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Abstract

We introduce the concept of an edge-colouring total k-labelling. This is a labelling
of the vertices and the edges of a graph G with labels 1, 2, . . . , k such that the weights
of the edges define a proper edge colouring of G. Here the weight of an edge is
the sum of its label and the labels of its two endvertices. We define χ′

t(G) to be
the smallest integer k for which G has an edge-colouring total k-labelling. This
parameter has natural upper and lower bounds in terms of the maximum degree ∆
of G: ⌈(∆ + 1)/2⌉ ≤ χ′

t(G) ≤ ∆ + 1. We improve the upper bound by 1 for every
graph and prove a general upper bound of χ′

t(G) ≤ ∆/2 + O(
√

∆ log ∆). Moreover,
we investigate some special classes of graphs.

Keywords Edge colouring; total labelling; irregularity strength; discrepancy
MSC Classification 05C15; 05C78; 05D40

1 Introduction

For a graph G = (V (G), E(G)) an edge-colouring total k-labelling is a function f : V (G) ∪
E(G) → {1, 2, . . . , k} such that the weights of the edges defined by

w(uv) := f(u) + f(uv) + f(v)

form a proper edge colouring. The smallest integer k for which there exists an edge-
colouring total k-labelling is denoted by χ′

t(G).
A related concept which has recently received a lot of attention was proposed by

Karoński,  Luczak and Thomason [16]. They conjectured that the edges of every graph
G with no K2 component can be labeled with labels 1, 2, 3 such that the sums of the edge
labels incident to the vertices of G define a proper vertex colouring. Addario-Berry, Dalal
and Reed [2] recently proved that the labels 1, 2, . . . , 16 are always sufficient, i.e. every

∗Technische Universität Ilmenau, Fak. Mathematik & Naturwissenschaften, TU Ilmenau, Post-
fach 100565, 98684 Ilmenau, Germany, e-mail: {stephan.brandt, dieter.rautenbach,michael.stiebitz}@tu-
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graph with no K2 component has a vertex-colouring edge 16-labelling (cf. also [1, 3]). A
total version of vertex-colouring labellings was discussed by Przyby lo and Woźniak who
proved [19] by similar methods as in [2] that every graph has a vertex-colouring total
11-labelling and conjecture that 2 labels are enough.

The vertex-colouring edge labellings can be considered a relaxation of the well-known
irregularity strength of graphs [10, 4, 18, 14] where the label sums for all vertices are
required to be different. Similarly, the edge-colouring total labellings which we study
here can be considered a relaxation of edge-irregular total labellings introduced by Bača,
Jendrol’, Miller, and Ryan [6], where the weights of all edges are required to be different.
The total edge irregularity strength tes(G) is defined as the smallest integer k for which a
graph G has an edge-irregular total k-labelling. A simple lower bound is

tes(G) ≥ max

{⌈ |E(G)| + 2

3

⌉

,

⌈

∆(G) + 1

2

⌉}

.

and Ivančo and Jendrol’ [15] conjectured that this bound is attained for all graphs except
K5. Brandt, Mǐskuf, and Rautenbach [8, 9] recently proved that this is true for graphs
whose size is at least 111000 times their maximum degree.

Let us return to the edge-colouring total k-labellings and the corresponding graph param-
eter χ′

t(G) which has natural upper and lower bounds in terms of the maximum degree ∆
of G. Obviously,

χ′
t(G) ≤ ∆ + 1

by Vizing’s Theorem [20], since a proper edge colouring together with a constant labelling of
the vertices defines an edge-colouring total labelling of G. Furthermore, since the possible
weights of the edges incident with a vertex v of maximum degree ∆ in an edge-colouring
k-labelling f are f(v) + {2, 3, . . . , 2k}, we get a lower bound of

χ′
t(G) ≥

⌈

∆ + 1

2

⌉

.

The following is our main result whose proof we postpone to Section 3.

Theorem 1.1 If G is a graph of maximum degree ∆, then

χ′
t(G) ≤

⌊

1

2

(

∆ +
⌊

√

2∆(1 + ln(2∆2 − 2∆ + 2))
⌋)

⌋

+ 1 = ∆/2 + O(
√

∆ log ∆).

Before we proceed to Section 2 where we study χ′
t(G) for some special graphs, we show

how to reduce the upper bound by one for every graph and relate χ′
t(G) to the chromatic

index. The next result already illustrates our general approach which is to combine edge
colouring methods with suitable partitions of the vertex set.

Theorem 1.2 If G is a graph of maximum degree ∆, then χ′
t(G) ≤ ∆
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Proof: Let c : E(G) → {1, 2, . . . , ∆ + 1} be a proper edge colouring of G which exists
by Vizing’s Theorem [20]. Since the subgraph containing the edges coloured ∆ and ∆ + 1
consists of paths and even cycles, it is bipartite. Fix a bipartition A∪B of V (G) such that
all edges with colours ∆ and ∆ + 1 have one endvertex in A and the other endvertex in B.

Assign to all vertices of A the label 1 and to all vertices of B the label ∆. Assign label
c(e) to all edges between vertices of A and label c(e) + 1 to all edges between vertices of
B. Finally, determine the labels of the edges in the bipartite graph spanned by the edges
between A and B by a proper ∆-edge colouring c′.

The edges joining vertices of A receive weights between 3 and (∆− 1) + 1 + 1 = ∆ + 1,
the edges joining A to B receive weights between ∆ + 2 and 2∆ + 1, and the edges joining
vertices of B receive weights between 2∆ + 2 and 3∆. Since these weights form proper
edge colourings inside and between the sets, they form a proper edge colouring of the entire
graph. �

The upper bound χ′
t(G) ≤ ∆ can only be tight for small values of ∆. From Theorem 1.1

follows that for ∆ ≥ 19 we have χ′
t(G) < ∆, and, in fact, with a more refined reasoning

along the same lines the threshold can be reduced to ∆ ≥ 14. We are not aware of any
graph with ∆ > 3 and χ′

t(G) = ∆.
Next we show that an edge-colouring total k-labelling gives rise to a proper edge

colouring with 2k − 1 colours. Conversely, this means that for every type II graph (i.e.

χ′(G) = ∆(G) + 1) we have χ′
t(G) > ∆(G)+1

2
.

Lemma 1.3 If χ′
t(G) = k for a graph G, then χ′(G) ≤ 2k − 1.

Proof: Consider an edge-colouring total k-labelling f of G. Note that for l ≤ k + 1 the
edges of weights l and l + 2k − 1 cannot have a common endvertex and therefore form a
matching. Thus we can decompose the edge set into 2k − 1 matchings: k − 1 matchings
with the edges of weight l and l + 2k−1 for 3 ≤ l ≤ k + 1, and k matchings with the edges
of weight l for k + 2 ≤ l ≤ 2k + 1. �

2 Special classes of graphs

If G is a graph of maximum degree ∆ = 1, then χ′
t(G) = 1. If ∆ = 2, then χ′

t(G) = 2 by
Theorem 1.2. Similarly, if ∆(G) = 3, then 2 ≤ χ′

t(G) ≤ 3. In our first result we charaterize
cubic graphs with χ′

t(G) = 2.

Theorem 2.1 A cubic graph G satisfies χ′
t(G) = 2 if and only if its vertex set can be

partitioned into two parts A and B that induce perfect matchings.

Proof: Let f be an edge-colouring total 2-labelling of a cubic graph G. For every vertex
v ∈ V (G) the three edges incident with v must receive the weights 3, 4, 5, if f(v) = 1, and
the weights 4, 5, 6, if f(v) = 2. The edges of weight 3 and weight 6 join two vertices with
the same label.
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If f(v) = 1, then the other endvertex of the edge of weight 5 incident with v has label
2. So there are at least as many vertices with label 2 as with label 1. Conversely, for
f(v) = 2 the edge of weight 4 incident to v has its other endvertex labelled 1. So there
are at least as many vertices labelled 1 as with label 2. Together, there are equally many
vertices labelled 1 and 2 and the edges of weights 4 and 5 form a 2-regular graph joining
vertices of label 1 to vertices of label 2. Therefore, G has the indicated structure.

Conversely, if G has the indicated structure, then |A| = |B|. We assign label 1 to the
vertices and edges in A and label 2 to the vertices and edges in B. Labelling the edges of
the 2-regular bipartite graph between A and B by 1 and 2 according to a proper 2-edge
colouring results is an edge-colouring total 2-labelling. �

It is an easy observation that the lower bound is tight for forests.

Theorem 2.2 If F is a forest of maximum degree ∆, then χ′
t(F ) = ⌈∆+1

2
⌉.

Proof: We prove the stronger statement that an edge-colouring total labelling exists using
only two vertex labels 1 and k = ⌈∆+1

2
⌉. Obviously, it suffices to prove the statement for

the tree components.
We proceed by induction on the number of vertices n. The statement is true for n ≤ 2

so assume n ≥ 3. Let vw be an edge such that v has degree at least 2 and all neighbours
of v except possibly w are leaves. Note that such an edge vw exists. Delete all neighbours
of v except w to obtain a tree T ′, which by induction has the required total labelling. Now
label the deleted vertices with 1 and k such that at most d(v)+1

2
of the neighbours of v

(including the already labelled vertex w) have the same label. Now the remaining edges
can be easily labelled such that all edges incident with v have different weights. �

Next, we consider edge-colouring total labellings of complete graphs. In a graph G with a
given edge colouring a rainbow (perfect) matching is a (perfect) matching, where all edges
are of different colour. We need a lemma on rainbow matchings in the proof of our next
result.

Lemma 2.3 (a) Every complete bipartite graph Kk,k has a proper k-edge colouring with
a rainbow perfect matching if k is odd, and a rainbow matching of cardinality k − 1
if k is even.

(b) Every complete graph K2k of even order has a proper (2k − 1)-edge colouring with a
rainbow perfect matching unless k = 2.

Proof:

(a) Let u1, . . . , uk and w1, . . . , wk be the vertices on both sides of the bipartition. Define
a proper edge colouring of G by assigning the colour ℓ ∈ {1, . . . , k} to the edge uiwj,
if j − i ≡ ℓ mod k. Now let a and b be the largest even and odd integer < k

2
+ 1,

respectively. Choose a maching M consisting of the edges uiwa+1−i for 1 ≤ i ≤ a and
ua+iwa+b+1−i for 1 ≤ i ≤ b. This is a rainbow matching of cardinality a + b = k − 1,
if k is even and a rainbow perfect matching, if k is odd.
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(b) Let u0, u1, . . . , u2k−1 be the vertices of K2k. First assume that k is odd. Take as the
first colour class of edges the perfect matching M0 consisting of the edges uiu2k−i−1

for 0 ≤ i ≤ k − 1. The remaining colour classes are obtained as follows: Embed
the vertices of K2k in the plane such that u1, u2, . . . , u2k−1 form the vertices of a
regular (2k−1)-gon with center u0. Rotating M0 by an angle of 2π

2k−1
a total number

of 2k − 2 times defines 2k − 2 further perfect matchings (cf. Figure 1). Since the
geometric lengths of all edges in one matching are different, this defines a proper edge-
colouring of K2k for which the matching u0u2k−1, u1u2, . . . , u2k−3u2k−2 is a rainbow
perfect matching.

Next, assume that k is even. Here we choose as the first colour class of edges the
perfect matching M0 consisting of the edges uiu2k−i−1 for 0 ≤ i < k

4
, uiu2k−i−2 for

k
4
≤ i < 3

4
k − 1, uiu2k−i−3 for 3

4
k − 1 ≤ i < k − 1, and the additional edge uiui+ k

2

for

i = ⌊5
4
k⌋ − 1. Again, the remaining 2k − 2 colour classes are obtained by embedding

the vertices of K2k and rotating M0 as before (cf. Figure 1). Again the matching
u0u2k−1, u1u2, . . . , u2k−3u2k−2 is a rainbow perfect matching.

�

0

7

5 2

16

4 3

Figure 1

In a graph with a total labelling we denote the set of vertices with label i by Vi.

Theorem 2.4 If n 6≡ 2 mod 4, then χ′
t(Kn) = ⌈n

2
⌉ and if n ≡ 2 mod 4, then χ′

t(Kn) ≤
n
2

+ 1.

Proof: In view of the lower bound it suffices to describe suitable labellings of the complete
graph.

First assume that n ≡ 0 mod 4. Label half the vertices by 1 and the other half by
k = n

2
. Determine a proper edge colouring of the edges in V1 with labels 1, . . . , k − 1, a

proper edge colouring of the edges in Vk with labels 2, . . . , k, and a proper edge colouring
of the edges joining V1 to Vk with labels 1, . . . , k. It is now easy to verify, that this is an
edge-colouring total k-labelling. Note that this also implies the result for n ≡ 3 mod 4 and
n ≡ 2 mod 4 by considering edge-colouring total labellings of complete graphs of order
n + 1 and n + 2, respectively.
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Therefore, only the case n ≡ 1 mod 4 remains.
Label n−1

2
= k − 1 vertices by label 1 and k, respectively, and the remaining vertex v

by k+1
2

. Let u k+1

2
+2, . . . , u k+1

2
+k denote the vertices of V1 and w k+1

2
+k+2, . . . , w k+1

2
+2k be the

vertices of Vk. Label the edges from v to ui with i − k+1
2

− 1 and the edges v to wj with
j − k+1

2
− k. Note that each vertex ui and wj is joined to v by an edge of weight i and j,

respectively.
It remains to show that we can find an edge labelling of the edges not incident with v,

such that the labels form a proper edge colouring of the remaining graph and the weight
of each edge is different from the indices of its endvertices. The edges inside V1 will obtain
the weights 3, . . . , k + 1, inside Vk the weights 2k + 2, . . . , 3k, and the edges between V1

and Vk will obtain weights k + 2, . . . , 2k + 1.
By Lemma 2.3 (b) we know that the complete graph Kk−1 induced by V1 has a proper

(k − 2)-edge colouring c which has a rainbow perfect matching. Let {2, . . . , k − 1} be the
colours of the colouring and let {k−1

2
+1, . . . , k−1} be the colours occurring in the rainbow

perfect matching M . Assign the indices in such a way that the vertex ui of index i is
incident with the edge of colour i − 2 in the rainbow matching for k+1

2
+ 2 ≤ i ≤ k + 1.

Finally, recolour the edges of the rainbow perfect matching M with colour 1 and take the
colours of this new colouring c′ as the labels of the edges inside V1. Note that this edge
labelling has the desired property that ui is not joined to a vertex in V1 by an edge of
weight i. Along the same line of argument we obtain a labelling of the edges inside Vk

with labels {2, . . . , k} such that each vertex wj is not joined to a vertex in Vk by an edge
of weight j.

Finally, we need to label the edges in the bipartite graph spanned by the (V1, Vk)-edges.
This graph is isomorphic to Kk−1,k−1, where k − 1 ≡ 0 mod 2. By Lemma 2.3 (a) this
graph has a proper (k − 1)-edge colouring using the colours {1, . . . , k − 1} with a rainbow
matching M of cardinality k − 2 that avoids the colour k−1

2
. Assign the indices in such a

way that ui is incident with the edge of M of weight i− k − 1 for k ≤ i ≤ k+1
2

+ k, and wj

is incident with the edge of M of weight j − k − 1 for k+1
2

+ k + 2 ≤ j ≤ 2k. Moreover,
let w2k+1 be the vertex in Vk that is not incident with an edge of M . Now recolour the
edges of M with colour k to obtain a new colouring, which we use as the labelling of the
(V1, Vk) edges. By the construction it is easy to verify that the result is an edge-colouring
total k-edge labelling. �

We conclude this section with some further results concerning the case n ≡ 2 mod 4 which
might eventually allow to determine for which n ≡ 2 mod 4, χ′

t(Kn) = ∆+1
2

holds, and for
which χ′

t(Kn) = ∆+1
2

+ 1. We can show that the second equality holds for 6 ≤ n ≤ 22. At
the same time our result describes the distribution of the labels in some detail if the first
equality holds.

Lemma 2.5 Let Kn be a complete graph with k = χ′
t(Kn) = n

2
. If Vi denotes the set of

vertices labelled i in an edge-colouring total k-labelling of Kn, then the cardinality of each
set Vi is even, |Vi| = |Vk−i+1| and |Vi| ≤ |V1| = |Vk| for i = 1, . . . , k. The edges of weight
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k + 2 have label 1 and the edges of weight 2k + 1 have label k. Moreover, if n ≡ 2 mod 4
then 6 ≤ |V k+1

2

| ≡ 2 mod 4.

Proof: Since k = ∆+1
2

, each vertex v ∈ Vi is incident with an edge of weight i + ℓ for
2 ≤ ℓ ≤ 2k. For 2 ≤ i ≤ k the edges of weight i + 2 form a matching between Vi and
V1 and hence |Vi| ≤ |V1|. Similarly, each vertex v ∈ Vj is incident with an edge of weight
j + 2k and for 1 ≤ j ≤ k − 1 these edges form a matching between Vj and Vk, implying
|Vj| ≤ |Vk|. Since the inequalities hold for i = k and j = 1, we obtain |V1| = |Vk|.

Next we show that each of the sets Vi has even cardinality. This is true for V1, since the
edges of weight 3 form a perfect matching between the vertices in V1. Now consider the
vertex set Ui = V1 ∪ V2 ∪ . . . ∪ Vi. Since the edges of weight i + 2 form a perfect matching
of Ui, and, by induction, Ui−1 has even cardinality, the set Vi has even cardinality as well.

For i ≤ k+1
2

we prove by induction over i that the edges of weight 2k + 1 incident to a
vertex in Vi have their other endvertex in Vk−i+1, and the edges of weight k + 2 incident to
a vertex in Vk−i+1 have their other endvertex in Vi. In particular, |Vi| = |Vk−i+1| and the
edges of weight k + 2 and 2k + 1 have weight 1 and k, respectively.

The statement is true for i = 1, so assume that it is true for all indices < i. Let vw be
the edge of weight 2k + 1 that is incident to v ∈ Vi. Since the label of vw is at most k, the
vertex w has label s ≥ k − i + 1. If s > k − i + 1, then by induction the other endvertex
v of the edge of weight 2k + 1 incident to w has label t = k − s + 1 < i, contradicting
v ∈ Vi. Analogously, for the vertices of Vk−i+1 the other endvertex of the incident edge of
weight k + 2 lies in Vi. This completes the induction. If n ≡ 2 mod 4, then 6 ≤ |V k+1

2

| ≡ 2

mod 4, because of the parity conditions and since V k+1

2

has two disjoint perfect matchings

consisting of the edges of weight k + 2 and 2k + 1. �

Lemma 2.6 Every edge-colouring total (2p + 1)-labelling of K4p+2 for p ≥ 1 uses at least
5 different vertex labels.

Proof: For contradiction, we assume the existence of an edge-colouring total (2p + 1)-
labelling using less than 5 different vertex labels. By Lemma 2.5, this implies that it has
exactly 3 label classes V1, Vp+1, and V2p+1. Moreover |V2p+1| = |V1| ≥ |Vp+1| ≥ 6. We
know that all edges with weights 3, . . . , p+ 2 have both endvertices in V1 and for each such
weight value these edges form a perfect matching in V1. Furthermore, all edges of weight
p + 3, . . . , 2p + 2 incident with a vertex in Vp+1 have the other endvertex in V1, and, finally,
there is a perfect matching between V2p+1 and V1 of edges of weight 2p + 3.

Let n1 be the number of vertices in V1 and np+1 the number of vertices in Vp+1. Since
we have n1 =

n−np+1

2
for n = 4p + 2, there are exactly n1/2 edges in V1 of weight w for

each 3 ≤ w ≤ p + 2 and
n1−np+1

2
edges in V1 of weight w for each p + 3 ≤ w ≤ 2p + 2 and

no edges of weight ≥ 2p + 3. Altogether, there are at most

p
(n1

2

)

+ p

(

n1 − np+1

2

)

= p
(

n1 −
np+1

2

)
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edges in V1. Since 2n1 + np+1 = n = 4p + 2 we get p = 1
2
(n1 +

np+1

2
− 1) and

(

n1

2

)

≤
(

n1

2

)

− 1

2
n2

p+1 +
1

2
(n1 − n1 + 1)np+1,

which is a contradiction since np+1 ≥ 6 > 1. �

3 The general upper bound

Our goal in this section is to prove Theorem 1.1. In order to clarify our approach, we
present a number of intermediate results, some of which we think to be interesting on their
own right. The first is a consequence of Vizing’s Adjacency Lemma [21] (see also [13]). A
graph G = (V, E) of maximum degree ∆ is called critical if χ′(G) = ∆+1 but χ′(G−e) = ∆
for all e ∈ E.

Lemma 3.1 (Vizing’s Adjacency Lemma [21]) Let G = (V, E) be a critical graph
with maximum degree ∆ and χ′(G) = ∆ + 1. If uv ∈ E then u is adjacent to at least
max{2, ∆ − dG(v) + 1} many vertices of maximum degree.

Proposition 3.2 Every graph G with maximum degree ∆ has a proper (∆+1)-edge colour-
ing such that no edge of colour ∆ + 1 is incident with a vertex of degree less than ∆.

Proof: We apply induction on m := |E(G)|. If G has a proper ∆-edge colouring, then the
statement is vacuously true. Note that this already implies the result for m ≤ 2. Therefore,
we assume now that m ≥ 3 and that χ′(G) = ∆ + 1.

It follows from Lemma 3.1 applied to a critical subgraph of G and a vertex u of maximum
degree, that a neighbour w of u has maximum degree as well. By induction, G− uw has a
proper (∆ + 1)-edge colouring such that no edge of colour ∆ + 1 is incident to a vertex of
degree less than ∆. Therefore, assigning the colour ∆+1 to the edge uw yields the desired
colouring. �

The construction in the next result relies on a suitable partition of the vertex set.

Theorem 3.3 If G is a graph of maximum degree ∆ whose vertex set has a partition
V (G) = A∪B such that every vertex has at most k− 1 neighbours in A and at most k− 1
neighbours in B for some k with k − 1 > ∆

2
, then χ′

t(G) ≤ k.

Proof: Let V (G) = A∪B be a partition as in the statement. Label the vertices of A with
1 and the vertices of B with k.

By Proposition 3.2, G[A] has a proper k-edge colouring that avoids colour k at the
vertices of degree dG[A](v) < k − 1. Similarly, G[B] has a proper k-edge colouring that
avoids colour 1 at the vertices of degree dG[B](v) < k − 1. We choose these edge colourings
as the labellings of the edges in A and B, respectively. Let A′ denote the set of vertices in

8



A incident with an edge labelled k and let B′ denote the set of vertices in B incident with
an edge labelled 1.

It remains to label the edges between A and B. Let G(A, B) denote the bipartite
spanning subgraph of G of maximum degree at most k − 1 containing all edges between
A and B. Considering a perfect matching in a bipartite (k − 1)-regular supergraph of
G(A, B), it follows that G(A, B) has a minimal matching M that saturates all vertices v
with dG(A,B)(v) = k − 1. Note that by the minimality requirement, M does not contain an
(A′, B′)-edge, since for each vertex in u ∈ A′ ∪ B′ we have dG(A,B)(u) ≤ ∆(G) − (k − 1) <
k − 1. We label the edges of M with one endvertex in A′ with k and the remaining edges
with 1. Now G(A, B) − M has maximum degree ≤ k − 2 and hence has a proper (k − 2)-
edge colouring with colours 2, 3, . . . , k − 1 which we use as the labelling for the edges. It
is easy to verify that the edge weights defined by this total k-labelling form a proper edge
colouring of G. �

Our next goal is to find a partition as in Theorem 3.3 for some k close to ∆/2. We do this
using the probabilistic method via a discrepancy argument: For a graph G we consider the
discrepancy disc(G) defined as follows:

disc(G) := min
g:V (G)→{−1,1}

max
u∈V (G)

∣

∣

∣

∣

∣

∣

∑

v∈NG(u)

g(u)

∣

∣

∣

∣

∣

∣

.

Note that disc(G) corresponds to the ordinary discrepancy of the hypergraph on the ground
set V (G) whose hyperedges are the neighbourhoods of vertices in G.

Together with Theorem 3.3 we obtain.

Corollary 3.4 If G is a graph of maximum degree ∆, then

χt(G) ≤ ∆ + disc(G)

2
+ 1.

Proof: Let g : V (G) → {−1, 1} be such that disc(G) = max
u∈V (G)

∣

∣

∣

∑

v∈NG(u) g(u)
∣

∣

∣
. Let

A = g−1(1) and B = g−1(−1). For u ∈ V (G) let dA(u) = {v ∈ NG(u) | g(v) = 1} and
dB(u) = {v ∈ NG(u) | g(v) = −1}. Since |dA(u)−dB(u)| ≤ disc(G) and dA(u)+dB(u) ≤ ∆,

we have max{dA(u), dB(u)} ≤ ∆+disc(G)
2

for every u ∈ V (G) and Theorem 3.3 implies the
desired result. �

In order to bound the discrepancy we combine Chernoff’s inequality with the Lovász Local
Lemma.

Lemma 3.5 (Chernoff’s inequality [11], see also [5]) Let X1, . . . , Xn be mutually in-
dependent random variables with P(Xi = 1) = P(Xi = −1) = 1

2
. Then for S =

X1 + . . . + Xn and δ > 0 we get P(|S| > δ) < 2 exp
(

−δ2

2n

)

.

9



Lemma 3.6 (Lovász Local Lemma [12], see also [5]) Let A1, A2, . . . , An be events in
an arbitrary probability space. Let P(Ai) ≤ p and let Ai be mutually independent of all
but at most d ≥ 2 of the events Aj with j 6= i for each 1 ≤ i ≤ n. If ep(d + 1) ≤ 1, then
P

(
∧n

i=1 Ai

)

> 0, i.e. with positive probability none of the events Ai occurs.

Proposition 3.7 If G is a graph of maximum degree ∆, then

disc(G) ≤
⌊

√

2∆(1 + ln(2∆2 − 2∆ + 2))
⌋

.

Proof: We consider a random function g : V (G) → {−1, 1} where all values g(v) are 1
independently at random with probability 1/2.

For some δ > 0 and u ∈ V (G) consider the event Au:
∣

∣

∣

∑

v∈NG(u) g(u)
∣

∣

∣
> δ. By

Chernoff’s inequality,

P (Au) ≤ 2 exp

( −δ2

2dG(u)

)

≤ 2 exp

(−δ2

2∆

)

.

The events Au and Av are dependent only if there is a path of length exactly two between
u and v. Therefore, Au is independent of all but at most ∆(∆ − 1) many events Av with
v 6= u. For δ :=

√

2∆(1 + ln(2∆2 − 2∆ + 2)) we obtain

2 exp

(

1 − δ2

2∆

)

(∆(∆ − 1) + 1) = 1

and the Lovász Local Lemma implies the existence of a function g : V (G) → {−1, 1} with
∣

∣

∣

∑

v∈NG(u) g(u)
∣

∣

∣
≤ δ for all u ∈ V (G). �

Proof of Theorem 1.1: The result follows immediately from Corollary 3.4 and Proposi-
tion 3.7. �

4 Concluding remarks

The upper bound O(
√

∆ log ∆) for the discrepancy of a ∆-regular graph is not far from
being best possible. This is due to the fact, that there are graphs with discrepancy Ω(

√
∆).

The Paley graphs for example form an infinite sequence of graphs with ∆ = n−1
2

and

discrepancy Ω(
√

∆) by a result of Lovász and Sós (see [17, Theorem 4.5]). Conversely,
the Beck-Fiala Conjecture (see [17]) says that the vertices of every hypergraph where
each vertex belongs to at most ∆ hyperedges has discrepancy O(

√
∆). If the Beck-Fiala

Conjecture — or its restriction to ∆-regular, ∆-uniform hypergraphs — is true then we
can improve the upper bound in Theorem 1.1 with the same reasoning to

χ′
t(G) ≤ ∆ + 1

2
+ O(

√
∆). (1)
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On the other hand, if, like in most of our explicit labellings, the typical total k-labellings
use on the vertices almost only the labels 1 and k, then the reduced upper bound in the
formula above is tight in view of the Paley graphs.

So the main open question in this context might be the following:

Problem 4.1 Is there a constant K with

χ′
t(G) ≤ ∆ + 1

2
+ K (2)

for all graphs G of maximum degree ∆?

Surely there are further options except (1) and (2). Indications could be obtained from an
answer to the question whether all graphs G have an edge-colouring total χ′

t(G)-labelling
with only few vertex labels.

In view of the graphs where we know the exact value of χ′
t(G), the constant K must

be at least 1. With K = 1 the bound (2) is attained with equality e.g. for cubic snarks
and K4k+2 for 1 ≤ k ≤ 5. For even ∆ we are not aware of any graph with χ′

t(G) > ⌈∆+1
2

⌉.
One first question in this direction is whether χ′

t(G) = 3 for all graphs with ∆ = 4. As
a potential candidate for the general problem we checked the unique Paley graph on 17
vertices (∆ = 8), which is at the same time the (4, 4)-Ramsey graph, with a computer
program, that came up with an edge-colouring total 5-labelling.
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[14] A. Frieze, R.J. Gould, M. Karoński, and F. Pfender, On graph irregularity strength,
J. Graph Theory 41 (2002), 120-137.
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