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Abstract

Let a(n, k) be the kth coefficient of the nth cyclotomic polynomial. In part
I it was proved that {a(mn,k) | n > 1, k > 0} = Z, in case m is a prime
power. In this paper we show that the result also holds true in case m is
an arbitrary positive integer.

1 Introduction
Let ®,(z) = Zf(:%) a(n, k)x* be the nth cyclotomic polynomial. The rational
function 1/®,,(z) has a Taylor series around = = 0 given by

[e.e]

1 k
3. (0) = Zc(n, k)x”,

k=0

where it can be shown that the ¢(n, k) are also integers. It turns out that usually
the coefficients a(n, k) and ¢(n, k) are quite small in absolute value, for example
for n < 105 it is well-known that |a(n, k)| < 1 and for n < 561 we have |c(n, k)| <
1 (by [3, Lemma 12]).

The purpose of this note is to show that although so often the coefficients
a(n, k) and c(n, k) are small, they assume every integer value, even when we
require n to be a multiple of an arbitrary natural number m.

Theorem 1 Let m > 1 be an integer. Put S(m) = {a(mn,k)ln > 1, k > 0}
and R(m) = {c(mn,k)n > 1, k> 0}. Then S(m) =7Z and R(m) = Z.

Schur poved in 1931 (in a letter to E. Landau) that S(1) is not a finite set. In
1987 Suzuki [4] proved that S(1) = Z. Recently the first two authors [2] proved
that S(p®) = Z with p® a prime power.

The fact that every integer already occurs as a coeflicient of ®,,,(x) with p,
q and r odd primes is implicit in Bachman [I]. The third author established this
result for the reciprocal cyclotomic polynomials 1/®,,.(x), see Moree [3]. This
result implies that R(1) = Z.
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2 Some lemmas

Since

vt =1 =[] ®al2), (1)
dln

we have by the Mobius inversion formula, ®,(z) = [] d|n(xd — 1)"@), where u
denotes the Mobius function.
On using that >, x(d) = 0if n > 1, it is seen that, for n > 1,

(bn([)j') — H(xd _ 1)#(%) — (_1)Zd\nﬂ(%) H(l i l,d)u(%) _ H(l _ :L’d)”(%).

dln d|n d|n
(Thus for n > 1, the polynomial ®,(z) is self-reciprocal.)

Lemma 1 The coefficient c¢(n, k) is an integer whose values only depends on the
congruence class of k modulo n.

Proof. Let us first consider

" —1

P, (x)

By (@) we have that V,,(z) = [],.,, 4, Pa(2) and thus its coefficients are integers.

The degree of U,,(x) is n — ¢(n), with ¢ Euler’s totient function. We infer that,
for |z| < 1,

U, (x) =

1
) ()1 +2"+ 2™+ )
Since n > n — ¢(n), the proof is completed. O

Let k(m) = Hp‘m p denote the squarefree kernel of m, that is the largest squarefree
divisor of m.

Lemma 2 Let p be a prime. For I,m > 1 we have S(p'm) = S(pm) and
R(p'm) = R(pm).

Corollary 1 We have S(m) = S(k(m)) and R(m) = R(k(m)).

Proof of Lemmal2l 1t is easy to prove, see e.g. Thangadurai [5], that if p is prime
and p|n, then

Dpn(z) = P (a?). (2)
Using this we deduce that ®,2,,(z) = ®p,,(27) and thus a(pm, 1) = 0 and hence
0 € S(pm). On repeatedly applying (2) we can easily infer that ®,,,,(z) =
D (27 for any [ > 1, so

a(p'mn, k) = { a(pmn, 1%) if pl_1|l‘€;
0 otherwise.

This together with 0 € S(pm) and the trivial inclusion S(p'm) C S(pm) shows
that S(p'm) = S(pm).
The proof that R(p'm) = R(pm) is completely analogous. Here we use that

if p|n, then ¥, (z) = V¥, (2?), which is immediate from (2) and the definition of
U, (z). O



Lemma 3 (Quantitative form of Dirichlet’s theorem.) Let a and m be coprime
natural numbers and let w(xz;m, a) denote the number of primes p < x that satisfy
p = a(mod m). Then, as x tends to infinity,

T

W(x;m, a) ~ W

Corollary 2 Given m,t > 1 and any real number r > 1, there exists a constant
No(t,m,r) such that for every n > Ny(t,m,r) the interval (n,rn) contains at
least t primes p = 1(mod m).

3 The proof of Theorem 1

We first prove that S(m) = Z. Since S(m) = S(k(m)), we may assume that m
is squarefree. We may also assume that m > 1. Suppose that n > Ny(t,m, 185)
Then there exist primes pq, ps, - - -, p; such that

15
n<p1<p2<---<pt<gnandpjzl(modm), j=1,2,-- 1t

Hence p; < 2p;.
Let g be any prime exceeding 2p; and put

| pip2---prg it tis even;
| pip2---p:r otherwise.

Note that m and m; are coprime and that p(m,) = —1. Using these observations
we conclude that

Cum(z) = [ (1—2CF) (mod 2¥)
dlmim, d<2py
= H(l — 24 — P! ) (mod z%")
dlm j=1

t

u(ml H 1_ xpj —p(mim) (mod x2p1)_

1 Ht " i\l 2
1 D1 Dt 2p1
= 5. (0) (1—,u(m)(:c +...4z )) (mod z**). (3)

From (3)) it follows that, if p, < k < 2py,

t

a(mym, k) = c(m, k) — Zc m, k — pj).
7j=1

By Lemma [l we have ¢(m, k — p;) = ¢(m, k — 1). Thus we find that

a(mim, k) = c(m, k) — u(m)te(m, k — 1) with p, < k < 2p;. (4)

3



We consider two cases (u(m) = 1, respectively p(m) = —1).
Case 1. pu(m) = 1. In this case m has at least two prime divisors. Let ¢; < g0
be the smallest two prime divisors of m. Here we also require that n > 8¢,. This
ensures that p; + g2 < 2p;. Note that

1 (T =zm)(1 — 2®) 122
o, () 1—x (mod &#7)
= l+az+22+..  +227 — g2 — 2T (mod 29272). (5)
Thus ¢(m,k) = 1 if &k = f(mod m) with § € {1,2} and c¢(m,k) = —1 if

k = B(mod m) with 8 € {¢2,¢2 + 1}. This in combination with (@) shows that
a(mim,p;+1) =1—t and a(mym,p;+q) =t—1. Since {1—t,t—1 |t > 1} =27
the result follows in this case.

Case 2. pu(m) = —1. Here we notice that

1 {1—x(modzz3) if 24 m;

D, (z) =\ 1—2+2? (mod 2%) otherwise.

Using this we find that a(m;m, p;) = —1+t. Furthermore, a(m;m,p;+1) = —t in
case m is odd and a(mym, p;+1) = 1 —t otherwise. Since {—1+t,—t |t > 1} =Z
and {—1+¢,1—t|t>1} =Z, it follows that also S(m) = Z in this case.

It remains to show that R(m) = Z. As before we may assume that m is
squarefree (by Corollary 1) and that m > 1 (by Theorem 8 of Moree [3]).

Let ¢ be any prime exceeding 2p; and put

7 ) Dbz if t is even;
"7 I pip2-opeg  otherwise.

Note that u(m;) = 1. Reasoning as in the derivation of (B]) we obtain
1 1

and from this c(mym, k) = a(mym, k) for k < 2p,. Reasoning as in the proof of
S(m) = Z, the proof is then completed. O

(1 — p(m) (P + ...+ xpt)) (mod %)

Remark 1. If one specializes the above proof to the case m = p°©, a proof a little
easier than that given in part I [2] is obtained, since it does not involve a case
distinction between m is odd and m is even as made in part I. This is a conse-
quence of working modulo 22!, rather than modulo 22"+

Remark 2. The fraction 15/8 in the proof can be replaced by 2—e¢, with 0 < e < 1
arbitrary. One then requires that n > Ny(t,m,2 — ¢) and in case pu(m) = 1 in
addition that n > ¢ /€.
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