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Abstract

In this report paper we collect recent results on the vertex reconstruction in Cayley
graphs Cay(G,S). The problem is stated as the problem of reconstructing a vertex
from the minimum number of its r-neighbors that are vertices at distance at most
r from the unknown vertex. The combinatorial properties of Cayley graphs on the
symmetric group Sn and the signed permutation group Bn with respect to this
problem are presented. The sets S of generators are specified by applications in
coding theory, computer science, molecular biology and physics.
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1 Introduction

The basic question asked in classical combinatorial reconstruction problems is
whether certain information about the isomorphism types of the subobjects
of an unknown object allows to reconstruct this object up to isomorphism.
Graph reconstruction problems based on the decks of a graph are important
instances of this situation [1–3]. Some reconstruction problems arise naturally,
for instance in the representation theory of symmetric and Lie groups when
a partition of an integer is reconstructible from certain of its subpartitions
[4–6]. This problem is connected to the efficient reconstruction of a sequence
from its sub– and supersequences which has been considered in coding theory
[7]. The efficient reconstruction of arbitrary sequences has been investigated in
[8,9] for combinatorial channels with errors of interest in coding theory such as
substitutions, transpositions, deletions and insertions of symbols. Sequences
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are considered as a vertex set V of a graph Γ = (V,E), where (x, y) ∈ E if
there exist single errors of the type under consideration which transform x into
y and y into x. Then the corresponding efficient reconstruction problem can
be treated as the following graph theory problem. Given a graph Γ = (V, E)
and an integer r, is there the minimum number N of vertices in the metric
balls Br(x) such that an arbitrary vertex x ∈ V can be identified from any
N + 1 distinct vertices in Br(x)? It is reduced to finding the value

N(Γ, r) = max
x,y∈V (Γ), x 6=y

|Br(x) ∩Br(y)|, (1)

since N(Γ, r) + 1 is the minimum number of distinct vertices in the metric
ball Br(x) of an unknown vertex x ∈ V which are sufficient to reconstruct this
vertex x under the condition that at most r single errors were happened. The
vertices from the set Br(x) are r-neighbors of the vertex x.

Reconstruction problems mentioned above deal with some data (graphs, par-
titions, sequences) which are distorted by some operations on the data. These
investigations were continued for reconstructing permutations and signed per-
mutations from their erroneous patterns which are distorted by transpositions
or reversals [10–13], where reversals are the operations reversing the order of
a substring of a permutation. From the graph–theoretical point of view this
is the problem of reconstructing vertices from the minimum number of their
r-neighbors in Cayley graphs when the symmetric group Sn and the signed
permutation group Bn are considered as a group, and the sets of generators are
specified by transpositions and reversals. Since vertex sets of Cayley graphs
are presented by the group elements, at that time one can say that we have
the problem of reconstructing group elements which considered in [14].

These graphs, groups and generators are of exclusive interest in molecular bi-
ology, computer science and physics. Why permutations are considered with
respect to these operations? In molecular biology, permutations and signed
permutations are used to represent sequences of genes in chromosomes and
genomes as well. Some of the operations on permutations called genome rear-
rangements represent evolutionary events. In the 1980’s it was shown that the
difference in genomes may be explained by a small number of reversals. The
problem of determining the smallest number of reversals transforming a given
permutation into the identity permutation is called sorting by reversals [15].

Permutations are also used in the representation of interconnection networks
which are modeled by Cayley graphs generated by transpositions and reversals
[16]. The vertices in such Cayley graphs correspond to processing elements,
memory modules, or just switches, and the edges correspond to communication
lines. The main advantage in using Cayley graphs as models for interconnec-
tion networks is their vertex–transitivity which makes it possible to implement
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the same routing and communication schemes at each node (vertex) of the net-
work they model. Furthermore, some of them have other advantages such as
edge–transitivity (line symmetry), hierarchical structure (allowing recursive
construction), high fault tolerance and so on [17–19].

The Cayley graph on the symmetric group Sn generated by all transpositions
swapping any two neighbors elements of a permutations is an important in-
stance in combinatorics of Coxeter groups (see [20]). This set of generators is
also known as the set of the (n − 1) Coxeter generators of Sn. The combina-
torial properties of this graph are fundamental to physics and Lie theory. In
computer science this graph is called the bubble–sort Cayley graph.

The Cayley graphs on permutations and signed permutations generated by
the prefix–reversals of any substring [1, i], i ≤ n, are known with respect to
the open combinatorial pancake problem of sorting the pancakes in increasing
order by diameter [21]. The only possible action is to lift the top of the stack,
flip it over and place it back on the top. A stack of n pancakes is represented
by a permutation on n elements and the problem is to find the minimum
number of flips (prefix–reversals) transforming a permutation into the identity
permutation. In molecular biology this problem is called sorting by prefix–
reversal. It has also practical applications in parallel processing [17].

The main task of this report paper is to observe the main combinatorial prop-
erties of Cayley graphs on Sn and Bn with respect to the problem of recon-
structing a vertex from the minimum number of its r-neighbors.

The paper is organized as follows. Firstly, we give the main definitions, nota-
tions and general results. Then we describe the main results for Cayley graphs
on the symmetric group Sn generated by: 1) all transpositions (this graph is
called the transposition network in computer science); 2) transpositions of two
neighbors elements (the bubble–sort Cayley graph); 3) prefix–transpositions
swapping the first element of a permutation with any other element of a per-
mutation (the star Cayley graph); 4) all reversals; and 5) the prefix–reversals
on substring [1, i], i ≤ n, of a permutation (the unburnt pancake Cayley graph).

Then we observe Cayley graphs on the signed permutation group Bn. The
main difference in this case is that the transpositions and reversals on signed
permutations are considered with flipping signs of swapping and reversing
elements. We call such operations as the sign–change transpositions and sign–
change reversals, and present results for Cayley graphs generated by: 1) all
sign–change transpositions; 2) the sign–change transpositions of two neighbors
elements; 3) the sign–change prefix–transpositions swapping the first element
of a permutation with any other element of a permutation; 4) all sign–change
reversals; and 5) the sign–change prefix–reversals. In the last case the corre-
sponding Cayley graph is called the burnt pancake Cayley graph [22,23].
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2 Definitions, notations, general results

Let G be a finite group and let S ⊂ G be a set of generators such that the
identity element e of G does not belong to S, i.e. e 6∈ S, and S = S−1, where
S−1 = {s−1 : s ∈ S}. In the Cayley graph Γ = Cay(G,S) = (V,E) the vertices
correspond to the elements of the group, i.e. V = G, and the edges correspond
to the action of the generators, i.e. E = {(g, gs) : g ∈ G, s ∈ S}. The condition
e 6∈ S is imposed so that there are no loops in Γ. Also, S is required to be
a generating set of G so that Γ is connected. The basic facts about Cayley
graphs are recorded in the following

Lemma 1 Let S be a set of generators for a group G. The Cayley graph
Cay(G,S) has the following properties:
(i) it is a connected regular graph of degree equal to the cardinality of S;
(ii) it is a vertex–transitive graph.

Denote by d(x, y) the path distance between vertices x and y in a graph and
by d(Γ) = maxx,y∈V (Γ)d(x, y) the diameter of Γ. Another words, the diameter
of a Cayley graph is the maximum over g ∈ G of the length of the shortest
expression of g as a product of the generators. For the vertex x ∈ V (Γ) let
Sr(x) = {y ∈ V (Γ), d(x, y) = r} and Br(x) = {y ∈ V (Γ), d(x, y) ≤ r} be
the sphere and ball of radius r centered at the vertex x respectively. Then
all vertices y ∈ Br(x) are r-neighbors of the vertex x. As it was mentioned
in Introduction, reconstructing an unknown vertex x from its r-neighbors is
reduced to finding the value (1) which was initially studied in coding theory for
the Hamming and Johnson graphs. These graphs are distance–regular graphs
as well as Cayley graphs. Let us recall that a simple connected graph Γ is
called distance–regular if there are integers bi, ci, i ≥ 0, such that for any two
vertices x and y at distance i = d(x, y), there are precisely ci neighbors of y in
Si−1(x) and bi neighbors of y in Si+1(x). In particular, Γ is regular of valency
k = b0, or k-regular. A distance-regular graph of diameter 2 with v vertices,
not complete or null, is a strongly regular graph with parameters (v, k, λ, µ) in
which the number of common neighbors of x and y is k, λ or µ according as x
and y are equal, adjacent or non-adjacent respectively.

The Hamming graph Ln(q) is defined on the Hamming space F n
q consisting qn

vectors of length n over the alphabet {0, 1, ..., q − 1}, q ≥ 2, with Hamming
distance given by the number of distinct coordinates of vectors x and y. The
vertex set of Ln(q) is presented by vectors of F n

q and two vectors in Ln(q)
are connected by an edge if and only if they differ in one coordinate. The
Hamming graph is the Cayley graph on G = F n

q with the set of generators
S = {xei : x ∈ (Fq)

×, 1 ≤ i ≤ n}, where the ei = (0, ..., 0, 1, 0, ...0) are the
standard basis vectors of F n

q .
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Theorem 1 [8], [9] For any n, q and r,

N(Ln(q), r) = q
r−1∑

i=0

(
n− 1

i

)
(q − 1)i (2)

In the particular case, when n = 2, the Hamming graph L2(q) is called the
lattice graph. L2(q) is strongly regular with parameters v = q2, k = 2(q − 1),
λ = q − 2, µ = 2, and from (2) we get N(L2(q), 1) = q and N(L2(q), 2) = q2.

The Johnson graph Jn
e is defined on the Johnson space Jn

e which consists of(
n
e

)
binary vectors of length n ≥ 2, 1 ≤ e ≤ n − 1. The Johnson distance

equals half of the Hamming distance. The vertex set of Jn
e is presented by

vectors of the Johnson space and two vectors are connected by an edge if and
only if they obtain one from other by transposition of two symbols. Thus the
Johnson graph is the Cayley graph on G = Jn

e with the set of generators
presented by all possible transpositions of two any symbols of a binary vector.

Theorem 2 [8], [9] For any n, e and r,

N(Jn
e , r) = n

r−1∑

i=0

(
e− 1

i

) (
n− e− 1

i

)
1

i + 1
(3)

In the particular case, when e = 2, the Johnson graph Jn
2 is called the trian-

gular graph T (n), n ≥ 4. It has as vertices the 2-element subsets of an n-set.
Two vertices are adjacent if they are not disjoint. T (n) is strongly regular with

parameters v = n(n−1)
2

, k = 2(n−2), λ = n−2, µ = 4, and from (3) we obtain

N(T (n), 1) = n and N(T (n), 2) = n(n−1)
2

.

The presented two results were the first analytic formulas which were obtained
in the vertex reconstruction we are interested in. What are general results for
simple graphs and Cayley graphs? We give a few observations from [14] for any
connected simple graphs Γ = (V, E). Let us define numbers ci(x, y), bi(x, y)
and ai(x, y) for any two vertices x ∈ V and y ∈ Si(x) by analogy with the
corresponding numbers of distance–regular graphs such that ci(x, y) = |{z ∈
Si−1(x) : d(z, y) = 1}|, bi(x, y) = |{z ∈ Si+1(x) : d(z, y) = 1}|,ai(x, y) =
|{z ∈ Si(x) : d(z, y) = 1}|. From this, a1(x, y) is the number of triangles with
the edge (x, y) and c2(x, y) is the number of common neighbors of x ∈ V
and y ∈ S2(x). Let λ = λ(Γ) = maxx∈V, y∈S1(x) a1(x, y) and µ = µ(Γ) =
maxx∈V, y∈S2(x) c2(x, y). Since |Br(x) ∩ Br(y)| > 0 for x 6= y if and only if
1 ≤ d(x, y) ≤ 2r = d(Γ), we have

N(Γ, r) = max
1≤s≤2r

Ns(Γ, r) (4)
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where Ns(Γ, r) = maxx,y∈V ; d(x,y)=s |Br(x) ∩ Br(y)|. In particular, N1(Γ, 1) =
λ + 2 and N2(Γ, 1) = µ so that

N(Γ, 1) = max(λ + 2, µ). (5)

One can easily check that by using this formula for the lattice graph L2(q) and
the triangular graph T (n) we again obtain the same results as we have got
from formulas (1) and (2). Indeed, since λ = n− 2 and µ = 4 for T (n), n ≥ 4,
then from (5) we have N(T (n), 1) = n for this graph. By the same reason we
have N(L2(q), 1) = q since λ = q − 2 and µ = 2 in this case.

Now let us assume that Γ is a Cayley graph Cay(G,S) with identity element
e 6∈ S. Let us put S0 = {e} and set Si = SSi−1. Moreover, by transitivity
it is sufficient to consider only the spheres and balls with center e so that
Si = Si(e).

Lemma 2 [14] For any Cayley graph Γ of a group G and for i > 0 we have
Si = Si \ (Si−1 ∪ Si−2 ∪ ... ∪ S0). In particular, µ is the maximum number of
representations of an element in S2 \ (S ∪ e) as a product of two elements of
S and λ is the maximum number of representations of an element in S as a
product of two elements of S, i,e.

λ(Γ) = max
s∈S

| {(sisj) ∈ S2 : s = sisj} |, (6)

µ(Γ) = max
s∈S2\(S∪e)

| {(sisj) ∈ S2 : s = sisj} | . (7)

This Lemma allows to find N(Γ, 1) from (5) for a general Cayley graph. The
concrete results in finding and estimating the value N(Γ, r) for Cayley graphs
on the given groups are observed in the next sections.

Remark 1. Let us note here that one more problem which will be discussed
below arises on Cayley graphs. This is the problem of establishing the diameter
of a Cayley graph. General upper and lower bounds are very difficult to obtain.
It is known [24] that every non–abelian finite simple group has a set of at most
seven generators for which the diameter of the Cayley graph Cay(G,S) is at
most c log2(|G|) where c is a constant. This property does not hold for Cayley
graphs of abelian groups [25]. It was also proved [26] that the diameter of
every Cayley graph of the symmetric group Sn or the alternating group An is
at most exp((n ln n)(1/2)(1 + o(1))). Computing the diameter of an arbitrary
Cayley graph over a set of generators is NP–hard [27]. We will see below that
in some cases it is possible to get an exact formula of the diameter of the
corresponding Cayley graph. But in another cases the diameter is unknown
and there are only bounds.
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3 Cayley graphs on Sn generated by transpositions and reversals

In this section we consider Cayley graphs on the symmetric group Sn whose
elements are permutations π written in one–line notation as [π1, π2, . . . , πn]
where πi = π(i) for every i ∈ {1, . . . , n}. The presented graphs are generated
by the transpositions ti,j, 1 ≤ i < j ≤ n, where ti,j interchanges positions i and
j when acting to the right, i.e., [. . . , πi, . . . , πj, . . .]ti,j = [. . . , πj, . . . , πi, . . .],
and by the reversals ri,j, 1 ≤ i < j ≤ n, which are the operations of revers-
ing segments [i, j] of a permutation, i.e., [. . . , πi, πi+1, . . . , πj−1, πj, . . .]ri,j =
[. . . , πj, πj−1, . . . , πi+1, πi, . . .].

3.1 The transposition Cayley graphs Sn(T ), Sn(t) and Sn(st)

The transposition Cayley graph Sn(T ) is defined on the symmetric group Sn

and generated by the transpositions from the set T = {ti,j ∈ Sn, 1 ≤ i < j ≤
n}, |T | =

(
n
2

)
. The distance in this graph is defined as the minimal number

of transpositions transforming one permutation into another. The diameter
is at most (n − 1)q since this number of transpositions suffice to transform
any permutation of n elements into another. On the other hand, transforming
the identity permutation I to an n-cycle requires (n− 1) transpositions. The
graph is bipartite since the endpoints of every edge consist of an even and
odd permutation. Thus, all these properties as well as other basic facts are
collected in the following

Lemma 3 [12] The transposition Cayley graph Sn(T ), n ≥ 3,

(i) is a connected bipartite
(

n
2

)
-regular graph of order n! and diameter (n−1);

(ii) it does not contain subgraphs isomorphic to K2,4;

(iii) each its vertex belongs to
(

n
3

)
subgraphs isomorphic to K3,3,

where Kp,q is a complete bipartite graph with p and q vertices in the two parts.

Theorem 3 [12] [14] For any n ≥ 3, N(Sn(T ), 1) = 3.

This means that any unknown permutation is uniquely reconstructible from
4 its distinct 1–neighbors. Proofs of these statements are based on consider-
ing a permutation π ∈ Sn in the cycle notation with the cycle type ct(π) =
1h12h2 .. nhn , where hi is the number of cycles of length i and

∑n
i ihi = n. A

permutation can be also presented as the product of a minimal number of
transpositions which is equivalent to the number of distinct paths between
two permutations in the transposition Cayley graph Sn(T ). This number is
based on Ore’s theorem on the number of trees with n labeled vertices and
presented by the following
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Theorem 4 [28] Let π ∈ Sn has cycle type ct(π) = 1h12h2 ...nhn, consisting of∑n
j=1 hj = n − i, 1 ≤ i ≤ n − 1, cycles, then the number of distinct ways to

express π as a product of i transpositions is equal to

i!
n∏

j=1

(
jj−2

(j − 1)!

)hj

.

According to the above Theorem, the following Lemma gives us formulas on
the numbers ci(π) = ci(π, I), bi(π) = bi(π, I), ai(π) = ai(π, I), 1 ≤ i ≤ n− 1.

Lemma 4 [14] In the transposition Cayley graph Sn(T ) the sets Si = Si(I), 1 ≤
i ≤ n − 1, are the permutations consisting of (n − i) disjoint cycles. For any
π ∈ Si with cycle type ct(π) = 1h12h2 ... nhn ,

ci(π) =
1

2




n∑

j=1

j2hj − n


 , bi(π) =

1

2


n2 −

n∑

j=1

j2hj


 , ai(π) = 0.

In particular, since ai(π) = 0 for any 1 ≤ i ≤ n−1, then from this Lemma and
by the definition of λ we have λ(Sn(T )) = 0. Moreover, the well-known fact is
that two permutations are conjugate by an element of Sn if and only if they
have the same cycle type. It is shown in [14] that for any π ∈ Si, 1 ≤ i ≤ n−1,
such that (1h12h2 ... nhn)G is the conjugacy class of π, the set Si, 1 ≤ i ≤ n−1,
is the disjoint union

Si =
⋃

h1+h2+···+hn=n−i

(1h1 2h2 ... nhn)G, (8)

where

|(1h12h2 ... nhn)G| = n!

1h1h1!2h2h2! · · ·nhnhn!
. (9)

Hence, from (8) we have S2 = (1n−3 31)G ∪ (1n−4 22)G and then by Lemma 4
c2(π) = 3 if ct(π) = 1n−3 31, and c2(π) = 2 if ct(π) = 1n−4 22. From these and
by the definition of µ, we have µ(Sn(T )) = 3, and therefore, by (5) we get

Theorem 3. The number
(

n
3

)
of subgraphs isomorphic to K3,3 and having I

as one of the vertices is obtained from (9) for any π ∈ (1n−3 31)G.

So, any unknown permutation is uniquely reconstructible from 4 its distinct
1–neighbors. The reconstruction of a permutation in the case of at most two
transpositions requires many more its distinct 2–neighbors.
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Theorem 5 [12] [14] For n ≥ 3,

N(Sn(T ), 2) = N2(Sn(T ), 2) =
3

2
(n− 2)(n + 1) (10)

which follows from the fact that the normalizer of T is G = Sn itself and from

Lemma 5 [14] For any π ∈ Si, 1 ≤ i ≤ n − 1, the number of all vertices
in (1h12h2 ... nhn)G, at a given distance from π, depends only on the conjugacy
class to whom π belongs.

So, to prove Theorem 5 it is enough to consider the numbers of vertices in
all subsets of B2(I) at the minimal distance at most 2 from a given ver-
tex π ∈ Si, 1 ≤ i ≤ 4, where as follows from (8), S1 = (1n−2 21)G, S2 =
(1n−3 31)G ∪ (1n−4 22)G, S3 = (1n−4 41)G ⋃

(1n−5 21 31)G ⋃
(1n−6 23)G, and S4 =

(1n−5 51)G ⋃
(1n−6 21 41)G ⋃

(1n−6 32)G ⋃
(1n−7 22 31)G ⋃

(1n−8 24)G. It is shown
that N4(Sn(T ), 2) = 20 for n ≥ 5, N3(Sn(T ), 2) = 12 for n ≥ 4, N2(Sn(T ), 2) =
3
2
(n − 2)(n + 1) and N1(Sn(T ), 2) = (n − 1)n for all n ≥ 3. From these and

by (4) one can conclude (10).

Now let us consider the bubble–sort Cayley graph Sn(t) on the symmetric group
Sn generated by the bubble–sort transpositions from the set t = {ti,i+1 ∈
Sn, 1 ≤ i < n}, |t| = n − 1. The distance in this graph is defined as the
minimal number of the bubble–sort transpositions needed to transform one
permutation into another. The diameter of this graph is

(
n
2

)
since this num-

ber of the bubble–sort transpositions is required to transform the identity
permutation to its inverse permutation and it also suffices to transform any
permutation of n elements into another.

Lemma 6 [12] The bubble–sort Cayley graph Sn(t), n ≥ 3,

(i) is a connected bipartite (n−1)-regular graph of order n! and diameter
(

n
2

)
;

(ii) it does not contain subgraphs isomorphic to K2,3;

(iii) each its vertex belongs to
(

n−2
2

)
, n ≥ 4, subgraphs isomorphic to K2,2.

This graph does not contain triangles since it is a bipartite, i.e. λ(Sn(t)) = 0,
and pentagons as well. Now let us consider a permutation π ∈ S2 = S2(I)
as a product of two bubble–sort transpositions ti,i+1 and tj,j+1 acting to the

identity permutation, where 1 ≤ i < j < n. There are exactly
(

n−2
2

)
distinct

ways to express a permutation π ∈ (1n−4 22)G as the following representation
π = ti,i+1tj,j+1 = tj,j+1ti,i+1 = π−1, when j 6= i + 1. Hence c2(π) = 2 by
Lemma 2, and by the definition of µ, we have µ(Sn(t)) = 2. It can be also
verified that for r = 2 we have N4(Sn(t), 2) = 4 for n ≥ 5, N3(Sn(t), 2) = 2 for
n ≥ 4, N2(Sn(t), 2) = N1(Sn(t), 2) = 2(n − 1) for n ≥ 3. From all these and
by (4) and (5) we get

9



Theorem 6 [12] For any n ≥ 3,

N(Sn(t), 1) = 2, N(Sn(t), 2) = N2(Sn(t), 2) = N1(Sn(t), 2) = 2(n− 1).

Almost the same results appear for the star Cayley graph Sn(st) generated by
the prefix–transpositions from the set st = {(1, i) ∈ Sn, 1 < i ≤ n}, |st| =
n − 1. The distance in the graph Sn(st) is defined as the minimal number of
the prefix– transpositions transforming one permutation into another.

Lemma 7 [17] The star Cayley graph Sn(st), n ≥ 3, is a connected bipartite

(n− 1)-regular graph of order n! with diameter d(Sn(st)) = b3(n−1)
2
c.

It is also known that there are no cycles of lengths of 3,4,5,7 in the graph
Sn(st), hence λ(Sn(st)) = 0 and µ(Sn(st)) = 1. Moreover, it is easy to verify
that if r = 2 then N4(Sn(st), 2) = 4 for n ≥ 5, N3(Sn(st), 2) = 4 for n ≥ 4,
N2(Sn(st), 2) = n for n ≥ 5 and N1(Sn(st), 2) = 2(n − 1) for n ≥ 4. From all
these properties and by (4) and (5) we get

Theorem 7 [12] For any n ≥ 4,

N(Sn(st), 1) = 2, N(Sn(st), 2) = N1(Sn(st), 2) = 2(n− 1).

Thus, in the bubble–sort and star Cayley graphs any unknown permutation
is uniquely reconstructible from 3 its distinct 1–neighbors. The reconstruction
of a permutation in the case of at most two bubble–sort transpositions or
prefix–transpositions requires (2n − 1) its distinct permutations which are
2–neighbors of the unknown permutation.

Remark 2. The presented transposition Cayley graphs have been extensively
studied in computer science. As it was observed in [17] many interconnection
network topologies have a natural algebraic representation as coset graphs,
of which Cayley graphs are a special case. This follows from the symmetric
nature of network topologies and a fundamental result saying that all vertex–
transitive graphs can be represented as coset graphs [29]. Other symmetry
properties of Cayley graphs are discussed in [19]. For instance, it is shown
there that the transposition Cayley graph Sn(T ) is edge–transitive but not
distance–regular and not distance–transitive; the bubble–sort Cayley graph
Sn(t) is not edge–transitive, not distance–regular and not distance–transitive;
the star Cayley graph Sn(st) is also not distance–regular and not distance–
transitive for n ≥ 4.

Remark 3. Among the considered in this section graphs the most investigated
in the theory of interconnection networks is the star Cayley graph since many
parallel algorithms can be efficiently mapped on this graph.
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3.2 The reversal Cayley graphs Sn(R) and Sn(PR)

The reversal Cayley graph Sn(R) is defined on the symmetric group Sn and
generated by the reversals from the set R = {ri,j ∈ Sn, 1 ≤ i < j ≤ n}, |R| =(

n
2

)
. The distance in this graph is defined as the minimal number of reversals

transforming one permutation into another. In [15] it was proved that the
diameter of Sn(R) is (n− 1).

Lemma 8 [10] The reversal Cayley graph Sn(R), n ≥ 3,

(i) is a connected
(

n
2

)
-regular graph of order n! and diameter n− 1;

(ii) it does not contain triangles nor subgraphs isomorphic to K2,4;
(iii) each its vertex belongs to (n − 2) subgraphs isomorphic to K3,3 and to
1
12

(n − 3)(n − 1)(n2 + 2n + 4), n ≥ 4, subgraphs isomorphic to K2,2 that are
not subgraphs of K3,3.

The verification of these facts is based on the careful combinatorial analysis of
the spheres S1 = S1(I) and S2 = S2(I). It is shown that a1(π) = a1(π, I) = 0
for any π ∈ S1, hence there are no triangles in Sn(R). It is also shown that
c2(π) = c2(π, I) = 3 if and only if π = πk or π = π−1

k for any k = 1, . . . , n− 2
where πk = [1, ..., k − 1, k + 1, k + 2, k, k + 3, ..., n] ∈ S2. It is true that

πk = rk,k+1 rk+1,k+2 = rk,k+2 rk,k+1 = rk+1,k+2 rk,k+2 and (11)

π−1
k = rk,k+1 rk,k+2 = rk,k+2 rk+1,k+2 = rk+1,k+2 rk,k+1. (12)

As one can see, the reversals on intervals of two and three elements of a
permutation are used in (11) and (12) that correspond to considering the
transpositions ti,i+1, 1 ≤ i ≤ n− 1, and ti,i+2, 1 ≤ i ≤ n− 2. Moreover, there
is no a permutation π ∈ S2 such that c2(π) = 4, hence there are no subgraphs
isomorphic to K2,4 and there exist exactly (n − 2) subgraphs isomorphic to
K3,3 having I, πk, π

−1
k in the first part and rk,k+1, rk,k+2, rk+1,k+2 in the second

part for any k = 1, ..., n− 2. By vertex–transitivity, this holds for any vertex
of Sn(R). To check the last statement of Lemma 8 it is enough to calculate
the total number of permutations π ∈ S2 such that c2(π) = 2. It is shown that
c2(π) = 2 if and only if π has one of the following representations

rk,k+2 rk+1,k+3 = rk+1,k+3 rk,k+2, k ≤ n− 3, (13)

rk,l rk,j = rk+l−j,l rk,l, k + 1 ≤ j ≤ l − 1, l > k + 2, (14)

rk,l rk,j = rk,j rk+j−l,j, l + 1 ≤ j ≤ n, j > k + 2, (15)

rk,l ri,j = ri,j rk,l, k < l < i < j, (16)

rk,l ri,j = rl−j+k,l−i+k rk,l, k < i < j < l, (17)

11



where 1 ≤ k < l ≤ n. So, there are exactly (n − 3) permutations hav-
ing representations (13); the number of representations (14) and (15) equals
2

∑n−3
k=1

∑n−k
i=3 (i−1) = 1

3
(n−3)(n2−4) and the number of representations (16)-

(17) equals 2
(

n
4

)
. The summation of all these numbers gives the required num-

ber in Lemma. As the result, λ(Sn(R)) = 0, µ(Sn(R)) = 3 and by (5) we get

Theorem 8 [10] For any n ≥ 3, N(Sn(R), 1) = 3.

Thus, any unknown permutation is uniquely reconstructible from 4 its distinct
1-neighbors. It is also shown that a permutation is reconstructible from 3 its
1-neighbors with probability p3 → 1 as n →∞ and it is reconstructible from
2 its 1-neighbors with probability p2 ∼ 1

3
as n →∞ under the conditions that

these permutations are uniformly distributed.

Theorem 9 [10] For any n ≥ 3,

N(Sn(R), 2) ≥ 3

2
(n− 2)(n + 1). (18)

This result is obtained by showing that | ∪3
i=1 B1(rki,li)| ≥ 3

2
(n− 2)(n + 1) for

any rki,li ∈ S1, i = 1, 2, 3. Indeed, the metric balls B1(rki,li), i = 1, 2, 3, belong
to B2(I) ∩ B2(π), π ∈ S2 such that c2(π) = 3, and have three joint vertices
I, π, π−1 where π = πk, k = 1, . . . , n − 2. Each of the metric balls has size(

n
2

)
+1. So the required statement is getting by 3(n(n−1)

2
+1)−6 = 3

2
(n−2)(n+

1). For example, for π = [1342] or π−1 = [1423], and for r1,3 = [1432], r2,3 =
[1324], r3,4 = [1243] one can check that |B1(r1,3) ∪B1(r2,3) ∪B1(r3,4)| = 15.

Let us mentioned here, that inequality (18) is attained for the permutations
having representations (11) and (12) where reversals can be considered as
transpositions like in the above example (compare also with equality (10)).

The pancake Cayley graph Sn(PR), also called the prefix–reversal graph, is
defined on the symmetric group Sn and generated by the prefix–reversals from
the set PR = {r1,j ∈ Sn, 1 < i ≤ n}, |PR| = n − 1. Sometimes this graph
is also called the unburnt pancake Cayley graph. As one can see there is a
similarity between the star Cayley graph Sn(st) and the pancake Cayley graph
Sn(PR). In particular, S2(st) = S2(PR) = K2 and S3(st) = S3(PR) = C6.
The distance in this graph is defined as the minimal number of the prefix–
reversals transforming one permutation into another. This distance is also
called the prefix–reversal distance and the diameter of Sn(PR) is called the
prefix–reversal diameter.

The question about the prefix–reversal diameter is open. The problem is known
as the pancake flipping problem. Currently, exact values of the prefix–reversal
diameter are known for n ≤ 13, for instance, it is 15 for n = 13. Bounds
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are given in [30] where it is shown that the diameter of Sn(PR) is at most
(5n + 5)/3 for all n, and at least 17n/16 for infinitely many n. A lower bound
was improved in [23] such that the prefix–reversal diameter is at least 15n/14.
It was also shown there that sorting by the prefix–reversals (finding a sequence
of the prefix–reversals sorting a permutation to the identity permutation) is
an NP–hard problem. Some combinatorial properties of Sn(PR) are collected
in the following

Lemma 9 The pancake Cayley graph Sn(PR), n ≥ 3, is a connected (n− 1)-
regular graph of order n! without cycles of lengths of 3,4,5.

From this Lemma λ(Sn(PR)) = 0 and µ(Sn(PR)) = 1 since there are no trian-
gles and quadrangles as well. It is not difficult to observe that N2(Sn(PR)) = n
for n ≥ 4 and N1(Sn(PR)) = 2(n− 1) for n ≥ 4. So, by (4) and (5) we get

Theorem 10 For any n ≥ 4,

N(Sn(PR), 1) = 2, N(Sn(PR), 2) = N1(Sn(PR), 2) = 2(n− 1).

Comparing this statements with Theorem 7 one can see that there is one and
the same result for the star and pancake Cayley graphs. Indeed, any unknown
permutation is uniquely reconstructible from 3 distinct its 1-neighbors and
from (2n− 1) distinct its 2-neighbors in the both cases.

Remark 4. The pancake Cayley graph corresponds to the n-dimensional pan-
cake network in computer science such that this network has processors la-
beled with each of the n! distinct permutations of length n. Two processors
are connected when the label of one is obtained from the other by some prefix–
reversal. Each permutation is considered as a stack of different size pancakes.
The diameter of this network corresponds to the worst communication delay
for transmitting information in a system. Symmetries of this network were
considered in [19]. It was shown that the pancake Cayley graph Sn(PR) is not
edge–transitive, not distance–regular and not distance–transitive.

Remark 5. Sorting by fixed–length reversals (k-reversals) was considered in [31].
In particular, it was shown that O(n3/2) k-reversals suffice to transform any
permutation to the identity permutation when k ≈ √

n. The number of con-
nected components on the Cayley graphs generated by the fixed–length rever-
sals was also discussed thereq. For instance, the trivial case is n-reversals and
there are n!/2 connected components for Sn, k = n > 2.
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4 Cayley graphs on Bn generated by transpositions and reversals

In this section we observe Cayley graphs on the signed permutation group
Bn which is also known as the hyperoctahedral group [20]. The elements of
Bn are signed permutations, i.e., permutations with a sign attached to ev-
ery entry. We use the compact one–line notation for a signed permutation
π = [π1, π2, . . . , πi, . . . , πn], where a bar is written over an element with a neg-
ative sign. The sign–change transpositions tσij, 1 ≤ i < j ≤ n, switches two ele-
ments i and j and their signs, i.e., [. . . , πi, . . . , πj, . . .]t

σ
ij = [. . . , πj, . . . , πi, . . .],

and the sign–change ”transpositions” tσii, 1 ≤ i ≤ n, changes the sign of
the i-th element, i.e., [. . . , πi, . . .]t

σ
ii = [. . . , πi, . . .]. The sign–change rever-

sals rσ
i,j flip the signs of elements on the segments [i, j], 1 ≤ i ≤ j ≤ n, i.e.,

[. . . , πi, πi+1, . . . , πj−1, πj, . . .]r
σ
i,j = [. . . , πj, πj−1, . . . , πi+1, πi, . . .].

4.1 The transposition Cayley graphs Bn(T σ), Bn(tσ) and Bn(stσ)

The transposition Cayley graph Bn(T σ) on the signed permutation group Bn is
generated by the sign–change transpositions from the set T σ = {tσii ∈ Bn, 1 ≤
i ≤ n}⋃{tσij ∈ Bn, 1 ≤ i < j ≤ n}, |T σ| =

(
n+1

2

)
. The distance in this graph

is defined as the minimal number of the sign–change transpositions transform-
ing one permutation into another. The order of this graph corresponds to the
order of Bn that is 2nn!. The basic facts about Bn(T σ) are collected in

Lemma 10 The transposition Cayley graph Bn(T σ), n ≥ 2,

(i) is a connected bipartite
(

n+1
2

)
-regular graph of order 2nn!;

(ii) it does not contain subgraphs isomorphic to K2,3;
(iii) each its vertex belongs to 1

2
(n3 + 9n2 − 58n + 90), n ≥ 3, subgraphs iso-

morphic to K2,2.

All these facts are based on the properties of the signed permutations be-
longing to the sphere S2 = S2(I). There is no a signed permutation π ∈ S2

for which c2(π) = 3 and this means that there are no subgraphs isomorphic
to K2,3 in Bn(T σ). From the other side, c2(π) = 2 for a signed permutation
π ∈ S2 if and only if π has one of the following representations

tσi,i tσj,j = tσj,j tσi,i, 1 ≤ i < j ≤ n, (19)

tσk,k tσi,j = tσi,j tσl,l, 1 ≤ i < j ≤ n, k = i, l = j or k = j, l = i, (20)

tσk,k tσi,j = tσi,j tσk,k, 1 ≤ i < j ≤ n, k 6= i and k 6= j, 1 ≤ k ≤ n, (21)

tσi,j tσk,l = tσi,j tσk,l, for some i, j, k, l. (22)
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So, there are exactly 3
(

n
2

)
signed permutations having representations (19)

and (20); the number of representations (21) equals n
(

n−1
2

)
and there are

3
(

n−2
2

)
+6

(
n−3

2

)
signed permutations for which (22) holds. The required num-

ber in Lemma 10 is obtained by the summation of all these numbers. So, by
this Lemma, λ(Bn(T σ)) = 0, µ(Bn(T σ)) = 2 and by (5) we have

Theorem 11 For any n ≥ 2, N(Bn(T σ), 1) = 2.

The question about the reconstruction of a signed permutation from its dis-
tinct 2–neighbors is unanswered. The conjecture is N(Bn(T σ), 2) = n(n + 1)
for any n ≥ 2.

The bubble–sort Cayley graph Bn(tσ) on the group Bn is generated by the
sign–change bubble–sort transpositions from the set tσ = {tσi,i ∈ Bn, 1 ≤ i ≤
n}⋃{tσi,i+1 ∈ Bn, 1 ≤ i < n}, |tσ| = 2n−1. The main properties of this graph
are presented by

Lemma 11 The bubble–sort Cayley graph Bn(tσ), n ≥ 2,
(i) is a connected bipartite (2n− 1)-regular graph of order 2nn!;
(ii) it does not contain subgraphs isomorphic to K2,3;
(iii) each its vertex belongs to (2n2− 4n + 3), n ≥ 3, subgraphs isomorphic to
K2,2.

From this Lemma, λ(Bn(tσ)) = 0 since Bn(tσ) is a bipartite. There also does
not exist a signed permutation π ∈ S2 such that c2(π) = 3, hence there are
no subgraphs isomorphic to K2,3. The number of subgraphs isomorphic to
K2,2 having I as one of the vertices can be calculated by the formulas (19)-
(22) taking into account that j = i + 1 in (20) and (21), and j = i + 1, l =

k+1, k 6= i+1 in (22). From this, there are
(

n
2

)
and

(
n−2

2

)
signed permutations

represented by (19) and (22); the numbers of representations (20) and (21)
equal 2(n− 1) and (n− 2)(n− 1), respectively. These gives the total number.
So, µ(Bn(tσ)) = 2 and by (5) the following theorem takes place

Theorem 12 For any n ≥ 2, N(Bn(tσ), 1) = 2.

The similar results are obtained for the star Cayley graph Bn(stσ) on the
group Bn generated by the sign–change prefix–transpositions from the set
stσ = {tσi,i ∈ Bn, 1 ≤ i ≤ n}⋃{tσ1,i ∈ Bn, 1 < i ≤ n}, |tσ| = 2n− 1.

Lemma 12 The star Cayley graph Bn(stσ), n ≥ 2,
(i) is a connected bipartite (2n− 1)-regular graph of order 2nn!;
(ii) it does not contain subgraphs isomorphic to K2,3;
(iii) each its vertex belongs to 3

2
n(n−1), n ≥ 3, subgraphs isomorphic to K2,2.
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Again, we have λ(Bn(stσ)) = 0 and µ(Bn(stσ)) = 2 by the same reasons as
in the previous case. The number of signed permutations π ∈ S2 for which
c2(π) = 2 is calculated by the formulas (19)-(21) when i = 1, k = 1, l = j or
i = 1, l = 1, k = j in (20), and i = 1, k 6= 1, in (21); the formula (22) doesn’t

hold in this case. So, the total number is
(

n
2

)
+ 2(n − 1) + (n − 2)(n − 1) =

3
2
n(n− 1). From this Lemma, and by (5) we have

Theorem 13 For any n ≥ 2, N(Bn(stσ), 1) = 2.

Thus, for all considered Cayley graphs in this section, any unknown signed
permutation is uniquely reconstructible from 3 its distinct 1-neighbors. There
are no results on reconstructing a signed permutation from its distinct 2–
neighbors in the graphs Bn(tσ) and Bn(stσ).

Remark 6. The Cayley graphs on the signed permutation group generated
by the sign–change transpositions tσi,j, when i 6= j, are considered in [12]. It
is shown there that the connected components arise for these graphs. The
number of these connected components depends on the set of generators. For
example, if all transpositions tσi,j, 1 ≤ i < j ≤ n, are the generators, then

there are 2 connected bipartite
(

n
2

)
–regular components of order 2n−1n!. Each

of these connected components represents a subgroup of Bn and by symmetry
these subgroups are isomorphic. The even–signed permutation group Dn [20]
which is the normal subgroup of Bn of index 2 whose elements are signed per-
mutations with even numbers of negative elements is one of these subgroups
for this Cayley graph. In the case, when the sign–change bubble–sort trans-
positions tσi,i+1, 1 ≤ i < n, are the generators, then there are 2n connected

bipartite
(

n
2

)
–regular components of order n!. Each of these connected compo-

nents represents a subgroup of Bn isomorphic to Sn and these components are
isomorphic to the Cayley graph Sn(t) (see section 3.1). The similar situation
appears when the prefix–transpositions tσ1,i, 1 ≤ i < n, are considered as the
generators. In this case, there are 2n connected bipartite (n− 1)–regular com-
ponents of order n! each of which is isomorphic to the Cayley graph Sn(st) (see
section 3.1). It is required 3 distinct 1–neighbors to reconstruct any unknown
signed permutation in all these cases.

4.2 The reversal Cayley graphs Bn(Rσ) and Bn(PRσ)

The reversal Cayley graph Bn(Rσ) is defined on the signed permutation group
Bn and generated by the sign–change reversals from the set Rσ = {rσ

i,j ∈
Bn, 1 ≤ i ≤ j ≤ n}, |Rσ| =

(
n+1

2

)
. The distance in the graph Bn(Rσ) is de-

fined as the minimal number of sign–change reversals transforming one signed
permutation into another. It is shown in [32] that the diameter of Bn(Rσ) is
(n + 1) and the permutations [+n, +(n − 1), . . . , +1], when n is even, and
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[+2, +1, +3, +n, +(n − 1), . . . , +4], when n > 3 is odd, are at this maximum
distance from the identity permutation.

Lemma 13 [13] The reversal Cayley graph Bn(Rσ), n ≥ 2,

(i) is a connected
(

n+1
2

)
-regular graph of order 2nn! and diameter (n + 1);

(ii) it does not contain triangles and subgraphs isomorphic to K2,3;
(iii) each its vertex belongs to 1

12
(n− 1)n(n + 1)(n + 4) subgraphs isomorphic

to K2,2.

It is also shown that c2(π) = 2 for any signed permutation π ∈ S2 if and only
if π has one of the following representations

rσ
k,l rσ

k,j = rσ
k+l−j,l rσ

k,l, k ≤ j ≤ l − 1, (23)

rσ
k,l rσ

k,j = rσ
k,j rσ

k+j−l,j, l + 1 ≤ j ≤ n, (24)

rσ
k,l rσ

i,j = rσ
i,j rσ

k,l, k ≤ l < i ≤ j, (25)

rσ
k,l rσ

i,j = rσ
l−j+k,l−i+k rk,l, k < i ≤ j < l, (26)

where 1 ≤ k ≤ l ≤ n. The number of representations (23) and (24) equals
2

∑n−1
k=1

∑n−k
i=1 i = 1

3
n(n−1)(n+1); the number of representations (25) and (26)

equals
(

n
2

)
, when k = l < i = j, equals

(
n
3

)
in each of three cases k = l < i < j,

k < l < i = j, k < i = j < l, and equals 2
(

n
4

)
in the cases when all i, j, k, l

differ. The required number is obtained by the summation of all these numbers.
So, from this Lemma, λ(Bn(Rσ)) = 0, µ(Bn(Rσ)) = 2 and by (5) we get

Theorem 14 [13] For any n ≥ 2, N(Bn(Rσ), 1) = 2.

Thus, any unknown signed permutation is uniquely reconstructible from 3
its distinct 1-neighbors. It is also shown that a signed permutation is recon-
structible from 2 its distinct 1-neighbors with probability p2 ∼ 1

3
as n → ∞

under the conditions that these signed permutations are uniformly distributed.
In the case, when r = 2 the following theorem holds

Theorem 15 [13] For any n ≥ 2,

N(Bn(Rσ), 2) ≥ n(n + 1). (27)

This result is obtained by the same method as for the reversal Cayley graph
Sn(R). Let us mentioned here, that inequality (27) is attained for the per-
mutations π with c2(π) = 2 having the representations (23)–(26) where the
sign–change reversals correspond to the sign–change transpositions.
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The burnt pancake Cayley graph Bn(PRσ), also called burnt prefix–reversal
graph, is defined on the signed permutation group Bn and generated by the
sign–change prefix–reversals from the set PRσ = {rσ

1,i ∈ Bn, 1 ≤ i ≤ n},
|PRσ| = 2n− 1. The distance in this graph is defined as the minimal number
of the sign–change prefix–reversals transforming one signed permutation into
another. This distance is also called the burnt prefix–reversal distance and
the diameter of Bn(PRσ) is called the burnt prefix–reversal diameter. The
problem of finding the burnt prefix–reversal diameter is known as the burnt
pancake flipping problem. It was shown in [22] that the burnt prefix–reversal
diameter is at most 3n/2 and at least 2n − 2 where the upper bound holds
for n ≥ 10. It is conjectured that the diameter is achieved by the negative
identity permutation −I = [−1,−2, . . . ,−n].

Lemma 14 The burnt pancake Cayley graph Bn(PRσ), n ≥ 2,
(i) is a connected (2n− 1)-regular graph of order 2nn!;
(ii) it does not contain triangles and subgraphs isomorphic to K2,3;
(iii) each its vertex belongs to 3

2
n(n− 1) subgraphs isomorphic to K2,2.

There are no subgraphs isomorphic to K2,3 since there is no a signed permuta-
tion π ∈ S2 for which c2(π) = 3. The number of subgraphs isomorphic to K2,2

having I as one of the vertices can be calculated by the formulas (23)-(25) tak-
ing into account that k = 1 in (23) and (24), and i = 1, k = 1, 1 ≤ l < j ≤ n
in (25). The formula (26) coincide with (23) when k = 1. So, the number

of representations (23)–(25) equals 3
(

n
2

)
and this gives the required answer.

From this Lemma, λ(Bn(PRσ)) = 0 and µ(Bn(PRσ)) = 2, this means that
any sign–change permutation is uniquely reconstructible from 3 its distinct
1–neighbors in this case.
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