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Abstract

Let v.(G) be the signed edge domination number of G. In 2006, Xu conjectured
that: for any 2-connected graph G of order n(n > 2), v.(G) > 1. In this article we
show that this conjecture is not true. More precisely, we show that for any positive
integer m, there exists an m-connected graph G such that v¢(G) < —%|V(G)|. Also
for every two natural numbers m and n, we determine . (K, ), where K,, ,, is the

complete bipartite graph with part sizes m and n.

INTRODUCTION

In this paper all of graphs that we consider are finite, simple and undirected. Let
G = (V(GQ),E(G)) be a graph with vertex set V(G) and edge set E(G). The order
of G denotes the number of vertices of G. For any v € V(G), d(v) is the degree of
v and E(v) is the set of all edges incident with v. If e = uv € E(G), then we put
Nle] = {u/v' € E(G)|u/ = v or v = v}. Let G be a graph and f : E(G) — {-1,1}
be a function. For every vertex v, we define s, = ) . Ev) f(e). We denote the complete
bipartite graph with two parts of sizes m and n, by K,,,. Also we denote the cycle of
order n, by C,. In [4] the signed edge domination function of graphs was introduced as

follows:
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Let G = (V(G), E(G)) be a non-empty graph. A function f : E(G) — {-1,1} is
called a signed edge domination function (SEDF) of G if 3 .ic i f(€/) > 1, for every
e € E(G). The signed edge domination number of G is defined as,

V4(G) =min{ Y f(e)| fis an SEDF of G}.
e€E(Q)
Several papers have been published on lower bounds and upper bounds of the signed edge
domination number of graphs, for instance, see [2], [3], [4], [5], [6]. In [2], Xu posed the

following conjecture:

For any 2-connected graph G of order n(n > 2), v.(G) > 1.

In the first section we give some counterexamples to this conjecture by showing that for
any natural number m, there exists an m-connected graph G such that v,(G) < —%|V(G)].
For any natural number k, let g(k) = min{7.(G)||V(G)| = k}. In [2] the following
problem was posed:

Determine the exact value of g(k) for every positive integer k. In Section 1, it is shown

—(k—8)°
that for every natural number k, k > 12, g(k) < —55—=.

1. COUNTEREXAMPLES TO A CONJECTURE

In this section we present some counterexamples to a conjecture that appeared in [2].

We start this section by the following simple lemma and leave the proof to the reader.

Lemma 1. Let f : E(G) — {—1,1} be a function. Then f is an SEDF of G, if and only
if for any edge e = uv, s, + sy, — f(e) > 1. Moreover, if f is an SEDF, then s, + s, > 0.

An L, n)-graph G is a graph of order (n + 1)(mn + m + 1), whose vertices can be
partitioned into n + 1 subsets Vi,...,V,41 such that:

(i) The induced subgraph on Vj is the complete graph K,y +mt1-



(ii) The induced subgraph on V;, 2 < i < n+ 1 is the complement of Ky m+t1-

(iii) For every i, 2 < i < n+ 1, all edges between V; and V; form m disjoint matchings of

size mn +m + 1.
iv) There is no edge between V; and V; for any 7,7, 2 <i < j<n-+1.
J

It is well-known that for any natural number r, the edge chromatic number of K, , is
r, see Theorem 6 of [I, p.93]. Thus for every pair of natural numbers m and n, there is

an L, n)-graph.

Theorem 1. Let m and n be two natural numbers. Then for every Ly, »y-graph G, we
have,
(mn+m+ 1)(m —mn)

!
<
75(G) < 5

Proof. To prove the inequality we provide an SEDF for G, say f, such that,

Z fle) = (mn—i—m—kl)(m—mn)'
)

2
e€E(G
Define f(e) = 1, if both end points of e are contained in V;, and f(e) = —1, otherwise.
We find,
1
Z Fle) = (mn+m—|—2)(mn+m) _ (mn+m + 1)mn

e€E(Q)
_ (mn+m+1)(m —mn)
2

It can be easily verified that for every v € V;, s, = m, and for every v € V(G) \ V1,
sy = —m. Now, Lemma [l yields that f is an SEDF for G. O

Example 1. Consider the L, ;)-graph G shown in Figure 1. The graph clearly has perfect
matching; and by applying Lemma [l to the edges of this matching we may conclude that
for every SEDF f of this graph, 3 cp(q) f(€) = %ZUGV(G) sy > 0, hence 74(G) > 0. But

3



Figure 1: A 2-connected Ly 1)-graph with g < 1.

it follows from Theorem [I] that 7.(G) < 0. Consequently, v.(G) = 0 and the bound in
Theorem [ is sharp for this graph.

In [2], Xu conjectured that for any 2-connected graph G of order n(n > 2), v.(G) > 1.

The next theorem shows that conjecture fails.

Theorem 2. For any natural number m, there exists an m-connected graph G such that
7(G) < —F V(G-

Proof. First we claim that for each pair of natural numbers m and n, every L, ,)-graph
is an m-connected graph. To see this we note that if one omits at most m — 1 vertices of
an Ly, n)-graph, then some vertices of V; remain (because |V1| = mn +m + 1) and since

the degree of each vertex of V;, 2 <i <n+ 11is m, the claim is proved.

Now, for any natural number m, consider an L, 9)-graph G. By Theorem [Il the

following inequality holds:

H(G) < 52m+m 4 1)(m —2m) = —Z|V(O).

N —

Remark 1. If we repeat the previous proof for an L(,, »)-graph instead of an L, 2)-graph,

then we find 7.(G) < _2"("751;)1) [V(G)|. Hence for large enough n, v4(G) < =ZEL|V(G)|.




Lemma 2. Let G be a graph with an SEDF. If G contains C,, as subgraph, then

Proof. Let V(C,) = {v1,...,v,}. Clearly, we have,

n

n
Z Sv; = % Z(Svi + sUi+1)7
i=1

i=1
where indices are modulo n. Thus by Lemma [Il the proof is complete. O

2

Theorem 3. For every graph G of order n, vi(G) > F¢-.

Proof. An elementary graph is a graph in which each component is a 1-regular graph
or a 2-regular graph. Let H be an elementary subgraph of G with maximum number of
vertices. With no loss of generality we may assume that H has no even cycle, since one
can replace an even cycle of size 2k by k vertex-disjoint edges. Suppose « is the number
of vertices of G which are not covered by H. We claim that for every vertex v which is
not covered by H, d(v) < 5<%,

To see this, we note that v is adjacent to none of the other & — 1 vertices which are not
covered by H, because otherwise we could find an elementary subgraph H’ which covers
more vertices of GG, a contradiction. Also, v is adjacent to none of the vertices of an odd
cycle of H, because if v is adjacent to a vertex u of an odd cycle C, we can decompose the set
E(C)J{uv} into vertex-disjoint edges which cover V(C)|J{v}, obtaining an elementary
subgraph H’ which covers more vertices, a contradiction. If v is adjacent to both end
points of an edge in the matching part of H, then we can add an odd cycle of length 3 to
H, obtaining a bigger elementary subgraph, a contradiction. Thus the degree of v does

not exceed the number of the edges in the matching part of H, so, d(v) < "5=.

By Lemmas [I] and 2] ZUEV(H) 8y > 0. Therefore we have,



1 1
Z f(e)zi(z Sy + Z Sv)2§ Sy
e€E(G) veV (H) VeV (G)\V (H) veV (G)\V (H)
-1 —a(n—a) _ —n?
> > > .
= 2, )z — >
veV (G)\V (H)
O
Corollary 1. If G has a spanning elementary subgraph, then v.(G) > 0.
Proof. In the proof of the previous theorem replace a by 0. O

In [2] the following problem has been posed:
Determine the exact value of g(k) for every positive integer k. In the next theorem we

find a lower and an upper bound for g(k), k > 12.

Theorem 4. For every natural number k, k > 12, —lf—; <g(k) < —(k;28)2

Proof. The lower bound is an immediate consequence of Theorem Bl First we obtain
the upper bound for k = 9m + 3. In the proof of the Theorem [I, we constructed a graph
G of order (n + 1)(mn + m + 1) vertices for which,

(mn+m+1)(m— mn)

/
<
Assume that n = 2. We have,
g(Om +3) < %(Qm +3).
Since k > 12, for k = 9m + 3 we find,
_ (ﬂ) — k2
< 9 < :
glk) < —g k<=4



Now, for every k, we may write Kk = 9m + 3 + r, where 0 < r < 9. By adding r
isolated vertices to the constructed graph for 9m + 3, and using the previous inequality

for g(9m + 3), we have the following:

(k—rP _ —(k— 9

_-
glk) < —— < —0—

and the proof is complete. O

2. SIGNED EDGE DOMINATION OF
COMPLETE BIPARTITE GRAPHS

In this section we want to obtain the signed edge domination number of complete bipartite

graphs.

Theorem 5. Let m and n be two natural numbers where m < n. Then the following hold:
(i) If m and n are even, then v,(Kp, ) = min(2m,n),

(it) If m and n are odd, then v.(Ky, ) = min(2m — 1,n),

(iit) If m is even and n is odd, then v.(K,,) = min(3m, max(2m,n + 1)),

() If m is odd and n is even, then v.(Ky, ) = min(3m — 1, max(2m,n)).

Proof. Let (X,Y) be two parts of the complete bipartite graph K, ,, and X = {uq,...,un}
and Y = {vy,...,v,}. We note that if f is an SEDF for K, ,,, then we have,

Z f(e):ZSu:ZSv.
e€E(Km,n) ueX veY

(i) First we show that v, (K, ) > min(2m,n). It suffices to show that if f is an SEDF

such that ZeeE(Km,n) f(e) < 2m, then ¥ cp g, .y f(e) = n. Since ZeeE(Km,n) fle) <
2m, there exists a vertex u € X such that s, < 2. But s, is even and so s, < 0. If s, = 0,



then u is incident with n/2 edges with value 1 and n/2 edges with value —1. If f(uv) =1,
for some v € Y, then by Lemma(ll s, > 2. If f(uv) = —1, for some v € Y, then we find
sy > 0. Thus we have ZeeE(Km ) fle) =2 ey v =2 (%) =n. If s, <0, then s, < —2.

Now, for each v € Y, by Lemma 1, s, > 2. Therefore we have the following:
Z f(e)228v22n>n.
e€E(Km,n) veY
Hence v, (Ky,,n) > min(2m,n).

We now show that there exist two SEDF, say f and g, such that ZeeE(Km ) fle) =2m
and 3 cpk,, ) 9(€) =n. Let f be define as follows:

1 if ¢4 7 is odd
fluw)) =<1 ifi=j
—1 otherwise.

It is clear that for every w;, s,, = 2. Also one can see that s,, > 0, for i =1,...,n.
Now, by Lemma [I we see that f is an SEDF. Therefore,

VQ(Km,n) < Z fle) = Z Su = 2m,
e€E(Km,n) ueX

as required.
Define g as follows:
1 if ¢4 7 is odd
g(uivj) = Q1 if ¢ is even and ¢ = j modulo m
—1 otherwise.

We note that if i is even, then s,, = 2; and if 7 is odd, then s,, = 0. Also, if ¢ is even,
then s,, > 2; and if ¢ is odd, then s,, = 0. Now, Lemma [Il implies that ¢g is an SEDF.
Therefore,

n
2n
’Y;(Kmm) < Z gle) = sti = 9 =n,
e€E(Km,n) i=1

as required.



(ii) First we show that v, (K, ,) > min(2m — 1,n). It is enough to show that
if fis an SEDF with > cp,. ) f(€) < n, then >  cpy, ) f(e) = 2m — 1. Since
D ecE(Km.n) | (€) < n, there exists a vertex v € Y such that s, < 1. But s, is odd and so
sy < —1. If s, = —1, then v is incident with 251 edges with value 1 and m; L edges with
value —1. If f(uv) = 1, for some u € X, then by Lemma 1, s, > 3. If f(uv) = —1, for

some u € X, then similarly we have s, > 1. Thus we have the following:

Z f(e) 23u23<m2_1>+m;1:2m—1.

e€E(Kmn) ueX

If s, < —1, then s, < —3. Now, by Lemma 1, s, > 3 for each u € X. Therefore we find

that,
Z f(e):Zsu23m>2m—1.

e€E(Km,n) u€eX

Hence v, (Kp ) > min(2m — 1,n). We now show that there are two SEDF f and g
such that 3 cpg,, v fle) =2m —Tand 3 cp,, ) 9(e) =n.

Define f and g as follows,
1 if 1+ 7 isodd
fluivj) =<1 ifi=j
—1 otherwise.
It is straightforward to verify that s,, = 3, if ¢ is even; and s,, = 1, if 7 is odd. Also,
we have,
3 if jis even and j <m
1 if jisodd and j <m

1 if jis even and j > m

—1 if jis odd and j > m.
Consequently, f is an SEDF, by lemma 1. Therefore,

VeKmn) <Y fle) Z%—( 1>+m;1:2m—1,

e€E(Kmn) ueX




as required.
Define g as follows:
1 if i+ 7 is odd
g(uv;) =<1 if j is odd and ¢ = j modulo (m + 1)
—1 otherwise.
It is not hard to see that for any v € X, s, > 1 and for any v € Y, s, = 1. Therefore g
is an SEDF and vs(Kmn) < X cep(k,,.) 9(€) = 2pey Sv = n.
(iii) Three cases may be considered:

Case 1. n+1 < 2m. We claim that v, (K, ) = 2m. First we show that v, (K, ) > 2m.
By contradiction suppose that there exists an SEDF, say f, such that ) . E(Kmn) fle) <
2m. Since m < n, we find that }° cp g, .y f(€) < 2n. Thus there exists a vertex v € Y
such that s, < 2. On the other hand since s, is even, s, < 0. If s, = 0, then v is incident
with m/2 edges with value 1 and m/2 edges with value —1. If f(uv) = 1, for some u € X,
then by Lemma 1, we have, s, > 2. Since s, is odd we find s, > 3. If f(uv) = —1, for

some u € X, then by a similar argument one can see that s, > 1. Thus,

Z f(e):Zsu23m/2+m/2:2m,
e€E(Km,n) u€eX
a contradiction. Hence v, (K, ) > 2m.

If s, <0, then s, < —2. By Lemmalll for every u € X, s, > 2. Hence we obtain that,

Z f(e)ZZSuZQTn,

e€E(Kmn) ueX
a contradiction.

We now define an SEDF, say f, such that - . gk, ) f(€) = 2m. Let X1 = {us, ..., um}, X5 =
X—Xl,Yl = {'Ul,...,'UnTﬂ} and Y2 :Y—Yl.

Now, define f as follows:

10



1 if e meets X7 and Y5

1 if e meets X9 and V7

fle)=1%1 ife=ww;, 1<i<m/2

1 ife=wwj, 1 <i<m/2and j= (i +m/2) modulo (n+1)/2

—1 otherwise.

For each u € Xy, we have s, = 3. For every u € X5, we have s, = 1. Also for each
v € Y1, we have s, > 2. For each v € Y5, s, = 0. By Lemma 1, it is not hard to see that
f is an SEDF. Also we have,

Z f(e)zZsu:37m+%:2m.

e€E(Km,n) ueX

Case 2. 2m < n+1 < 3m. We claim that 7,(K,,,) = n + 1. First we show that
Ye(Kmn) > n+ 1. By contradiction assume that there exists an SEDF, f, such that
D ecB(Kmn f(€) <n+1. Since n+1 < 3m, we have 3 cp g, ) f(e) < 3m. Therefore
there exists a vertex u € X such that s, < 3. Since s, is odd, s, < 1. If s, = 1, then u is
incident with "TH edges with value 1 and ”T_l edges with value —1. If f(uv) = 1, for some
v €Y, then by Lemma/[l s, > 1 and since s, is even, we have s, > 2. If f(uv) = —1, for

some v € Y, then one can see that s, > 0. Hence,

> f(e)zzsv22<n;1> —n+1,

e€E(Km,n) veY

which is a contradiction.

If s, < 1, then s, < —1. By Lemmalll s, > 1, for each v € Y. Thus, ZeeE(Km,n) fle)=
> vey Sv = n. Since the number of edges is even, zeeE(Km ) /(e) is also even. Now, since

nisodd, 3 cpk,, . f(€) = n+1, a contradiction. Hence Ye(Kpmn) > n+ 1.

We now define an SEDF, say f, such that ZeeE(Km n)f(e) =n-+1 Let X1 =
{ul,...,u%z},Xg =X -X1,Y1 ={vy,... ,UnTH} and Y5 =Y — Y7. Let us define,

11



1 if e meets X7 and Y5
1 if e meets X5 and Y3

A1<j<nt

1 ife:uwjandi:jmodulo%,1§z‘§ 5

0|3

—1 otherwise.

It is straightforward to see that for each vertex u € Xy, s, > 3 and for each vertex

u € Xg, s, = 1. Also, for each v € Y7,s, = 2 and for each v € Y5, s, = 0. Thus we have,

Y =Y s=200 0

e€E(Km,n) veY

By Lemma(I] it can be easily seen that f is an SEDF.

Case 3. 3m < n+1. We claim that v.(K,, ) = 3m. First we prove that v, (K, ) > 3m.
By contradiction assume that there exists an SEDF f such that ~.(K,,,) < 3m. Hence
there exists a vertex u € X such that s, < 3. By a similar method as we saw in the proof
of Case 2, we conclude that ) . E(Kmn) | (e) > n + 1, which contradicts the inequality
3m < n+ 1. Hence v, (K, n) > 3m.

We now define an SEDF, say f, such that }_.c gk, .y f(€) = 3m. Consider a partition
of X such as X; and Xs, each of them containing m/2 vertices. Also suppose that Y7,
Y, and Y3 is a partition of Y such that V| = Y| = %52 and |V3| = 3. We define f as
follows:

—1 if e meets X7 and V3
fle)=4q =1 if e meets X5 and Y,

1 otherwise.

Now, it can be easily seen that for any v € X, s, = 3 and for any v € Y, s, > 0. By
Lemma(l f is an SEDF. Also we have,

Z f(e):Zsu:?)m.

EEE(K'm,n) ueX
(iv) Three cases may be considered:
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Case 1. n < 2m. We claim that v, (K, ) = 2m. First we show that v,(Ky, ) > 2m. By
contradiction suppose that f is an SEDF such that }_ . E(Komn) f(e) < 2m. Thus, there
exists a vertex u € X such that s, < 2. Since s, is even, s, < 0. If s, = 0, then % edges
incident with u have value 1 and other 5 edges have value —1. If f(uv) = 1, for some
v € Y, then by Lemma 1, s, > 2 and since s, is odd, we have s, > 3. If f(uv) = —1, then

we have s, > 1. Therefore,

Z f(e)228v23n/2+n/2:2n>2m,

e€E(Kmn) veY

a contradiction.

Now, assume that s, < 0. Thus s, < —2. By Lemma 1, s, > 2, for any v € Y.

Z f(e):ZsUZ2n>2m,

e€E(Km,n) veY

Therefore,

a contradiction. Hence v, (K, ) > 2m.

We now define an SEDF, say f, such that ZeeE(Km,n) f(e) = 2m. We know that all
edges of K,,, can be decomposed into K,,,, and K,_,,,,. Note that m and n —m
are odd and n —m < m. By Part (ii) there exists an SEDF, g;, for K, ,, such that
D e E(Kmm) 91(€) = m and for each vertex x, s; = 1. Also there exists an SEDF, say
g2, for K, _p, m such that EeeE(Kn,m,m) g2(e) = m and for every vertex u € X, s, = 1
and for other vertex v, s, > 1. Now, define an SEDF, say f, for K, , such that for each
e € E(Kpmm), f(e) = gi(e) and for every e € E(Kp_mm), f(e) = g2(e). Now, for every
u € X, we have s, = 2 and for each v € Y, we have s, > 1. By Lemmalll f is an SEDF

and moreover we find,

Z fle) = Z gi(e) + Z g2(e) =m+m =2m.

e€E(Km,n) e€E(Km,m) e€E(Kn—m,m)

Case 2. 2m < n < 3m — 1. We claim that +,(K,, ) = n. First we show that v, (K, ) >
n. By contradiction assume that f is an SEDF and }_.c g, ) f(e) < n. This implies
that there exists a vertex v € Y such that s, < 1. Since s, is odd, we have s, < —1. If

Sy = —1, then v is incident with mT_l edges with value 1 and mTH edges with value —1. If

13



f(uv) =1, for some v € X, then by Lemmalll, s, > 3. Now, since s, is even, s, > 4. If

f(uv) = —1, then we conclude that s, > 2. Thus,

> f(e)zzsu24(m2_1)+2(m+1) =3m—1>n,

2
e€E(Km,n) ueX

a contradiction.

If s, < —1, then s, < —3. By Lemma/[Il for every u € X, s, > 3. Hence we obtain,

Z f(6)223u23m>n,

EEE(K'm,n) ueX
a contradiction. Hence 7, (K, n) > n.

By a similar argument as we did in the Case 1, we may find an SEDF, say f, for K, ,,
such that 3 ¢k, .y f(€) =m + (n —m) =n, as desired.

Case 3. 3m — 1 < n. We claim that v, (K, ) = 3m — 1. First we show that . (K,,,) >
3m—1. By contradiction assume that f is an SEDF such that .. px, ) f(e) <3m—1.
Since 3m—1 < n, there exists a vertex v € Y such that s, < 1. Now, by a similar argument

as we did in Case 2, one can see that Y cp g, y.f(€) = 3m —1, a contradiction.

We now define an SEDF, say f, such that }_.cp,, ) f(e) = 3m — 1. Consider a
partition of X into two subsets X; and X such that [X;| = 2 and | Xo| = 2L, Also
consider a partition of ¥ such as Y7,Y> and Y3 such that |Yi| = 2283 |y5| = 2 — 2,

|Y3| = % Let X; = {Ul,...,UmTﬂ},Yl = {’Ul,...,'UB'mz+3}. Define f as follows:

1 if e meets X7 and Y5
1 if e meets X9 and Y3
fle)=141 if e meets X5 and Y3
1 e=uwj, 1 <i< ™ and j e {3i —2,3i — 1,3}

—1 otherwise.

One can easily see that for any u € X7, s, = 2, and for any v € X9, s, = 4. Also we

have,

14



1 vEYIUYs
Sp =
-1 wveYs.

Now, Lemma [I] implies that f is an SEDF.

Also, we have,

> f(e)zzsu=2(m+l)+4(m2_l) e

0
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