (some $K_{3,3}$-subdivisions are allowed), that is used later in [8] to detect a projectiveplanar or toroidal graph. The results of [8] provide a toroidality criterion for graphs containing a given K_{5}-subdivision and avoiding certain $K_{3,3}$-subdivisions by examining the embeddings of K_{5} on the torus. The torus is an orientable surface of genus one which can be represented as a rectangle with two pairs of opposite sides identified. The graph K_{5} has six different embeddings on the torus shown in Figure 2. Notice that the hatched region of each of the embeddings E_{1} and E_{2} forms a single face F.

Figure 2: Embeddings of K_{5} on the torus.
In [9] we prove the uniqueness of the decomposition of [8] for 2-connected non-planar projective-planar graphs with no $K_{3,3}$-subdivisions that gives a characterization of these graphs. In the present paper we state and prove an analogous structure theorem for the class \mathcal{T} of 2 -connected non-planar toroidal graphs with no $K_{3,3}$-subdivisions, involving certain "circular crowns" of $K_{5} \backslash e$ networks and substitution of strongly planar networks for edges. The structure theorem provides a practical algorithm to recognize the toroidal graphs with no $K_{3,3}$-subdivisions in linear-time. Here we use the structure theorem to
enumerate the labelled graphs in \mathcal{T} by using the counting techniques of [9] and [17] and improve known bounds for their number of edges. Finally, we enumerate the labelled graphs in \mathcal{T} having no vertex of degree two. Tables can be found at the end of the paper.

2 The structure theorem

A network is a connected graph N with two distinguished vertices a and b, such that the graph $N \cup a b$ is 2 -connected. The vertices a and b are called the poles of N. The vertices of a network that are not poles are called internal. A network N is strongly planar if the graph $N \cup a b$ is planar. We denote by \mathcal{N}_{P} the class of strongly planar networks.

The substitution of a network N for an edge $e=u v$ is done in the following way: choose an arbitrary orientation, say $\vec{e}=\overrightarrow{u v}$ of the edge, identify the pole a of N with the vertex u and b with v, and disregard the orientation of e and the poles a and b. Note that both orientations of e should be considered. It is assumed that the underlying set of N is disjoint from $\{u, v\}$. The set of one or two resulting graphs is denoted by $e \uparrow N$. More generally, given a graph G_{0} with k edges, $E=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, and a sequence $\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ of disjoint networks, we define the composition $G_{0} \uparrow\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ as the set of graphs that can be obtained by substituting the network N_{j} for the edge e_{j} of $G_{0}, j=1,2, \ldots, k$. The graph G_{0} is called the core, and the N_{i} 's are called the components of the resulting graphs. For a class of graphs \mathcal{G} and a class of networks \mathcal{N}, we denote by $\mathcal{G} \uparrow \mathcal{N}$ the class of graphs obtained as compositions $G_{0} \uparrow\left(N_{1}, N_{2}, \ldots, N_{k}\right)$ with $G_{0} \in \mathcal{G}$ and $N_{i} \in \mathcal{N}, i=1,2, \ldots, k$. We say that the composition $\mathcal{G} \uparrow \mathcal{N}$ is canonical if for any graph $G \in \mathcal{G} \uparrow \mathcal{N}$, there is a unique core $G_{0} \in \mathcal{G}$ and unique (up to orientation) components $N_{1}, N_{2}, \ldots, N_{k} \in \mathcal{N}$ that yield G.

In [9] we prove the uniqueness of the representation $K_{5} \uparrow \mathcal{N}_{P}$ for $K_{3,3}$-subdivision-free projective-planar graphs. This gives an example of a canonical composition.

Theorem 1 ([8, [9]) A 2-connected non-planar graph G without a $K_{3,3}$-subdivision is projective-planar if and only if $G \in K_{5} \uparrow \mathcal{N}_{P}$. Moreover, the composition $K_{5} \uparrow \mathcal{N}_{P}$ is canonical.

Definition 1 Given two K_{5}-graphs, the graph obtained by identifying an edge of one of the K_{5} 's with an edge of the other is called an M-graph (see Figure 3a)), and, when the edge of identification is deleted, an M^{*}-graph (see Figure 3 b)).

Definition 2 A network obtained from K_{5} by removing the edge $a b$ between two poles is called a $K_{5} \backslash e$-network. A circular crown is a graph obtained from a cycle $C_{i}, i \geq$ 3, by substituting $K_{5} \backslash e$-networks for some edges of C_{i} in such a way that no pair of unsubstituted edges of C_{i} are adjacent (see Figure 4).

Definition 3 A toroidal core is a graph H which is isomorphic to either K_{5}, an M-graph, an M^{*}-graph, or a circular crown. We denote by \mathcal{T}_{C} the class of toroidal cores.

Figure 3: a) M-graph, b) M^{*}-graph.

Figure 4: A circular crown obtained from C_{5}.

The main result of this paper is the following structure theorem. The proof is given in Section 4.

Theorem 2 A 2-connected non-planar $K_{3,3}$-subdivision-free graph G is toroidal if and only if $G \in \mathcal{T}_{C} \uparrow \mathcal{N}_{P}$. Moreover, the composition $\mathcal{T}=\mathcal{T}_{C} \uparrow \mathcal{N}_{P}$ is canonical.

This theorem is used in Section 5 for the enumeration of labelled graphs in \mathcal{T}. In the future we hope to use Theorem 2 to enumerate unlabelled graphs in \mathcal{T} as well.

3 Related known results

This section gives an overview of the structural results for toroidal graphs described in [8]. Following Diestel [6] a K_{5}-subdivision is denoted by $T K_{5}$. The vertices of degree 4 in $T K_{5}$ are the corners and the vertices of degree 2 are the inner vertices of $T K_{5}$. For a pair of corners a and b, the path $P_{a b}$ between a and b with all other vertices inner vertices is called a side of the K_{5}-subdivision.

Let G be a non-planar graph containing a fixed K_{5}-subdivision $T K_{5}$. A path p in G with one endpoint an inner vertex of $T K_{5}$, the other endpoint on a different side of $T K_{5}$, and all other vertices and edges in $G \backslash T K_{5}$, is called a short cut of the K_{5}-subdivision. A vertex $u \in G \backslash T K_{5}$ is called a 3-corner vertex with respect to $T K_{5}$ if $G \backslash T K_{5}$ contains internally disjoint paths connecting u with at least three corners of the K_{5}-subdivision.

Proposition $1\left([\mathbf{1}, \mathbf{7},[\mathbf{8}])\right.$ Let G be a non-planar graph with a K_{5}-subdivision $T K_{5}$ for which there is either a short cut or a 3 -corner vertex. Then G contains a $K_{3,3}$-subdivision.

Proposition $2([7, ~ 8])$ Let G be a 2-connected graph with a $T K_{5}$ having no short cut or 3 -corner vertex. Let K denote the set of corners of $T K_{5}$. Then any connected component C of $G \backslash K$ contains inner vertices of at most one side of $T K_{5}$ and C is connected in G to exactly two corners of $T K_{5}$.

Given a graph G satisfying the hypothesis of Proposition 2, a side component of $T K_{5}$ is defined as the subgraph of G induced by a pair of corners a and b in K and the connected components of $G \backslash K$ which are connected to both a and b in G. Notice that side components of G can contain $K_{3,3}$-subdivisions.

Corollary 1 ($[\mathbf{7}, \mathbf{8}]$) For a 2-connected graph G with a $T K_{5}$ having no short cut or 3corner vertex, two side components of $T K_{5}$ in G have at most one vertex in common. The common vertex is the corner of intersection of two corresponding sides of $T K_{5}$.

Thus we see that a graph G satisfying the hypothesis of Proposition 2 can be decomposed into side components corresponding to the sides of $T K_{5}$. Each side component S contains exactly two corners a and b corresponding to a side of $T K_{5}$. If the edge $a b$ between the corners is not in S, we can add it to S to obtain $S \cup a b$. Otherwise $S \cup a b=S$. We call $S \cup a b$ an augmented side component of $T K_{5}$. Side components of a subdivision of an M-graph are defined by analogy with the side components of a K_{5}-subdivision by considering pairs of adjacent vertices of the M-graph.

A planar side component S of $T K_{5}$ in G with two corners a and b is called cylindrical if the edge $a b \notin S$ and the augmented side component $S \cup a b$ is non-planar. Notice that a planar side component $S=S \backslash a b$ is embeddable in a cylindrical section of the torus. A cylindrical section is provided by the face F of the embeddings E_{1} and E_{2} of K_{5} on the torus shown in Figure 2. Toroidal graphs described in [8] can contain $K_{3,3^{3}}$-subdivisions because of a cylindrical side component S. An example of an embedding of the cylindrical side component $S=K_{3,3} \backslash e$ of a $T K_{5}$ on the torus is shown in Figure 6 where the graph G of Figure 5 is embedded by completing the embedding E_{1} of K_{5} shown in Figure 2.

Figure 5: A toroidal graph G containing subdivisions of $K_{3,3}$ and of K_{5}.
If a graph G has no $K_{3,3}$-subdivisions, then Proposition 2 can be applied, in virtue of Proposition In In this case, a result of [8] can be summarized as follows.

Proposition 3 ([8]) A 2-connected non-planar $K_{3,3}$-subdivision-free graph G containing a K_{5}-subdivision $T K_{5}$ is toroidal if and only if:

Figure 6: Embedding of the cylindrical side component $K_{3,3} \backslash e$.
(i) all the augmented side components of $T K_{5}$ in G are planar graphs, or
(ii) nine augmented side components of $T K_{5}$ in G are planar, and the remaining side component S is cylindrical, or
(iii) G contains a subdivision $T M$ of an M-graph, and all the augmented side components of $T M$ in G are planar.

Further analysis of the cylindrical side component S of Proposition 3(ii) will provide a proof of Theorem 2. Notice that graphs with 6 or more vertices satisfying Propositon 3 are not 3 -connected. Therefore a 3-connected non-planar graph different from K_{5} must contain a $K_{3,3}$-subdivision (see also [1]).

4 Proof of the structure theorem

A side component S having two corners a and b can be considered as a network. We use the notation $\operatorname{Int}(S)$ to denote the interior of S, that is the subgraph $\operatorname{Int}(S)=S \backslash(\{a\} \cup\{b\})$ obtained by removing the two vertices a and b. A network S is called cylindrical if $a b \notin S$, S is a planar graph, but $S \cup a b$ is non-planar. Recall that a network S is called strongly planar if $S \cup a b$ is planar.

A block is a maximal 2-connected subgraph of a graph. A description of the blockcutvertex tree decomposition of a connected graph can be found in [6]. We consider blocks G_{i} having two distinguished vertices a_{i} and b_{i}. The distinguished vertices are called poles of the block.

Proposition 4 Let G be a 2-connected non-planar toroidal $K_{3,3}$-subdivision-free graph satisfying Proposition 3(ii) with the cylindrical side component S having corners a and b. Then the block-cutvertex decomposition of S forms a path of blocks $S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$, as in Figure 7, and at least one of the blocks $S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$, is a cylindrical network. Moreover, every block $S_{i}, i=1,2, \ldots, k$, of S is either a strongly planar network, or a cylindrical network of the form $K_{5} \backslash e \uparrow\left(N_{1}, N_{2}, \ldots, N_{9}\right)$, where $e=a_{i} b_{i}$ and the N_{j} 's are strongly planar networks.

Proof. Since G is 2-connected, each cut-vertex of S belongs to exactly two blocks and lies on the corresponding side $P_{a b}$ of $T K_{5}$. Therefore the blocks of S form a path as in Figure 7.

Figure 7: Block-cutvertex decomposition for the cylindrical side component S.

Suppose each block S_{i} of $S, i=1,2, \ldots, k$, remains planar when the edge $a_{i} b_{i}$ is added to S_{i}. Then, clearly, $S \cup a b$ remains planar as well. Hence the fact that S is cylindrical implies that at least one of the blocks $S_{i}, i=1,2, \ldots, k$, is itself a cylindrical network.

Suppose a block $S_{m}, 1 \leq m \leq k$, of S is cylindrical. Then, by Kuratowski's theorem, $S_{m} \cup a_{m} b_{m}$ contains a K_{5}-subdivision $T K_{5}^{\prime}$. Clearly, $a_{m} b_{m} \in T K_{5}^{\prime}, T K_{5}^{\prime}$ has no short-cut or 3 -corner vertex in G and a_{m} and b_{m} are two corners of the $T K_{5}^{\prime}$. The edge $a_{m} b_{m}$ of $T K_{5}^{\prime}$ can be replaced by a path $P_{a_{m} b_{m}}$ in $G \backslash \operatorname{Int}\left(S_{m}\right)$ and we can decompose G into the side components of $T K_{5}^{\prime}$.

Since G is toroidal and the side component $G \backslash \operatorname{Int}\left(S_{m}\right)$ of $T K_{5}^{\prime}$ is cylindrical, all the other side components of $T K_{5}^{\prime}$ in G must be strongly planar networks by Proposition 3(ii). Therefore S_{m} is a cylindrical network of the form $K_{5} \backslash e \uparrow\left(N_{1}, N_{2}, \ldots, N_{9}\right)$, with $e=a_{m} b_{m}$ and $N_{j} \in \mathcal{N}_{P}, j=1,2, \ldots, 9$.

Now we are ready to prove the structure Theorem 2 using Propositions 3 and 4.
Proof of Theorem 2. (Sufficiency) Suppose G is a graph in $\mathcal{T}_{C} \uparrow \mathcal{N}_{P}$, i.e. $G=H \uparrow$ $\left(N_{1}, N_{2}, \ldots, N_{k}\right)$, where H is a toroidal core having k edges and N_{i} 's, $i=1,2, \ldots k$, are strongly planar networks. If $H=K_{5}$ or $H=M$, then G can be decomposed into the side components of $T K_{5}$ or $T M$ respectively and the augmented side components are planar graphs. Therefore, by Proposition 3(i) or 3(iii) respectively, G is toroidal $K_{3,3^{-}}$ subdivision-free.

If $H=M^{*}$ or H is a circular crown, then we can choose a $K_{5} \backslash e$-network N in H and find a path $P_{a b}$ connecting a and b in the complementary part $H \backslash \operatorname{Int}(N)$. This determines a subdivision $T K_{5}$ in G such that nine augmented side components of $T K_{5}$ in G are planar, and the remaining side component S defined by the corners a and b of $T K_{5}$ is cylindrical. Therefore, by Proposition 3(ii), G is toroidal $K_{3,3}$-subdivision-free.
(Necessity and Uniqueness) Let G be a 2-connected non-planar $K_{3,3}$-subdivision-free toroidal graph G. By Kuratowski's theorem, G contains a K_{5}-subdivision $T K_{5}$. Let us prove that $G \in \mathcal{T}_{C} \uparrow \mathcal{N}_{P}$ by using Propositions 3 and 4. The fact that the composition $H \uparrow \mathcal{N}_{P}, H \in \mathcal{T}_{C}$, of G is canonical will follow from the uniqueness of the sets of corner vertices in Proposition 3.

Clearly, the sets of graphs corresponding to the cases (i), (ii) and (iii) of Proposition 3 are mutually disjoint. Suppose G contains a subdivision $T K_{5}$ or $T M$ and all the augmented side components of $T K_{5}$ or $T M$, respectively, in G are planar graphs as in Proposition 3(i, iii). Then $G=K_{5} \uparrow\left(N_{1}, N_{2}, \ldots, N_{10}\right)$ or $G=M \uparrow\left(N_{1}, N_{2}, \ldots, N_{19}\right)$, respectively, $K_{5}, M \in \mathcal{T}_{C}$ and all the N_{j} 's are in \mathcal{N}_{P}. The uniqueness of the decomposition
in cases (i) and (iii) of Proposition 3 can be proved by analogy with Theorem 3 in [9]: the set of corners of the K_{5}-subdivision in Proposition 3(i) and the set of corners of the M-graph subdivision in Proposition 3(iii) are uniquely defined. This covers toroidal cores K_{5} and the M-graph.

Suppose S is the unique cylindrical side component of $T K_{5}$ in G as in Proposition 3(ii). Notice that $G \backslash \operatorname{Int}(S)$ itself is a cylindrical network of the form $K_{5} \backslash e \uparrow\left(N_{1}, N_{2}, \ldots, N_{9}\right)$, where $e=a b$ and $N_{j} \in \mathcal{N}_{P}, j=1,2, \ldots, 9$. By Proposition 4, the block-cutvertex decomposition of S forms a path of blocks $S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$, as in Figure 7, and at least one of the blocks $S_{1}, S_{2}, \ldots, S_{k}, k \geq 1$, is a cylindrical network. In this path we can regroup maximal series of consecutive strongly planar networks into single strongly planar networks so that at most one strongly planar network N^{\prime} is separating two cylindrical networks in the resulting path, and the poles of the strongly planar network N^{\prime} are uniquely defined by maximality. By Proposition 4, the cylindrical networks in the path are of the form $K_{5} \backslash e \uparrow\left(N_{1}, N_{2}, \ldots, N_{9}\right)$, where $N_{j} \in \mathcal{N}_{P}, j=1,2, \ldots, 9$, and the corners a^{\prime} and $b^{\prime}, e=a^{\prime} b^{\prime}$, are uniquely defined with respect to the corresponding K_{5}-subdivision $T K_{5}^{\prime}$ in G. Therefore the unique set of corners completely defines a toroidal core M^{*} or a circular crown H having k edges and the set of corresponding strongly planar networks $N_{1}, N_{2}, \ldots, N_{k}$, such that $G=M^{*} \uparrow\left(N_{1}, N_{2}, \ldots, N_{18}\right)$ or $G=H \uparrow\left(N_{1}, N_{2}, \ldots, N_{k}\right)$, respectively.

Theorems 1 and 2 imply that a projective-planar graph with no $K_{3,3}$-subdivisions is toroidal. However an arbitrary projective-planar graph can be non-toroidal. The characterizations of Theorems 1 and 2 can be used to detect projective-planar or toroidal graphs with no $K_{3,3}$-subdivisions in linear time. The implementation of this algorithm can be derived from [8] by using a breadth-first or depth-first search technique for the decomposition and by doing a linear-time planarity testing. The linear-time complexity follows from the linear-time complexity of the decomposition and from the fact that each vertex of the initial graph can appear in at most 7 different components.

A corollary to Euler's formula for the plane says that a planar graph with $n \geq 3$ vertices can have at most $3 n-6$ edges (see, for example, [5] and [6]). Let us state this for 2 -connected planar graphs with n vertices and m edges as follows:

$$
m \leq \begin{cases}3 n-5 & \text { if } n=2 \tag{1}\\ 3 n-6 & \text { if } n \geq 3\end{cases}
$$

In fact, $m=3 n-5=1$ if $n=2$. The generalized Euler formula (see, for example, [15]) implies that a toroidal graph G with n vertices can have up to $3 n$ edges. An arbitrary graph G without a $K_{3,3}$-subdivision is known to have at most $3 n-5$ edges (see [1). The following proposition shows that toroidal graphs with no $K_{3,3}$-subdivisions satisfy a stronger relation, which is analogous to planar graphs.

Proposition 5 The number m of edges of a non-planar $K_{3,3}$-subdivision-free toroidal n-vertex graph G satisfies $m \leq 3 n-5$ if $n=5$ or 8 , and

$$
\begin{equation*}
m \leq 3 n-6, \text { if } n \geq 6 \text { and } n \neq 8 \tag{2}
\end{equation*}
$$

Proof. Clearly, toroidal graphs satisfying Theorem 2 also satisfy Proposition 3. By Proposition $3(i, i i)$, each side component S_{i} of $T K_{5}$ in $G, i=1,2, \ldots, 10$, satisfies the condition (11) with $n=n_{i}$, the number of vertices, and $m=m_{i}$, the number of edges of S_{i}, $i=1,2, \ldots, 10$. Since each corner of $T K_{5}$ is in precisely 4 side components, we have $\sum_{i=1}^{10} n_{i}=n+15$ and we obtain, by summing these 10 inequalities,

$$
m=\sum_{i=1}^{10} m_{i} \leq \begin{cases}3 \sum_{i=1}^{10} n_{i}-50=3(n+15)-50=3 n-5 & \text { if } n=5 \\ 3 \sum_{i=1}^{10} n_{i}-51=3(n+15)-51=3 n-6 & \text { if } n \geq 6\end{cases}
$$

since $n=5$ iff $n_{i}=2, i=1,2, \ldots, 10$, and $n \geq 6$ if and only if at least one $n_{j} \geq 3$, $j=1,2, \ldots, 10$.

Similarly, by Proposition 3(iii), each side component S_{i} of $T M$ in $G, i=1,2, \ldots, 19$, satisfies the condition (11) with $n=n_{i}$, the number of vertices, and $m=m_{i}$, the number of edges of $S_{i}, i=1,2, \ldots, 19$. Since 2 vertices of $T M$ are in precisely 7 side components, 6 vertices of $T M$ are in precisely 4 side components, and all the other vertices of G are in a unique side component, we have $\sum_{i=1}^{19} n_{i}=n+30$ and we obtain, by summing these 19 inequalities,

$$
m=\sum_{i=1}^{19} m_{i} \leq \begin{cases}3 \sum_{i=1}^{19} n_{i}-95=3(n+30)-95=3 n-5 & \text { if } n=8 \\ 3 \sum_{i=1}^{19} n_{i}-96=3(n+30)-96=3 n-6 & \text { if } n \geq 9\end{cases}
$$

since $n=8$ iff $n_{i}=2, i=1,2, \ldots, 19$, and $n \geq 9$ if and only if at least one $n_{j} \geq 3$, $j=1,2, \ldots, 19$.

An analogous result for the projective-planar graphs can be found in 9. Also note that Corollary 8.3.5 of [6] implies that graphs with no K_{5}-minors can have at most $3 n-6$ edges.

5 Counting labelled $K_{3,3}$-subdivision-free toroidal graphs

Now let us consider the question of the labelled enumeration of toroidal graphs with no $K_{3,3}$-subdivisions according to the numbers of vertices and edges. First, we review some basic notions and terminology of labelled enumeration together with the counting methods and technique used in [17, 9]. The reader should have some familiarity with exponential generating functions and their operations (addition, multiplication and composition). For example, see [2], 11], 14], or 18].

By a labelled graph, we mean a simple graph $G=(V, E)$ where the set of vertices $V=V(G)$ is itself the set of labels and the labelling function is the identity function. V is called the underlying set of G. An edge e of G then consists of an unordered pair $e=u v$ of elements of V and $E=E(G)$ denotes the set of edges of G. If W is another
set and $\sigma: V \stackrel{\sim}{\rightarrow} W$ is a bijection, then any graph $G=(V, E)$ on V, can be transformed into a graph $G^{\prime}=\sigma(G)=(W, \sigma(E))$, where $\sigma(E)=\{\sigma(e)=\sigma(u) \sigma(v) \mid e \in E\}$. We say that G^{\prime} is obtained from G by vertex relabelling and that σ is a graph isomorphism $G \xrightarrow{\sim} G^{\prime}$. An unlabelled graph is then seen as an isomorphism class γ of labelled graphs. We write $\gamma=\gamma(G)$ if γ is the isomorphism class of G. By the number of ways to label an unlabelled graph $\gamma(G)$, where $G=(V, E)$, we mean the number of distinct graphs G^{\prime} on the underlying set V which are isomorphic to G. Recall that this number is given by $n!/|\operatorname{Aut}(G)|$, where $n=|V|$ and $\operatorname{Aut}(G)$ denotes the automorphism group of G.

A species of graphs is a class of labelled graphs which is closed under vertex relabellings. Thus any class \mathcal{G} of unlabelled graphs gives rise to a species, also denoted by \mathcal{G}, by taking the set union of the isomorphism classes in \mathcal{G}. For any species \mathcal{G} of graphs, we introduce its (exponential) generating function $\mathcal{G}(x, y)$ as the formal power series

$$
\begin{equation*}
\mathcal{G}(x, y)=\sum_{n \geq 0} g_{n}(y) \frac{x^{n}}{n!}, \quad \text { with } \quad g_{n}(y)=\sum_{m \geq 0} g_{n, m} y^{m} \tag{3}
\end{equation*}
$$

where $g_{n, m}$ is the number of graphs in \mathcal{G} with m edges over a given set of vertices V_{n} of size n. Here y is a formal variable which acts as an edge counter. For example, for the species $\mathcal{G}=K=\left\{K_{n}\right\}_{n \geq 0}$ of complete graphs, we have

$$
\begin{equation*}
K(x, y)=\sum_{n \geq 0} y^{\binom{n}{2}} x^{n} / n! \tag{4}
\end{equation*}
$$

while for the species $\mathcal{G}=\mathcal{G}_{a}$ of all simple graphs, we have $\mathcal{G}_{a}(x, y)=K(x, 1+y)$.
A species of graphs is molecular if it contains only one isomorphism class. For a molecular species $\gamma=\gamma(G)$, where G has n vertices and m edges, we have $\gamma(x, y)=$ $\frac{y^{m} n!}{|\operatorname{Aut}(G)|} x^{n} / n!=y^{m} x^{n} /|\operatorname{Aut}(G)|$. For example,

$$
\begin{equation*}
K_{5}(x, y)=\frac{x^{5} y^{10}}{5!} \tag{5}
\end{equation*}
$$

Also, for the graphs M and M^{*} described in Section 2, we have

$$
\begin{equation*}
M(x, y)=280 \frac{x^{8} y^{19}}{8!}, \quad M^{*}(x, y)=280 \frac{x^{8} y^{18}}{8!} \tag{6}
\end{equation*}
$$

since $|\operatorname{Aut}(M)|=\left|\operatorname{Aut}\left(M^{*}\right)\right|=144$.
For the enumeration of networks, we consider that the poles a and b are not labelled, or, in other words, that only the internal vertices form the underlying set. Hence the generating function of a class (or species) \mathcal{N} of networks is defined by

$$
\begin{equation*}
\mathcal{N}(x, y)=\sum_{n \geq 0} \nu_{n}(y) \frac{x^{n}}{n!}, \quad \text { with } \quad \nu_{n}(y)=\sum_{m \geq 0} \nu_{n, m} y^{m} \tag{7}
\end{equation*}
$$

where $\nu_{n, m}$ is the number of networks in \mathcal{N} with m edges and a given set of internal vertices V_{n} of size n. For example, we have

$$
\begin{equation*}
\left(K_{5} \backslash e\right)(x, y)=\frac{x^{3} y^{9}}{3!} \tag{8}
\end{equation*}
$$

A species \mathcal{N} of networks is called symmetric if for any \mathcal{N}-network N (i.e. N in \mathcal{N}), the opposite network $\tau \cdot N$, obtained by interchanging the poles a and b, is also in \mathcal{N}. Examples of symmetric species of networks are the classes \mathcal{N}_{P}, of strongly planar networks, and \mathcal{R}, of series-parallel networks (see [17, 9]).

Lemma 1 (T. Walsh [17, [9]) Let \mathcal{G} be a species of graphs and \mathcal{N} be a symmetric species of networks such that the composition $\mathcal{G} \uparrow \mathcal{N}$ is canonical. Then the following generating function identity holds:

$$
\begin{equation*}
(\mathcal{G} \uparrow \mathcal{N})(x, y)=\mathcal{G}(x, \mathcal{N}(x, y)) \tag{9}
\end{equation*}
$$

By Theorem 2 and Lemma 1, we have the following proposition.
Proposition 6 The generating function $\mathcal{T}(x, y)$ of labelled non-planar $K_{3,3}$-subdivisionfree toroidal graphs is given by

$$
\begin{equation*}
\mathcal{T}(x, y)=\left(\mathcal{T}_{C} \uparrow \mathcal{N}_{P}\right)(x, y)=\mathcal{T}_{C}\left(x, \mathcal{N}_{P}(x, y)\right) \tag{10}
\end{equation*}
$$

where \mathcal{T}_{C} denotes the class of toroidal cores (see Definition 3).
Let P denote the species of 2-connected planar graphs. Then the generating function of \mathcal{N}_{P}, the associated class of strongly planar networks, is given by

$$
\begin{equation*}
\mathcal{N}_{P}(x, y)=(1+y) \frac{2}{x^{2}} \frac{\partial}{\partial y} P(x, y)-1 \tag{11}
\end{equation*}
$$

(see [17, [9]). Methods for computing the generating function $P(x, y)$ of labelled 2connected planar graphs are described in [3] and [4]. Formula (11) can then be used to compute $\mathcal{N}_{P}(x, y)$. Therefore there remains only to compute the generating function $\mathcal{T}_{C}(x, y)$ for toroidal cores. Recall that $\mathcal{T}_{C}=K_{5}+M+M^{*}+C C$, where $C C$ denotes the class of circular crowns. Circular crowns can be enumerated as follows using matching polynomials.

Proposition 7 The mixed generating series $C C(x, y)$ of circular crowns is given by

$$
\begin{equation*}
C C(x, y)=-\frac{12 x^{4} y^{9}+12 x^{5} y^{10}+x^{8} y^{18}+72 \ln \left(1-\frac{x^{4} y^{9}}{6}-\frac{x^{5} y^{10}}{6}\right)}{144} \tag{12}
\end{equation*}
$$

Proof. Recall that a matching μ of a finite graph G is a set of disjoint edges of G. We define the matching polynomial of G as

$$
\begin{equation*}
M_{G}(y)=\sum_{\mu \in \mathcal{M}(G)} y^{|\mu|} \tag{13}
\end{equation*}
$$

where $\mathcal{M}(G)$ denotes the set of matchings of G. In particular, the matching polynomials $U_{n}(y)$ and $T_{n}(y)$ for paths and cycles of size n are well known (see [10]). They are closely related to the Chebyshev polynomials. To be precise, let P_{n} denote the path graph (V, E)
with $V=[n]=\{1,2, \ldots, n\}$ and $E=\{\{i, i+1\} \mid i=1,2, \ldots, n-1\}$ and C_{n} denote the cycle graph with $V=[n]$ and $E=\{\{i, i+1(\bmod n)\} \mid i=1,2, \ldots, n\}$. Then we have

$$
\begin{equation*}
U_{n}(y)=\sum_{\mu \in \mathcal{M}\left(P_{n}\right)} y^{|\mu|}, \quad T_{n}(y)=\sum_{\mu \in \mathcal{M}\left(C_{n}\right)} y^{|\mu|} \tag{14}
\end{equation*}
$$

The dichotomy caused by the membership of the edge $\{n-1, n\}$ in the matchings of the path P_{n} leads to the recurrence relation

$$
\begin{equation*}
U_{n}(y)=y U_{n-2}(y)+U_{n-1}(y) \tag{15}
\end{equation*}
$$

for $n \geq 2$, with $U_{0}(y)=U_{1}(y)=1$. It follows that the ordinary generating function of the matching polynomials $U_{n}(y)$ is rational. In fact, it is easily seen that

$$
\begin{equation*}
\sum_{n \geq 0} U_{n}(y) x^{n}=\frac{1}{1-x-y x^{2}} \tag{16}
\end{equation*}
$$

Now, the dichotomy caused by the membership of the edge $\{1, n\}$ in the matchings of the cycle C_{n} leads to the relation

$$
\begin{equation*}
T_{n}(y)=y U_{n-2}(y)+U_{n}(y) \tag{17}
\end{equation*}
$$

for $n \geq 3$. It is then a simple matter, using (16) and (17) to compute their ordinary generating function, denoted by $G(x, y)$. We find

$$
\begin{equation*}
G(x, y)=\sum_{n \geq 3} T_{n}(y) x^{n}=\frac{x^{3}\left(1+3 y+y x+2 y^{2} x\right)}{1-x-y x^{2}} \tag{18}
\end{equation*}
$$

In fact, we also need to consider the homogeneous matchings polynomials

$$
\begin{equation*}
T_{n}(y, z)=z^{n} T_{n}\left(\frac{y}{z}\right)=\sum_{\mu \in \mathcal{M}\left(C_{n}\right)} y^{|\mu|} z^{n-|\mu|}, \tag{19}
\end{equation*}
$$

where the variable z marks the edges which are not selected in the matchings, whose generating function $G(x, y, z)=\sum_{n \geq 3} T_{n}(y, z) x^{n}$ is given by

$$
\begin{equation*}
G(x, y, z)=G\left(x z, \frac{y}{z}\right)=\frac{x^{3} z^{2}\left(z+3 y+x y z+2 x y^{2}\right)}{1-x z-x^{2} y z} . \tag{20}
\end{equation*}
$$

We now introduce the species $B C$ of pairs (c, μ), where c is a cycle of length $n \geq 3$ and μ is a matching of c, with weight $y^{|\mu|} z^{n-|\mu|}$. Since there are $\frac{(n-1)!}{2}$ non-oriented cycles on a set of size $n \geq 3$, and all these cycles admit the same homogeneous matching polynomial
$T_{n}(y, z)$, the mixed generating function of labelled $B C$-structures is

$$
\begin{array}{r}
B C(x, y, z)=\sum_{n \geq 3} \frac{(n-1)!}{2} T_{n}(y, z) \frac{x^{n}}{n!} \\
=\frac{1}{2} \sum_{n \geq 3} T_{n}(y, z) \frac{x^{n}}{n} \\
=\frac{1}{2} \int_{0}^{x} \frac{1}{t} G(t, y, z) d t \\
=-\frac{2 x z+2 x^{2} z y+x^{2} z^{2}+2 \ln \left(1-x z-x^{2} y z\right)}{4} \tag{21}
\end{array}
$$

Notice that in a circular crown, the unsubstituted edges are not adjacent, by definition, and hence form a matching of the underlying cycle, while the substituted edges are replaced by $K_{5} \backslash e$-networks. We can thus write

$$
\begin{equation*}
C C=B C \uparrow_{z}\left(K_{5} \backslash e\right), \tag{22}
\end{equation*}
$$

where the notation \uparrow_{z} means that only the edges marked by z are replaced by $K_{5} \backslash e$ networks. Moreover the decomposition (22) is canonical and we have

$$
\begin{equation*}
C C(x, y)=B C\left(x, y,\left(K_{5} \backslash e\right)(x, y)\right), \tag{23}
\end{equation*}
$$

which implies (12) using (8).
A substitution of the generating function $\mathcal{N}_{P}(x, y)$ of (11) counting the strongly planar networks for the variable y in (6), (5), and (12) gives the generating function for labelled 2-connected non-planar toroidal graphs with no $K_{3,3}$-subdivision, i.e.

$$
\begin{equation*}
\mathcal{T}(x, y)=K_{5}\left(x, \mathcal{N}_{P}(x, y)\right)+M\left(x, \mathcal{N}_{P}(x, y)\right)+M^{*}\left(x, \mathcal{N}_{P}(x, y)\right)+C C\left(x, \mathcal{N}_{P}(x, y)\right) . \tag{24}
\end{equation*}
$$

Notice that the term $K_{5}\left(x, \mathcal{N}_{P}(x, y)\right)$ in (24) also enumerates non-planar 2-connected $K_{3,3}$-subdivision-free projective-planar graphs and that corresponding tables are given in [9]. Here we present the computational results just for labelled graphs in \mathcal{T} that are not projective-planar. Numerical results are presented in Tables 1 and 2, where $\mathcal{T}(x, y)-K_{5}\left(x, \mathcal{N}_{P}(x, y)\right)=\sum_{n \geq 8} \sum_{m} t_{n, m} x^{n} y^{m} / n!$ and $t_{n}=\sum_{m} t_{n, m}$ count labelled non-projective-planar graphs in \mathcal{T}.

The homeomorphically irreducible non-projective-planar graphs in \mathcal{T}, i.e. the graphs having no vertex of degree two, can be counted by using several methods described in detail in Section 4 of [9]. We used the approach of Proposition 8 of [9] to obtain the numerical data presented in Tables 3 and 4 for labelled homeomorphically irreducible graphs in \mathcal{T} that are not projective-planar.

References

[1] T. Asano, "An approach to the subgraph homeomorphism problem", Theoret. Comput. Sci. 38 (1985), 249-267.
[2] F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-like Structures, Cambrige Univ. Press, 1998.
[3] E.A. Bender, Zh. Gao, and N.C. Wormald, "The number of labeled 2-connected planar graphs", Electron. J. Combin. 9 (2002), Research Paper 43, 13 pp. (electronic).
[4] M. Bodirsky, C. Gröpl, and M. Kang, "Generating labeled planar graphs uniformly at random", Automata, languages and programming, Lecture Notes in Comput. Sci., 2719, Springer, Berlin, 2003, 1095-1107.
[5] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, American Elsevier Publishing, New York, 1976.
[6] R. Diestel, Graph Theory, 2nd edition, Springer, 2000.
[7] M. Fellows and P. Kaschube, "Searching for $K_{3,3}$ in linear time", Linear and Multilinear Algebra, 29 (1991), 279-290.
[8] A. Gagarin and W. Kocay, "Embedding graphs containing K_{5}-subdivisions", Ars Combin. 64 (2002), 33-49.
[9] A. Gagarin, G. Labelle, and P. Leroux, "Counting labelled projective-planar graphs without a $K_{3,3}$-subdivision", submitted, arXiv:math.CO/0406140, (2004).
[10] C.D. Godsil, Algebraic Combinatorics, Chapman \& Hall, New York, 1993.
[11] I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.
[12] A.K. Kelmans, "Graph expansion and reduction", Algebraic methods in graph theory, Vol. I (Szeged, 1978), Colloq. Math. Soc. János Bolyai, 25, North-Holland, Amsterdam-New York, 1981, 317-343.
[13] K. Kuratowski, "Sur le problème des courbes gauches en topologie", Fund. Math. 15 (1930), 271-283.
[14] R.P. Stanley, Enumerative Combinatorics, Vol. 1, Wadsworth Brooks/Cole, Pacific Grove, CA, 1986. Reedited in Cambridge Studies in Advanced Mathematics, 49, Cambridge Univ. Press, 1997.
[15] C. Thomassen, "The Jordan-Schönflies theorem and the classification of surfaces", Amer. Math. Monthly, 99 (2002), no. 2, 116-131.
[16] K. Wagner, Über eine Erweiterung eines Satzes von Kuratowski, Deutsche Math. 2 (1937), 280-285. [German]
[17] T.R.S. Walsh, "Counting labelled three-connected and homeomorphically irreducible two-connected graphs", J. Comb. Theory Ser. B, 32 (1982), 1-11.
[18] H.S. Wilf, Generatingfunctionology, Academic, New York, 1990.

Table 1: The number of labelled non-planar non-projective-planar toroidal 2-connected graphs without a $K_{3,3^{-}}$-subdivision (having n vertices and m edges).

n	t_{n}
8	560
9	191520
10	42058800
11	7864256400
12	1407126890400
13	257752421166240
14	50607986220311520
15	10995419195575214400
16	2692773804667509763200
17	747221542837742897724800
18	233698171655650029030743040
19	81472765051132560093387934080
20	31268587126068905034073041062400

Table 2: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs (having n vertices).

n	m	$t_{n, m}$	n	m	$t_{n, m}$	n	m	$t_{n, m}$
8	18	280	14	26	6054048000	16	29	5811886080000
8	19	280	14	27	285751065600	16	30	621544891968000
9	19	5040	14	28	3361812854400	16	31	11935943091072000
10	20	25200	14	29	17840270448000	16	32	101350194001056000
10	22	226800	14	30	55133382704400	16	33	499371733276416000
10	23	466200	14	31	108994658572800	16	34	1611221546830896000
10	24	239400	14	32	141179453415000	16	35	3605404135132800000
11	23	10256400	14	33	118498240060200	16	36	5738963267481444000
11	24	30492000	14	34	61801664324400	16	37	6540526990277280000
11	25	43520400	14	35	18158435895600	16	38	5293490794557966000
11	26	31185000	14	36	2294786894400	16	39	2967845927880834000
11	27	7900200	15	28	1961511552000	16	40	1095216458944608000
12	24	189604800	15	29	57537672192000	16	41	239190441890400000
12	25	1079416800	15	30	557188343712000	16	42	23417178744960000
12	26	3044487600	15	31	2827950253128000	17	31	3903916528512000
12	27	5080614000	15	32	8936155496268000	17	32	174648084811200000
12	28	4776294600	15	33	18886100303070000	17	33	2606052624215040000
12	29	2261536200	15	34	27395286118200000	17	34	20178959825344320000
12	30	410810400	15	35	27296971027326000	17	35	97287841256493888000
13	25	1686484800	15	36	18324093378591000	17	36	319780940570307216000
13	26	22875652800	15	37	7906712877063000	17	37	751384930811218704000
13	27	126680954400	15	38	1978851858984000	17	38	1292496613555066920000
13	28	382608626400	15	39	218263565520000	17	39	1642597679422623924000
13	29	700723623600				17	40	1539140405659676820000
13	30	788388400800				17	41	1049167407329489448000
13	31	525156231600				17	42	505608857591934096000
13	32	188324136000				17	43	163183484418946992000
13	33	27935107200				17	44	31635477128166912000
						17	45	2784602773016064000

Table 3: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs with no vertex of degree 2 (having n vertices and m edges).

n	t_{n}
8	560
9	5040
10	957600
11	123354000
12	16842764400
13	2764379217600
14	527554510282800
15	114387072405606000
16	27728561968887780000
17	7418031804967840056000
18	2167306256125914230527200
19	685709965521372865035362400
20	233306923207078035272369412000

Table 4: The number of labelled non-planar non-projective-planar toroidal 2-connected $K_{3,3}$-subdivision-free graphs with no vertex of degree 2 (having n vertices).

