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Abstract

We study the family of graphs whose number of primitive cycles equals its
cycle rank. It is shown that this family is precisely the family of ring graphs.
Then we study the complete intersection property of toric ideals of bipartite
graphs and oriented graphs. An interesting application is that complete
intersection toric ideals of bipartite graphs correspond to ring graphs and
that these ideals are minimally generated by Gröbner bases. We prove that
any graph can be oriented such that its toric ideal is a complete intersection
with a universal Gröbner basis determined by the cycles. It turns out that
bipartite ring graphs are exactly the bipartite graphs that have complete
intersection toric ideals for any orientation.

1 Introduction

Let G be a graph (no loops or multiple edges) with n vertices and q edges, and let
frank(G) be the number of primitive cycles of G, i.e., cycles without chords. The
number frank(G) is called the free rank of G and the number rank(G) = q−n+r
is called the cycle rank of G, where r is the number of connected components of
G. The cycle rank of G can be expressed as the dimension of the cycle space of G.
These two numbers satisfy rank(G) ≤ frank(G), as is seen in Proposition 2.2. The
aim of this paper is to study and classify the family of graphs where the equality
occurs. It will turn out that this family is precisely the family of ring graphs. The
precise definition of a ring graph can be found in Section 2. Roughly speaking ring
graphs can be obtained starting with a cycle and subsequently attaching paths of
length at least two that meet graphs already constructed in two adjacent vertices.

The contents of this paper are as follows. Before stating our main results,
recall that a graph G has the primitive cycle property (PCP) if any two primitive
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cycles intersect in at most one edge. A subdivision of a graph is any graph that
can be obtained from the original graph by replacing edges by paths. As usual
we denote the complete graph on n vertices by Kn. In Section 2, which is the
core of the paper, we prove the following implications for any graph G:

outerplanar ⇒ ring graph ⇔ PCP + contains no
m subdivision of K4 ⇒ planar

rank = frank as a subgraph

These purely graph theoretical results are applied in Sections 3 and 4, where
graphs with complete intersection toric ideals are studied, both in the oriented
and unoriented case. For bipartite graphs the equality rank(G) = frank(G) is
related to these special types of toric ideals as we explain below.

Let R = k[x1, . . . , xn] be a polynomial ring over a field k and let G be a graph
with vertex set V (G) = {x1, . . . , xn} and edge set E(G) = {t1, . . . , tq}. The edge

subring of G is the k-subalgebra of R:

k[G] = k[{xixj|xi is adjacent to xj}] ⊂ R.

There is an epimorphism of k-algebras

ϕ: k[t1, . . . , tq] −→ k[G], {x, y} 7−→ xy,

where k[t1, . . . , tq] is a polynomial ring. The kernel of ϕ, denoted by P (G), is
called the toric ideal of G. Toric ideals of graphs are studied in Section 3. The
height of P (G) is equal to g = q − rank(AG), where AG is the incidence matrix
of G. By a result of Krull [2] the ideal P (G) cannot be generated by less than
g polynomials. The toric ideal of G is called a complete intersection if it can
be generated by g polynomials. The complete intersection property of P (G) was
first studied in [6, 19], and later in [8, 13].

An interesting result of Simis [19] shows that if G is a bipartite graph, then
rank(G) = frank(G) if and only if P (G) is a complete intersection. Thus by
describing the graphs where equality occurs, we are in particular describing the
toric ideals of bipartite graphs that are complete intersections (see Corollary 3.4).
We prove that complete intersection toric ideals of 2-connected bipartite graphs
are minimally generated by Gröbner bases (see Corollary 3.7).

In Section 4 we introduce and study toric ideals of oriented graphs and their
Gröbner bases. To the best of our knowledge these toric ideals have not been
studied much except for the case of acyclic tournaments [12]. Oriented graphs
share some properties with bipartite graphs. For instance in both cases their
incidence matrices are totally unimodular. This is a key fact to understand the
Gröbner bases of toric ideals of oriented graphs (see Lemma 4.1). We prove that
the toric ideal of any oriented graph is completely determined by its primitive
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cycles and has a universal Gröbner basis determined by the cycles (see Proposi-
tion 4.3 and Corollary 4.5). It is shown that toric ideals of oriented ring graphs
are complete intersections for any orientation. As an interesting consequence of
the results of Section 2 we obtain that for bipartite graphs this property char-
acterizes ring graphs (see Corollary 4.9). One of our main results shows that
any graph has an acyclic orientation such that the corresponding toric ideal is a
complete intersection (see Theorem 4.16).

The paper is essentially self contained. For unexplained terminology and
notation on graph theory we refer to [5, 10]. Our main references for edge subrings
are [21, 22].

2 Ring graphs

Let G be a graph with n vertices and q edges. We denote the vertex set and edge
set ofG by V (G) = {x1, . . . , xn} and E(G) = {t1, . . . , tq} respectively. Recall that
a 0-chain (resp. 1-chain) of G is a formal linear combination

∑

aixi (resp.
∑

biti)
of vertices (resp. edges), where ai ∈ Z2 (resp. bi ∈ Z2). The boundary operator

is the linear map ∂:C1 → C0 defined by

∂({x, y}) = x+ y,

where Ci is the Z2-vector space of i-chains. A cycle vector is a 1-chain of the
form t1 + · · · + tr where t1, . . . , tr are the edges of a cycle of G. The cycle space

Z(G) of G over Z2 is equal to ker(∂). The vectors in Z(G) can be regarded as a
set of edge-disjoint cycles. A cycle basis for G is a basis for Z(G) which consists
entirely of cycle vectors, such a basis can be constructed as follows:

Remark 2.1 [10, pp. 38-39] If G is connected, then G has a spanning tree T .
The subgraph of G consisting of T and any edge in G not in T has exactly one
cycle, the collection of all cycle vectors of cycles obtained in this way form a
cycle basis for G. Hence dimZ2

Z(G) = q−n+ r if G is a graph with r connected
components.

Let c be a cycle of G. A chord of c is any edge of G joining two non adjacent
vertices of c. A cycle without chords is called primitive. The number dimZ2

Z(G)
is called the cycle rank of G and is denoted by rank(G). The number of primitive
cycles of a graph G, denoted by frank(G), is called the free rank of G.

Proposition 2.2 If G is a graph, then Z(G) is generated by cycle vectors of

primitive cycles. In particular rank(G) ≤ frank(G).

Proof. Let c1, . . . , cr be a cycle basis for the cycle space of G and let c1, . . . , cr
be the corresponding cycles of G. It suffices to notice that if some cj has a chord,
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we can write cj = c′j + c′′j , where c′j and c′′j are cycle vectors of cycles of length
smaller than that of cj. ✷

Corollary 2.3 Let G be a graph. Then the following are equivalent :

(a) rank(G) = frank(G).

(b) The set of cycle vectors of primitive cycles is a basis for Z(G).

(c) The set of cycle vectors of primitive cycles is linearly independent.

Proof. (a) ⇒ (b): By Proposition 2.2 there is a basis B of Z(G) consisting of
cycle vectors of primitive cycles. By hypothesis rank(G) = frank(G). Thus B is
the set of all cycle vectors of primitive cycles and B is a basis. That (b) implies
(c) and (c) implies (a) are also very easy to prove. ✷

Let G be a graph. A vertex v (resp. an edge e) of G is called a cutvertex (resp.
bridge) if the number of connected components of G\{v} (resp. G\{e}) is larger
than that of G. A maximal connected subgraph of G without cutvertices is called
a block . A graph G is 2-connected if |V (G)| > 2 and G has no cutvertices. Thus
a block of G is either a maximal 2-connected subgraph, a bridge or an isolated
vertex. By their maximality, different blocks of G intersect in at most one vertex,
which is then a cutvertex of G. Therefore every edge of G lies in a unique block,
and G is the union of its blocks.

Lemma 2.4 Let G be a graph and let G1, . . . , Gr be its blocks. Then rank(G) =
frank(G) if and only if rank(Gi) = frank(Gi) for all i.

Proof. ⇒) Let Gi be any block of G. We may assume |V (Gi)| > 2, otherwise
rank(Gi) = frank(Gi) = 0. If c is a primitive cycle of Gi, then by the maximality
condition of a block one has that c is also a primitive cycle of G. Thus by Corol-
lary 2.3 the set of cycle vectors of primitive cycles of Gi is linearly independent
and rank(Gi) = frank(Gi).

⇐) Let Bi and B be the set of cycle vector of primitive cycles of Gi and G
respectively. As ∪r

i=1Bi is linearly independent, by Corollary 2.3 it suffices to
prove that ∪r

i=1Bi = B. In the first part of the proof we have already observed
that ∪r

i=1Bi ⊂ B. To prove the equality take any cycle vector c of a primitive
cycle c of G. Since c is a 2-connected subgraph, it must be contained in some
block of G, i.e., in some Gi. Thus c is a primitive cycle of Gi, so c is in Bi. ✷

Definition 2.5 Given a graph H, we call a path P an H-path if P is non-trivial
and meets H exactly in its ends.

In order to describe, in graph theoretical terms, the family of graphs satisfying
the equality rank(G) = frank(G) we need to introduce another notion.
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Definition 2.6 A graph G is a ring graph if each block of G which is not a bridge
or a vertex can be constructed from a cycle by successively adding H-paths of
length at least 2 that meet graphs H already constructed in two adjacent vertices.

Families of ring graphs include forests and cycles. These graphs are planar
by construction.

Remark 2.7 Let G be a 2-connected ring graph and let c be a fixed primitive
cycle of G, then G can be constructed from c by successively adding H-paths of
length at least 2 that meet graphs H already constructed in two adjacent vertices.

A graph H is called a subdivision of a graph G if H = G or H arises from G
by replacing edges by paths.

Lemma 2.8 [1, Lemma 7.78, p. 387] Let G be a graph with vertex set V. If G is

2-connected and deg(v) ≥ 3 for all v ∈ V, then G contains a subdivision of K4 as

a subgraph.

Lemma 2.9 Let G be a graph. If rank(G) = frank(G) and x, y are two non

adjacent vertices of G, then there are at most two vertex disjoint paths joining x
and y.

Proof. Assume that there are three vertex disjoint paths joining x and y:

P1 = {x, x1, . . . , xr, y}, P2 = {x, z1, . . . , zt, y},

P3 = {x, y1, . . . , ys, y},

where r, s, t are greater or equal than 1. We may assume that the sum of the
lengths of the Pi’s is minimal. Consider the cycles

c1 = {x, x1, . . . , xr, y, zt, . . . , z1, x},

c2 = {x, z1, . . . , zt, y, ys, . . . , y1, x},

c3 = {x, x1, . . . , xr, y, ys, . . . , y1, x}.

Thus we are in the following situation:

sx

s

z1 ztss s sy

ss s s ss

sy1

x1 xr

ss s sys

c1

c2

c3
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Observe that, by the choice of the Pi’s, a chord of the cycle c1 (resp. c2, c3) must
join xi and zj (resp. zi and yj, xi and yj) for some i, j. If c1 is not primitive, we
can write

c1 = a1 + · · ·+ an1

for some distinct cycle vectors a1, . . . ,an1
of primitive cycles a1, . . . , an1

such that
each cycle ai contains at least one edge of the form {xj , zk}. Similarly if c2 (resp.
c3) is not primitive we can write:

c2 = b1 + · · ·+ bn2
(resp. c3 = d1 + · · ·+ dn3

)

for some distinct cycle vectors b1, . . . ,bn2
(resp. d1, . . . ,dn3

) of primitive cycles
such that each cycle bi (resp. di) contains at least one edge of the form {zj , yk}
(resp. {xj , yk}). Therefore we can write

c1 =

n1
∑

i=1

ai, c2 =

n2
∑

i=1

bi, c3 =

n3
∑

i=1

di

where a1, . . . ,an1
,b1, . . . ,bn2

,d1, . . . ,dn3
are distinct cycle vectors of primitive

cycles of G. Thus from the equality c3 = c1+c2 we get a non trivial linear relation
of the set B of cycle vectors of primitive cycles, i.e., B is linearly dependent, a
contradiction to Corollary 2.3. ✷

Lemma 2.10 Let G be a graph. If rank(G) = frank(G), then G has the primitive

cycle property.

Proof. Let c1, c2 be two distinct primitive cycles. Assume that c1 and c2 intersect
in at least two edges. Thus c1 and c2 must intersect in at least two non adjacent
vertices u, v. The cycle c2 can be written as:

c2 = {u = u0, u1, . . . , us, v = us+1, v1, . . . , vm, u}.

At least one of the paths P1 = {u, u1, . . . , us, v}, P2 = {v, v1, . . . , vm, u} that form
the cycle c2 must contain a vertex not in c1, otherwise c1 = c2. Assume that the
path P1 has this property. Hence there is uk /∈ c1 such that ui ∈ c1 for i < k, and
there is uℓ ∈ c1, with k < ℓ, such that ui /∈ c1 for k ≤ i < ℓ. Hence there are two
non adjacent vertices x = uk−1, y = uℓ in c1 and a path P = {x, uk, . . . , uℓ−1, y}
of length at least two that intersect c1 in exactly the vertices x, y:

sx

s

ss s sy

ss s s ss

s

uk uℓ−1

ss s s

c1

P
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This contradicts Lemma 2.9. ✷

Lemma 2.11 Let G be a graph. If G satisfies PCP and G does not contain a

subdivision of K4 as a subgraph, then for any two non adjacent vertices x, y of G
there are at most two vertex disjoint paths joining x and y.

Proof. Assume that there are three vertex disjoint paths joining x and y:

P1 = {x, x1, . . . , xr, y}, P2 = {x, z1, . . . , zt, y}, P3 = {x, y1, . . . , ys, y},

where r, s, t are greater or equal than 1. We may assume that the sum of the
lengths of the Pi’s is minimal. Consider the cycles

c1 = {x, x1, . . . , xr, y, zt, . . . , z1, x}, c2 = {x, z1, . . . , zt, y, ys, . . . , y1, x},

c3 = {x, x1, . . . , xr, y, ys, . . . , y1, x}.

Thus we are in the following situation:

sx

s

z1 ztss s sy

ss s s ss

sy1

x1 xr

ss s sys

c1

c2

c3

Observe that, by the choice of the Pi’s, a chord of the cycle c1 (resp. c2, c3) must
join xi and zj (resp. zi and yj, xi and yj) for some i, j. Notice that the cycles c1
and c3 are primitive. Indeed if c1 or c3 have a chord, then one of the following

s❢x

s

z1 ztss s s❢y

ss ❢

❇
❇
❇
❇
❇❇

s s ss

sy1

x1 xr

❢ss s sys

c1

c2

c3

s❢x

s

z1 zts❢s s s❢y

ss ❢

❆
❆❆

s s ss

sy1

x1 xr

ss s sys

c1

c2

c3

is a subgraph of G, which is impossible because both subgraphs are subdivisions
of K4. Since c1 and c3 are primitive and have at least two edges in common we
obtain that G does not satisfy PCP, a contradiction. ✷

Lemma 2.12 Let G be a graph. If rank(G) = frank(G), then G does not contain

a subdivision of K4 as a subgraph.

7



Proof. Assume there is a subgraph H ⊂ G which is a subdivision of K4. If K4

is a subgraph of G, then G has four distinct triangles whose cycle vectors are
linearly dependent, a contradiction to Corollary 2.3. If K4 is not a subgraph of
G, then H is a strict subdivision of K4, i.e., H has more than four vertices. It
follows that there are two vertices x, y in V (H) which are non adjacent in G.
Notice that x, y can be chosen in K4 before subdivision. Therefore there are at
least three non adjacent paths joining x and y, a contradiction to Lemma 2.9. ✷

The main result of this section is:

Theorem 2.13 Let G be a graph. Then the following conditions are equivalent:

(a) G is a ring graph.

(b) rank(G) = frank(G).

(c) G satisfies PCP and G does not contain a subdivision of K4 as a subgraph.

Proof. (a) ⇒ (b): By induction on the number of vertices it is not hard to see
that any ring graph G satisfies the equality rank(G) = frank(G).

(b) ⇒ (c): It follows at once from Lemmas 2.10 and 2.12.
(c) ⇒ (a): Let G1, . . . , Gr be the blocks of G. The proof is by induction on

the number of vertices of G. If each Gi is either a bridge or an isolated vertex,
then G is a forest and consequently a ring graph. Hence by Lemma 2.4 we may
assume that G is 2-connected and that G is not a cycle. We claim that G has at
least one vertex of degree 2. If deg(v) ≥ 3 for all v ∈ V (G), then by Lemma 2.8
there is a subgraph H ⊂ G which is a subdivision of K4, which is impossible. Let
v0 ∈ V (G) be a vertex of degree 2 as claimed. By the primitive cycle property
there is a unique primitive cycle c = {v0, v1, . . . , vs = v0} of G containing v0.
The graph H = G \ {v0} satisfies PCP and does not has a subdivision of K4 as
a subgraph. Consequently H is a ring graph. Thus we may assume that c is not
a triangle, otherwise G is a ring graph because it can be obtained by adding the
H-path {v2, v0, v1} to H.

Next we claim that if 1 ≤ i < j < k ≤ s− 1, then vi and vk cannot be in the
same connected component of H \{vj}. Otherwise there is a path of H \{vj} than
joins vi with vk. It follows that there is a path P of H \ {vj} with at least three
vertices that joins a vertex of {vj+1, . . . , vs−1} with a vertex of {v1, . . . , vj−1} and
such that P intersects c exactly in its ends, but this contradicts Lemma 2.11. This
proves the claim. In particular vi is a cutvertex of H for i = 2, . . . , s−2 and vi−1,
vi+1 are in different connected components of H \ {vi}. For each 1 ≤ i ≤ s − 2
there is a block Ki of H such that {vi, vi+1} is an edge of Ki. Notice that if
1 ≤ i < j < k ≤ s − 1, then vi, vj , vk cannot lie in some Kℓ. Indeed if the three
vertices lie in some Kℓ, then there is a path P ′ in Kℓ \ {vj} that joins vi and vk.
Since P ′ is also a path in H \{vj}, we get that vi and vk are in the same connected
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component of H \ {vj}, but this contradicts the last claim. In particular V (Kℓ)
intersects the cycle c in exactly the vertices vℓ, vℓ+1 for 1 ≤ ℓ ≤ s− 2.

Observe that at least one of the edges of c not containing v0 is not a bridge
of H. To show this pick x /∈ c such that {x, vk} is an edge of H. We may
assume that vk+1 6= v0 (or vk−1 6= v0). Since G′ = G \ {vk} is connected, there
is a path P of G′ joining x and vk+1 (or vk−1). This readily yields a cycle of H
containing an edge of c which is not a bridge of H. Hence at least one of the
blocks K1, . . . ,Ks−2, say Ki, contains vertices outside c.

Next we show that two distinct blocks B1, B2 of H cannot intersect outside
c. We proceed by contradiction assuming that V (B1) ∩ V (B2) = {z} for some z
not in c. Let H1, . . . ,Ht be the connected components of H \ {z}. Notice that
t ≥ 2 because {z} is the intersection of two different blocks of H. We may assume
that {v1, . . . , vs−1} are contained in H1. Consider the subgraph H ′

1 of G \ {z}
obtained from H1 by adding the vertex v0 and the edges {v0, v1}, {v0, vs−1}. It
follows that the connected components of G \ {z} are H ′

1,H2, . . . ,Ht , which is
impossible because G is 2-connected.

Let Ki be a block of H that contains vertices outside c for some 1 ≤ i ≤ s−2.
By induction hypothesisKi is a ring graph. Thus by Remark 2.7 we can construct
Ki starting with a primitive cycle c1 that contains the edge {vi, vi+1}, and then
adding appropriate paths. Suppose that P1, . . . ,Pm is the sequence of paths
added to c1 to obtain Ki. If we remove the path Pm from G and use the fact
that distinct blocks of H cannot intersect outside c, then again by induction
hypothesis we obtain a ring graph. It follows that G is a ring graph as well. ✷

An immediate consequence of Theorem 2.13 is:

Corollary 2.14 Let G be a graph. If rank(G) = frank(G), then G is planar.

Corollary 2.15 If G is a ring graph and H is an induced subgraph of G, then

H is a ring graph.

Proof. It follows from part (c) of Theorem 2.13. ✷

Two graphs H1 and H2 are called homeomorphic if there exists a graph G
such that both H1 and H2 are subdivisions of G. A graph is outerplanar if it
can be embedded in the plane so that all its vertices lie on a common face; it is
usual to choose this face to be the exterior face. The complete bipartite graph
with bipartition (V1, V2) is denoted by Kt,s, where |V1| = t and |V2| = s.

Theorem 2.16 [10, Theorem 11.10] A graph is outerplanar if and only if it has

no subgraph homeomorphic to K4 or K2,3 except K4 \ {e}, where e is an edge.

Proposition 2.17 If G is an outerplanar graph, then rank(G) = frank(G).

9



Proof. By Theorem 2.13(c) it suffices to prove that G satisfies PCP and G does
not contain a subdivision of K4 as a subgraph. IfG contains a subdivisionH of K4

as a subgraph, then G contains a subgraph, namely H, homeomorphic to K4, but
this is impossible by Theorem 2.16. To finish the proof we now show that G has
the PCP property. Let c1 = {x1, x2, . . . , xm = x1} and c2 = {y1, y2, . . . , yn = y1}
be two distinct primitive cycles having at least one common edge. We may assume
that xi = yi for i = 1, 2 and x3 6= y3. Notice that y3 /∈ c1 because otherwise
{y2, y3} = {x2, y3} is a chord of c1. We need only show that {x1, x2} = c1 ∩ c2,
because this implies that c1 and c2 cannot have more than one edge in common.
Assume that {x1, x2} ( c1∩c2. Let r be the minimum integer such that yr belong
to (c1 ∩ c2) \ {x1, x2}. Notice that yr 6= x3 because otherwise {x2, x3} is a chord
of c2. Hence c1 together with the path {x2 = y2, y3, . . . , yr} give a subgraph H
of G which is a subdivision of K2,3, a contradiction to Theorem 2.16. ✷

3 Toric ideals of graphs

Let R = k[x1, . . . , xn] be a polynomial ring over a field k and let G be a graph on
the vertex set V (G) = {x1, . . . , xn}. The edge subring of the graph G, denoted
by k[G], is the k-subalgebra of R generated by the monomials corresponding to
the edges of G:

k[G] = k[{xixj|xi is adjacent to xj}] ⊂ R.

There is a graded epimorphism of k-algebras

ϕ:B = k[t1, . . . , tq] −→ k[G], {x, y} 7−→ xy,

where B is a polynomial ring graded by deg(ti) = 1 for all i and k[G] has the
normalized grading deg(fi) = 1 for all i. The kernel of ϕ, denoted by P (G), is a
graded prime ideal of B called the toric ideal of G. The graded structure of P (G)
will not play a role in what follows. Later we will emphasize the fact that toric
ideals of oriented graphs may not have a graded structure. Having a grading is
useful if one studies the projective toric variety defined by P (G) or systems of
generators of P (G).

The Krull dimension of k[G] equals the rank of the incidence matrix of G [11].
If G is a connected graph, then by [23, Corollary 6.3] one has:

dim(k[G]) =

{

n if G is not bipartite, and
n− 1 otherwise.

Since B/P (G) ≃ k[G], we obtain that height of P (G) is q − n + 1 if G is a
connected bipartite graph and that height of P (G) is q − n if G is a connected
non-bipartite graph.
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Definition 3.1 The toric ideal P (G) is called a complete intersection if it can
be generated by g polynomials, where g is the height of P (G). The graph G is
called a complete intersection if P (G) is a complete intersection.

The complete intersection property is independent of k [14, Theorem 3.9]. In
the area of complete intersection toric ideals there are some recent papers, see
[3, 4] and the introduction of [14], where one can find additional properties and
references on this active area.

Next we describe a generating set for P (G) that shows how the cycle structure
of G determine P (G). Let

c = {x0, x1, . . . , xr = x0}

be an even cycle of G such that fi = xi−1xi. Notice that the binomial

tc = t1t3 · · · tr−1 − t2t4 · · · tr

is in P (G). If G is bipartite, then P (G) is minimally generated by the set of all
tc such that c is a primitive cycle of G, see [21].

The next result can be extended to non connected bipartite graphs.

Theorem 3.2 [19, Theorem 2.5] If G is a bipartite connected graph, then G is

a complete intersection if and only if rank(G) = frank(G).

This was the first characterization of complete intersection bipartite graphs.
For these graphs the equality rank(G) = frank(G) can also be interpreted in
homological terms [19]. Another characterization is the following:

Theorem 3.3 ([13]) If G is a bipartite graph, then G is a complete intersection

if and only if G is planar and satisfies PCP.

The next result is interesting because it shows how to construct all the com-
plete intersection bipartite graphs.

Corollary 3.4 If G is a bipartite graph, then G is a complete intersection if and

only if G is a ring graph.

Proof. By Theorem 3.2 G is a complete intersection if and only if rank(G) =
frank(G) and the result follows from Theorem 2.13. ✷

Notation For a = (a1, . . . , aq) ∈ Nq and f1, . . . , fq in a commutative ring we set
fa = fa1

1 · · · f
aq
q . The support of fa is the set supp(fa) = {fi | ai 6= 0}.

Definition 3.5 Let g1 = tα1 − tβ1 , . . . , gr = tαr − tβr be a sequence of homoge-
neous binomials of degree at least 2 in the polynomial ring B = k[t1, . . . , tq]. We
say that B = {g1, . . . , gr} is a foliation if the following conditions are satisfied:
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(a) tαi and tβi are square-free monomials for all i,

(b) supp(tαi) ∩ supp(tβi) = ∅ for all i, and

(c) |(∪j
i=1Ci) ∩ Cj+1| = 1 for 1 ≤ j < r, where Ci = supp(tαi) ∪ supp(tβi).

Proposition 3.6 If B = {g1, . . . , gr} is a foliation, then the ideal I = (B) gen-

erated by B is a complete intersection and B is a Gröbner basis of I.

Proof. By the constructive nature of B we can order the variables t1, . . . , tq such
that the leading terms of g1, . . . , gr, with respect to the lexicographical order, are
relatively prime. Let in(gi) be the leading term of gi. Then B is a Gröbner basis by
a result of Buchberger [22, Theorem 2.4.15]. Since B/I and B/(in(g1), . . . , in(gr))
have the same Krull dimension by a result of Macaulay [22, Corollary 2.4.13], we
obtain that the height of I is equal to r, as required. ✷

Corollary 3.7 If G is a 2-connected bipartite graph with at least four vertices,

then the toric ideal P (G) is a complete intersection if and only if it is generated

by a foliation.

Proof. It follows from Corollary 3.4 and the definition of a ring graph. ✷

4 Toric ideals of oriented graphs

LetG be a connected graph with n vertices and q edges and letO be an orientation
of the edges of G, i.e., an assignment of a direction to each edge of G. Thus
D = (G,O) is an oriented graph. To each oriented edge e = (xi, xj) of D, we
associate the vector ve defined as follows: the ith entry is −1, the jth entry is
1, and the remaining entries are zero. The incidence matrix AD of D is the
n × q matrix with entries in {0,±1} whose columns are the vectors of the form
ve, with e an edge of D. For simplicity of notation we set A = AD. The set of
column vectors of A will be denoted by A = {v1, . . . , vq}. It is well known [15]
that A defines a matroid M [A] on A = {v1, . . . , vq} over the field Q of rational
numbers, which is called the vector matroid of A, whose independent sets are
the independent subsets of A. A minimal dependent set or circuit of M [A] is a
dependent set all of whose proper subsets are independent. A subset B of A is
called a basis of M [A] if B is a maximal independent set. Recall that an integer
matrix is called totally unimodular if each i × i minor (subdeterminant) of the
matrix is 0 or ±1 for all i ≥ 1.

Lemma 4.1 The circuits of M [A] are precisely the cycles of G, A is totally

unimodular, and rank(A) = n− 1

12



Proof. It follows from [9, pp. 343-344] and [18, p. 274]. ✷

Let α ∈ Rq. The support of α is defined as supp(α) = {i |αi 6= 0}. An
elementary vector of ker(A) is a vector 0 6= α in ker(A) whose support is minimal
with respect to inclusion, i.e., supp(α) does not properly contain the support of
any other nonzero vector in ker(A). A circuit of ker(A) is an elementary vector
of ker(A) with relatively prime integral entries (see [24, Section 2]). There is a
one to one correspondence

Circuits of ker(A) −→ Circuits of M [A] = cycles of G

given by α = (α1, . . . , αq) → C(α) = {vi| i ∈ supp(α)}. Thus the set of circuits
of the kernel of A is the algebraic realization of the set of circuits of the vector
matroid M [A].

Consider the edge subring k[D] := k[xv1 , . . . , xvq ] ⊂ k[x±1
1 , . . . , x±1

n ] of the
oriented graph D. There is an epimorphism of k-algebras

ϕ:B = k[t1, . . . , tq] −→ k[D], ti 7−→ xvi ,

where B is a polynomial ring. The kernel of ϕ, denoted by PD, is called the toric
ideal of D. Notice that PD is no longer a graded ideal, see Proposition 4.7. The
toric ideal PD is a prime ideal of height q − n + 1 generated by binomials and
k[D] is a normal domain. Thus any minimal generating set of PD must have at
least q − n+ 1 elements, by the principal ideal theorem.

Let α ∈ Rq. Note that α = α+ − α−, where α+ and α− are two non negative
vectors with disjoint support. If 0 6= α ∈ ker(A) ∩ Zn we associate the binomial
tα = tα+ − tα− . Notice that tα ∈ PD. Given a cycle c of D, we split c in two
disjoint sets of edges c+ and c−, where c+ is oriented clockwise and c− = c \ c+.
The binomial

tc =
∏

vi∈c+

ti −
∏

vi∈c−

ti

belongs to PD. If c+ = ∅ or c− = ∅ we set
∏

vi∈c+
ti = 1 or

∏

vi∈c−
ti = 1.

Definition 4.2 The toric ideal PD is called a binomial complete intersection if
PD can be generated by q − n+ 1 binomials.

If PD is homogeneous and is generated by q − n+ 1 polynomials, then PD is
a binomial complete intersection.

Proposition 4.3 PD is generated by the set of all binomials tc such that c is a

cycle of D and this set is a universal Gröbner basis.

Proof. Let UD be the set of all binomials of the form tα such that α is a circuit of
ker(A). Since A is totally unimodular, by [20, Proposition 8.11], the set UD form
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a universal Gröbner basis of PD. Notice that the circuits of ker(A) are in one to
one correspondence with the circuits of the vector matroid M [A]. To complete
the proof it suffices to observe that the circuits of M [A] are precisely the cycles
of G, see Lemma 4.1. ✷

Proposition 4.4 Let c = {x1, x2, . . . , xr, x1} be a circuit of D. Suppose that

(xi, xj) or (xj , xi) is an edge of D, with i + 1 < j. Then tc is a linear combi-

nation of tc1 and tc2, where c1 = {x1, x2, . . . , xi, xj , xj+1, . . . , xr, x1} and c2 =
{xi, xi+1, . . . , xj , xi}.

Proof. Suppose without loss of generality that vk = (xi, xj) is the edge of D
with i+ 1 < j. Then we can write tc1 = tα+ − tα− and tc2 = tβ+ − tβ− for some
α, β. We may assume that vk ∈ c1+ ∩ c2+ , because otherwise we may multiply
tc1 or tc2 by −1. As tk divides tα+ and tk divides tβ+, we get

(

tβ+

tk

)

tc1 −

(

tα+

tk

)

tc2 =

(

tβ+

tk

)

(tα+ − tα−)−

(

tα+

tk

)

(tβ+ − tβ−)

=

(

tα+

tk

)

tβ− −

(

tβ+

tk

)

tα− = tγ1 − tγ2 .

Hence tγ1 − tγ2 is in PD, where γ1 = (α+ − ek) + β− and γ2 = (β+ − ek) + α−.
Then tγ1 is the product of the edges of (c1+ \{tk})∪c2− , but these are the edges of
c+. By the same reason tγ2 is the product of the edges of c−. Thus tc = tγ1 − tγ2 .
From the equality above we get that tc is a linear combination of tc1 and tc2 . ✷

As an immediate consequence of Propositions 4.3 and 4.4 we get:

Corollary 4.5 PD is generated by the set of binomials corresponding to primitive

cycles.

We say that a cycle c of D is oriented if all the arrows of c are oriented in the
same direction. If D does not have oriented cycles, we say that D is acyclic.

Proposition 4.6 ([10]) D is acyclic if and only if there is a linear ordering of

the vertices such that every edge of D has the form (xi, xj) with i < j.

The ordering of the last proposition is called a topological ordering . The next
result is not hard to prove.

Proposition 4.7 If D has a topological ordering, then PD is generated by ho-

mogeneous binomials with respect to the grading induced by degree(tk) = j − i,
where tk maps to x−1

i xj and (xi, xj) is an edge.

Corollary 4.8 If D is acyclic, then PD is a complete intersection if and only if

PD is generated by q − n+ 1 binomials corresponding to primitive cycles.
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Proof. Since PD is a graded ideal, it suffices to recall that all the homogeneous
minimal sets of generators of PD have the same number of elements. ✷

In general the binomial complete intersection property of PD depends on the
orientation of G. However we have:

Corollary 4.9 If G is a ring graph, then PD is a complete intersection for any

orientation of G. The converse holds if G is bipartite.

Proof. By Corollary 4.5, PD is generated by q − n + 1 binomials. To show the
converse assume that G is bipartite. Let (V1, V2) be a bipartition of G. Consider
the oriented graph D obtained from G by orienting all the edges of G from V1 to
V2, i.e., all the arrows of G have tail at V1 and head at V2. Since every vertex
of D is either a source or a sink it follows that P (G) = PD. Hence P (G) is a
complete intersection and G is a ring graph by Corollary 3.4. ✷

An interesting problem that remains unsolved is to characterize the graphs
with the property that PD is a binomial complete intersection for all orientations
of G. Apart from ring graphs it has been shown that complete graphs have this
property [17, 16].

A special orientation

Let G be a connected graph. Here we show that there is always an orientation
of G such that PD is a complete intersection generated by the binomials that
correspond to a cycle basis of a certain spanning tree of G.

Definition 4.10 Let S be a set of vertices of a graph G. The neighbor set of S,
denoted by NG(S) or simply by N(S) if G is understood, is the set of vertices of
G that are adjacent with at least one vertex of S.

Lemma 4.11 If H is a subgraph of a connected graph G and NG(V (H)) ⊂ V (H),
then V (G) = V (H).

Proof. Fix a vertex x ∈ V (H). Let y ∈ V (G). Since G is connected, there is a
path P = {b1 = x, b2, . . . , bℓ = y} from x to y. Using that {bj , bj+1} ∈ E(G) for
1 ≤ j < ℓ− 1 and that b1 ∈ V (H), by induction we get that bj ∈ V (H) for all j.
Thus y ∈ V (H). ✷

We begin by constructing a proper nested sequence A1, . . . , Am of subtrees of
G labeled by V (Aj) = {yj1, . . . , y

j
rj} such that Am is a spanning tree of G and

V (Ai) ( V (Ai+1) for i < m. First we construct the sequence A1, . . . , Am and
then we show that it has the required properties. Let A1 be a path of G maximal
with respect to inclusion. Set V (A1) = {y11, y

1
2 , . . . , y

1
r1
}. We define

i1 = max{u ∈ N|NG(y
1
1 , . . . , y

1
u) ⊂ V (A1)},
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where NG(B) is the neighbor set of B. If i1 = r1, then NG(V (A1)) ⊂ V (A1) and
by Lemma 4.11 we get V (A1) = V (G), in this case A1 is the required spanning
tree and we set m = 1. If i1 < r1, we define a1 = y1i1+1. By induction we define
the sequence of subgraphs A1, . . . , Am. Suppose that Aj has been defined, where

V (Aj) = {yj1, . . . , y
j
rj}. We define

ij = max{u ∈ N|NG(y
j
1, . . . , y

j
u) ⊂ V (Aj)}.

If ij = rj, then by Lemma 4.11 we get V (Aj) = V (G), in this case we set m = j

and A1, . . . , Aj is the desired sequence. If ij < rj = |V (Aj)|, we define aj = yjij+1.

Let Lj be a maximal path with respect to inclusion such that V (Lj) ∩ V (Aj) =

{aj} and V (Lj) = {zj1, z
j
2, . . . , z

j
sj = aj}, the final vertex of Lj is aj . We define

Aj+1 as follows: V (Aj+1) = V (Aj) ∪ V (Lj) = {yj+1
1 , . . . , yj+1

rj+sj−1}, where

yj+1
i =











yji if i ≤ ij,

zji−ij
if ij + 1 ≤ i ≤ ij + sj,

yji−sj+1 if ij + sj + 1 ≤ i ≤ rj + sj − 1,

(1)

E(Aj+1) = E(Aj) ∪ E(Lj), and rj+1 = rj + sj − 1.

Lemma 4.12 ik+1 > ik for 1 ≤ k ≤ m− 1.

Proof. By construction yk+1
i = yki for 1 ≤ i ≤ ik and yk+1

ik+1 = zk1 (see Eq.(1)).
By the maximality of Lj we have

NG(y
k+1
1 , yk+1

2 , . . . , yk+1
ik

, yk+1
ik+1) ⊂ V (Ak+1),

thus ik+1 > ik by definition of ik+1. ✷

Suppose that the process finish at step m, i.e., im = rm. We now prove that
A1, . . . , Am has the required properties:

Lemma 4.13 Ai is a tree for 1 ≤ i ≤ m and Am is a spanning tree of G.

Proof. By induction on i. For i = 1 the assertion is clear. Suppose that Ai is
a tree. Recall that Li is a tree and V (Li) ∩ V (Ai) = {ai}. On the other hand
V (Ai+1) = V (Ai)∪V (Li) and E(Ai+1) = E(Ai)∪E(Li), then Ai+1 is connected
and does not has cycles. By Lemma 4.11 we get that V (Am) = V (G) and Am is
a spanning tree. ✷

Orientation of the tree Am and the graph G. Let τ = (Am,O) be the
oriented tree obtained from Am using the following orientation:

(ymi , ymj ) ∈ E(τ) if and only if {ymi , ymj } ∈ E(Am) and j > i.
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By Lemma 4.13 we have V (G) = V (Am) = {ym1 , ym2 , . . . , ymrm} and we orient
G to obtain the oriented graph D = (G,O) in the following way:

(ymi , ymj ) ∈ D if and only if {ymi , ymj } ∈ E(G) and j > i.

Example 4.14 The construction of the spanning tree Am and the orientation O
of G is illustrated below.

r y11
❅
❅
❅

❅❅❘

r y1
2

�
�

�

��✠

�
�

�ry1
5

❅
❅
❅r❡

y13

✻

r
y14✛

✏✏✏✏
PPPP

r

r

PPPP
✏✏✏✏

r

r

r

❅
❅
❅r

�
�

�

�
�

�r
❅
❅
❅r

z13

r

✏✏✏✏
PPPPPP✐

r z11

r z12

❄PPPP
✏✏✏✏

r

r

r y21
❅
❅
❅

❅❅❘

r y2
2

�
�

�

��✠

�
�

�ry2
7

❅
❅
❅r❡

y2
5

✻

r
y26✛

✏✏✏✏
PPPPPP✐

r y23

r y24

❄PPPP
✏✏✏✏

r

r

r

❅
❅
❅r

�
�

�

�
�

�r
❅
❅
❅r
z2
3

r

✏✏✏✏
PPPP

r

r

PPPPPPq
✏✏✏✏

rz22

rz21
✻

r y31
❅
❅
❅

❅❅❘

r y3
2

�
�

�

��✠

�
�

�ry3
9

❅
❅
❅r❡

y3
7

✻

r
y38✛

✏✏✏✏
PPPPPP✐

r y33

r y34

❄PPPPPPq
✏✏✏✏

ry36

ry35
✻

r

❅
❅
❅

❅❅❘

r

�
�

�

��✠

�
�

�

��✠

r

❅
❅
❅❅❅■ r
✻

r ✛✛

✏✏✏✏✏✏✮
PPPPPP✐

r

r

❄PPPPPPq
✏✏✏✏✏✏✶

r

r✻

Notation For each fi ∈ E(D) \E(τ) the unique cycle of the subgraph τ ∪ {fi} is
denoted by c(τ, fi).

Proposition 4.15 For each fi ∈ E(D) \ E(τ) all the edges of c(τ, fi) \ {fi} are

oriented in the same direction and fi is oriented in the opposite direction.

Proof. By induction on m, the number of subtrees A1, . . . , Am. If m = 1 the
result is easy to verify because A1 is a spanning path of G. Assume m > 1.
Consider the subgraphs

G = G \ {y11, . . . , y
1
i1
}, Ai = Ai \ {y

1
1 , . . . , y

1
i1
}, i ≥ 2.

We set D = (G,O) and τ = (Am,O), where O is the orientation induced from
O. Notice that G is connected because Am is a spanning tree of G. Using the
equality

V (A2) = {y2i1+1, . . . , y
2
r1+s1−1} = {z11 , . . . , z

1
s1
, y1i1+2, . . . , y

1
r1
}

and zs1 = y1i1+1 it is not hard to see that A2 is a maximal path of G and the result
follows by induction. Indeed a fundamental cycle of τ is equal to c(τ, fi) = c(τ , fi)
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with fi ∈ E(D) \ E(τ) or c(τ, fi) = c(τ ′, fi) with fi ∈ E(H) \ E(τ ′) where H is
the induced subgraph on {y11 , . . . , y

1
i1
} and τ ′ is the spanning path of H given

by y11, . . . , y
1
i1
. In the first case we apply induction to obtain that the edges of

c(τ , fi) are properly oriented, in the second case it is easy to verify that c(τ ′, fi)
has the required orientation. ✷

Theorem 4.16 PD =
(

{tc(τ,fi)|fi ∈ E(D) \ E(τ)}
)

.

Proof. Set E(D) \ E(τ) = {f1, . . . , fq−n+1}. Suppose without loss of generality
that t1, . . . , tq−n+1 are the variables associated to f1, . . . , fq−n+1 respectively. By
Proposition 4.15 tc(τ,fi) = ti − tβi , where tβi is a product of variables associated
to edges in τ . Let I be the ideal generated by the set {tc(τ,fi)|fi ∈ E(D) \ E(τ)}

in B = k[t1, . . . , tq]. Let h = tα−tβ be a binomial in PD. Thus ti = tβi in B/I for
i = 1, . . . , q − n+ 1. Then h = tγ − tω, where tγ and tω are products of variables
associated to edges of τ . As I ⊂ PD, then tγ − tω ∈ PD = ker(ϕ). But τ is a tree,
thus tγ = tω, and h = 0 in B/I. Since PD is generated by binomials, PD = I. ✷

Corollary 4.17 Assume that D is the oriented graph constructed above. Then

PD is a homogeneous ideal generated by q − n + 1 binomials corresponding to

primitive cycles.

Proof. By Theorem 4.16 it follows that PD does not contains binomials of the
form 1− ta, i.e., D is acyclic. Thus we may apply Corollary 4.8. ✷

A tournament D is a complete graph Kn with a given orientation.

Proposition 4.18 ([10]) If D is a tournament, then D has a spanning oriented

path.

Proposition 4.19 ([12]) If D is an acyclic tournament, then PD is a complete

intersection minimally generated by a Gröbner basis.

Proof. Let τ be a spanning oriented path of D, i.e., τ = {x1, x2, . . . , xn} and
(xi, xi+1) is an edge of D for all i < n. Since D is acyclic, using the proof of
Theorem 4.16, it follows that

PD = ({tc(τ,fi)|fi ∈ E(D) \ E(τ)}),

where for each fi ∈ E(D) \ E(τ), the unique cycle of the subgraph τ ∪ {fi} is
denoted by c(τ, fi). ✷

Similarly we can prove the following generalization:

Proposition 4.20 If D is an acyclic oriented graph with a spanning oriented

path, then PD is a complete intersection minimally generated by a Gröbner basis.
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