Values of coefficients of cyclotomic polynomials II

Chun-Gang Ji, Wei-Ping Li and Pieter Moree

Abstract

Let $a(n, k)$ be the k th coefficient of the nth cyclotomic polynomial. In part I it was proved that $\{a(m n, k) \mid n \geq 1, k \geq 0\}=\mathbb{Z}$, in case m is a prime power. In this paper we show that the result also holds true in case m is an arbitrary positive integer.

1 Introduction

Let $\Phi_{n}(x)=\sum_{k=0}^{\varphi(n)} a(n, k) x^{k}$ be the nth cyclotomic polynomial. The rational function $1 / \Phi_{n}(x)$ has a Taylor series around $x=0$ given by

$$
\frac{1}{\Phi_{n}(x)}=\sum_{k=0}^{\infty} c(n, k) x^{k},
$$

where it can be shown that the $c(n, k)$ are also integers. It turns out that usually the coefficients $a(n, k)$ and $c(n, k)$ are quite small in absolute value, for example for $n<105$ it is well-known that $|a(n, k)| \leq 1$ and for $n<561$ we have $|c(n, k)| \leq$ 1 (by [3, Lemma 12]).

The purpose of this note is to show that although so often the coefficients $a(n, k)$ and $c(n, k)$ are small, they assume every integer value, even when we require n to be a multiple of an arbitrary natural number m.

Theorem 1 Let $m \geq 1$ be an integer. Put $S(m)=\{a(m n, k) \mid n \geq 1, k \geq 0\}$ and $R(m)=\{c(m n, k) \mid n \geq 1, k \geq 0\}$. Then $S(m)=\mathbb{Z}$ and $R(m)=\mathbb{Z}$.

Schur poved in 1931 (in a letter to E. Landau) that $S(1)$ is not a finite set. In 1987 Suzuki [4] proved that $S(1)=\mathbb{Z}$. Recently the first two authors [2] proved that $S\left(p^{e}\right)=\mathbb{Z}$ with p^{e} a prime power.

The fact that every integer already occurs as a coefficient of $\Phi_{p q r}(x)$ with p, q and r odd primes is implicit in Bachman [1]. The third author established this result for the reciprocal cyclotomic polynomials $1 / \Phi_{p q r}(x)$, see Moree [3]. This result implies that $R(1)=\mathbb{Z}$.

[^0]
2 Some lemmas

Since

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \tag{1}
\end{equation*}
$$

we have by the Möbius inversion formula, $\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}$, where μ denotes the Möbius function.

On using that $\sum_{d \mid n} \mu(d)=0$ if $n>1$, it is seen that, for $n>1$,

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}=(-1)^{\sum_{d \mid n} \mu\left(\frac{n}{d}\right)} \prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)}=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)}
$$

(Thus for $n>1$, the polynomial $\Phi_{n}(x)$ is self-reciprocal.)
Lemma 1 The coefficient $c(n, k)$ is an integer whose values only depends on the congruence class of k modulo n.

Proof. Let us first consider

$$
\Psi_{n}(x):=\frac{x^{n}-1}{\Phi_{n}(x)}
$$

By (11) we have that $\Psi_{n}(x)=\prod_{d<n, d \mid n} \Phi_{d}(x)$ and thus its coefficients are integers. The degree of $\Psi_{n}(x)$ is $n-\varphi(n)$, with φ Euler's totient function. We infer that, for $|x|<1$,

$$
\frac{1}{\Phi_{n}(x)}=-\Psi_{n}(x)\left(1+x^{n}+x^{2 n}+\cdots\right)
$$

Since $n>n-\varphi(n)$, the proof is completed.
Let $\kappa(m)=\prod_{p \mid m} p$ denote the squarefree kernel of m, that is the largest squarefree divisor of m.

Lemma 2 Let p be a prime. For $l, m \geq 1$ we have $S\left(p^{l} m\right)=S(p m)$ and $R\left(p^{l} m\right)=R(p m)$.

Corollary 1 We have $S(m)=S(\kappa(m))$ and $R(m)=R(\kappa(m))$.
Proof of Lemma 2. It is easy to prove, see e.g. Thangadurai [5], that if p is prime and $p \mid n$, then

$$
\begin{equation*}
\Phi_{p n}(x)=\Phi_{n}\left(x^{p}\right) \tag{2}
\end{equation*}
$$

Using this we deduce that $\Phi_{p^{2} m}(x)=\Phi_{p m}\left(x^{p}\right)$ and thus $a(p m, 1)=0$ and hence $0 \in S(p m)$. On repeatedly applying (2) we can easily infer that $\Phi_{p^{l} m n}(x)=$ $\Phi_{p m n}\left(x^{p^{l-1}}\right)$ for any $l \geq 1$, so

$$
a\left(p^{l} m n, k\right)= \begin{cases}a\left(p m n, \frac{k}{p^{l-1}}\right) & \text { if } p^{l-1} \mid k \\ 0 & \text { otherwise }\end{cases}
$$

This together with $0 \in S(p m)$ and the trivial inclusion $S\left(p^{l} m\right) \subseteq S(p m)$ shows that $S\left(p^{l} m\right)=S(p m)$.

The proof that $R\left(p^{l} m\right)=R(p m)$ is completely analogous. Here we use that if $p \mid n$, then $\Psi_{p n}(x)=\Psi_{n}\left(x^{p}\right)$, which is immediate from (2) and the definition of $\Psi_{n}(x)$.

Lemma 3 (Quantitative form of Dirichlet's theorem.) Let a and m be coprime natural numbers and let $\pi(x ; m, a)$ denote the number of primes $p \leq x$ that satisfy $p \equiv a(\bmod m)$. Then, as x tends to infinity,

$$
\pi(x ; m, a) \sim \frac{x}{\varphi(m) \log x}
$$

Corollary 2 Given $m, t \geq 1$ and any real number $r>1$, there exists a constant $N_{0}(t, m, r)$ such that for every $n>N_{0}(t, m, r)$ the interval ($n, r n$) contains at least t primes $p \equiv 1(\bmod m)$.

3 The proof of Theorem 1

We first prove that $S(m)=\mathbb{Z}$. Since $S(m)=S(\kappa(m))$, we may assume that m is squarefree. We may also assume that $m>1$. Suppose that $n>N_{0}\left(t, m, \frac{15}{8}\right)$. Then there exist primes $p_{1}, p_{2}, \cdots, p_{t}$ such that

$$
n<p_{1}<p_{2}<\cdots<p_{t}<\frac{15}{8} n \text { and } p_{j} \equiv 1(\bmod m), \quad j=1,2, \cdots, t
$$

Hence $p_{t}<2 p_{1}$.
Let q be any prime exceeding $2 p_{1}$ and put

$$
m_{1}= \begin{cases}p_{1} p_{2} \cdots p_{t} q & \text { if } t \text { is even } \\ p_{1} p_{2} \cdots p_{t} & \text { otherwise }\end{cases}
$$

Note that m and m_{1} are coprime and that $\mu\left(m_{1}\right)=-1$. Using these observations we conclude that

$$
\begin{align*}
\Phi_{m_{1} m}(x) & \equiv \prod_{d \mid m_{1} m, d<2 p_{1}}\left(1-x^{d}\right)^{\mu\left(\frac{m_{1} m}{d}\right)}\left(\bmod x^{2 p_{1}}\right) \\
& \equiv \prod_{d \mid m}\left(1-x^{d}\right)^{\mu\left(\frac{m}{d}\right) \mu\left(m_{1}\right)} \prod_{j=1}^{t}\left(1-x^{p_{j}}\right)^{\mu\left(\frac{m_{1} m}{p_{j}}\right)}\left(\bmod x^{2 p_{1}}\right) \\
& \equiv \Phi_{m}(x)^{\mu\left(m_{1}\right)} \prod_{j=1}^{t}\left(1-x^{p_{j}}\right)^{-\mu\left(m_{1} m\right)}\left(\bmod x^{2 p_{1}}\right) \\
& \equiv \frac{1}{\Phi_{m}(x)} \prod_{j=1}^{t}\left(1-x^{p_{j}}\right)^{\mu(m)}\left(\bmod x^{2 p_{1}}\right) \\
& \equiv \frac{1}{\Phi_{m}(x)}\left(1-\mu(m)\left(x^{p_{1}}+\ldots+x^{p_{t}}\right)\right)\left(\bmod x^{2 p_{1}}\right) \tag{3}
\end{align*}
$$

From (3) it follows that, if $p_{t} \leq k<2 p_{1}$,

$$
a\left(m_{1} m, k\right)=c(m, k)-\mu(m) \sum_{j=1}^{t} c\left(m, k-p_{j}\right)
$$

By Lemma 1 we have $c\left(m, k-p_{j}\right)=c(m, k-1)$. Thus we find that

$$
\begin{equation*}
a\left(m_{1} m, k\right)=c(m, k)-\mu(m) t c(m, k-1) \text { with } p_{t} \leq k<2 p_{1} . \tag{4}
\end{equation*}
$$

We consider two cases $(\mu(m)=1$, respectively $\mu(m)=-1)$.
Case 1. $\mu(m)=1$. In this case m has at least two prime divisors. Let $q_{1}<q_{2}$ be the smallest two prime divisors of m. Here we also require that $n \geq 8 q_{2}$. This ensures that $p_{t}+q_{2}<2 p_{1}$. Note that

$$
\left.\begin{array}{rl}
\frac{1}{\Phi_{m}(x)} & \equiv \frac{\left(1-x^{q_{1}}\right)\left(1-x^{q_{2}}\right)}{1-x}\left(\bmod x^{q_{2}+2}\right) \\
& \equiv 1+x+x^{2}+\ldots+x^{q_{1}-1}-x^{q_{2}}-x^{q_{2}+1}\left(\bmod x^{q_{2}+2}\right. \tag{5}
\end{array}\right) .
$$

Thus $c(m, k)=1$ if $k \equiv \beta(\bmod m)$ with $\beta \in\{1,2\}$ and $c(m, k)=-1$ if $k \equiv \beta(\bmod m)$ with $\beta \in\left\{q_{2}, q_{2}+1\right\}$. This in combination with (4) shows that $a\left(m_{1} m, p_{t}+1\right)=1-t$ and $a\left(m_{1} m, p_{t}+q_{2}\right)=t-1$. Since $\{1-t, t-1 \mid t \geq 1\}=\mathbb{Z}$ the result follows in this case.
Case 2. $\mu(m)=-1$. Here we notice that

$$
\frac{1}{\Phi_{m}(x)} \equiv \begin{cases}1-x\left(\bmod x^{3}\right) & \text { if } 2 \nmid m ; \\ 1-x+x^{2}\left(\bmod x^{3}\right) & \text { otherwise }\end{cases}
$$

Using this we find that $a\left(m_{1} m, p_{t}\right)=-1+t$. Furthermore, $a\left(m_{1} m, p_{t}+1\right)=-t$ in case m is odd and $a\left(m_{1} m, p_{t}+1\right)=1-t$ otherwise. Since $\{-1+t,-t \mid t \geq 1\}=\mathbb{Z}$ and $\{-1+t, 1-t \mid t \geq 1\}=\mathbb{Z}$, it follows that also $S(m)=\mathbb{Z}$ in this case.

It remains to show that $R(m)=\mathbb{Z}$. As before we may assume that m is squarefree (by Corollary 1) and that $m>1$ (by Theorem 8 of Moree [3]).

Let q be any prime exceeding $2 p_{1}$ and put

$$
\bar{m}_{1}= \begin{cases}p_{1} p_{2} \cdots p_{t} & \text { if } t \text { is even } \\ p_{1} p_{2} \cdots p_{t} q & \text { otherwise }\end{cases}
$$

Note that $\mu\left(\bar{m}_{1}\right)=1$. Reasoning as in the derivation of (3) we obtain

$$
\frac{1}{\Phi_{\bar{m}_{1} m}(x)} \equiv \frac{1}{\Phi_{m}(x)}\left(1-\mu(m)\left(x^{p_{1}}+\ldots+x^{p_{t}}\right)\right)\left(\bmod x^{2 p_{1}}\right)
$$

and from this $c\left(\bar{m}_{1} m, k\right)=a\left(m_{1} m, k\right)$ for $k<2 p_{1}$. Reasoning as in the proof of $S(m)=\mathbb{Z}$, the proof is then completed.

Remark 1. If one specializes the above proof to the case $m=p^{e}$, a proof a little easier than that given in part I [2] is obtained, since it does not involve a case distinction between m is odd and m is even as made in part I. This is a consequence of working modulo $x^{2 p_{1}}$, rather than modulo $x^{2 p_{1}+1}$.

Remark 2. The fraction $15 / 8$ in the proof can be replaced by $2-\epsilon$, with $0<\epsilon<1$ arbitrary. One then requires that $n>N_{0}(t, m, 2-\epsilon)$ and in case $\mu(m)=1$ in addition that $n \geq q_{2} / \epsilon$.

References

[1] Gennady Bachman, Ternary cyclotomic polynomials with an optimally large set of coefficients, Proc. Amer. Math. Soc. 132 (2004), 1943-1950.
[2] Chun-Gang Ji and Wei-Ping Li, Values of coefficients of cyclotomic polynomials, to appear in Discrete Mathematics.
[3] Pieter Moree, Reciprocal cyclotomic polynomials, arXiv:0709.1570, submitted for publication.
[4] Jiro Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), 279-280.
[5] Ravindranathan Thangadurai, On the coefficients of cyclotomic polynomials, Cyclotomic fields and related topics (Pune, 1999), 311-322, Bhaskaracharya Pratishthana, Pune, 2000.

Department of Mathematics, Nanjing Normal University
Nanjing 210097, P.R. China
e-mail: cgji@njnu.edu.cn
Rugao Normal College,
Rugao 226500, Jiangsu, P.R. China
e-mail: lwpeace@sina.com
Max-Planck-Institut für Mathematik,
Vivatsgasse 7, D-53111 Bonn, Germany.
e-mail: moree@mpim-bonn.mpg.de

[^0]: Mathematics Subject Classification (2000). 11B83, 11C08
 The first author is partially supported by the Grant No. 10771103 from NNSF of China.

