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Values of coefficients of cyclotomic polynomials II

Chun-Gang Ji, Wei-Ping Li and Pieter Moree

Abstract

Let a(n, k) be the kth coefficient of the nth cyclotomic polynomial. In part
I it was proved that {a(mn, k) | n ≥ 1, k ≥ 0} = Z, in case m is a prime
power. In this paper we show that the result also holds true in case m is
an arbitrary positive integer.

1 Introduction

Let Φn(x) =
∑ϕ(n)

k=0 a(n, k)x
k be the nth cyclotomic polynomial. The rational

function 1/Φn(x) has a Taylor series around x = 0 given by

1

Φn(x)
=

∞
∑

k=0

c(n, k)xk,

where it can be shown that the c(n, k) are also integers. It turns out that usually
the coefficients a(n, k) and c(n, k) are quite small in absolute value, for example
for n < 105 it is well-known that |a(n, k)| ≤ 1 and for n < 561 we have |c(n, k)| ≤
1 (by [3, Lemma 12]).

The purpose of this note is to show that although so often the coefficients
a(n, k) and c(n, k) are small, they assume every integer value, even when we
require n to be a multiple of an arbitrary natural number m.

Theorem 1 Let m ≥ 1 be an integer. Put S(m) = {a(mn, k)|n ≥ 1, k ≥ 0}
and R(m) = {c(mn, k)|n ≥ 1, k ≥ 0}. Then S(m) = Z and R(m) = Z.

Schur poved in 1931 (in a letter to E. Landau) that S(1) is not a finite set. In
1987 Suzuki [4] proved that S(1) = Z. Recently the first two authors [2] proved
that S(pe) = Z with pe a prime power.

The fact that every integer already occurs as a coefficient of Φpqr(x) with p,
q and r odd primes is implicit in Bachman [1]. The third author established this
result for the reciprocal cyclotomic polynomials 1/Φpqr(x), see Moree [3]. This
result implies that R(1) = Z.
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2 Some lemmas

Since
xn − 1 =

∏

d|n

Φd(x), (1)

we have by the Möbius inversion formula, Φn(x) =
∏

d|n(x
d − 1)µ(

n
d
), where µ

denotes the Möbius function.
On using that

∑

d|n µ(d) = 0 if n > 1, it is seen that, for n > 1,

Φn(x) =
∏

d|n

(xd − 1)µ(
n
d
) = (−1)

P

d|n µ(n
d
)
∏

d|n

(1− xd)µ(
n
d
) =

∏

d|n

(1− xd)µ(
n
d
).

(Thus for n > 1, the polynomial Φn(x) is self-reciprocal.)

Lemma 1 The coefficient c(n, k) is an integer whose values only depends on the

congruence class of k modulo n.

Proof. Let us first consider

Ψn(x) :=
xn − 1

Φn(x)
.

By (1) we have that Ψn(x) =
∏

d<n, d|n Φd(x) and thus its coefficients are integers.

The degree of Ψn(x) is n− ϕ(n), with ϕ Euler’s totient function. We infer that,
for |x| < 1,

1

Φn(x)
= −Ψn(x)(1 + xn + x2n + · · ·)

Since n > n− ϕ(n), the proof is completed. ✷

Let κ(m) =
∏

p|m p denote the squarefree kernel ofm, that is the largest squarefree
divisor of m.

Lemma 2 Let p be a prime. For l, m ≥ 1 we have S(plm) = S(pm) and

R(plm) = R(pm).

Corollary 1 We have S(m) = S(κ(m)) and R(m) = R(κ(m)).

Proof of Lemma 2. It is easy to prove, see e.g. Thangadurai [5], that if p is prime
and p|n, then

Φpn(x) = Φn(x
p). (2)

Using this we deduce that Φp2m(x) = Φpm(x
p) and thus a(pm, 1) = 0 and hence

0 ∈ S(pm). On repeatedly applying (2) we can easily infer that Φplmn(x) =

Φpmn(x
pl−1

) for any l ≥ 1, so

a(plmn, k) =

{

a(pmn, k
pl−1 ) if pl−1|k;

0 otherwise.

This together with 0 ∈ S(pm) and the trivial inclusion S(plm) ⊆ S(pm) shows
that S(plm) = S(pm).

The proof that R(plm) = R(pm) is completely analogous. Here we use that
if p|n, then Ψpn(x) = Ψn(x

p), which is immediate from (2) and the definition of
Ψn(x). ✷
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Lemma 3 (Quantitative form of Dirichlet’s theorem.) Let a and m be coprime

natural numbers and let π(x;m, a) denote the number of primes p ≤ x that satisfy

p ≡ a(mod m). Then, as x tends to infinity,

π(x;m, a) ∼
x

ϕ(m) log x
.

Corollary 2 Given m, t ≥ 1 and any real number r > 1, there exists a constant

N0(t,m, r) such that for every n > N0(t,m, r) the interval (n, rn) contains at

least t primes p ≡ 1(mod m).

3 The proof of Theorem 1

We first prove that S(m) = Z. Since S(m) = S(κ(m)), we may assume that m
is squarefree. We may also assume that m > 1. Suppose that n > N0(t,m, 15

8
).

Then there exist primes p1, p2, · · ·, pt such that

n < p1 < p2 < · · · < pt <
15

8
n and pj ≡ 1(mod m), j = 1, 2, · · · , t.

Hence pt < 2p1.
Let q be any prime exceeding 2p1 and put

m1 =

{

p1p2 · · · ptq if t is even;
p1p2 · · · pt otherwise.

Note that m and m1 are coprime and that µ(m1) = −1. Using these observations
we conclude that

Φm1m(x) ≡
∏

d|m1m, d<2p1

(1− xd)µ(
m1m

d
) (mod x2p1)

≡
∏

d|m

(1− xd)µ(
m
d
)µ(m1)

t
∏

j=1

(1− xpj)
µ(

m1m

pj
)
(mod x2p1)

≡ Φm(x)
µ(m1)

t
∏

j=1

(1− xpj)−µ(m1m) (mod x2p1).

≡
1

Φm(x)

t
∏

j=1

(1− xpj )µ(m) (mod x2p1).

≡
1

Φm(x)

(

1− µ(m)(xp1 + . . .+ xpt)
)

(mod x2p1). (3)

From (3) it follows that, if pt ≤ k < 2p1,

a(m1m, k) = c(m, k)− µ(m)
t

∑

j=1

c(m, k − pj).

By Lemma 1 we have c(m, k − pj) = c(m, k − 1). Thus we find that

a(m1m, k) = c(m, k)− µ(m)tc(m, k − 1) with pt ≤ k < 2p1. (4)
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We consider two cases (µ(m) = 1, respectively µ(m) = −1).
Case 1. µ(m) = 1. In this case m has at least two prime divisors. Let q1 < q2
be the smallest two prime divisors of m. Here we also require that n ≥ 8q2. This
ensures that pt + q2 < 2p1. Note that

1

Φm(x)
≡

(1− xq1)(1− xq2)

1− x
(mod xq2+2)

≡ 1 + x+ x2 + . . .+ xq1−1 − xq2 − xq2+1 (mod xq2+2). (5)

Thus c(m, k) = 1 if k ≡ β(mod m) with β ∈ {1, 2} and c(m, k) = −1 if
k ≡ β(mod m) with β ∈ {q2, q2 + 1}. This in combination with (4) shows that
a(m1m, pt+1) = 1− t and a(m1m, pt+q2) = t−1. Since {1− t, t−1 | t ≥ 1} = Z
the result follows in this case.
Case 2. µ(m) = −1. Here we notice that

1

Φm(x)
≡

{

1− x (mod x3) if 2 ∤ m;
1− x+ x2 (mod x3) otherwise.

Using this we find that a(m1m, pt) = −1+t. Furthermore, a(m1m, pt+1) = −t in
case m is odd and a(m1m, pt+1) = 1−t otherwise. Since {−1+t,−t | t ≥ 1} = Z
and {−1 + t, 1− t | t ≥ 1} = Z, it follows that also S(m) = Z in this case.

It remains to show that R(m) = Z. As before we may assume that m is
squarefree (by Corollary 1) and that m > 1 (by Theorem 8 of Moree [3]).

Let q be any prime exceeding 2p1 and put

m1 =

{

p1p2 · · · pt if t is even;
p1p2 · · · ptq otherwise.

Note that µ(m1) = 1. Reasoning as in the derivation of (3) we obtain

1

Φm̄1m(x)
≡

1

Φm(x)

(

1− µ(m)(xp1 + . . .+ xpt)
)

(mod x2p1)

and from this c(m̄1m, k) = a(m1m, k) for k < 2p1. Reasoning as in the proof of
S(m) = Z, the proof is then completed. ✷

Remark 1. If one specializes the above proof to the case m = pe, a proof a little
easier than that given in part I [2] is obtained, since it does not involve a case
distinction between m is odd and m is even as made in part I. This is a conse-
quence of working modulo x2p1 , rather than modulo x2p1+1.

Remark 2. The fraction 15/8 in the proof can be replaced by 2−ǫ, with 0 < ǫ < 1
arbitrary. One then requires that n > N0(t,m, 2 − ǫ) and in case µ(m) = 1 in
addition that n ≥ q2/ǫ.
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