On The Signed Edge Domination
 Number of Graphs * \dagger

S. Akbari, S. Bolouki, P. Hatami, M. Siami

Abstract

Let $\gamma_{s}^{\prime}(G)$ be the signed edge domination number of G . In 2006, Xu conjectured that: for any 2 -connected graph G of order $n(n \geq 2), \gamma_{s}^{\prime}(G) \geq 1$. In this article we show that this conjecture is not true. More precisely, we show that for any positive integer m, there exists an m-connected graph G such that $\gamma_{s}^{\prime}(G) \leq-\frac{m}{6}|V(G)|$. Also for every two natural numbers m and n, we determine $\gamma_{s}^{\prime}\left(K_{m, n}\right)$, where $K_{m, n}$ is the complete bipartite graph with part sizes m and n.

Introduction

In this paper all of graphs that we consider are finite, simple and undirected. Let $G=(V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The order of G denotes the number of vertices of G. For any $v \in V(G), d(v)$ is the degree of v and $E(v)$ is the set of all edges incident with v. If $e=u v \in E(G)$, then we put $N[e]=\left\{u^{\prime} v^{\prime} \in E(G) \mid u^{\prime}=u\right.$ or $\left.v^{\prime}=v\right\}$. Let G be a graph and $f: E(G) \longrightarrow\{-1,1\}$ be a function. For every vertex v, we define $s_{v}=\sum_{e \in E(v)} f(e)$. We denote the complete bipartite graph with two parts of sizes m and n, by $K_{m, n}$. Also we denote the cycle of order n, by C_{n}. In [4] the signed edge domination function of graphs was introduced as follows:

[^0]Let $G=(V(G), E(G))$ be a non-empty graph. A function $f: E(G) \longrightarrow\{-1,1\}$ is called a signed edge domination function (SEDF) of G if $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$, for every $e \in E(G)$. The signed edge domination number of G is defined as,

$$
\gamma_{s}^{\prime}(G)=\min \left\{\sum_{e \in E(G)} f(e) \mid f \text { is an SEDF of } G\right\} .
$$

Several papers have been published on lower bounds and upper bounds of the signed edge domination number of graphs, for instance, see [2, [3, 4], 5], 6]. In [2], Xu posed the following conjecture:

For any 2-connected graph G of order $n(n \geq 2), \gamma_{s}^{\prime}(G) \geq 1$.
In the first section we give some counterexamples to this conjecture by showing that for any natural number m, there exists an m-connected graph G such that $\gamma_{s}^{\prime}(G) \leq-\frac{m}{6}|V(G)|$. For any natural number k, let $g(k)=\min \left\{\gamma_{s}^{\prime}(G)| | V(G) \mid=k\right\}$. In [2] the following problem was posed:

Determine the exact value of $g(k)$ for every positive integer k. In Section 1, it is shown that for every natural number $k, k \geq 12, g(k) \leq \frac{-(k-8)^{2}}{72}$.

1. Counterexamples to a Conjecture

In this section we present some counterexamples to a conjecture that appeared in [2]. We start this section by the following simple lemma and leave the proof to the reader.

Lemma 1. Let $f: E(G) \longrightarrow\{-1,1\}$ be a function. Then f is an SEDF of G, if and only if for any edge $e=u v, s_{u}+s_{v}-f(e) \geq 1$. Moreover, if f is an SEDF, then $s_{u}+s_{v} \geq 0$.

An $L_{(m, n)}$-graph G is a graph of order $(n+1)(m n+m+1)$, whose vertices can be partitioned into $n+1$ subsets V_{1}, \ldots, V_{n+1} such that:
(i) The induced subgraph on V_{1} is the complete graph $K_{m n+m+1}$.
(ii) The induced subgraph on $V_{i}, 2 \leq i \leq n+1$ is the complement of $K_{m n+m+1}$.
(iii) For every $i, 2 \leq i \leq n+1$, all edges between V_{1} and V_{i} form m disjoint matchings of size $m n+m+1$.
(iv) There is no edge between V_{i} and V_{j} for any $i, j, 2 \leq i<j \leq n+1$.

It is well-known that for any natural number r, the edge chromatic number of $K_{r, r}$ is r, see Theorem 6 of [1, p.93]. Thus for every pair of natural numbers m and n, there is an $L_{(m, n)}$-graph.

Theorem 1. Let m and n be two natural numbers. Then for every $L_{(m, n)}$-graph G, we have,

$$
\gamma_{s}^{\prime}(G) \leq \frac{(m n+m+1)(m-m n)}{2}
$$

Proof. To prove the inequality we provide an SEDF for G, say f, such that,

$$
\sum_{e \in E(G)} f(e)=\frac{(m n+m+1)(m-m n)}{2}
$$

Define $f(e)=1$, if both end points of e are contained in V_{1}, and $f(e)=-1$, otherwise. We find,

$$
\begin{aligned}
\sum_{e \in E(G)} f(e) & =\frac{(m n+m+1)(m n+m)}{2}-(m n+m+1) m n \\
& =\frac{(m n+m+1)(m-m n)}{2}
\end{aligned}
$$

It can be easily verified that for every $v \in V_{1}, s_{v}=m$, and for every $v \in V(G) \backslash V_{1}$, $s_{v}=-m$. Now, Lemma 1 yields that f is an SEDF for G.

Example 1. Consider the $L_{(2,1)}$-graph G shown in Figure 1. The graph clearly has perfect matching; and by applying Lemma to the edges of this matching we may conclude that for every SEDF f of this graph, $\sum_{e \in E(G)} f(e)=\frac{1}{2} \sum_{v \in V(G)} s_{v} \geq 0$, hence $\gamma_{s}^{\prime}(G) \geq 0$. But

Figure 1: A 2-connected $L_{(2,1)}$-graph with $\gamma_{s}^{\prime}<1$.
it follows from Theorem 1 that $\gamma_{s}^{\prime}(G) \leq 0$. Consequently, $\gamma_{s}^{\prime}(G)=0$ and the bound in Theorem 1 is sharp for this graph.

In [2], Xu conjectured that for any 2-connected graph G of order $n(n \geq 2), \gamma_{s}^{\prime}(G) \geq 1$. The next theorem shows that conjecture fails.

Theorem 2. For any natural number m, there exists an m-connected graph G such that $\gamma_{s}^{\prime}(G) \leq-\frac{m}{6}|V(G)|$.

Proof. First we claim that for each pair of natural numbers m and n, every $L_{(m, n)}$-graph is an m-connected graph. To see this we note that if one omits at most $m-1$ vertices of an $L_{(m, n)}$-graph, then some vertices of V_{1} remain (because $\left|V_{1}\right|=m n+m+1$) and since the degree of each vertex of $V_{i}, 2 \leq i \leq n+1$ is m, the claim is proved.

Now, for any natural number m, consider an $L_{(m, 2)}$-graph G. By Theorem (1, the following inequality holds:

$$
\gamma_{s}^{\prime}(G) \leq \frac{1}{2}(2 m+m+1)(m-2 m)=-\frac{m}{6}|V(G)| .
$$

Remark 1. If we repeat the previous proof for an $L_{(m, n)}$-graph instead of an $L_{(m, 2)}$-graph, then we find $\gamma_{s}^{\prime}(G) \leq \frac{-m(n-1)}{2(n+1)}|V(G)|$. Hence for large enough $n, \gamma_{s}^{\prime}(G) \leq \frac{-m+1}{2}|V(G)|$.

Lemma 2. Let G be a graph with an SEDF. If G contains C_{n} as subgraph, then

$$
\sum_{v \in V\left(C_{n}\right)} s_{v} \geq 0
$$

Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$. Clearly, we have,

$$
\sum_{i=1}^{n} s_{v_{i}}=\frac{1}{2} \sum_{i=1}^{n}\left(s_{v_{i}}+s_{v_{i+1}}\right),
$$

where indices are modulo n. Thus by Lemma the proof is complete.

Theorem 3. For every graph G of order $n, \gamma_{s}^{\prime}(G) \geq \frac{-n^{2}}{16}$.

Proof. An elementary graph is a graph in which each component is a 1-regular graph or a 2-regular graph. Let H be an elementary subgraph of G with maximum number of vertices. With no loss of generality we may assume that H has no even cycle, since one can replace an even cycle of size $2 k$ by k vertex-disjoint edges. Suppose α is the number of vertices of G which are not covered by H. We claim that for every vertex v which is not covered by $H, d(v) \leq \frac{n-\alpha}{2}$.

To see this, we note that v is adjacent to none of the other $\alpha-1$ vertices which are not covered by H, because otherwise we could find an elementary subgraph H^{\prime} which covers more vertices of G, a contradiction. Also, v is adjacent to none of the vertices of an odd cycle of H, because if v is adjacent to a vertex u of an odd cycle C, we can decompose the set $E(C) \bigcup\{u v\}$ into vertex-disjoint edges which cover $V(C) \bigcup\{v\}$, obtaining an elementary subgraph H^{\prime} which covers more vertices, a contradiction. If v is adjacent to both end points of an edge in the matching part of H, then we can add an odd cycle of length 3 to H, obtaining a bigger elementary subgraph, a contradiction. Thus the degree of v does not exceed the number of the edges in the matching part of H, so, $d(v) \leq \frac{n-\alpha}{2}$.

By Lemmas 1 and 2, $\sum_{v \in V(H)} s_{v} \geq 0$. Therefore we have,

$$
\begin{aligned}
\sum_{e \in E(G)} f(e) & =\frac{1}{2}\left(\sum_{v \in V(H)} s_{v}+\sum_{v \in V(G) \backslash V(H)} s_{v}\right) \geq \frac{1}{2} \sum_{v \in V(G) \backslash V(H)} s_{v} \\
& \geq \frac{-1}{2} \sum_{v \in V(G) \backslash V(H)} d(v) \geq \frac{-\alpha(n-\alpha)}{4} \geq \frac{-n^{2}}{16}
\end{aligned}
$$

Corollary 1. If G has a spanning elementary subgraph, then $\gamma_{s}^{\prime}(G) \geq 0$.

Proof. In the proof of the previous theorem replace α by 0 .

In [2] the following problem has been posed:
Determine the exact value of $g(k)$ for every positive integer k. In the next theorem we find a lower and an upper bound for $g(k), k \geq 12$.

Theorem 4. For every natural number $k, k \geq 12,-\frac{k^{2}}{16} \leq g(k) \leq-\frac{(k-8)^{2}}{72}$.

Proof. The lower bound is an immediate consequence of Theorem 3. First we obtain the upper bound for $k=9 m+3$. In the proof of the Theorem 11, we constructed a graph G of order $(n+1)(m n+m+1)$ vertices for which,

$$
\gamma_{s}^{\prime}(G) \leq \frac{(m n+m+1)(m-m n)}{2}
$$

Assume that $n=2$. We have,

$$
g(9 m+3) \leq \frac{-m}{6}(9 m+3)
$$

Since $k \geq 12$, for $k=9 m+3$ we find,

$$
g(k) \leq \frac{-\left(\frac{k-3}{9}\right)}{6} k \leq \frac{-k^{2}}{72}
$$

Now, for every k, we may write $k=9 m+3+r$, where $0 \leq r<9$. By adding r isolated vertices to the constructed graph for $9 m+3$, and using the previous inequality for $g(9 m+3)$, we have the following:

$$
g(k) \leq \frac{-(k-r)^{2}}{72} \leq \frac{-(k-8)^{2}}{72}
$$

and the proof is complete.

2. Signed Edge Domination of Complete Bipartite Graphs

In this section we want to obtain the signed edge domination number of complete bipartite graphs.

Theorem 5. Let m and n be two natural numbers where $m \leq n$. Then the following hold:
(i) If m and n are even, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min (2 m, n)$,
(ii) If m and n are odd, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min (2 m-1, n)$,
(iii) If m is even and n is odd, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min (3 m, \max (2 m, n+1))$,
(iv) If m is odd and n is even, then $\gamma_{s}^{\prime}\left(K_{m, n}\right)=\min (3 m-1, \max (2 m, n))$.

Proof. Let (X, Y) be two parts of the complete bipartite graph $K_{m, n}$ and $X=\left\{u_{1}, \ldots, u_{m}\right\}$ and $Y=\left\{v_{1}, \ldots, v_{n}\right\}$. We note that if f is an SEDF for $K_{m, n}$, then we have,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=\sum_{v \in Y} s_{v}
$$

(i) First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq \min (2 m, n)$. It suffices to show that if f is an SEDF such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<2 m$, then $\sum_{e \in E\left(K_{m, n}\right)} f(e) \geq n$. Since $\sum_{e \in E\left(K_{m, n}\right)} f(e)<$ $2 m$, there exists a vertex $u \in X$ such that $s_{u}<2$. But s_{u} is even and so $s_{u} \leq 0$. If $s_{u}=0$,
then u is incident with $n / 2$ edges with value 1 and $n / 2$ edges with value -1 . If $f(u v)=1$, for some $v \in Y$, then by Lemma $s_{v} \geq 2$. If $f(u v)=-1$, for some $v \in Y$, then we find $s_{v} \geq 0$. Thus we have $\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v} \geq 2\left(\frac{n}{2}\right)=n$. If $s_{u}<0$, then $s_{u} \leq-2$. Now, for each $v \in Y$, by Lemma $1, s_{v} \geq 2$. Therefore we have the following:

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v} \geq 2 n>n
$$

Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq \min (2 m, n)$.
We now show that there exist two SEDF, say f and g, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=2 m$ and $\sum_{e \in E\left(K_{m, n}\right)} g(e)=n$. Let f be define as follows:

$$
f\left(u_{i} v_{j}\right)= \begin{cases}1 & \text { if } i+j \text { is odd } \\ 1 & \text { if } i=j \\ -1 & \text { otherwise }\end{cases}
$$

It is clear that for every $u_{i}, s_{u_{i}}=2$. Also one can see that $s_{v_{i}} \geq 0$, for $i=1, \ldots, n$. Now, by Lemma we see that f is an SEDF. Therefore,

$$
\gamma_{s}^{\prime}\left(K_{m, n}\right) \leq \sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=2 m
$$

as required.
Define g as follows:

$$
g\left(u_{i} v_{j}\right)= \begin{cases}1 & \text { if } i+j \text { is odd } \\ 1 & \text { if } i \text { is even and } i=j \text { modulo } m \\ -1 & \text { otherwise }\end{cases}
$$

We note that if i is even, then $s_{v_{i}}=2$; and if i is odd, then $s_{v_{i}}=0$. Also, if i is even, then $s_{u_{i}} \geq 2$; and if i is odd, then $s_{u_{i}}=0$. Now, Lemma 1 implies that g is an SEDF. Therefore,

$$
\gamma_{s}^{\prime}\left(K_{m, n}\right) \leq \sum_{e \in E\left(K_{m, n}\right)} g(e)=\sum_{i=1}^{n} s_{v_{i}}=\frac{2 n}{2}=n
$$

as required.
(ii) First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq \min (2 m-1, n)$. It is enough to show that if f is an SEDF with $\sum_{e \in E\left(K_{m, n}\right)} f(e)<n$, then $\sum_{e \in E\left(K_{m, n}\right)} f(e) \geq 2 m-1$. Since $\sum_{e \in E\left(K_{m, n}\right)} f(e)<n$, there exists a vertex $v \in Y$ such that $s_{v}<1$. But s_{v} is odd and so $s_{v} \leq-1$. If $s_{v}=-1$, then v is incident with $\frac{m-1}{2}$ edges with value 1 and $\frac{m+1}{2}$ edges with value -1 . If $f(u v)=1$, for some $u \in X$, then by Lemma $1, s_{u} \geq 3$. If $f(u v)=-1$, for some $u \in X$, then similarly we have $s_{u} \geq 1$. Thus we have the following:

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq 3\left(\frac{m-1}{2}\right)+\frac{m+1}{2}=2 m-1 .
$$

If $s_{v}<-1$, then $s_{v} \leq-3$. Now, by Lemma $1, s_{u} \geq 3$ for each $u \in X$. Therefore we find that,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq 3 m>2 m-1 .
$$

Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq \min (2 m-1, n)$. We now show that there are two SEDF f and g such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=2 m-1$ and $\sum_{e \in E\left(K_{m, n}\right)} g(e)=n$.

Define f and g as follows,

$$
f\left(u_{i} v_{j}\right)= \begin{cases}1 & \text { if } i+j \text { is odd } \\ 1 & \text { if } i=j \\ -1 & \text { otherwise }\end{cases}
$$

It is straightforward to verify that $s_{u_{i}}=3$, if i is even; and $s_{u_{i}}=1$, if i is odd. Also, we have,

$$
s_{v_{j}}= \begin{cases}3 & \text { if } j \text { is even and } j \leq m \\ 1 & \text { if } j \text { is odd and } j \leq m \\ 1 & \text { if } j \text { is even and } j>m \\ -1 & \text { if } j \text { is odd and } j>m\end{cases}
$$

Consequently, f is an SEDF, by lemma 1. Therefore,

$$
\gamma_{s}^{\prime}\left(K_{m, n}\right) \leq \sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=3\left(\frac{m-1}{2}\right)+\frac{m+1}{2}=2 m-1,
$$

as required.
Define g as follows:

$$
g\left(u_{i} v_{j}\right)= \begin{cases}1 & \text { if } i+j \text { is odd } \\ 1 & \text { if } j \text { is odd and } i=j \text { modulo }(m+1) \\ -1 & \text { otherwise }\end{cases}
$$

It is not hard to see that for any $u \in X, s_{u} \geq 1$ and for any $v \in Y, s_{v}=1$. Therefore g is an SEDF and $\gamma_{s}^{\prime}\left(K_{m, n}\right) \leq \sum_{e \in E\left(K_{m, n}\right)} g(e)=\sum_{v \in Y} s_{v}=n$.
(iii) Three cases may be considered:

Case 1. $n+1 \leq 2 m$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=2 m$. First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 2 m$. By contradiction suppose that there exists an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<$ $2 m$. Since $m \leq n$, we find that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<2 n$. Thus there exists a vertex $v \in Y$ such that $s_{v}<2$. On the other hand since s_{v} is even, $s_{v} \leq 0$. If $s_{v}=0$, then v is incident with $m / 2$ edges with value 1 and $m / 2$ edges with value -1 . If $f(u v)=1$, for some $u \in X$, then by Lemma 1 , we have, $s_{u} \geq 2$. Since s_{u} is odd we find $s_{u} \geq 3$. If $f(u v)=-1$, for some $u \in X$, then by a similar argument one can see that $s_{u} \geq 1$. Thus,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq 3 m / 2+m / 2=2 m,
$$

a contradiction. Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 2 m$.
If $s_{v}<0$, then $s_{v} \leq-2$. By Lemma for every $u \in X, s_{u} \geq 2$. Hence we obtain that,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq 2 m,
$$

a contradiction.
We now define an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=2 m$. Let $X_{1}=\left\{u_{1}, \ldots, u_{\frac{m}{2}}\right\}, X_{2}=$ $X-X_{1}, Y_{1}=\left\{v_{1}, \ldots, v_{\frac{n+1}{2}}\right\}$ and $Y_{2}=Y-Y_{1}$.

Now, define f as follows:

$$
f(e)= \begin{cases}1 & \text { if } e \text { meets } X_{1} \text { and } Y_{2} \\ 1 & \text { if } e \text { meets } X_{2} \text { and } Y_{1} \\ 1 & \text { if } e=u_{i} v_{i}, 1 \leq i \leq m / 2 \\ 1 & \text { if } e=u_{i} v_{j}, 1 \leq i \leq m / 2 \text { and } j=(i+m / 2) \text { modulo }(n+1) / 2 \\ -1 & \text { otherwise. }\end{cases}
$$

For each $u \in X_{1}$, we have $s_{u}=3$. For every $u \in X_{2}$, we have $s_{u}=1$. Also for each $v \in Y_{1}$, we have $s_{v} \geq 2$. For each $v \in Y_{2}, s_{v}=0$. By Lemma 1, it is not hard to see that f is an SEDF. Also we have,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=\frac{3 m}{2}+\frac{m}{2}=2 m .
$$

Case 2. $2 m<n+1 \leq 3 m$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=n+1$. First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq n+1$. By contradiction assume that there exists an SEDF, f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<n+1$. Since $n+1 \leq 3 m$, we have $\sum_{e \in E\left(K_{m, n}\right)} f(e)<3 m$. Therefore there exists a vertex $u \in X$ such that $s_{u}<3$. Since s_{u} is odd, $s_{u} \leq 1$. If $s_{u}=1$, then u is incident with $\frac{n+1}{2}$ edges with value 1 and $\frac{n-1}{2}$ edges with value -1 . If $f(u v)=1$, for some $v \in Y$, then by Lemma 1 , $s_{v} \geq 1$ and since s_{v} is even, we have $s_{v} \geq 2$. If $f(u v)=-1$, for some $v \in Y$, then one can see that $s_{v} \geq 0$. Hence,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v} \geq 2\left(\frac{n+1}{2}\right)=n+1
$$

which is a contradiction.
If $s_{u}<1$, then $s_{u} \leq-1$. By Lemma 1 , $s_{v} \geq 1$, for each $v \in Y$. Thus, $\sum_{e \in E\left(K_{m, n}\right)} f(e)=$ $\sum_{v \in Y} s_{v} \geq n$. Since the number of edges is even, $\sum_{e \in E\left(K_{m, n}\right)} f(e)$ is also even. Now, since n is odd, $\sum_{e \in E\left(K_{m, n}\right)} f(e) \geq n+1$, a contradiction. Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq n+1$.

We now define an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=n+1$. Let $X_{1}=$ $\left\{u_{1}, \ldots, u_{\frac{m}{2}}\right\}, X_{2}=X-X_{1}, Y_{1}=\left\{v_{1}, \ldots, v_{\frac{n+1}{2}}\right\}$ and $Y_{2}=Y-Y_{1}$. Let us define,

$$
f(e)= \begin{cases}1 & \text { if } e \text { meets } X_{1} \text { and } Y_{2} \\ 1 & \text { if } e \text { meets } X_{2} \text { and } Y_{1} \\ 1 & \text { if } e=u_{i} v_{j} \text { and } i=j \text { modulo } \frac{m}{2}, 1 \leq i \leq \frac{m}{2}, 1 \leq j \leq \frac{n+1}{2} \\ -1 & \text { otherwise. }\end{cases}
$$

It is straightforward to see that for each vertex $u \in X_{1}, s_{u} \geq 3$ and for each vertex $u \in X_{2}, s_{u}=1$. Also, for each $v \in Y_{1}, s_{v}=2$ and for each $v \in Y_{2}, s_{v}=0$. Thus we have,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v}=\frac{2(n+1)}{2}=n+1 .
$$

By Lemma $\mathbb{1}$ it can be easily seen that f is an SEDF.
Case 3. $3 m<n+1$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=3 m$. First we prove that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 3 m$. By contradiction assume that there exists an SEDF f such that $\gamma_{s}^{\prime}\left(K_{m, n}\right)<3 m$. Hence there exists a vertex $u \in X$ such that $s_{u}<3$. By a similar method as we saw in the proof of Case 2, we conclude that $\sum_{e \in E\left(K_{m, n}\right)} f(e) \geq n+1$, which contradicts the inequality $3 m<n+1$. Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 3 m$.

We now define an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=3 m$. Consider a partition of X such as X_{1} and X_{2}, each of them containing $m / 2$ vertices. Also suppose that Y_{1}, Y_{2} and Y_{3} is a partition of Y such that $\left|Y_{1}\right|=\left|Y_{2}\right|=\frac{n-3}{2}$ and $\left|Y_{3}\right|=3$. We define f as follows:

$$
f(e)= \begin{cases}-1 & \text { if } e \text { meets } X_{1} \text { and } Y_{1} \\ -1 & \text { if } e \text { meets } X_{2} \text { and } Y_{2} \\ 1 & \text { otherwise }\end{cases}
$$

Now, it can be easily seen that for any $u \in X, s_{u}=3$ and for any $v \in Y, s_{v} \geq 0$. By Lemma 1, f is an SEDF. Also we have,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=3 m .
$$

(iv) Three cases may be considered:

Case 1. $n \leq 2 m$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=2 m$. First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 2 m$. By contradiction suppose that f is an SEDF such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<2 m$. Thus, there exists a vertex $u \in X$ such that $s_{u}<2$. Since s_{u} is even, $s_{u} \leq 0$. If $s_{u}=0$, then $\frac{n}{2}$ edges incident with u have value 1 and other $\frac{n}{2}$ edges have value -1 . If $f(u v)=1$, for some $v \in Y$, then by Lemma $1, s_{v} \geq 2$ and since s_{v} is odd, we have $s_{v} \geq 3$. If $f(u v)=-1$, then we have $s_{v} \geq 1$. Therefore,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v} \geq 3 n / 2+n / 2=2 n>2 m,
$$

a contradiction.
Now, assume that $s_{u}<0$. Thus $s_{u} \leq-2$. By Lemma $1, s_{v} \geq 2$, for any $v \in Y$. Therefore,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{v \in Y} s_{v} \geq 2 n>2 m,
$$

a contradiction. Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq 2 m$.
We now define an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=2 m$. We know that all edges of $K_{m, n}$ can be decomposed into $K_{m, m}$ and $K_{n-m, m}$. Note that m and $n-m$ are odd and $n-m \leq m$. By Part (ii) there exists an SEDF, g_{1}, for $K_{m, m}$ such that $\sum_{e \in E\left(K_{m, m}\right)} g_{1}(e)=m$ and for each vertex $x, s_{x}=1$. Also there exists an SEDF, say g_{2}, for $K_{n-m, m}$ such that $\sum_{e \in E\left(K_{n-m, m)}\right)} g_{2}(e)=m$ and for every vertex $u \in X, s_{u}=1$ and for other vertex $v, s_{v} \geq 1$. Now, define an SEDF, say f, for $K_{m, n}$ such that for each $e \in E\left(K_{m, m}\right), f(e)=g_{1}(e)$ and for every $e \in E\left(K_{n-m, m}\right), f(e)=g_{2}(e)$. Now, for every $u \in X$, we have $s_{u}=2$ and for each $v \in Y$, we have $s_{v} \geq 1$. By Lemma 1 f is an SEDF and moreover we find,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{e \in E\left(K_{m, m}\right)} g_{1}(e)+\sum_{e \in E\left(K_{n-m, m}\right)} g_{2}(e)=m+m=2 m .
$$

Case 2. $2 m<n \leq 3 m-1$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=n$. First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq$ n. By contradiction assume that f is an SEDF and $\sum_{e \in E\left(K_{m, n}\right)} f(e)<n$. This implies that there exists a vertex $v \in Y$ such that $s_{v}<1$. Since s_{v} is odd, we have $s_{v} \leq-1$. If $s_{v}=-1$, then v is incident with $\frac{m-1}{2}$ edges with value 1 and $\frac{m+1}{2}$ edges with value -1 . If
$f(u v)=1$, for some $u \in X$, then by Lemma $1, s_{u} \geq 3$. Now, since s_{u} is even, $s_{u} \geq 4$. If $f(u v)=-1$, then we conclude that $s_{u} \geq 2$. Thus,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq \frac{4(m-1)}{2}+\frac{2(m+1)}{2}=3 m-1 \geq n,
$$

a contradiction.
If $s_{v}<-1$, then $s_{v} \leq-3$. By Lemman for every $u \in X, s_{u} \geq 3$. Hence we obtain,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u} \geq 3 m>n,
$$

a contradiction. Hence $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq n$.
By a similar argument as we did in the Case 1 , we may find an SEDF, say f, for $K_{m, n}$ such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=m+(n-m)=n$, as desired.

Case 3. $3 m-1<n$. We claim that $\gamma_{s}^{\prime}\left(K_{m, n}\right)=3 m-1$. First we show that $\gamma_{s}^{\prime}\left(K_{m, n}\right) \geq$ $3 m-1$. By contradiction assume that f is an SEDF such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)<3 m-1$. Since $3 m-1<n$, there exists a vertex $v \in Y$ such that $s_{v}<1$. Now, by a similar argument as we did in Case 2, one can see that $\sum_{e \in E\left(K_{m, n}\right)} f(e) \geq 3 m-1$, a contradiction.

We now define an SEDF, say f, such that $\sum_{e \in E\left(K_{m, n}\right)} f(e)=3 m-1$. Consider a partition of X into two subsets X_{1} and X_{2} such that $\left|X_{1}\right|=\frac{m+1}{2}$ and $\left|X_{2}\right|=\frac{m-1}{2}$. Also consider a partition of Y such as Y_{1}, Y_{2} and Y_{3} such that $\left|Y_{1}\right|=\frac{3 m+3}{2},\left|Y_{2}\right|=\frac{n}{2}-2$, $\left|Y_{3}\right|=\frac{n-(3 m-1)}{2}$. Let $X_{1}=\left\{u_{1}, \ldots, u_{\frac{m+1}{2}}\right\}, Y_{1}=\left\{v_{1}, \ldots, v_{\frac{3 m+3}{2}}\right\}$. Define f as follows:

$$
f(e)= \begin{cases}1 & \text { if e meets } X_{1} \text { and } Y_{2} \\ 1 & \text { if e meets } X_{2} \text { and } Y_{1} \\ 1 & \text { if e meets } X_{2} \text { and } Y_{3} \\ 1 & e=u_{i} v_{j}, 1 \leq i \leq \frac{m+1}{2} \text { and } j \in\{3 i-2,3 i-1,3 i\} \\ -1 & \text { otherwise. }\end{cases}
$$

One can easily see that for any $u \in X_{1}, s_{u}=2$, and for any $u \in X_{2}, s_{u}=4$. Also we have,

$$
s_{v}= \begin{cases}1 & v \in Y_{1} \cup Y_{2} \\ -1 & v \in Y_{3} .\end{cases}
$$

Now, Lemma 1 implies that f is an SEDF.
Also, we have,

$$
\sum_{e \in E\left(K_{m, n}\right)} f(e)=\sum_{u \in X} s_{u}=\frac{2(m+1)}{2}+\frac{4(m-1)}{2}=3 m-1 .
$$

Acknowledgment. The research of the first author was supported by a grant from IPM (No. 86050212).

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, North-Holland, 1976.
[2] B. Xu, Two classes of edge domination in graphs, Disc. Appl. Math. 154 (2006), No. 10, 1541-1546.
[3] B. Xu, On edge domination numbers of graphs, Disc. Math. 294 (2005), No. 3, 311-316.
[4] B. Xu, On signed edge domination numbers of graphs, Disc. Math. 239 (2001) 179-189.
[5] B. Zelinka, On signed edge domination numbers of trees, Math. Bohem. 127 (2002), no. 1, 49-55.
[6] Z. Zhang, B. Xu, Y. Li, L. Liu, A note on the lower bounds of signed edge domination number of a graph, Discrete Math. 195 (1999), No. 1-3, 295-298

SAIEED AKBARI s_akbari@sharif.edu

Institute for Studies in Theoretical Physics and Mathematics,
P. O. Box 19395-5746, Tehran, Iran

Department of Mathematical Sciences
Sharif University of Technology
P. O. Box 11365-9415, Tehran, Iran.

Pooya Hatami p_hatami@ce.sharif.edu
SADEGH Bolouki saadegh@ee.sharif.edu
Milad Siami miladsiami@ee.sharif.edu
Department of Electrical Engineering
Sharif University of Technology
Tehran, Iran.

[^0]: *Key Words: Signed edge domination number, m-connected, complete bipartite graph.
 ${ }^{\dagger} 2000$ Mathematics Subject Classification: 05C69, 05C78.

