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Abstract

We describe the structure of 2-connected non-planar toroidal graphs with no
K3,3-subdivisions, using an appropriate substitution of planar networks into the
edges of certain graphs called toroidal cores. The structural result is based on a
refinement of the algorithmic results for graphs containing a fixed K5-subdivision
in [A. Gagarin and W. Kocay, “Embedding graphs containing K5-subdivisions”,
Ars Combin. 64 (2002), 33-49]. It allows to recognize these graphs in linear-time
and makes possible to enumerate labelled 2-connected toroidal graphs containing
no K3,3-subdivisions and having minimum vertex degree two or three by using an
approach similar to [A. Gagarin, G. Labelle, and P. Leroux, ”Counting labelled
projective-planar graphs without a K3,3-subdivision”, submitted, arXiv:math.CO/
0406140, (2004)].

1 Introduction

We use basic graph-theoretic terminology from Bondy and Murty [5] and Diestel [6], and
deal with undirected simple graphs. Graph embeddings on a surface are important in
VLSI design and in statistical mechanics. We are interested in non-planar graphs that
can be embedded on the torus or on the projective plane. By Kuratowski’s theorem [13], a
graph G is non-planar if and only if it contains a subdivision of K5 or K3,3 (see Figure 1).
In this paper we characterize (and enumerate) the 2-connected toroidal graphs with no
K3,3-subdivisions, following an analogous work for projective-planar graphs ([9]). The
next step in this research would be to characterize toroidal and projective-planar graphs
containing a K3,3-subdivision (with or without a K5-subdivision).
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Figure 1: Minimal non-planar graphs K3,3 and K5.

We assume that G is a 2-connected non-planar graph. A graph containing no K3,3-
subdivisions will be calledK3,3-subdivision-free. A general recursive decomposition of non-
planar K3,3-subdivision-free graphs is described in [16] and [12]. A local decomposition
of non-planar graphs containing a K5-subdivision of a special type is described in [7] and
[8] (some K3,3-subdivisions are allowed), that is used later in [8] to detect a projective-
planar or toroidal graph. The results of [8] provide a toroidality criterion for graphs
containing a given K5-subdivision and avoiding certain K3,3-subdivisions by examining
the embeddings of K5 on the torus. The torus is an orientable surface of genus one which
can be represented as a rectangle with two pairs of opposite sides identified. The graph
K5 has six different embeddings on the torus shown in Figure 2. Notice that the hatched
region of each of the embeddings E1 and E2 forms a single face F .
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Figure 2: Embeddings of K5 on the torus.

In [9] we prove the uniqueness of the decomposition of [8] for 2-connected non-planar
projective-planar graphs with no K3,3-subdivisions that gives a characterization of these
graphs. In the present paper we state and prove an analogous structure theorem for the
class T of 2-connected non-planar toroidal graphs with no K3,3-subdivisions, involving
certain “circular crowns” of K5\e networks and substitution of strongly planar networks
for edges. The structure theorem provides a practical algorithm to recognize the toroidal
graphs with no K3,3-subdivisions in linear-time. Here we use the structure theorem to
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enumerate the labelled graphs in T by using the counting techniques of [9] and [17] and
improve known bounds for their number of edges. Finally, we enumerate the labelled
graphs in T having no vertex of degree two. Tables can be found at the end of the paper.

2 The structure theorem

A network is a connected graph N with two distinguished vertices a and b, such that the
graph N ∪ ab is 2-connected. The vertices a and b are called the poles of N . The vertices
of a network that are not poles are called internal. A network N is strongly planar if the
graph N ∪ ab is planar. We denote by NP the class of strongly planar networks.

The substitution of a network N for an edge e = uv is done in the following way:
choose an arbitrary orientation, say ~e = ~uv of the edge, identify the pole a of N with the
vertex u and b with v, and disregard the orientation of e and the poles a and b. Note
that both orientations of e should be considered. It is assumed that the underlying set
of N is disjoint from {u, v}. The set of one or two resulting graphs is denoted by e ↑ N .
More generally, given a graph G0 with k edges, E = {e1, e2, . . . , ek}, and a sequence
(N1, N2, . . . , Nk) of disjoint networks, we define the composition G0 ↑ (N1, N2, . . . , Nk)
as the set of graphs that can be obtained by substituting the network Nj for the edge
ej of G0, j = 1, 2, . . . , k. The graph G0 is called the core, and the Ni’s are called the
components of the resulting graphs. For a class of graphs G and a class of networks N , we
denote by G ↑ N the class of graphs obtained as compositions G0 ↑ (N1, N2, . . . , Nk) with
G0 ∈ G and Ni ∈ N , i = 1, 2, . . . , k. We say that the composition G ↑ N is canonical if
for any graph G ∈ G ↑ N , there is a unique core G0 ∈ G and unique (up to orientation)
components N1, N2, . . . , Nk ∈ N that yield G.

In [9] we prove the uniqueness of the representation K5 ↑ NP for K3,3-subdivision-free
projective-planar graphs. This gives an example of a canonical composition.

Theorem 1 ([8, 9]) A 2-connected non-planar graph G without a K3,3-subdivision is
projective-planar if and only if G ∈ K5 ↑ NP . Moreover, the composition K5 ↑ NP is
canonical.

Definition 1 Given two K5-graphs, the graph obtained by identifying an edge of one of
the K5’s with an edge of the other is called an M-graph (see Figure 3a)), and, when the
edge of identification is deleted, an M∗-graph (see Figure 3b)).

Definition 2 A network obtained from K5 by removing the edge ab between two poles
is called a K5\e-network. A circular crown is a graph obtained from a cycle Ci, i ≥
3, by substituting K5\e-networks for some edges of Ci in such a way that no pair of
unsubstituted edges of Ci are adjacent (see Figure 4).

Definition 3 A toroidal core is a graph H which is isomorphic to either K5, an M-graph,
an M∗-graph, or a circular crown. We denote by TC the class of toroidal cores.
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Figure 3: a) M-graph, b) M∗-graph.

Figure 4: A circular crown obtained from C5.

The main result of this paper is the following structure theorem. The proof is given in
Section 4.

Theorem 2 A 2-connected non-planar K3,3-subdivision-free graph G is toroidal if and
only if G ∈ TC ↑ NP . Moreover, the composition T = TC ↑ NP is canonical.

This theorem is used in Section 5 for the enumeration of labelled graphs in T . In the
future we hope to use Theorem 2 to enumerate unlabelled graphs in T as well.

3 Related known results

This section gives an overview of the structural results for toroidal graphs described in
[8]. Following Diestel [6], a K5-subdivision is denoted by TK5. The vertices of degree 4
in TK5 are the corners and the vertices of degree 2 are the inner vertices of TK5. For a
pair of corners a and b, the path Pab between a and b with all other vertices inner vertices
is called a side of the K5-subdivision.

Let G be a non-planar graph containing a fixed K5-subdivision TK5. A path p in G
with one endpoint an inner vertex of TK5, the other endpoint on a different side of TK5,
and all other vertices and edges in G\TK5, is called a short cut of the K5-subdivision.
A vertex u ∈ G\TK5 is called a 3-corner vertex with respect to TK5 if G\TK5 contains
internally disjoint paths connecting u with at least three corners of the K5-subdivision.

Proposition 1 ([1, 7, 8]) Let G be a non-planar graph with a K5-subdivision TK5 for
which there is either a short cut or a 3-corner vertex. Then G contains a K3,3-subdivision.
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Proposition 2 ([7, 8]) Let G be a 2-connected graph with a TK5 having no short cut or
3-corner vertex. Let K denote the set of corners of TK5. Then any connected component
C of G\K contains inner vertices of at most one side of TK5 and C is connected in G
to exactly two corners of TK5.

Given a graph G satisfying the hypothesis of Proposition 2, a side component of TK5

is defined as the subgraph of G induced by a pair of corners a and b in K and the
connected components of G\K which are connected to both a and b in G. Notice that
side components of G can contain K3,3-subdivisions.

Corollary 1 ([7, 8]) For a 2-connected graph G with a TK5 having no short cut or 3-
corner vertex, two side components of TK5 in G have at most one vertex in common.
The common vertex is the corner of intersection of two corresponding sides of TK5.

Thus we see that a graph G satisfying the hypothesis of Proposition 2 can be decomposed
into side components corresponding to the sides of TK5. Each side component S contains
exactly two corners a and b corresponding to a side of TK5. If the edge ab between the
corners is not in S, we can add it to S to obtain S ∪ ab. Otherwise S ∪ ab = S. We
call S ∪ ab an augmented side component of TK5. Side components of a subdivision of
an M-graph are defined by analogy with the side components of a K5-subdivision by
considering pairs of adjacent vertices of the M-graph.

A planar side component S of TK5 in G with two corners a and b is called cylindrical
if the edge ab 6∈ S and the augmented side component S ∪ ab is non-planar. Notice that
a planar side component S = S\ab is embeddable in a cylindrical section of the torus. A
cylindrical section is provided by the face F of the embeddings E1 and E2 of K5 on the
torus shown in Figure 2. Toroidal graphs described in [8] can contain K3,3-subdivisions
because of a cylindrical side component S. An example of an embedding of the cylindrical
side component S = K3,3\e of a TK5 on the torus is shown in Figure 6 where the graph
G of Figure 5 is embedded by completing the embedding E1 of K5 shown in Figure 2.

b

a

Figure 5: A toroidal graph G containing subdivisions of K3,3 and of K5.

If a graph G has no K3,3-subdivisions, then Proposition 2 can be applied, in virtue of
Proposition 1. In this case, a result of [8] can be summarized as follows.

Proposition 3 ([8]) A 2-connected non-planar K3,3-subdivision-free graph G containing
a K5-subdivision TK5 is toroidal if and only if:
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Figure 6: Embedding of the cylindrical side component K3,3\e.

(i) all the augmented side components of TK5 in G are planar graphs, or
(ii) nine augmented side components of TK5 in G are planar, and the remaining side

component S is cylindrical, or
(iii) G contains a subdivision TM of an M-graph, and all the augmented side compo-

nents of TM in G are planar.

Further analysis of the cylindrical side component S of Proposition 3(ii) will provide
a proof of Theorem 2. Notice that graphs with 6 or more vertices satisfying Propositon
3 are not 3-connected. Therefore a 3-connected non-planar graph different from K5 must
contain a K3,3-subdivision (see also [1]).

4 Proof of the structure theorem

A side component S having two corners a and b can be considered as a network. We use
the notation Int(S) to denote the interior of S, that is the subgraph Int(S) = S\({a}∪{b})
obtained by removing the two vertices a and b. A network S is called cylindrical if ab 6∈ S,
S is a planar graph, but S ∪ ab is non-planar. Recall that a network S is called strongly
planar if S ∪ ab is planar.

A block is a maximal 2-connected subgraph of a graph. A description of the block-
cutvertex tree decomposition of a connected graph can be found in [6]. We consider blocks
Gi having two distinguished vertices ai and bi. The distinguished vertices are called poles
of the block.

Proposition 4 Let G be a 2-connected non-planar toroidal K3,3-subdivision-free graph
satisfying Proposition 3(ii) with the cylindrical side component S having corners a and b.
Then the block-cutvertex decomposition of S forms a path of blocks S1, S2, . . . , Sk, k ≥ 1,
as in Figure 7, and at least one of the blocks S1, S2, . . . , Sk, k ≥ 1, is a cylindrical network.
Moreover, every block Si, i = 1, 2, . . . , k, of S is either a strongly planar network, or a
cylindrical network of the form K5\e ↑ (N1, N2, . . . , N9), where e = aibi and the Nj’s are
strongly planar networks.

Proof . Since G is 2-connected, each cut-vertex of S belongs to exactly two blocks and
lies on the corresponding side Pab of TK5. Therefore the blocks of S form a path as in
Figure 7.
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Figure 7: Block-cutvertex decomposition for the cylindrical side component S.

Suppose each block Si of S, i = 1, 2, . . . , k, remains planar when the edge aibi is added
to Si. Then, clearly, S ∪ ab remains planar as well. Hence the fact that S is cylindrical
implies that at least one of the blocks Si, i = 1, 2, . . . , k, is itself a cylindrical network.

Suppose a block Sm, 1 ≤ m ≤ k, of S is cylindrical. Then, by Kuratowski’s theorem,
Sm ∪ ambm contains a K5-subdivision TK ′

5. Clearly, ambm ∈ TK ′
5, TK

′
5 has no short-cut

or 3-corner vertex in G and am and bm are two corners of the TK ′
5. The edge ambm of

TK ′
5 can be replaced by a path Pambm in G\Int(Sm) and we can decompose G into the

side components of TK ′
5.

Since G is toroidal and the side component G\Int(Sm) of TK
′
5 is cylindrical, all the

other side components of TK ′
5 in G must be strongly planar networks by Proposition 3(ii).

Therefore Sm is a cylindrical network of the form K5\e ↑ (N1, N2, . . . , N9), with e = ambm
and Nj ∈ NP , j = 1, 2, . . . , 9.

Now we are ready to prove the structure Theorem 2 using Propositions 3 and 4.

Proof of Theorem 2. (Sufficiency) Suppose G is a graph in TC ↑ NP , i.e. G = H ↑
(N1, N2, . . . , Nk), where H is a toroidal core having k edges and Ni’s, i = 1, 2, . . . k, are
strongly planar networks. If H = K5 or H = M , then G can be decomposed into the
side components of TK5 or TM respectively and the augmented side components are
planar graphs. Therefore, by Proposition 3(i) or 3(iii) respectively, G is toroidal K3,3-
subdivision-free.

If H = M∗ or H is a circular crown, then we can choose a K5\e-network N in H
and find a path Pab connecting a and b in the complementary part H\Int(N). This
determines a subdivision TK5 in G such that nine augmented side components of TK5

in G are planar, and the remaining side component S defined by the corners a and b of
TK5 is cylindrical. Therefore, by Proposition 3(ii), G is toroidal K3,3-subdivision-free.

(Necessity and Uniqueness) Let G be a 2-connected non-planar K3,3-subdivision-free
toroidal graph G. By Kuratowski’s theorem, G contains a K5-subdivision TK5. Let us
prove that G ∈ TC ↑ NP by using Propositions 3 and 4. The fact that the composition
H ↑ NP , H ∈ TC , of G is canonical will follow from the uniqueness of the sets of corner
vertices in Proposition 3.

Clearly, the sets of graphs corresponding to the cases (i), (ii) and (iii) of Proposition
3 are mutually disjoint. Suppose G contains a subdivision TK5 or TM and all the
augmented side components of TK5 or TM , respectively, in G are planar graphs as in
Proposition 3(i, iii). Then G = K5 ↑ (N1, N2, . . . , N10) or G = M ↑ (N1, N2, . . . , N19),
respectively, K5,M ∈ TC and all the Nj ’s are in NP . The uniqueness of the decomposition

7



in cases (i) and (iii) of Proposition 3 can be proved by analogy with Theorem 3 in [9]:
the set of corners of the K5-subdivision in Proposition 3(i) and the set of corners of the
M-graph subdivision in Proposition 3(iii) are uniquely defined. This covers toroidal cores
K5 and the M-graph.

Suppose S is the unique cylindrical side component of TK5 in G as in Proposition 3(ii).
Notice that G\Int(S) itself is a cylindrical network of the form K5\e ↑ (N1, N2, . . . , N9),
where e = ab and Nj ∈ NP , j = 1, 2, . . . , 9. By Proposition 4, the block-cutvertex de-
composition of S forms a path of blocks S1, S2, . . . , Sk, k ≥ 1, as in Figure 7, and at
least one of the blocks S1, S2, . . . , Sk, k ≥ 1, is a cylindrical network. In this path we
can regroup maximal series of consecutive strongly planar networks into single strongly
planar networks so that at most one strongly planar network N ′ is separating two cylin-
drical networks in the resulting path, and the poles of the strongly planar network N ′ are
uniquely defined by maximality. By Proposition 4, the cylindrical networks in the path
are of the form K5\e ↑ (N1, N2, . . . , N9), where Nj ∈ NP , j = 1, 2, . . . , 9, and the corners
a′ and b′, e = a′b′, are uniquely defined with respect to the corresponding K5-subdivision
TK ′

5 in G. Therefore the unique set of corners completely defines a toroidal core M∗ or
a circular crown H having k edges and the set of corresponding strongly planar networks
N1, N2, . . . , Nk, such that G = M∗ ↑ (N1, N2, . . . , N18) or G = H ↑ (N1, N2, . . . , Nk),
respectively.

Theorems 1 and 2 imply that a projective-planar graph with no K3,3-subdivisions is
toroidal. However an arbitrary projective-planar graph can be non-toroidal. The char-
acterizations of Theorems 1 and 2 can be used to detect projective-planar or toroidal
graphs with no K3,3-subdivisions in linear time. The implementation of this algorithm
can be derived from [8] by using a breadth-first or depth-first search technique for the
decomposition and by doing a linear-time planarity testing. The linear-time complexity
follows from the linear-time complexity of the decomposition and from the fact that each
vertex of the initial graph can appear in at most 7 different components.

A corollary to Euler’s formula for the plane says that a planar graph with n ≥ 3
vertices can have at most 3n − 6 edges (see, for example, [5] and [6]). Let us state this
for 2-connected planar graphs with n vertices and m edges as follows:

m ≤

{

3n− 5 if n = 2
3n− 6 if n ≥ 3

. (1)

In fact, m = 3n− 5 = 1 if n = 2. The generalized Euler formula (see, for example, [15])
implies that a toroidal graph G with n vertices can have up to 3n edges. An arbitrary
graph G without a K3,3-subdivision is known to have at most 3n − 5 edges (see [1]).
The following proposition shows that toroidal graphs with no K3,3-subdivisions satisfy a
stronger relation, which is analogous to planar graphs.

Proposition 5 The number m of edges of a non-planar K3,3-subdivision-free toroidal
n-vertex graph G satisfies m ≤ 3n− 5 if n = 5 or 8, and

m ≤ 3n− 6, if n ≥ 6 and n 6= 8. (2)
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Proof . Clearly, toroidal graphs satisfying Theorem 2 also satisfy Proposition 3. By Propo-
sition 3(i, ii), each side component Si of TK5 in G, i = 1, 2, . . . , 10, satisfies the condition
(1) with n = ni, the number of vertices, and m = mi, the number of edges of Si,
i = 1, 2, . . . , 10. Since each corner of TK5 is in precisely 4 side components, we have
∑10

i=1 ni = n+ 15 and we obtain, by summing these 10 inequalities,

m =
10
∑

i=1

mi ≤







3
∑10

i=1 ni − 50 = 3(n+ 15)− 50 = 3n− 5 if n = 5

3
∑10

i=1 ni − 51 = 3(n+ 15)− 51 = 3n− 6 if n ≥ 6

,

since n = 5 iff ni = 2, i = 1, 2, . . . , 10, and n ≥ 6 if and only if at least one nj ≥ 3,
j = 1, 2, . . . , 10.

Similarly, by Proposition 3(iii), each side component Si of TM in G, i = 1, 2, . . . , 19,
satisfies the condition (1) with n = ni, the number of vertices, and m = mi, the number
of edges of Si, i = 1, 2, . . . , 19. Since 2 vertices of TM are in precisely 7 side components,
6 vertices of TM are in precisely 4 side components, and all the other vertices of G are
in a unique side component, we have

∑19
i=1 ni = n+ 30 and we obtain, by summing these

19 inequalities,

m =
19
∑

i=1

mi ≤







3
∑19

i=1 ni − 95 = 3(n+ 30)− 95 = 3n− 5 if n = 8

3
∑19

i=1 ni − 96 = 3(n+ 30)− 96 = 3n− 6 if n ≥ 9

,

since n = 8 iff ni = 2, i = 1, 2, . . . , 19, and n ≥ 9 if and only if at least one nj ≥ 3,
j = 1, 2, . . . , 19.

An analogous result for the projective-planar graphs can be found in [9]. Also note
that Corollary 8.3.5 of [6] implies that graphs with no K5-minors can have at most 3n−6
edges.

5 Counting labelled K3,3-subdivision-free toroidal

graphs

Now let us consider the question of the labelled enumeration of toroidal graphs with no
K3,3-subdivisions according to the numbers of vertices and edges. First, we review some
basic notions and terminology of labelled enumeration together with the counting methods
and technique used in [17, 9]. The reader should have some familiarity with exponential
generating functions and their operations (addition, multiplication and composition). For
example, see [2], [11], [14], or [18].

By a labelled graph, we mean a simple graph G = (V,E) where the set of vertices
V = V (G) is itself the set of labels and the labelling function is the identity function.
V is called the underlying set of G. An edge e of G then consists of an unordered pair
e = uv of elements of V and E = E(G) denotes the set of edges of G. If W is another
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set and σ : V →̃W is a bijection, then any graph G = (V,E) on V , can be transformed
into a graph G′ = σ(G) = (W,σ(E)), where σ(E) = {σ(e) = σ(u)σ(v) | e ∈ E}. We
say that G′ is obtained from G by vertex relabelling and that σ is a graph isomorphism
G→̃G′. An unlabelled graph is then seen as an isomorphism class γ of labelled graphs.
We write γ = γ(G) if γ is the isomorphism class of G. By the number of ways to label
an unlabelled graph γ(G), where G = (V,E), we mean the number of distinct graphs G′

on the underlying set V which are isomorphic to G. Recall that this number is given by
n!/|Aut(G)|, where n = |V | and Aut(G) denotes the automorphism group of G.

A species of graphs is a class of labelled graphs which is closed under vertex relabellings.
Thus any class G of unlabelled graphs gives rise to a species, also denoted by G, by taking
the set union of the isomorphism classes in G. For any species G of graphs, we introduce
its (exponential) generating function G(x, y) as the formal power series

G(x, y) =
∑

n≥0

gn(y)
xn

n!
, with gn(y) =

∑

m≥0

gn,my
m, (3)

where gn,m is the number of graphs in G with m edges over a given set of vertices Vn of
size n. Here y is a formal variable which acts as an edge counter. For example, for the
species G = K = {Kn}n≥0 of complete graphs, we have

K(x, y) =
∑

n≥0

y(
n

2
)xn/n!, (4)

while for the species G = Ga of all simple graphs, we have Ga(x, y) = K(x, 1 + y).
A species of graphs is molecular if it contains only one isomorphism class. For a

molecular species γ = γ(G), where G has n vertices and m edges, we have γ(x, y) =
ymn!

|Aut(G)|
xn/n! = ymxn/|Aut(G)|. For example,

K5(x, y) =
x5y10

5!
. (5)

Also, for the graphs M and M∗ described in Section 2, we have

M(x, y) = 280
x8y19

8!
, M∗(x, y) = 280

x8y18

8!
, (6)

since |Aut(M)| = |Aut(M∗)| = 144.
For the enumeration of networks, we consider that the poles a and b are not labelled,

or, in other words, that only the internal vertices form the underlying set. Hence the
generating function of a class (or species) N of networks is defined by

N (x, y) =
∑

n≥0

νn(y)
xn

n!
, with νn(y) =

∑

m≥0

νn,my
m, (7)

where νn,m is the number of networks in N with m edges and a given set of internal
vertices Vn of size n. For example, we have

(K5\e)(x, y) =
x3y9

3!
, (8)
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A species N of networks is called symmetric if for any N -network N (i.e. N in N ), the
opposite network τ ·N , obtained by interchanging the poles a and b, is also inN . Examples
of symmetric species of networks are the classes NP , of strongly planar networks, and R,
of series-parallel networks (see [17, 9]).

Lemma 1 (T. Walsh [17, 9]) Let G be a species of graphs and N be a symmetric species
of networks such that the composition G ↑ N is canonical. Then the following generating
function identity holds:

(G ↑ N )(x, y) = G(x,N (x, y)). (9)

By Theorem 2 and Lemma 1, we have the following proposition.

Proposition 6 The generating function T (x, y) of labelled non-planar K3,3-subdivision-
free toroidal graphs is given by

T (x, y) = (TC ↑ NP )(x, y) = TC(x,NP (x, y)), (10)

where TC denotes the class of toroidal cores (see Definition 3).

Let P denote the species of 2-connected planar graphs. Then the generating function
of NP , the associated class of strongly planar networks, is given by

NP (x, y) = (1 + y)
2

x2

∂

∂y
P (x, y)− 1 (11)

(see [17, 9]). Methods for computing the generating function P (x, y) of labelled 2-
connected planar graphs are described in [3] and [4]. Formula (11) can then be used
to compute NP (x, y). Therefore there remains only to compute the generating function
TC(x, y) for toroidal cores. Recall that TC = K5 +M +M∗ +CC, where CC denotes the
class of circular crowns. Circular crowns can be enumerated as follows using matching
polynomials.

Proposition 7 The mixed generating series CC(x, y) of circular crowns is given by

CC(x, y) = −
12x4y9 + 12x5y10 + x8y18 + 72 ln(1− x4y9

6
− x5y10

6
)

144
. (12)

Proof . Recall that a matching µ of a finite graph G is a set of disjoint edges of G. We
define the matching polynomial of G as

MG(y) =
∑

µ∈M(G)

y|µ|, (13)

where M(G) denotes the set of matchings of G. In particular, the matching polynomials
Un(y) and Tn(y) for paths and cycles of size n are well known (see [10]). They are closely
related to the Chebyshev polynomials. To be precise, let Pn denote the path graph (V,E)
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with V = [n] = {1, 2, . . . , n} and E = {{i, i + 1}| i = 1, 2, . . . , n− 1} and Cn denote the
cycle graph with V = [n] and E = {{i, i+ 1(mod n)}| i = 1, 2, . . . , n}. Then we have

Un(y) =
∑

µ∈M(Pn)

y|µ|, Tn(y) =
∑

µ∈M(Cn)

y|µ|. (14)

The dichotomy caused by the membership of the edge {n− 1, n} in the matchings of the
path Pn leads to the recurrence relation

Un(y) = yUn−2(y) + Un−1(y), (15)

for n ≥ 2, with U0(y) = U1(y) = 1. It follows that the ordinary generating function of the
matching polynomials Un(y) is rational. In fact, it is easily seen that

∑

n≥0

Un(y)x
n =

1

1− x− yx2
. (16)

Now, the dichotomy caused by the membership of the edge {1, n} in the matchings of
the cycle Cn leads to the relation

Tn(y) = yUn−2(y) + Un(y), (17)

for n ≥ 3. It is then a simple matter, using (16) and (17) to compute their ordinary
generating function, denoted by G(x, y). We find

G(x, y) =
∑

n≥3

Tn(y)x
n =

x3(1 + 3y + yx+ 2y2x)

1− x− yx2
. (18)

In fact, we also need to consider the homogeneous matchings polynomials

Tn(y, z) = znTn(
y

z
) =

∑

µ∈M(Cn)

y|µ|zn−|µ|, (19)

where the variable z marks the edges which are not selected in the matchings, whose
generating function G(x, y, z) =

∑

n≥3 Tn(y, z)x
n is given by

G(x, y, z) = G(xz,
y

z
) =

x3z2(z + 3y + xyz + 2xy2)

1− xz − x2yz
. (20)

We now introduce the species BC of pairs (c, µ), where c is a cycle of length n ≥ 3 and

µ is a matching of c, with weight y|µ|zn−|µ|. Since there are (n−1)!
2

non-oriented cycles on a
set of size n ≥ 3, and all these cycles admit the same homogeneous matching polynomial

12



Tn(y, z), the mixed generating function of labelled BC-structures is

BC(x, y, z) =
∑

n≥3

(n− 1)!

2
Tn(y, z)

xn

n!

=
1

2

∑

n≥3

Tn(y, z)
xn

n

=
1

2

∫ x

0

1

t
G(t, y, z) dt

= −
2xz + 2x2zy + x2z2 + 2 ln(1− xz − x2yz)

4
. (21)

Notice that in a circular crown, the unsubstituted edges are not adjacent, by defini-
tion, and hence form a matching of the underlying cycle, while the substituted edges are
replaced by K5\e-networks. We can thus write

CC = BC ↑z (K5\e), (22)

where the notation ↑z means that only the edges marked by z are replaced by K5\e-
networks. Moreover the decomposition (22) is canonical and we have

CC(x, y) = BC(x, y, (K5\e)(x, y)), (23)

which implies (12) using (8).

A substitution of the generating function NP (x, y) of (11) counting the strongly planar
networks for the variable y in (6), (5), and (12) gives the generating function for labelled
2-connected non-planar toroidal graphs with no K3,3-subdivision, i.e.

T (x, y) = K5(x,NP (x, y)) +M(x,NP (x, y)) +M∗(x,NP (x, y)) + CC(x,NP (x, y)). (24)

Notice that the term K5(x,NP (x, y)) in (24) also enumerates non-planar 2-connected
K3,3-subdivision-free projective-planar graphs and that corresponding tables are given
in [9]. Here we present the computational results just for labelled graphs in T that
are not projective-planar. Numerical results are presented in Tables 1 and 2, where
T (x, y) − K5(x,NP (x, y)) =

∑

n≥8

∑

m tn,mx
nym/n! and tn =

∑

m tn,m count labelled
non-projective-planar graphs in T .

The homeomorphically irreducible non-projective-planar graphs in T , i.e. the graphs
having no vertex of degree two, can be counted by using several methods described in
detail in Section 4 of [9]. We used the approach of Proposition 8 of [9] to obtain the
numerical data presented in Tables 3 and 4 for labelled homeomorphically irreducible
graphs in T that are not projective-planar.
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n m tn,m n m tn,m n m tn,m

8 18 280 13 23 1838008972800 15 25 5973529161600000
8 19 280 13 24 12383684913600 15 26 60679359861120000
9 19 50400 13 25 36576568828800 15 27 280619124786000000
9 20 93240 13 26 61986597472800 15 28 785755439324856000
9 21 47880 13 27 66199273620480 15 29 1496142328612932000
10 20 5292000 13 28 46419992138520 15 30 2068477720590481200
10 21 15044400 13 29 22180672954440 15 31 2175937397296462800
10 22 15510600 13 30 7737403073400 15 32 1810128996903427200
10 23 5972400 13 31 2053743892200 15 33 1223242124356652400
10 24 239400 13 32 348540192000 15 34 673154380612513800
11 21 426888000 13 33 27935107200 15 35 293316332440131000
11 22 1700899200 14 24 107217190080000 15 36 96295664217753000
11 23 2724044400 14 25 896474952172800 15 37 22260497063805000
11 24 2136842400 14 26 3359265613704000 15 38 3218036781960000
11 25 773295600 14 27 7460402644094400 15 39 218263565520000
11 26 94386600 14 28 10948159170748800 16 26 322570574726400000
11 27 7900200 14 29 11253868616390400 16 27 3914073525922560000
12 22 29455272000 14 30 8467602606022560 16 28 21877169871997440000
12 23 155542464000 14 31 4876995169606560 16 29 75157668529175232000
12 24 348414066000 14 32 2222245323698400 16 30 178928606393593056000
12 25 424294516800 14 33 785187373370400 16 31 316283670286218835200
12 26 297599563800 14 34 197208318106800 16 32 435483254883942064800
12 27 118905448200 14 35 31064455422000 16 33 484253520685973438400
12 28 27683548200 14 36 2294786894400 16 34 445576710488584474800
12 29 4821201000 16 35 341998556200139638800
12 30 410810400 16 36 216864722075241240000

16 37 111029372376938215200
16 38 44479356838490574000
16 39 13374653821603074000
16 40 2831094029443680000
16 41 375386906774880000
16 42 23417178744960000

Table 1: The number of labelled non-planar non-projective-planar toroidal 2-connected
graphs without a K3,3-subdivision (having n vertices and m edges).
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n tn

8 560
9 191520

10 42058800
11 7864256400
12 1407126890400
13 257752421166240
14 50607986220311520
15 10995419195575214400
16 2692773804667509763200
17 747221542837742897724800
18 233698171655650029030743040
19 81472765051132560093387934080
20 31268587126068905034073041062400

Table 2: The number of labelled non-planar non-projective-planar toroidal 2-connected
K3,3-subdivision-free graphs (having n vertices).
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n m tn,m n m tn,m n m tn,m

8 18 280 14 26 6054048000 16 29 5811886080000
8 19 280 14 27 285751065600 16 30 621544891968000
9 19 5040 14 28 3361812854400 16 31 11935943091072000

10 20 25200 14 29 17840270448000 16 32 101350194001056000
10 22 226800 14 30 55133382704400 16 33 499371733276416000
10 23 466200 14 31 108994658572800 16 34 1611221546830896000
10 24 239400 14 32 141179453415000 16 35 3605404135132800000
11 23 10256400 14 33 118498240060200 16 36 5738963267481444000
11 24 30492000 14 34 61801664324400 16 37 6540526990277280000
11 25 43520400 14 35 18158435895600 16 38 5293490794557966000
11 26 31185000 14 36 2294786894400 16 39 2967845927880834000
11 27 7900200 15 28 1961511552000 16 40 1095216458944608000
12 24 189604800 15 29 57537672192000 16 41 239190441890400000
12 25 1079416800 15 30 557188343712000 16 42 23417178744960000
12 26 3044487600 15 31 2827950253128000 17 31 3903916528512000
12 27 5080614000 15 32 8936155496268000 17 32 174648084811200000
12 28 4776294600 15 33 18886100303070000 17 33 2606052624215040000
12 29 2261536200 15 34 27395286118200000 17 34 20178959825344320000
12 30 410810400 15 35 27296971027326000 17 35 97287841256493888000
13 25 1686484800 15 36 18324093378591000 17 36 319780940570307216000
13 26 22875652800 15 37 7906712877063000 17 37 751384930811218704000
13 27 126680954400 15 38 1978851858984000 17 38 1292496613555066920000
13 28 382608626400 15 39 218263565520000 17 39 1642597679422623924000
13 29 700723623600 17 40 1539140405659676820000
13 30 788388400800 17 41 1049167407329489448000
13 31 525156231600 17 42 505608857591934096000
13 32 188324136000 17 43 163183484418946992000
13 33 27935107200 17 44 31635477128166912000

17 45 2784602773016064000

Table 3: The number of labelled non-planar non-projective-planar toroidal 2-connected
K3,3-subdivision-free graphs with no vertex of degree 2 (having n vertices and m edges).
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n tn

8 560
9 5040
10 957600
11 123354000
12 16842764400
13 2764379217600
14 527554510282800
15 114387072405606000
16 27728561968887780000
17 7418031804967840056000
18 2167306256125914230527200
19 685709965521372865035362400
20 233306923207078035272369412000

Table 4: The number of labelled non-planar non-projective-planar toroidal 2-connected
K3,3-subdivision-free graphs with no vertex of degree 2 (having n vertices).
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