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0 On The Signed Edge Domination

Number of Graphs ∗†

S. Akbari, S. Bolouki, P. Hatami, M. Siami

Abstract

Let γ′

s
(G) be the signed edge domination number of G. In 2006, Xu conjectured

that: for any 2-connected graph G of order n(n ≥ 2), γ′

s
(G) ≥ 1. In this article we

show that this conjecture is not true. More precisely, we show that for any positive

integer m, there exists an m-connected graph G such that γ′

s
(G) ≤ −m

6
|V (G)|. Also

for every two natural numbers m and n, we determine γ′

s
(Km,n), where Km,n is the

complete bipartite graph with part sizes m and n.

Introduction

In this paper all of graphs that we consider are finite, simple and undirected. Let

G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). The order

of G denotes the number of vertices of G. For any v ∈ V (G), d(v) is the degree of

v and E(v) is the set of all edges incident with v. If e = uv ∈ E(G), then we put

N [e] = {u′v′ ∈ E(G)|u′ = u or v′ = v}. Let G be a graph and f : E(G) −→ {−1, 1}

be a function. For every vertex v, we define sv =
∑

e∈E(v) f(e). We denote the complete

bipartite graph with two parts of sizes m and n, by Km,n. Also we denote the cycle of

order n, by Cn. In [4] the signed edge domination function of graphs was introduced as

follows:
∗Key Words: Signed edge domination number, m-connected, complete bipartite graph.
†2000 Mathematics Subject Classification: 05C69, 05C78.
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Let G = (V (G), E(G)) be a non-empty graph. A function f : E(G) −→ {−1, 1} is

called a signed edge domination function (SEDF) of G if
∑

e′∈N [e] f(e
′) ≥ 1, for every

e ∈ E(G). The signed edge domination number of G is defined as,

γ′s(G) = min{
∑

e∈E(G)

f(e) | f is an SEDF of G}.

Several papers have been published on lower bounds and upper bounds of the signed edge

domination number of graphs, for instance, see [2], [3], [4], [5], [6]. In [2], Xu posed the

following conjecture:

For any 2-connected graph G of order n(n ≥ 2), γ′s(G) ≥ 1.

In the first section we give some counterexamples to this conjecture by showing that for

any natural numberm, there exists anm-connected graphG such that γ′s(G) ≤ −m
6 |V (G)|.

For any natural number k, let g(k) = min{γ′s(G) | |V (G)| = k}. In [2] the following

problem was posed:

Determine the exact value of g(k) for every positive integer k. In Section 1, it is shown

that for every natural number k, k ≥ 12, g(k) ≤ −(k−8)2

72 .

1. Counterexamples to a Conjecture

In this section we present some counterexamples to a conjecture that appeared in [2].

We start this section by the following simple lemma and leave the proof to the reader.

Lemma 1. Let f : E(G) −→ {−1, 1} be a function. Then f is an SEDF of G, if and only

if for any edge e = uv, su + sv − f(e) ≥ 1. Moreover, if f is an SEDF, then su + sv ≥ 0.

An L(m,n)-graph G is a graph of order (n + 1)(mn + m + 1), whose vertices can be

partitioned into n+ 1 subsets V1, . . . , Vn+1 such that:

(i) The induced subgraph on V1 is the complete graph Kmn+m+1.
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(ii) The induced subgraph on Vi, 2 ≤ i ≤ n+ 1 is the complement of Kmn+m+1.

(iii) For every i, 2 ≤ i ≤ n+ 1, all edges between V1 and Vi form m disjoint matchings of

size mn+m+ 1.

(iv) There is no edge between Vi and Vj for any i, j, 2 ≤ i < j ≤ n+ 1.

It is well-known that for any natural number r, the edge chromatic number of Kr,r is

r, see Theorem 6 of [1, p.93]. Thus for every pair of natural numbers m and n, there is

an L(m,n)-graph.

Theorem 1. Let m and n be two natural numbers. Then for every L(m,n)-graph G, we

have,

γ′s(G) ≤
(mn+m+ 1)(m−mn)

2
.

Proof. To prove the inequality we provide an SEDF for G, say f , such that,

∑

e∈E(G)

f(e) =
(mn+m+ 1)(m−mn)

2
.

Define f(e) = 1, if both end points of e are contained in V1, and f(e) = −1, otherwise.

We find,

∑

e∈E(G)

f(e) =
(mn+m+ 1)(mn +m)

2
− (mn+m+ 1)mn

=
(mn+m+ 1)(m −mn)

2
.

It can be easily verified that for every v ∈ V1, sv = m, and for every v ∈ V (G) \ V1,

sv = −m. Now, Lemma 1 yields that f is an SEDF for G. �

Example 1. Consider the L(2,1)-graph G shown in Figure 1. The graph clearly has perfect

matching; and by applying Lemma 1 to the edges of this matching we may conclude that

for every SEDF f of this graph,
∑

e∈E(G) f(e) =
1
2

∑

v∈V (G) sv ≥ 0 , hence γ′s(G) ≥ 0. But
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Figure 1: A 2-connected L(2,1)-graph with γ′s < 1.

it follows from Theorem 1 that γ′s(G) ≤ 0. Consequently, γ′s(G) = 0 and the bound in

Theorem 1 is sharp for this graph.

In [2], Xu conjectured that for any 2-connected graph G of order n(n ≥ 2), γ′s(G) ≥ 1.

The next theorem shows that conjecture fails.

Theorem 2. For any natural number m, there exists an m-connected graph G such that

γ′s(G) ≤ −m
6 |V (G)|.

Proof. First we claim that for each pair of natural numbers m and n, every L(m,n)-graph

is an m-connected graph. To see this we note that if one omits at most m− 1 vertices of

an L(m,n)-graph, then some vertices of V1 remain (because |V1| = mn+m+ 1) and since

the degree of each vertex of Vi, 2 ≤ i ≤ n+ 1 is m, the claim is proved.

Now, for any natural number m, consider an L(m,2)-graph G. By Theorem 1, the

following inequality holds:

γ′s(G) ≤
1

2
(2m+m+ 1)(m− 2m) = −

m

6
|V (G)|.

�

Remark 1. If we repeat the previous proof for an L(m,n)-graph instead of an L(m,2)-graph,

then we find γ′s(G) ≤ −m(n−1)
2(n+1) |V (G)|. Hence for large enough n, γ′s(G) ≤ −m+1

2 |V (G)|.
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Lemma 2. Let G be a graph with an SEDF. If G contains Cn as subgraph, then

∑

v∈V (Cn)

sv ≥ 0.

Proof. Let V (Cn) = {v1, . . . , vn}. Clearly, we have,

n
∑

i=1

svi =
1

2

n
∑

i=1

(svi + svi+1
),

where indices are modulo n. Thus by Lemma 1, the proof is complete. �

Theorem 3. For every graph G of order n, γ′s(G) ≥ −n2

16 .

Proof. An elementary graph is a graph in which each component is a 1-regular graph

or a 2-regular graph. Let H be an elementary subgraph of G with maximum number of

vertices. With no loss of generality we may assume that H has no even cycle, since one

can replace an even cycle of size 2k by k vertex-disjoint edges. Suppose α is the number

of vertices of G which are not covered by H. We claim that for every vertex v which is

not covered by H, d(v) ≤ n−α
2 .

To see this, we note that v is adjacent to none of the other α−1 vertices which are not

covered by H, because otherwise we could find an elementary subgraph H ′ which covers

more vertices of G, a contradiction. Also, v is adjacent to none of the vertices of an odd

cycle ofH, because if v is adjacent to a vertex u of an odd cycle C, we can decompose the set

E(C)
⋃

{uv} into vertex-disjoint edges which cover V (C)
⋃

{v}, obtaining an elementary

subgraph H ′ which covers more vertices, a contradiction. If v is adjacent to both end

points of an edge in the matching part of H, then we can add an odd cycle of length 3 to

H, obtaining a bigger elementary subgraph, a contradiction. Thus the degree of v does

not exceed the number of the edges in the matching part of H, so, d(v) ≤ n−α
2 .

By Lemmas 1 and 2,
∑

v∈V (H) sv ≥ 0. Therefore we have,
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∑

e∈E(G)

f(e) =
1

2
(

∑

v∈V (H)

sv +
∑

v∈V (G)\V (H)

sv) ≥
1

2

∑

v∈V (G)\V (H)

sv

≥
−1

2

∑

v∈V (G)\V (H)

d(v) ≥
−α(n − α)

4
≥

−n2

16
.

�

Corollary 1. If G has a spanning elementary subgraph, then γ′s(G) ≥ 0.

Proof. In the proof of the previous theorem replace α by 0. �

In [2] the following problem has been posed:

Determine the exact value of g(k) for every positive integer k. In the next theorem we

find a lower and an upper bound for g(k), k ≥ 12.

Theorem 4. For every natural number k, k ≥ 12, −k2

16 ≤ g(k) ≤ − (k−8)2

72 .

Proof. The lower bound is an immediate consequence of Theorem 3. First we obtain

the upper bound for k = 9m+ 3. In the proof of the Theorem 1, we constructed a graph

G of order (n+ 1)(mn +m+ 1) vertices for which,

γ′s(G) ≤
(mn+m+ 1)(m−mn)

2
.

Assume that n = 2. We have,

g(9m + 3) ≤
−m

6
(9m+ 3).

Since k ≥ 12, for k = 9m+ 3 we find,

g(k) ≤
−
(

k−3
9

)

6
k ≤

−k2

72
.
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Now, for every k, we may write k = 9m + 3 + r, where 0 ≤ r < 9. By adding r

isolated vertices to the constructed graph for 9m + 3, and using the previous inequality

for g(9m + 3), we have the following:

g(k) ≤
−(k − r)2

72
≤

−(k − 8)2

72
,

and the proof is complete. �

2. Signed Edge Domination of

Complete Bipartite Graphs

In this section we want to obtain the signed edge domination number of complete bipartite

graphs.

Theorem 5. Let m and n be two natural numbers where m ≤ n. Then the following hold:

(i) If m and n are even, then γ′s(Km,n) = min(2m,n),

(ii) If m and n are odd, then γ′s(Km,n) = min(2m− 1, n),

(iii) If m is even and n is odd, then γ′s(Km,n) = min(3m,max(2m,n + 1)),

(iv) If m is odd and n is even, then γ′s(Km,n) = min(3m− 1,max(2m,n)).

Proof. Let (X,Y ) be two parts of the complete bipartite graphKm,n andX = {u1, . . . , um}

and Y = {v1, . . . , vn}. We note that if f is an SEDF for Km,n, then we have,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su =
∑

v∈Y

sv.

(i) First we show that γ′s(Km,n) ≥ min(2m,n). It suffices to show that if f is an SEDF

such that
∑

e∈E(Km,n)
f(e) < 2m, then

∑

e∈E(Km,n)
f(e) ≥ n. Since

∑

e∈E(Km,n)
f(e) <

2m, there exists a vertex u ∈ X such that su < 2. But su is even and so su ≤ 0. If su = 0,
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then u is incident with n/2 edges with value 1 and n/2 edges with value −1. If f(uv) = 1,

for some v ∈ Y , then by Lemma 1, sv ≥ 2. If f(uv) = −1, for some v ∈ Y , then we find

sv ≥ 0. Thus we have
∑

e∈E(Km,n)
f(e) =

∑

v∈Y sv ≥ 2
(

n
2

)

= n. If su < 0, then su ≤ −2.

Now, for each v ∈ Y , by Lemma 1, sv ≥ 2. Therefore we have the following:

∑

e∈E(Km,n)

f(e) =
∑

v∈Y

sv ≥ 2n > n.

Hence γ′s(Km,n) ≥ min(2m,n).

We now show that there exist two SEDF, say f and g, such that
∑

e∈E(Km,n)
f(e) = 2m

and
∑

e∈E(Km,n)
g(e) = n. Let f be define as follows:

f(uivj) =



















1 if i+ j is odd

1 if i = j

−1 otherwise.

It is clear that for every ui, sui
= 2. Also one can see that svi ≥ 0, for i = 1, . . . , n.

Now, by Lemma 1, we see that f is an SEDF. Therefore,

γ′s(Km,n) ≤
∑

e∈E(Km,n)

f(e) =
∑

u∈X

su = 2m,

as required.

Define g as follows:

g(uivj) =



















1 if i+ j is odd

1 if i is even and i = j modulo m

−1 otherwise.

We note that if i is even, then svi = 2; and if i is odd, then svi = 0. Also, if i is even,

then sui
≥ 2; and if i is odd, then sui

= 0. Now, Lemma 1 implies that g is an SEDF.

Therefore,

γ′s(Km,n) ≤
∑

e∈E(Km,n)

g(e) =

n
∑

i=1

svi =
2n

2
= n,

as required.
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(ii) First we show that γ′s(Km,n) ≥ min(2m − 1, n). It is enough to show that

if f is an SEDF with
∑

e∈E(Km,n)
f(e) < n, then

∑

e∈E(Km,n)
f(e) ≥ 2m − 1. Since

∑

e∈E(Km,n)
f(e) < n, there exists a vertex v ∈ Y such that sv < 1. But sv is odd and so

sv ≤ −1. If sv = −1, then v is incident with m−1
2 edges with value 1 and m+1

2 edges with

value −1. If f(uv) = 1, for some u ∈ X, then by Lemma 1, su ≥ 3. If f(uv) = −1, for

some u ∈ X, then similarly we have su ≥ 1. Thus we have the following:

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥ 3

(

m− 1

2

)

+
m+ 1

2
= 2m− 1.

If sv < −1, then sv ≤ −3. Now, by Lemma 1, su ≥ 3 for each u ∈ X. Therefore we find

that,
∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥ 3m > 2m− 1.

Hence γ′s(Km,n) ≥ min(2m − 1, n). We now show that there are two SEDF f and g

such that
∑

e∈E(Km,n)
f(e) = 2m− 1 and

∑

e∈E(Km,n)
g(e) = n.

Define f and g as follows,

f(uivj) =



















1 if i+ j is odd

1 if i = j

−1 otherwise.

It is straightforward to verify that sui
= 3, if i is even; and sui

= 1, if i is odd. Also,

we have,

svj =



































3 if j is even and j ≤ m

1 if j is odd and j ≤ m

1 if j is even and j > m

−1 if j is odd and j > m.

Consequently, f is an SEDF, by lemma 1. Therefore,

γ′s(Km,n) ≤
∑

e∈E(Km,n)

f(e) =
∑

u∈X

su = 3

(

m− 1

2

)

+
m+ 1

2
= 2m− 1,
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as required.

Define g as follows:

g(uivj) =



















1 if i+ j is odd

1 if j is odd and i = j modulo (m+ 1)

−1 otherwise.

It is not hard to see that for any u ∈ X, su ≥ 1 and for any v ∈ Y, sv = 1. Therefore g

is an SEDF and γ′s(Km,n) ≤
∑

e∈E(Km,n)
g(e) =

∑

v∈Y sv = n.

(iii) Three cases may be considered:

Case 1. n+1 ≤ 2m. We claim that γ′s(Km,n) = 2m. First we show that γ′s(Km,n) ≥ 2m.

By contradiction suppose that there exists an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) <

2m. Since m ≤ n, we find that
∑

e∈E(Km,n)
f(e) < 2n. Thus there exists a vertex v ∈ Y

such that sv < 2. On the other hand since sv is even, sv ≤ 0. If sv = 0, then v is incident

with m/2 edges with value 1 and m/2 edges with value −1. If f(uv) = 1, for some u ∈ X,

then by Lemma 1, we have, su ≥ 2. Since su is odd we find su ≥ 3. If f(uv) = −1, for

some u ∈ X, then by a similar argument one can see that su ≥ 1. Thus,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥ 3m/2 +m/2 = 2m,

a contradiction. Hence γ′s(Km,n) ≥ 2m.

If sv < 0, then sv ≤ −2. By Lemma 1, for every u ∈ X, su ≥ 2. Hence we obtain that,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥ 2m,

a contradiction.

We now define an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) = 2m. LetX1 = {u1, . . . , um

2
},X2 =

X −X1, Y1 = {v1, . . . , vn+1

2

} and Y2 = Y − Y1.

Now, define f as follows:
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f(e) =















































1 if e meets X1 and Y2

1 if e meets X2 andY1

1 if e = uivi, 1 ≤ i ≤ m/2

1 if e = uivj , 1 ≤ i ≤ m/2 and j = (i+m/2) modulo (n+ 1)/2

−1 otherwise.

For each u ∈ X1, we have su = 3. For every u ∈ X2, we have su = 1. Also for each

v ∈ Y1, we have sv ≥ 2. For each v ∈ Y2, sv = 0. By Lemma 1, it is not hard to see that

f is an SEDF. Also we have,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su =
3m

2
+

m

2
= 2m.

Case 2. 2m < n + 1 ≤ 3m. We claim that γ′s(Km,n) = n + 1. First we show that

γ′s(Km,n) ≥ n + 1. By contradiction assume that there exists an SEDF, f , such that
∑

e∈E(Km,n)
f(e) < n + 1. Since n + 1 ≤ 3m, we have

∑

e∈E(Km,n)
f(e) < 3m. Therefore

there exists a vertex u ∈ X such that su < 3. Since su is odd, su ≤ 1. If su = 1, then u is

incident with n+1
2 edges with value 1 and n−1

2 edges with value −1. If f(uv) = 1, for some

v ∈ Y , then by Lemma 1, sv ≥ 1 and since sv is even, we have sv ≥ 2. If f(uv) = −1, for

some v ∈ Y , then one can see that sv ≥ 0. Hence,

∑

e∈E(Km,n)

f(e) =
∑

v∈Y

sv ≥ 2

(

n+ 1

2

)

= n+ 1,

which is a contradiction.

If su < 1, then su ≤ −1. By Lemma 1, sv ≥ 1, for each v ∈ Y . Thus,
∑

e∈E(Km,n)
f(e) =

∑

v∈Y sv ≥ n. Since the number of edges is even,
∑

e∈E(Km,n)
f(e) is also even. Now, since

n is odd,
∑

e∈E(Km,n)
f(e) ≥ n+ 1, a contradiction. Hence γ′s(Km,n) ≥ n+ 1.

We now define an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) = n + 1. Let X1 =

{u1, . . . , um
2
},X2 = X −X1,Y1 = {v1, . . . , vn+1

2

} and Y2 = Y − Y1. Let us define,

11



f(e) =



































1 if e meets X1 and Y2

1 if e meets X2 and Y1

1 if e = uivj and i = j modulo m
2 , 1 ≤ i ≤ m

2 , 1 ≤ j ≤ n+1
2

−1 otherwise.

It is straightforward to see that for each vertex u ∈ X1, su ≥ 3 and for each vertex

u ∈ X2, su = 1. Also, for each v ∈ Y1, sv = 2 and for each v ∈ Y2, sv = 0. Thus we have,

∑

e∈E(Km,n)

f(e) =
∑

v∈Y

sv =
2(n + 1)

2
= n+ 1.

By Lemma 1, it can be easily seen that f is an SEDF.

Case 3. 3m < n+1. We claim that γ′s(Km,n) = 3m. First we prove that γ′s(Km,n) ≥ 3m.

By contradiction assume that there exists an SEDF f such that γ′s(Km,n) < 3m. Hence

there exists a vertex u ∈ X such that su < 3. By a similar method as we saw in the proof

of Case 2, we conclude that
∑

e∈E(Km,n)
f(e) ≥ n + 1, which contradicts the inequality

3m < n+ 1. Hence γ′s(Km,n) ≥ 3m.

We now define an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) = 3m. Consider a partition

of X such as X1 and X2, each of them containing m/2 vertices. Also suppose that Y1,

Y2 and Y3 is a partition of Y such that |Y1| = |Y2| =
n−3
2 and |Y3| = 3. We define f as

follows:

f(e) =



















−1 if e meets X1 and Y1

−1 if e meets X2 and Y2

1 otherwise.

Now, it can be easily seen that for any u ∈ X, su = 3 and for any v ∈ Y, sv ≥ 0. By

Lemma 1, f is an SEDF. Also we have,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su = 3m.

(iv) Three cases may be considered:
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Case 1. n ≤ 2m. We claim that γ′s(Km,n) = 2m. First we show that γ′s(Km,n) ≥ 2m. By

contradiction suppose that f is an SEDF such that
∑

e∈E(Km,n)
f(e) < 2m. Thus, there

exists a vertex u ∈ X such that su < 2. Since su is even, su ≤ 0. If su = 0, then n
2 edges

incident with u have value 1 and other n
2 edges have value −1. If f(uv) = 1, for some

v ∈ Y , then by Lemma 1, sv ≥ 2 and since sv is odd, we have sv ≥ 3. If f(uv) = −1, then

we have sv ≥ 1. Therefore,

∑

e∈E(Km,n)

f(e) =
∑

v∈Y

sv ≥ 3n/2 + n/2 = 2n > 2m,

a contradiction.

Now, assume that su < 0. Thus su ≤ −2. By Lemma 1, sv ≥ 2, for any v ∈ Y .

Therefore,
∑

e∈E(Km,n)

f(e) =
∑

v∈Y

sv ≥ 2n > 2m,

a contradiction. Hence γ′s(Km,n) ≥ 2m.

We now define an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) = 2m. We know that all

edges of Km,n can be decomposed into Km,m and Kn−m,m. Note that m and n − m

are odd and n − m ≤ m. By Part (ii) there exists an SEDF, g1, for Km,m such that
∑

e∈E(Km,m) g1(e) = m and for each vertex x, sx = 1. Also there exists an SEDF, say

g2, for Kn−m,m such that
∑

e∈E(Kn−m,m) g2(e) = m and for every vertex u ∈ X, su = 1

and for other vertex v, sv ≥ 1. Now, define an SEDF, say f , for Km,n such that for each

e ∈ E(Km,m), f(e) = g1(e) and for every e ∈ E(Kn−m,m), f(e) = g2(e). Now, for every

u ∈ X, we have su = 2 and for each v ∈ Y , we have sv ≥ 1. By Lemma 1, f is an SEDF

and moreover we find,

∑

e∈E(Km,n)

f(e) =
∑

e∈E(Km,m)

g1(e) +
∑

e∈E(Kn−m,m)

g2(e) = m+m = 2m.

Case 2. 2m < n ≤ 3m− 1. We claim that γ′s(Km,n) = n. First we show that γ′s(Km,n) ≥

n. By contradiction assume that f is an SEDF and
∑

e∈E(Km,n)
f(e) < n. This implies

that there exists a vertex v ∈ Y such that sv < 1. Since sv is odd, we have sv ≤ −1. If

sv = −1, then v is incident with m−1
2 edges with value 1 and m+1

2 edges with value −1. If
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f(uv) = 1, for some u ∈ X, then by Lemma 1 , su ≥ 3. Now, since su is even, su ≥ 4. If

f(uv) = −1, then we conclude that su ≥ 2. Thus,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥
4(m− 1)

2
+

2(m+ 1)

2
= 3m− 1 ≥ n,

a contradiction.

If sv < −1, then sv ≤ −3. By Lemma 1, for every u ∈ X, su ≥ 3. Hence we obtain,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su ≥ 3m > n,

a contradiction. Hence γ′s(Km,n) ≥ n.

By a similar argument as we did in the Case 1, we may find an SEDF, say f , for Km,n

such that
∑

e∈E(Km,n)
f(e) = m+ (n−m) = n, as desired.

Case 3. 3m− 1 < n. We claim that γ′s(Km,n) = 3m− 1. First we show that γ′s(Km,n) ≥

3m−1. By contradiction assume that f is an SEDF such that
∑

e∈E(Km,n)
f(e) < 3m−1.

Since 3m−1 < n, there exists a vertex v ∈ Y such that sv < 1. Now, by a similar argument

as we did in Case 2, one can see that
∑

e∈E(Km,n)
f(e) ≥ 3m− 1, a contradiction.

We now define an SEDF, say f , such that
∑

e∈E(Km,n)
f(e) = 3m − 1. Consider a

partition of X into two subsets X1 and X2 such that |X1| =
m+1
2 and |X2| =

m−1
2 . Also

consider a partition of Y such as Y1, Y2 and Y3 such that |Y1| =
3m+3

2 , |Y2| =
n
2 − 2,

|Y3| =
n−(3m−1)

2 . Let X1 = {u1, . . . , um+1

2

}, Y1 = {v1, . . . , v 3m+3

2

}. Define f as follows:

f(e) =















































1 if e meets X1 and Y2

1 if e meets X2 and Y1

1 if e meets X2 and Y3

1 e = uivj , 1 ≤ i ≤ m+1
2 and j ∈ {3i − 2, 3i− 1, 3i}

−1 otherwise.

One can easily see that for any u ∈ X1, su = 2, and for any u ∈ X2, su = 4. Also we

have,
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sv =







1 v ∈ Y1 ∪ Y2

−1 v ∈ Y3.

Now, Lemma 1 implies that f is an SEDF.

Also, we have,

∑

e∈E(Km,n)

f(e) =
∑

u∈X

su =
2(m+ 1)

2
+

4(m− 1)

2
= 3m− 1.

�
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