A MULTIPLY INTERSECTING ERD OS-KO-RADO THEOREM
— THE PRINCIPAL CASE

NORIHIDE TOKUSHIGE

ABSTRACT. Letm(n,k,r,t) be the maximum size of C ([E]) satisfying|F1N---NF| >t
forall F,..., R € %. We prove that for everp € (0, 1) there is someg such that, for all
r>roandallt with 1<t < |(pt~"—p)/(1— p)] —r, there existsp so that ifn > ny and
p= k/n, thenm(n,k,r,t) = (;_1). The upper bound faris tight for fixed p andr.

1. INTRODUCTION

Let n,k,r andt be positive integers, and I@t] = {1,2,....n}. A family ¢ c 2" is
calledr-wiset-intersecting if G1N---NG;| >t holds for allGy,...,G; € 4. Let us define
a typicalr-wise t-intersecting family% (n,r,t) and itsk-uniform subfamily.Z;(n,k,r,t),
where 0<i < |2 |, as follows:

G(nrt)={Gc[n:|GNt+ri]|>t+(r—1)il,
Zi(nk,r,t) =%(n,r,t)N ([E}).

Two families®, %’ c 2" are said to be isomorphic, and denotedébsE ¢, if there exists
a vertex permutatiom on [n] such that?’ = {{1(g) :g€ G} : Ge ¥}.

Let m(n,k,r,t) be the maximum size df-uniform r-wise t-intersecting families om
vertices. To determinen(n,k,r,t) is one of the oldest problems in extremal set theory,
which is still widely open. The case= 2 was observed by Eés$, Ko and Rado [6],
Frankl [9], Wilson [29], and them(n,k,2,t) = max |.%;(n,k, 2,t)| was finally proved by
Ahlswede and Khachatrian [2]. Frankl [8] showedn,k,r,1) = |Zo(n,k,r,1)| if (r —

1)n > rk. Partial results for the cases> 3 andt > 2 are found in [12, 14, 22, 23, 24, 25,
26, 28]. All known results suggest

m(n,k,r,t) = miax]%(n,k, rt)).
In this paper, we will consider the principal case, namely, the case when the maximum is
attained byZp(n,k,r,t). For fixedp=k/n € (0,1), r andt, a computation shows that
lim |Z1(nkrt)|/|[Fo(nk )| <1iff1 <t < (p —p)/(1-p)—r=itpr. (1)
To consider the interval fdrincluding{1,2,..., [tp,]} let us defineTy, (> tp) by

Tor = P "/(1—p) —logr. 2)
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Then we can state a generalized &3dKo—Rado theorem forwiset-intersecting families
as follows.

Theorem 1. For all p € (0,1) there exists ¢ such that the following holds. For all® rq
and allt withl <t < T, there exist positive constargsng such that

m(n,k,r,t) = max{|-Zo(n,k,r,t)|, | Z1(nkrt)|}

holds for all n> ng and k with\'ﬁ( — p| < €. Moreover,.Zp(n,k,r,t) and.Z1(n,k,r,t) are
the only optimal families (up to isomorphism).

Now we introduce thg-weight version of the Efts—Ko—Rado theorem. Throughout
this paperp andq = 1 — p denote positive real numbers. ForC [n] and a family? c 2%
we define thep-weight of¥, denoted bywp(¢ : X), as follows:

IX] _ _
Wp(¥4 : X) = plClgXI=Iel = S |&7 ()| plgXI-.
: 2, i;\ )|

We simply writewp (%) for the caseX = [n]; for example, we havev,(2) = 1 and
Wp(%(n,r,t)) = p'. A direct computation shows that tipeweight of% (n,r,t) is indepen-
dentofnforn>t—+ri. So let

gi(pv rat) = Wp(gi(nv rat))'

Letw(n, p,r,t) be the maximunp-weight ofr-wiset-intersecting families on vertices.
It might be natural to expect

w(n, p,r,t) = maxwp(%(n,r,t)) = maxgi(p,r,t).
| |

Ahlswede and Khachatrian proved that this is truerfer 2 in [3] (cf. [5, 7, 22]). This
includes the Katona theorem [18] abau(in, 1/2,2,t). It is shown in [13] that

w(n,p,r,1) = pforp<(r—1)/r. 3)

We can check thajo(p,r,t) > g1(p,r,t) iff 1 <t <tp, cf. (1). In[11], Frankl considered
the casep = 1/2 and provedv(n, p,r,t) = p' for L <t <t,, = 2" —r — 1. This result was
extended for the cag@ — 1/2| < € in [26]. In this paper we will generalize these results
from p~ 1/2 to any givenp € (0,1) as follows.

Theorem 2. For all p € (0,1) there existsg such that for all r>rg, all t with 1 <t < T,
and all n>t+r, we have

W(n7 p, rat) = max{g()(pa rut)a gl(p7 rut)}'
Moreover%(n,r,t) and¥;(n,r,t) are the only optimal families (up to isomorphism).

We will deduce Theorems 1 and 2 from slightly stronger, stability type results (cf. [16,
21]). To state our main results let us define some collections of families as follows. For
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0<i<[(n—t)/r] (but we will actually need the case= 0,1 only), let
G(n,r,t) = {¥ c 2" : & is r-wiset-intersecting,
Gi(n,r,t) ={¥ c 2" : ¢ c &' for some¥’ = % (n,r,t)},
Xi(n.r,t) = G(n,r.t)\ Upejci Gj(n.1.1),
Yiinkrt)={Z c ('): Z eXi(nrt)},
and finally let us define
m (n,k,r,t) = max{|.Z|:.Z € Y'(nk,r,t)},
w(n, p,r,t) = max{wp(¥) : 4 € X'(n,r,1)}.

Ahlswede and Khachatrian [1] determinefi(n, k, 2,t) completely, extending the ear-
lier results by Hilton and Milner [17] and Frankl [10]. Brace and Daykin [4] determined
wP(n,1/2,r,1) and Frankl [11] determinea®(n,1/2,r,t) forr >5and 1<t < 2" —r —1.
More partial results fom!(n,k,r,t) with k/n ~ 1/2 andw*(n, p,r,t) with p~ 1/2 are
found in [15, 26, 27]. Our main results are the following.

Theorem 3. For all p € (0,1) there exists g such that the following holds. For all® rg
and allt withl <t < T, there exist positive constangse, ng such that

ml(n7 K, r7t) < (1_ y) maX{|ﬂ0<n, K, rvt))|7 |ﬁl<n7k7 rut))|}
holds for all n> ng and k with| K — p| < &.

Theorem 4. For all p € (0,1) there exists ¢ such that the following holds. For all® rq
and all t withl <t < T, there exist there exist positive constapts such that

wi(n, B,r,t) < (1—y)max{go(P.r.t),qu(B,r,t)} 4)
holds for all n with n>t +r and all p with | — p| < €.

The conditiorr > rgis necessary in the above theorems. To see this, we give an example

which violates (4). Letr < 1/(1— p), or equivalently,p > 1 — % Consider a family

4 ={GcC[n:|G]>(1-1)n+L}. Then one can check that € X1(n,r,t). As the
binomial distributionB(n, p) is concentrated aroungn, we see that lim_..wp(¥) = 1.
Thus, (4) fails even ify = 0.

Theorem 3 and Theorem 4 immediately imply Theorem 1 and Theorem 2, respectively.
We first prove Theorem 4 in Section 3. Our proof technique is largely based on [11, 26].
Then we deduce Theorem 3 from Theorem 4 in Section 4. We prepare some tools in
Section 2.

In our proof of the theorems, we will make no effort to reduce the valug.dihstead,
we try to give a simpler proof assuminglarge enough. Our proof admits to replacerog
in (2) with any functionf (r) satisfyingf(r) — +o asr — +co.

2. TooLs

2.1. Some inequalities.Let p,q € (0,1) with p4+q = 1. We consider the situation that
is large enough for fixeg, and we always assume thggt> 1. In this case, the equation
gx —x+ p= 0 has unique roat; , in the interval(p, 1). In fact, lettingf (x) = qX —x+p,
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one can check that(0) = p > 0, f(1) = 0. Also f’(x) = qrx’~1 — 1 has unique real zero
x = (qr)~Y"—Y € (0,1). We sometimes writ&, for a;, omitting p if this makes no
confusion.

Lemma 1 ([27]). Let pr,to,c be fixed constants. Suppose thabwp, r,tg) < c holds for
all n > to. Then we have @, p,r,t) < ca.{gto for allt >ty and n>t. In particular, we
always have \n, p,r,t) < aj .

Lemma 2. X°(n,r,t) C X°(n,r —1,t +1) and wW(n, p,r,t) <wl(n,p,r — 1,t +1).

Proof. Let % € X%(n,r,t). If ¢ is not (r — 1)-wise (t + 1)-intersecting, then we can find
G1,...,Gro1 € 4 such thaGy N ---NGy_1| =t. But¥ is r-wiset-intersecting and so
everyG € ¢ must containG; N---NG,_1. This meanss ¢ X%(n,r,t), a contradiction.
Thus,4 € G(n,r — Lt +1). If ¢ fixest + 1 vertices, ther ¢ X%(n,r,t). Therefore we
have? € XO(n,r — 1t +1). O

Lemma 3. For any i withO < i < [(n—t)/r |, we have Wn+1, p,r,t) > wi(n, p,r,t).

Proof. Choose# € X!(n,r,t) with wp(#) = wi(n,p,r,t). Then¥’ =% U{GU{n+1}:
Ge ¥} e X (n+1rt) andwp(9’ : [n+1]) = wp(¥ : [n])(q+ p) = W(n, p,r,t), which
meansy (n+ 1, p,r,t) >w(n,p,r,t). O

For a positive integeirand a reap € (0,1), let

Ci == ci(p) = —i(p/q)logp. (5)

Lemma 4. For any positive integer i and any realg(0,1) there exists y € N such that
aft' < p'holds forallr>ryand ally=dp " with0 < d <.

Proof. Seta = a; andB = 1/(y+i). We want to show that¥*' < pY, that is,a < p*~'P.
Let f(x) = gX —x+p. Sincef(x) >0for 0<x<a andf(x) <0 fora <x<1,it
suffices to show that(p*—'F) < 0, that is,

(a/pp P < p(pF - 1). 6)
Noting thatp~'# = exp(logp—'#) > 1+ log(p~"#) = 1 —iBlogp, the RHS of (6) is more
than
—ip~"logp —ip~'logp —ilogp
= —
yti dp ' +i d
On the other hand, the LHS of (6) is

aslr — oo,

p~'(—iBlogp) =

(a/P)(p™)57 = (a/p)(p™) & ¥ — q/pasr — o,
Thus (6) holds for sufficiently largeif q/p < —i(logp)/d, thatis,d < ¢. O

Lemma 5. For all p € (0,1) there exist { € N and u € (0,1) such that the following
holds. Forallr>r;+1andallt withl <t <|cip(p"—p ")/q/, where g is defined
by (5), and all n>t +r, it follows WP(n, p,r,t) < up'.
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Proof. Choose'; from Lemma 4 fori = 1. Forr > r1 + 1 definea,; by
r—1 .
a=c1y pl=cp(p’-p")/a (7)
="
Then we havey, 1 =cip "t anda 1 —a =cip " forr >rp+1.
Letr >ry+1. We will showw®(n, p,r,t) < uptforallt with 1<t < |a, |, andn>r +t,
by induction orr. For the base case=r1+ 1, by Lemmas 2 and 1, we have

V\p(n7 p, r+ 17t) S Wo(nv P, r17t + 1) S at+1-

r
Then using Lemma 4 foy =t andi = 1, we havea}fl <ptfort<cip ' =a, 1. Let
p=max{ar,(ar,/p)t:1<t<|a,1]}. The maximum is attained when= |ar, ;1.
This u = u(p) € (0,1) satisfiesr®(n, p,ry+1,t) < pptforall 1<t < |ar 1.
For the induction step, Lemmas 2 and 1 imply that

wWo(n, p,r+1,t) <wl(n,p,r,t+1) <wl(n,p,r, || )aﬁl—tarJ.
Using the induction hypothesig®(n, p,r, |a; |) < upl®!, we have
wWo(n, p,r +1,t) < pplarl gt 1a) < g gti-ar

The RHS is at mosup' iff a'")*1 < p=& . Applying Lemma 4 foy =t — a, andi = 1,
this is true ift —a; < c;p ', thatist <a,+cip " =ar,1. O

2.2. Shifting. For integers K i < j < nand a family% c 2I", we define thei, j)-shift
aij as follows:

aij(¢) ={0ij(G) : Ge ¥},
where

(@)~ { (STUINVI 120 1<6. (G {inuti £

otherwise.

Afamily ¢ c 2 is calledshiftedif j;(¢) = ¢ forall 1<i < j <n, and¥ is calledtame
if it is shifted andN¥ = 0. If ¢4 is r-wiset-intersecting, then so igjj (¢). We notice that
¢ € XOn,r,t) does not necessarily implgij () € X°(n,r,t), becauseas;j(¥) may fixt
vertices.

Lemma 6. If ¢ € XO(n,r,t) is p-weight maximum, then we can find a ta#ttec XO(n, r,t)
with wp(94") = wp(9).

Proof. If ¢ € X°(n,r,t) then& € X°(n,r — 1,t + 1) by Lemma 2. We apply all possible
shifting operations t¢/ to get a shifted family’ € G(n,r,t) C G(n,r —1,t +1). Since
each shifting operation preserves fheveight, we havav,(¥) = wp(¥¢’).

We have to show thgf)%’ = 0. Otherwise we may assume thae1\¥’ andH =
[2,n] € 9'. Since¥’ is p-weight maximum we can fin@,,...,G,_1 € ¢’ such thatGi N
--NGr_1NH| <t. Then we havéGyN---NG;_1| <t+ 1, which is a contradiction. [

A family ¢ c 2I" is called afilter if it is closed upwards: iiG € ¢ andG c G’ then
G € 9. If s afilter, then so iwj; (¢). We also notice that # € X%(n,r,t) is p-weight
maximum thert/ is necessarily a filter.
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3. PROOF OFTHEOREM4
We start with the following simple observation.

Claim 1. Let¥ € X}(n,r,t) be fixed, and let fip) := max{go(p,r,t),g1(p,1,t)}. Ifwp(¥) <
f(p) for some p, then there exigte > O such that §(¢) < (1—y)f(p) forall |[p—p| < &.

This is because botip(¢) and f(p) are continuous functions of variabfe So, to
prove Theorem 4, it is enough to show tha(¥) < f(p) for givenp and¥ € X(n,r,t)
providedr >rg, 1<t < Tp;.

The actual proof goes as follows. Lgte X1(n,r,t) be p-weight maximum. Choose a
tame@* € X%(n, r,t) with wp(¥4*) = wp(¥) by Lemma 6. Then we will show the follow-
ing.

Case 1. It9* C % (n,r,t) thenwp(9*) < (1—y)g1(p,r1,t).
Case 2. It9* ¢ 41 (n,r,t) thenwp(4*) < (1—y)go(p,r,t).
In the proof, after having, r andt, we may assume thatis large enough by Lemma 3.

For Case 1, we show the following.

Lemma 7. For all p € (0,1), r > 2+1/q, t with1 <t < Tp,41, and all n>t +r, the
following holds. Le® € X1(n,r,t) be p-weight maximum and I&t € X°(n,r,t) be atame

family obtained by shifting fror. If ¥* C % (n,r,t) then wy(¥4*) < (1—y)g1(p,r,t),
wherey = 25 (15 4+ 2) L.

Proof of Lemma 7Let p,r,t,n be given. Set; = %(n,r,t). Let¥’ € Xi(n,rt) be p-
weight maximum. Note tha¥’ is not necessarily shifted. By Lemma 6 we can find
a tame%* € X%n,r,t) in a sequence of shifting’ — --- — &* with wy(¢') = --- =
Wp(¥4*). Suppose that?* C ¢4;. Then we find som& € G(n,r,t) in the sequence such
that¥ ¢ ¢4 andoyy(¥) C %1, where we may assume that=t+r, y=x+ 1. We note
that|[x] NG| > x—2 for all G € 4. Moreover, if|[x NG| = x—2 thenGN {x,y} = {y}
and(G—{y})U{x} ¢¢.

Forie [x set9(i)={Ge ¥ :[y|\G={i}}, and forj € [x—1] andz € {x,y} let
G())={Ge¥:Y\G={j.z}}, #(j) = {G\ [y : G € %(j)}. Sincecyy(¥) C % we
have %4 (j)No4(j) =0 and savp(%(j)) +Wp(% () < P 102 Set%p={Gc ¥ : [x C
G}, %y={Ge¥:GnNly| = [x—1]}, and lete = minic,y Wp(¢4(i)). Then we have

Wp(¥) = ;]Wp(g(i)) + ; ] (Wp(%(§)) +Wp(4()))) +Wp(“0) +Wp(%%y)  (8)
ie[x jex—1

< e+ (x—1)p'a+ (x—1)p o+ p+ Pl = e+ (n - 1)pa, 9
wheren = %+ (—1]. Note thate < p*qg, and (9) coincides witlvp(41) = xp<~1q+ p* = np*q
iff e= p*g. If there is somej € [x— 1] such that4%(j) U%(j) = 0, then by (8) we get

Wp(4) < Wp(%1) — P12 = (1 a/(np))Wp(%) = (1— (r — 2)y)wp(#1), and we are
done. Thus we may assume that

U()U%()) #0forall j e [x—1]. (10)
To provewp(¥) < (1—y)wp(¢1) by contradiction, let us assume that
Wp(¥4) > (1—y)wp(#1) = (1-y)npaq. (11)
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By (9) and (11) we have > (1—yn)p*d. This means, letting?’(i) = {G\ [y] : G € ¥4 (i)}
andY = [y+1,n], we have

Wp(2(i) 1Y) > 1—yn foralli € [x]. (12)

Since¥ ¢ 41, bothUjcix—1 %(J) andUjeix—1 % (i) are non-empty. Using this with (10),
we can choos& € %(j) andG' € 4(j’) with j # j/, say,j =x—1,j =x—2. Let
L=[r—2]and ¢ =\, 4 (¢). Then by (12) we have

Wp (1Y) > 1—(r—2)yn. (13)

If s+ c 2" is not(r — 2)-wise 1-intersecting, then we can fikf, ..., H,_» € s#* such
thatH;N---NH,_2 = 0. SettingG, = ([y]\ {{}) UH,; € ¢ we have|G1N---NG_2N
GNG'| =t —1, which contradicts the-wiset-intersecting property o¥. Thus.Z* is
(r —2)-wise 1-intersecting and, (72 1Y) < p by (3), where we neeft —2)q > 1. But
this contradicts (13) because we chgsso thatp = 1— (r — 2)yn. This completes the
proof of Lemma 7. O

Next we consider Case 2. Renaé by 4. Here, to make the proof notationally
simpler, we consider the caser 1 instead of the case Then, it suffices to show the
following lemma for Case 2.

Lemma 8. For all p € (0,1) there exists ¢ such that the following holds. For all® rg,
allt with 1 <t <Tp 1, there existy € (0,1) such that for all >t + (r +1) and all tame
4 € XO(n,r +1,t) with @ ¢ 41 (n,r + 1,t), it follows that wy(%) < (1—y)p".

Proof of Lemma 8Let p € (0,1) be given. We choose = ro(p) sufficiently large, which
will be specified in the proof. Then, let>rgand 1<t < T,,41 be given. We choose
y = vy(p,r,t) € (0,1) close enough to 1, and the closeness will be specified in the proof.
Finally let% € X°(n,r 4-1,t) be given with ¢ ¢ (n,r +1,t), wheren >t + (r +1).
Lett®) = max{j : ¢ isi-wise j-intersecting. We may assume that* =t and¥
is p-weight maximum among all tan# < X°(n,r +1,t) with ¢ ¢ % (n,r +1,t). Let
t() =t+s. We haves> 1 by Lemma 2. Choose from Lemma 5. Using Lemma 1 with
Lemma 5, we have

wp(¢) <wl(n, p,r,t+5s) <wl(n, p,r, Larj)arms)‘tad < up* ar(t+5)—ar,

for someu = u(p) € (0,1), wherea, is defined in (7). We want to show the RHS is at
mostupt, or equivalently,al=2+S < p'=a. Choosingr sufficiently large, that is; > r,
this is true ift —a, < csp™" by Lemma 4. Thus we get the desired inequalityf¥) < pup'
if

(t<)Tprr1<Csp " +a. (14)
The LHS isTp 11 = p~"/q—logr, while the RHS is

Cp ' +a =sap ' +a =cip '(s+p/q) —cpt/a.

We choose > rp > r1 so that—logr < —cipt~"1/q = (p?>~"/q)logp. Then we have
(14)if p~"/g<cip "(s+ p/q), thatis,—p(logp)(s+ p/q) > 1. This is true if

s>s9:= (—plogp)~* - p/q. (15)
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So we may assume thakls < 5. After [11] leth=min{i: |[GN[t+i]| >t forall Ge ¥}.
This is the minimum size of “holes” ift + h].

Claim2. 1<h<s(< %).

Proof. Since% € X%(n,r +1,t), we haveh > 1. By the definition o and the shiftedness
of 4, we haveGy,...,Gr € 4 such thatGyN---NGy = [t+9. Then it follows from
t+1) =t that|[t + s NG| >t for all G € ¢, which impliest +h <t +s. O
Letb=t+h—1 and letT; = [b+ 1 —i,b] be the right-mosi-set in[b]. ForA C [b] let
4(A)={GNb+1n:Ge¥9,[b\G=A}.
Since¥ is shifted, we have/(A) C 4(T;) for all A e (“i’]). Thus, for eaclG € ¢ with

|[b]\ G| =i, we can find5’ € 4(T;) such thatG = (|b] \ G) UG'. By considering the weight
of ¢4 on[b] and[b+1,n| separately we have

) < Z} ()PP~ 'g wp(4(Ti) : [b+1,n]). (16)

Clam 3. ForO<i<hand2< j<r, 4(T)is j-wise(ij + (r — j)h+ 1)-intersecting.

Proof. Suppose tha¥(T;) is not j-wise v-intersecting, wherg=ij + (r — j)h+ 1. Then
we can findGy,...,G; € ¢4(T;) such thaiGy N ---NGj| < v. Since¥ is a shifted filter,
we may assume thﬁlm ‘NGj=[b+1,b+v-1]. By shifting (G, U[b])\ Ti € ¢4, we
getGy := (G, U[b]) \ [bo+1+ (£ —1)i,b+/i] €< for 1< < j. Then,GiN---NG| =
bjUlb+ij+1,b+v-1].

By the definition ofh we have soméd € ¢4 such thatH N[h+t—1]| = |[HN[b]| =
t — 1 and due to the shiftedness@fwe may assume th&t = [n| \ [t,b]. By shiftingH,
we getG) :=[n]\ [b+ij +1+(—1—j)hb+ij+ (¢ —j)h e for j < ¢ <r. Then,
GjaN---NG =\ [b+ij+1,b+v—1. Thus we haves;N---NG NH = [t —1],
which contradicts thér + 1)-wiset-intersecting property of. O

Claim 4. If ¢ C %(n,r +1,t) then wp(¢) < (1—y)p".
Proof. Let 1<i < hand set4 = %(n,r + 1,t). We are going to compare
Wp(%\ % 1) = (t+(f+i1)(i—1)) pttig
and
Wp(gi—l\%) _ Zij;%nax{o,i—r} <t+(r+1 ) Z;+|1+1 ] (r+1) pt+(r+1)| j équ
For the latter, by choosing=i— 1, we have
Wp(%—l\%) <t+(r4|r1)1( 1)) pt+r| rql 1zr+1 (r+l) pr+1 £q+£
_ <t+(rTE)1( 1)) pt—H’I rql 1(1_ pH—l _ (r + 1)p CI).

Thus,

—r~y—1

Wp(gi—l\gi) >

Wp(4\% 1) _t+r(i—1)(p —pg - (r+1)).

T
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The RHS is more than 1 iff
t<ip™"/gq+r—(2r+1)i—p/q. (17)

Usingt < Tpr11 = p~"/q—logr, we can verify (17) fori > 2 andr large enough, say,
p~" > 2rhq. Thus we have mawp(%o), Wp(¥1)} > Wp(%2) > - > Wp(%h).

Suppose that? C %,. Since¥ ¢ ¢4 is an assumption of Lemma 8, we may assume that
h>2. Then we havevy(¥4) < wp(%h) < Wp(¥2). A direct computation using< Ty 41 <
p~"/q shows that lim_.. Wp(42) < p'/2. Thus, for sufficiently large, we can find some
y € (0,1) satisfyingwp(¥) < (1—y)p". O

So, we may assume th&tg <, (n,r +1,t).
Claim 5. If ¢ ¢ %, (n,r +1,t) then (Ty) is r-wise(rh + 2)-intersecting.

Proof. Suppose tha¥ (Ty) is notr-wise(rh+ 2)-intersecting. Then we canfir@, ...,G, €
¢(Th) such thatGyN--- NGy = [b+1,b+rh+1] = [t +h,t+ (r+1)h]. By shifting
(GoUb)\Th € 4 we getG), := (GyUD)\t+ (¢ —Dht+th—1 e forl<i<r.
Then,GiN---NG =[t—1U[t+rh,t+ (r+1)h]. Since¥ ¢ % (n,r + 1,t) we have

i1 =[N\ [t+rht+(r+1)hl € ¥. Thus, we haves) N---NG; , = [t — 1], which
contradicts thér + 1)-wiset-intersecting property of. O

Let0<i < h. By Claim 3,¢(T;) is | 5]-wiseu-intersecting, whera = | 5 |i + [5]h+1.
By Lemma 5 we havevy(4(Ti) : [b+1,n]) <wf(n—b,p,[5],u) < p"if u<ayy. In
fact, we can choose> ro(p) so thau < a; 5|, because <rh+1 <rsp+1 (by Lemma 2)
andrsg+ 1 < aj; | (by (15), (7) and (5)). Using < Ty,1 = p~'/q—logr and (®) <
(t+h)' < (t+s0)' < (p~"/q) forr > ro(p), we have

(®)po-igwp(#(Ti) : [b+1,n]) < (p~" /@) pP g p¥ < ptr(A+a)(h-i) < gi+5 - (18)

By Claim 5,%(Ty) is r-wise (rh + 2)-intersecting. Thus, by choosingarge enough so
thatrh+2 < a;,, Lemma 5 gives

(?) P> Mawp(4(Th) : [b+1,n)) < (p~"/q)"pt—2ghph+2 = pi+. (19)

By (16), (18), (19) we haver,(¥) < hg*2 4 pitt = p'(hpg/2+ p) < (1—y)p' by choos-
ing r sufficiently large so thatp'/? < spp/? < q. This completes the proof of Lemma 8
and Theorem 4. O

4. PROOF OFTHEOREM 3

Assume the negation of Theorem 3. Then the statement starts with
JpVrodr 3t VyvevngInk -, (20)

where the underlines will indicate the choice of parameters described below. We will
construct a counterexample to Theorem 4 using (20). Recall that Theorem 4 starts with

VpdroVrvtdyde ---. (21)
First, assuming the negation of Theorem 3, there exists gpm@), 1) (corresponding

to the first underline in (20)) such that the rest of Theorem 3 does not hold. Fagg,this
Theorem 4 provides sonmg (corresponding to the first underline in (21)) such that the rest
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of Theorem 4 holds. With thisy, the negation of Theorem 3 provides some rg and

1 <t <T;p (the second and third underlines in (20)) such that the rest of Theorem 3 does
not hold. With thisr andt, Theorem 4 provides somg = yo(p,r,t) ande = &(p,r,t)

such that

wi(n,B.rt) < (1-y) f(P) (22)
holds for allgwith | p— p| < &, and alln >t +r, wheref (p) := max{go(f,r.,t),91(p,r,t) }.
For reals O< b < awe writea+ b to mean the open intervéh— b,a+b). We note that
f(P) is a uniformly continuous function qf 6n p+ &. Lety = V° ,E= 50 ,andl = p+e.
Now we are going to definey. Chooseg; < € so that

(1-3y)f(p) > (1-4y)f(p+9) (23)

holds for allg'e | and all 0< & < &;. As the binomial distributio(n, p) is concentrated
aroundpn, we can choosa; so that

> (M Po(1—po)™" > (1-3y)/(1-2y) (24)
ic
holds for alln > n; and allpg € lg := p= 3¢, whered = ((po — &1)n, (Po+ €1)N) NN. A
little calculation shows that we can choaseso that

(1_ V) maX{|yo(n7 k7 rat)|7 |yl<n7 k7 rat)|} > (1_ 2y) f (k/n) (E) (25)

holds for alln > np andk with k/n € 1. Finally setnp = max{nz,ny}.

We plug thesey, € andng into (20). Then the negation of Theorem 3 gives us some
n,k and.Z € Y(nkrt) with |.Z| > (1 - y)max{|Zo(n,k,r,t)|,|.Z1(n,k 1,t)|}, where
n>ngandX e 1. We fixn,k and.#, and letp’= K. By (25) we have.#| > c(}), where
c=(1-2y)f(P). Let¥ = Uci<n(0i(F)) € X(n,r,t) be the collection of all upper
shadows of7, where(J;(#) = {H € (") : H > 3F € #}. Letpo = p+ &1 € lo.

Claim 6. |00;(:#)| > c(]) fori € J.

Proof. Choose a reat < nso thatc(}) = (,*,). Since|.#| > c(}) = (,,*,) the Kruskal-
Katona Theorem [20, 19] implies th&fl(#)| > (,*,). Thus it suffices to show that
() =c(t), or equivalently,

() e

()~ ()
Usingi > k this is equivalent té- - - (k4 1) > (Xx—n+i)--- (x—n+k+ 1), which follows
fromx <n. O

By the claim we have

Wi, (& >Z!D. )| Po(1— p)”'>CZ(?)pb(1—po>”‘i- (26)

le

Using (24) and (23), the RHS of (26) is more than

c(1-3y)/(1-2y) = (1-3y)f(p) > (1—-4y)f(P+ &) = (1-10)f(Po)-
This meansvy, (¢) > (1— y) f(po) which contradicts (22) becaupg € lo C pt&. O
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