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A REALIZATION OF GRAPH-ASSOCIAHEDRA

SATYAN L. DEVADOSS

Abstract. Given any finite graphG, we offer a simple realization of the graph-associahedron
PG using integer coordinates.

1. Introduction

Given a finite graph G, the graph-associahedron PG is a simple, convex polytope whose

face poset is based on the connected subgraphs of G. This polytope was has been studied in

[3], and has appeared in combinatorial [1, 8] and geometric contexts [4, 11]. In particular, it

appears as tilings of minimal blow-ups of certain Coxeter complexes, which themselves are

natural generalizations of the Deligne-Knudsen-Mumford compactification M0,n(R) of the

real moduli space of curves [5].

For special examples of graphs, their graph-associahedra become well-known, sometimes

classical, polytopes. For instance, when G is a set of vertices, PG is the simplex. Moreover,

when G is a path, a cycle, or a complete graph, PG results in the associahedron, cyclohe-

dron, and permutohedron, respectively. Loday [7] provided a formula for the coordinates of

the vertices of the associahedron which contains the classical realization of the permutohe-

dron. Recently, Hohlweg and Lange [6] offer different realizations of the associahedron and

cyclohedron. We offer a realization of graph-associahedra for any graph.

2. Convex Hull

2.1. We begin with definitions; the reader is encouraged to see [3, Section 1] for details.

Definition. Let G be a finite graph. A tube is a proper nonempty set of nodes of G whose

induced graph is a proper, connected subgraph of G. There are three ways that two tubes

u1 and u2 may interact on the graph.

(1) Tubes are nested if u1 ⊂ u2.

(2) Tubes intersect if u1 ∩ u2 6= ∅ and u1 6⊂ u2 and u2 6⊂ u1.

(3) Tubes are adjacent if u1 ∩ u2 = ∅ and u1 ∪ u2 is a tube in G.

Tubes are compatible if they do not intersect and they are not adjacent. A tubing U of G is

a set of tubes of G such that every pair of tubes in U is compatible. A k-tubing is a tubing

with k tubes.
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Remark. When G is a disconnected graph with connected components G1, . . . , Gk, we place

an additional restriction. Let ui be the tube of G whose induced graph is Gi. Then any

tubing of G cannot contain all of the tubes {u1, . . . , uk}. Thus, for a graph G with n nodes,

a tubing of G can at most contain n−1 tubes. Figure 1 shows examples of (a) valid tubings

and (b) invalid tubings.

( a ) ( b ) 

Figure 1. (a) Valid tubings and (b) invalid tubings.

Definition. For a graph G, the graph-associahedron PG is a simple, convex polytope whose

face poset is isomorphic to set of tubings of G, ordered such that U ≺ U ′ if U is obtained

from U ′ by adding tubes.

2.2. Let G be a graph with n nodes and let MG be the collection of maximal (n−1)-tubings

of G. For each such tubing U in MG, define a map fU from the nodes of G to the integers as

follows: If a node v of G is a tube of U , then fU (v) = 0. Otherwise, let t(v) be the smallest

tube containing v, and let all other nodes of G satisfy the recursive condition

(2.1)
∑

x∈t(v)

fU (x) = 3|t(v)|−2.

Figure 2 gives some examples of integer values of nodes associated to tubings.
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0 0 01 8 0 09 00 01 8
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0

0

Figure 2. Integer values of nodes associated to tubings.

Let G be a graph with an ordering v1, v2, . . . , vn of its nodes. Define c : MG → R
n where

c(U) = (fU (v1), fU (v2), . . . , fU (vn)).

Theorem 1. If G is a graph with n nodes, the convex hull of the points c(MG) in R
n yields

the graph-associahedron PG.

The proof of this is given at the end of the paper.
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3. Examples

3.1. Simplex. Let G be the graph with n (disjoint) nodes. The set MG of maximal tubings

has n elements, each corresponding to choosing n−1 out of the n possible nodes. An element

of MG will be assigned a point in R
n consisting of zeros for all coordinates except one with

value 3n−2. Due to Theorem 1, PG is the convex hull of the n vertices in R
n yielding the

(n− 1)-simplex. Figure 3 shows this when n = 3, resulting in the 2-simplex in R
3.

( 3, 0, 0 )

( 3, 0, 0 )

( 0, 3, 0 )

( 0, 3, 0 )

( 0, 0, 3 )

( 0, 0, 3 )

( 0, 0, 0)

x y z
3 00 0 03 0 30

Figure 3. The maximal tubings of G and its convex hull, resulting in the simplex.

3.2. Permutohedron. Let G be the complete graph on n nodes. Each maximal tubing of

G can be seen as a sequential nesting of all n nodes. In other words, they are in bijection

with permutations on n letters. The elements of MG will be assigned coordinate values

based on all permutations of {0, 1, . . . , 3n−2 − 3n−3}. Theorem 1 shows PG as the convex

hull of the n! vertices in R
n, resulting in the permutohedron. Figure 4 shows this when

n = 3, resulting in the hexagon, the two-dimensional permutohedron.

y

x z

( 0, 1, 2 )

( 0, 1, 2 )

( 0, 2, 1 )

( 1, 2, 0 )
( 1, 2, 0 )( 0, 2, 1 )

( 2, 1, 0 )
( 2, 1, 0 )

( 2, 0, 1 )

( 2, 0, 1 )

( 1, 0, 2 )

( 1, 0, 2 )

( 0, 0, 0)2 0

1

2 1

0

1 2

0

0 2

1

0 1

2

1 0

2

Figure 4. The maximal tubings of G and its convex hull, resulting in the permutohedron.

3.3. Associahedron. Let G be an n-path. The number of such maximal tubings is in bijec-

tion with the Catalan number cn. Due to Theorem 1, the convex hull of these vertices in R
n

yields the (n−1) dimension associahedron. Stasheff originally defined the associahedron for

use in homotopy theory in connection with associativity properties of H-spaces [9]. Figure 5

shows this when n = 3, resulting in the pentagon, the two-dimensional associahedron.
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( 0, 1, 2 )( 2, 1, 0 ) ( 2, 0, 1 ) ( 1, 0, 2 )

( 0, 1, 2 )

( 2, 1, 0 )

( 2, 0, 1 )

( 1, 0, 2 )

( 0, 3, 0 )
( 0, 0, 0)

( 0, 3, 0 )

x y z

2 01 2 10 1 20 0 21 0 03

Figure 5. The maximal tubings of G and its convex hull, resulting in the associahedron.

3.4. Cyclohedron. Let G be an n-cycle. In this case, the number of maximal tubings is

the type B Catalan number
(

2n−2
n−1

)

. Theorem 1 shows PG as the cyclohedron, a polytope

originally manifested in the work of Bott and Taubes in relation to knot and link invariants

[2]. Figure 4 shows this when n = 3, since both the permutohedron and cyclohedron are

identical in dimension two.

4. Constructing the Graph-Associahedron

4.1. For a graph G with n nodes v1, . . . vn, let ∆ be the (n − 1)-simplex in which each

facet (codimension 1 face) corresponds to a particular node of G. Thus, each proper subset

of nodes of G corresponds to a unique face of ∆, defined by the intersection of the faces

associated to those nodes. The following construction of the graph-associahedron is based

on truncations of a simplex.

Theorem 2. [3, Section 2] For a given graph G, truncating faces of ∆ which correspond to

1-tubings in increasing order of dimension results in PG.

Indeed, truncations should not only be in increasing order of dimension (certain vertices

of ∆ are truncated first, and then the edges, and so forth), but they should also not form

“deep cuts”. Consider Figure 6 as an example. Part (a) shows a 3-simplex with two vertices

marked for truncation; part (b) shows appropriate truncations of the vertices, with (c) and

(d) showing inappropriate cuts which are too deep.

( a ) ( b ) ( d )( c )

Figure 6. Iterated truncations of the 3-simplex based on an underlying graph.
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Remark. In order to recover Loday’s elegant construction of the classical permutohedron as

part of the associahedron, we simply use the following recursive definition of fU :
∑

x∈t(v)

fU (x) =

(

|t(v)|+ 1

2

)

.

Although this works for the associahedron, it fails for graph-associahedra in general. The

reason for this is that the cuts needed to construct the polytopes are too deep.

Figure 7 shows a tetrahedron truncated according to a graph, resulting in PG. Note

that its facets are labeled with 1-tubings. One can verify that the edges correspond to all

possible 2-tubings and the vertices to 3-tubings.

Figure 7. Iterated truncations of the 3-simplex based on an underlying graph.

4.2. We are now in position to prove Theorem 1. This is influenced by the work of Stasheff

and Schnider [10, Appendix B].

Proof of Theorem 1. Consider the affine hyperplane H defined by

(4.1)
∑

xi = 3n−2.

The intersection of the quadrant {(x1, . . . , xn) | xi ≥ 0} with H yields a standard (n − 1)-

simplex ∆. Let Gu be the set of all 1-tubings of G, where Gi
u be the set of 1-tubings

containing i nodes. The faces of ∆ which need to truncated correspond to the 1-tubings

Gi
u, where i ≥ 2. Let u = {vi1 , . . . , vik} be a 1-tubing in Gk

u; note that this corresponds to

a n− 1− k face of ∆, seen as the intersection of the hyperplane
∑

vi∈u

xi = 0

of Rn with ∆. Truncate this face with the hyperplane

(4.2)
∑

vi∈u

xi = 3k−2.

We claim that this collection of hyperplanes, one for each element of Gi
u, results in PG.

By Theorem 2 above, the appropriate faces of ∆ have been truncated, one for each 1-

tubing. However, we need to show the any two cuts of a given dimension are not deep;
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that is, their corresponding hyperplanes must not intersect in H . This is done by in-

duction. Two vertices of ∆ which are truncated correspond to 1-tubings in Gn−1
u , say

u = {v1, . . . , vn−2, vn−1} and u′ = {v1, . . . , vn−2, vn}. These hyperplanes cannot intersect

in H since Eqs. (4.1) and (4.2) show
∑

xi = 3n−2 > 3n−3 + 3n−3 =
∑

vi∈u

xi +
∑

vi∈u′

xi.

In general, let u∗ be in Gn−1−k
u , a k-dimensional face of ∆ that is truncated. Let u and u′

be two (k + 1)-dimensional faces of ∆ in Gn−2−k
u which are incident to u∗. The cuts u and

u′ will not be deep with respect to u∗. To see this, notice that the nodes of u and u′ are

contained in u∗. Thus, in H the hyperplanes of u and u′ cannot intersect in u∗ since
∑

vi∈u∗

xi = 3n−3−k > 3n−2−k + 3n−2−k =
∑

vi∈u

xi +
∑

vi∈u′

xi.

Recall that each vertex of PG corresponds to a (n − 1)-tubing T of G. This, in turn,

corresponds to the intersection of the n− 1 hyperplanes of (4.2) for each 1-tubing of T . In

particular, a tube containing one node assigns the value 0 to that node; these are incident

to the original facets of ∆. Thus Eq. (2.1) is satisfied inductively. �
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